1
|
Kanarek K, Keppel K, Cohen H, Fridman CM, Gerlic M, Salomon D. Assessing toxicity and competitive fitness of Vibrio isolates from coastal waters in Israel. mSphere 2025:e0002525. [PMID: 40172188 DOI: 10.1128/msphere.00025-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/04/2025] [Indexed: 04/04/2025] Open
Abstract
Several species of aquatic bacteria belonging to the genus Vibrio are emerging pathogens of humans and marine animals. Vibrio-associated infections have been shown to correlate with the increase in the oceans' surface water temperatures. A slow yet steady increase in Vibrio isolates from clinical settings in Israel over the past decade led us to investigate their pathogenic potential in Israel's coastal waters. We sequenced the genomes of 23 Vibrio isolates from the Mediterranean and Red Seas. Analysis of these genomes revealed the presence of diverse toxin secretion systems and toxins, as well as mobile genetic elements known to facilitate the dissemination of fitness-enhancing determinants. Moreover, we showed that at least 10 of these isolates induce cell death in bone marrow-derived macrophages and that at least 12 isolates intoxicate a rival Vibrio strain in interbacterial competition. Lastly, we determined the susceptibility profiles of these isolates to common antibiotics used to treat Vibrio infections and found widespread resistance to azithromycin. Taken together, our results reveal pathogenic potential within the Vibrio population of Israel's coastal waters and underline the need for continued environmental monitoring of emerging pathogens. IMPORTANCE The ocean's surface water temperatures have increased in the past decades due to climate change. This increase correlates with the spread of Vibrio, a genus of aquatic bacteria, many of which are pathogens of humans and marine animals. Since Vibrio-associated illnesses are rising in Israel, we set out to investigate the Vibrio population in Israel's coastal environments and monitor their pathogenic potential. We found diverse repertoires of predicted toxins, the ability to kill mammalian immune cells, and traits that enhance bacterial fitness, such as antibacterial toxicity and resistance to antibiotics commonly used to treat Vibrio infections. These findings indicate that pathogenic traits are circulating within the environmental Vibrio population in Israel's coastal waters and suggest that continued monitoring is essential to identify emerging pathogenic strains.
Collapse
Affiliation(s)
- Katarzyna Kanarek
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Kinga Keppel
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Hadar Cohen
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Chaya Mushka Fridman
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| |
Collapse
|
2
|
Li R, Zhao R, Li S, Yang Y, Li L, Wu K, Di Y. Systemic protection through enhanced immunity and antioxidant defenses in immune-primed Mytilus coruscus: Insights from cell/tissue-specific analyses. FISH & SHELLFISH IMMUNOLOGY 2025; 159:110186. [PMID: 39938621 DOI: 10.1016/j.fsi.2025.110186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/31/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Marine mussels are constantly exposed to pathogens and have to evolve robust immune systems to recognize, tolerate and clear infections. Recent studies have highlighted the phenomenon of 'immune priming' and its role in enhanced immunity in invertebrate. Yet, there is still a lack of experimental evidence on mussels of economic value. This study investigated the potential protective effects of immune priming in hemocytes and key tissues of marine mussels (Mytilus coruscus) which were repeatedly challenged with Vibrio alginolyticus, focusing on systemic responses in survival, immune functions and antioxidant responses. The results indicated that, hemocytes, as the immune cells in mussels, initiated the immune function against Vibrio through pathogen recognition. Subsequently, toxin efflux and immune defenses were precisely regulated by promoting the inflammatory response and cell apoptosis to eliminate Vibrio and infected host cells. In parallel, antioxidant defense was coordinated to mitigate the potential oxidative stress generated during immune process. Further analysis revealed tissue-specific immune responses, with gill and digestive gland showing differential responses compared to hemocytes. Immune tolerance in gills was observed, while digestive glands exhibited sustained immune and antioxidant responses, supporting the idea that these tissues play distinct roles in maintaining homeostasis and combating pathogens. As the result, mussels in the immune-primed group exhibited slower mortality and maintained higher hemocyte viability compared to the non-primed ones, suggesting that immune priming in mussels can provide systemic protection by enhancing both cellular immunity and antioxidant defense. The results offer valuable insights into improving disease resistance in mussels' aquaculture systems.
Collapse
Affiliation(s)
- Ruofan Li
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Ruoxuan Zhao
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Shuimei Li
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Yingli Yang
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Liya Li
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Kaijie Wu
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Yanan Di
- Ocean College, Zhejiang University, Zhoushan, 316000, China.
| |
Collapse
|
3
|
Barcia-Cruz R, Balboa S, Lema A, Romalde JL. Comparative genomics of Vibrio toranzoniae strains. Int Microbiol 2025; 28:485-496. [PMID: 38995500 PMCID: PMC11906542 DOI: 10.1007/s10123-024-00557-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Vibrio toranzoniae is a marine bacterium belonging to the Splendidus clade that was originally isolated from healthy clams in Galicia (NW Spain). Its isolation from different hosts and seawater indicated two lifestyles and wide geographical distribution. The aim of the present study was to determine the differences at the genomic level among six strains (4 isolated from clam and 2 from seawater) and to determine their phylogeny. For this purpose, whole genomes of the six strains were sequenced by different technologies including Illumina and PacBio, and the resulting sequences were corrected. Genomes were annotated and compared using different online tools. Furthermore, the study of core- and pan-genomes were examined, and the phylogeny was inferred. The content of the core genome ranged from 2953 to 2766 genes and that of the pangenome ranged from 6278 to 6132, depending on the tool used. Although the strains shared certain homology, with DDH values ranging from 77.10 to 82.30 and values of OrthoANI values higher than 97%, some differences were found related to motility, capsule synthesis, iron acquisition systems or mobile genetic elements. Phylogenetic analysis of the core genome did not reveal a differentiation of the strains according to their lifestyle (commensal or free-living), but that of the pangenome indicated certain geographical isolation in the same growing area. This study led to the reclassification of some isolates formerly described as V. toranzoniae and demonstrated the importance of cured deposited sequences to proper phylogenetic assignment.
Collapse
Affiliation(s)
- Rubén Barcia-Cruz
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Campus Vida S/N, 15782, Santiago de Compostela, Spain
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), 94701, Maisons-Alfort Cedex, France
| | - Sabela Balboa
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Campus Vida S/N, 15782, Santiago de Compostela, Spain
- Centro de Investigación Interdisciplinar en Tecnología Ambientales (CRETUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Alberto Lema
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Campus Vida S/N, 15782, Santiago de Compostela, Spain
- AllGenetics & Biology SL, Oleiros, 15172, Perillo, A Coruña, Spain
| | - Jesús L Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Campus Vida S/N, 15782, Santiago de Compostela, Spain.
- Centro de Investigación Interdisciplinar en Tecnología Ambientales (CRETUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Valdivieso A, Morga B, Degremont L, Mege M, Courtay G, Dorant Y, Escoubas JM, Gawra J, de Lorgeril J, Mitta G, Cosseau C, Vidal-Dupiol J. DNA methylation landscapes before and after Pacific Oyster Mortality Syndrome are different within and between resistant and susceptible Magallana gigas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178385. [PMID: 39799647 DOI: 10.1016/j.scitotenv.2025.178385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/12/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
Pacific oysters face recurring outbreaks of Pacific Oyster Mortality Syndrome (POMS), a polymicrobial multifactorial disease. Although this interaction is increasingly understood, the role of epigenetics (e.g., DNA methylation) appears to be of fundamental importance because of its ability to shape oyster resistance/susceptibility and respond to environmental triggers, including infections. In this context, we comprehensively characterized basal (no infection) and POMS-induced changes in the methylome of resistant and susceptible oysters, focusing on the gills and mantle. Our analysis identified differentially methylated regions (DMRs) that revealed distinct methylation patterns uniquely associated with the susceptible or resistant phenotypes in each tissue. Enrichment analysis of genes bearing DMRs highlighted that these epigenetic changes were specifically linked to immunity, signaling, metabolism, and transport. Notably, 31 genes with well-known immune functions were differentially methylated after POMS, with contrasting methylation patterns between the phenotypes. Based on the methylome differences between phenotypes, we identified a set of candidate epibiomarkers that could characterize whether an oyster is resistant or susceptible (1998 candidates) and whether a site has been exposed to POMS (164 candidates). Overall, the findings provide a deeper understanding of the molecular interactions between oysters and POMS infection, opening new questions about the broader implications of epigenetic mechanisms in host-pathogen dynamics and offering promising strategies for mitigating the impacts of this devastating disease. Beyond its biological aspects, this study provides insights into potential epigenetic biomarkers for POMS disease management and targets for enhancing oyster health and productivity.
Collapse
Affiliation(s)
- Alejandro Valdivieso
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - Benjamin Morga
- Ifremer, ASIM, Adaptation Santé des Invertébrés Marins, La Tremblade, France
| | - Lionel Degremont
- Ifremer, ASIM, Adaptation Santé des Invertébrés Marins, La Tremblade, France
| | - Mickaël Mege
- Ifremer, ASIM, Adaptation Santé des Invertébrés Marins, La Tremblade, France
| | - Gaëlle Courtay
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - Yann Dorant
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France; Université Polynesie Francaise, ILM, IRD, Ifremer, F-98719 Tahiti, French Polynesia, France
| | - Jean-Michel Escoubas
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - Janan Gawra
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France; IDAEA-CSIC, Jordi Girona 18, Barcelona, 08034, Spain
| | - Julien de Lorgeril
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, Entropie, Nouméa, Nouvelle-Calédonie, France
| | - Guillaume Mitta
- Université Polynesie Francaise, ILM, IRD, Ifremer, F-98719 Tahiti, French Polynesia, France
| | - Celine Cosseau
- IHPE, Univ Perpignan Via Domitia, CNRS, IFREMER, Univ Montpellier, Perpignan, France
| | - Jeremie Vidal-Dupiol
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France.
| |
Collapse
|
5
|
Mishra A, Kim HS, Kumar R, Srivastava V. Advances in Vibrio-related infection management: an integrated technology approach for aquaculture and human health. Crit Rev Biotechnol 2024; 44:1610-1637. [PMID: 38705837 DOI: 10.1080/07388551.2024.2336526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/05/2023] [Accepted: 11/25/2023] [Indexed: 05/07/2024]
Abstract
Vibrio species pose significant threats worldwide, causing mortalities in aquaculture and infections in humans. Global warming and the emergence of worldwide strains of Vibrio diseases are increasing day by day. Control of Vibrio species requires effective monitoring, diagnosis, and treatment strategies at the global scale. Despite current efforts based on chemical, biological, and mechanical means, Vibrio control management faces limitations due to complicated implementation processes. This review explores the intricacies and challenges of Vibrio-related diseases, including accurate and cost-effective diagnosis and effective control. The global burden due to emerging Vibrio species further complicates management strategies. We propose an innovative integrated technology model that harnesses cutting-edge technologies to address these obstacles. The proposed model incorporates advanced tools, such as biosensing technologies, the Internet of Things (IoT), remote sensing devices, cloud computing, and machine learning. This model offers invaluable insights and supports better decision-making by integrating real-time ecological data and biological phenotype signatures. A major advantage of our approach lies in leveraging cloud-based analytics programs, efficiently extracting meaningful information from vast and complex datasets. Collaborating with data and clinical professionals ensures logical and customized solutions tailored to each unique situation. Aquaculture biotechnology that prioritizes sustainability may have a large impact on human health and the seafood industry. Our review underscores the importance of adopting this model, revolutionizing the prognosis and management of Vibrio-related infections, even under complex circumstances. Furthermore, this model has promising implications for aquaculture and public health, addressing the United Nations Sustainable Development Goals and their development agenda.
Collapse
Affiliation(s)
- Anshuman Mishra
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, South Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, South Korea
| | - Rajender Kumar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| |
Collapse
|
6
|
Arfatahery N, Rafaluk C, Rolff J, Wegner KM. Evidence for immune priming specificity and cross-protection against sympatric and allopatric Vibrio splendidus strains in the oyster Magalana (Crassostrea) gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105221. [PMID: 38925430 DOI: 10.1016/j.dci.2024.105221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Infections with pathogenic Vibrio strains are associated with high summer mortalities of Pacific oysters Magalana (Crassostrea) gigas, affecting production worldwide. This raises the question of how M. gigas cultures can be protected against deadly Vibro infection. There is increasing experimental evidence of immune priming in invertebrates, where previous exposure to a low pathogen load boosts the immune response upon secondary exposure. Priming responses, however, appear to vary in their specificity across host and parasite taxa. To test priming specificity in the Vibrio - M. gigas system, we used two closely related Vibrio splendidus strains with differing degrees of virulence towards M. gigas. These V. splendidus strains were either isolated in the same location as the oysters (sympatric, opening up the potential for co-evolution) or in a different location (allopatric). We extracted cell-free haemolymph plasma from infected and control oysters to test the influence of humoral immune effectors on bacterial growth in vitro. While addition of haemolypmph plasma in general promoted growth of both strains, priming by an exposure to a sublethal dose of bacterial cells lead to inhibitory effects against a subsequent challenge with a potentially lethal dose in vitro. Inhibitory effects and immune priming was strongest when oysters had been primed with the sympatric Vibrio strain, but inhibitory effects were seen both when challenged with the sympatric as well as against allopatric V. splendidus, suggesting some degree of cross protection. The stronger immune priming against the sympatric strain suggests that priming could be more efficient against matching local strains potentially adding a component of local adaptation or co-evolution to immune priming in oysters. These in vitro results, however, were not reflected in the in vivo infection data, where we saw increased bacterial loads following an initial challenge. This discrepancy might suggests that that it is the humoral part of the oyster immune system that produces the priming effects seen in our in vitro experiments.
Collapse
Affiliation(s)
- Noushin Arfatahery
- Evolutionary Biology, Freie Universität Berlin, Institut für Zoologie, Königin-Luise-Str. 1-3, 14195, Berlin, Germany
| | - Charlotte Rafaluk
- Evolutionary Biology, Freie Universität Berlin, Institut für Zoologie, Königin-Luise-Str. 1-3, 14195, Berlin, Germany.
| | - Jens Rolff
- Evolutionary Biology, Freie Universität Berlin, Institut für Zoologie, Königin-Luise-Str. 1-3, 14195, Berlin, Germany
| | | |
Collapse
|
7
|
Rowley AF, Baker-Austin C, Boerlage AS, Caillon C, Davies CE, Duperret L, Martin SAM, Mitta G, Pernet F, Pratoomyot J, Shields JD, Shinn AP, Songsungthong W, Srijuntongsiri G, Sritunyalucksana K, Vidal-Dupiol J, Uren Webster TM, Taengchaiyaphum S, Wongwaradechkul R, Coates CJ. Diseases of marine fish and shellfish in an age of rapid climate change. iScience 2024; 27:110838. [PMID: 39318536 PMCID: PMC11420459 DOI: 10.1016/j.isci.2024.110838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
A recurring trend in evidence scrutinized over the past few decades is that disease outbreaks will become more frequent, intense, and widespread on land and in water, due to climate change. Pathogens and the diseases they inflict represent a major constraint on seafood production and yield, and by extension, food security. The risk(s) for fish and shellfish from disease is a function of pathogen characteristics, biological species identity, and the ambient environmental conditions. A changing climate can adversely influence the host and environment, while augmenting pathogen characteristics simultaneously, thereby favoring disease outbreaks. Herein, we use a series of case studies covering some of the world's most cultured aquatic species (e.g., salmonids, penaeid shrimp, and oysters), and the pathogens (viral, fungal, bacterial, and parasitic) that afflict them, to illustrate the magnitude of disease-related problems linked to climate change.
Collapse
Affiliation(s)
- Andrew F Rowley
- Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, Wales, UK
| | | | - Annette S Boerlage
- Centre for Epidemiology and Planetary Health (CEPH), SRUC School of Veterinary Medicine, Inverness, Scotland, UK
| | - Coline Caillon
- Université of Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - Charlotte E Davies
- Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, Wales, UK
| | - Léo Duperret
- IHPE, Université of Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, Montpellier, France
| | - Samuel A M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Guillaume Mitta
- Ifremer, ILM, IRD, UPF, UMR 241 SECOPOL, Tahiti, French Polynesia
| | - Fabrice Pernet
- Université of Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - Jarunan Pratoomyot
- Institute of Marine Science, Burapha University, Chonburi 20131, Thailand
| | - Jeffrey D Shields
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA
| | - Andrew P Shinn
- INVE Aquaculture (Thailand), 471 Bond Street, Bangpood, Pakkred, Nonthaburi 11120, Thailand
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Warangkhana Songsungthong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 10400, Thailand
| | - Gun Srijuntongsiri
- School of Information, Computer, and Communication Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand
| | - Kallaya Sritunyalucksana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 10400, Thailand
| | - Jeremie Vidal-Dupiol
- IHPE, Université of Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, Montpellier, France
| | - Tamsyn M Uren Webster
- Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, Wales, UK
| | - Suparat Taengchaiyaphum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 10400, Thailand
| | | | - Christopher J Coates
- Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, Wales, UK
- Zoology and Ryan Institute, School of Natural Sciences, University of Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
8
|
Mass S, Cohen H, Podicheti R, Rusch DB, Gerlic M, Ushijima B, van Kessel JC, Bosis E, Salomon D. The coral pathogen Vibrio coralliilyticus uses a T6SS to secrete a group of novel anti-eukaryotic effectors that contribute to virulence. PLoS Biol 2024; 22:e3002734. [PMID: 39226241 PMCID: PMC11371242 DOI: 10.1371/journal.pbio.3002734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/03/2024] [Indexed: 09/05/2024] Open
Abstract
Vibrio coralliilyticus is a pathogen of coral and shellfish, leading to devastating economic and ecological consequences worldwide. Although rising ocean temperatures correlate with increased V. coralliilyticus pathogenicity, the specific molecular mechanisms and determinants contributing to virulence remain poorly understood. Here, we systematically analyzed the type VI secretion system (T6SS), a contact-dependent toxin delivery apparatus, in V. coralliilyticus. We identified 2 omnipresent T6SSs that are activated at temperatures in which V. coralliilyticus becomes virulent; T6SS1 is an antibacterial system mediating interbacterial competition, whereas T6SS2 mediates anti-eukaryotic toxicity and contributes to mortality during infection of an aquatic model organism, Artemia salina. Using comparative proteomics, we identified the T6SS1 and T6SS2 toxin arsenals of 3 V. coralliilyticus strains with distinct disease etiologies. Remarkably, T6SS2 secretes at least 9 novel anti-eukaryotic toxins comprising core and accessory repertoires. We propose that T6SSs differently contribute to V. coralliilyticus's virulence: T6SS2 plays a direct role by targeting the host, while T6SS1 plays an indirect role by eliminating competitors.
Collapse
Affiliation(s)
- Shir Mass
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hadar Cohen
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ram Podicheti
- Center for Genomics and Bioinformatics Indiana University, Bloomington, Indiana, United States of America
| | - Douglas B. Rusch
- Center for Genomics and Bioinformatics Indiana University, Bloomington, Indiana, United States of America
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, United States of America
| | - Julia C. van Kessel
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Eran Bosis
- Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
Barcia-Cruz R, Balboa S, Lema A, Romalde JL. Comparative genomics of Vibrio toranzoniae strains. RESEARCH SQUARE 2024:rs.3.rs-4360386. [PMID: 38826277 PMCID: PMC11142368 DOI: 10.21203/rs.3.rs-4360386/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Vibrio toranzoniae is a marine bacterium belonging to the Splendidus clade, originally isolated from healthy clams in Galicia (NW Spain). Its isolation from different hosts and seawater indicated two lifestyles and wide geographical distribution. The aim of the present study was to determine the differences at genome level among strains, as well as to determine their phylogeny. For this purpose, whole genomes were sequenced by different technologies and the resulting sequences corrected. Genomes were annotated and compared with different online tools. Furthermore, the study of core and pan genome was examined, and the phylogeny was inferred. The content of the core genome ranged from 2,953 to 2,766 genes and that of the pangenome from 6,278 to 6,132, depending on the tool used. The comparison revealed that although the strains shared certain homology, with DDH values ranging from 77.10 to 82.30 and values of OrthoANI higher than 97%,notable differences were found related to motility, capsule synthesis, iron acquisition system or mobile genetic elements. The phylogenetic analysis of the core genome did not reveal a differentiation of the strains according to their lifestyle, but that of the pangenome pointed out certain geographical isolation in the same growing area. The study led to a reclassification of some isolates formerly described as V. toranzoniae and manifested the importance of cured deposited sequences to proper phylogenetic assignment.
Collapse
|
10
|
Destoumieux-Garzón D, Montagnani C, Dantan L, Nicolas NDS, Travers MA, Duperret L, Charrière GM, Toulza E, Mitta G, Cosseau C, Escoubas JM. Cross-talk and mutual shaping between the immune system and the microbiota during an oyster's life. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230065. [PMID: 38497271 PMCID: PMC10945412 DOI: 10.1098/rstb.2023.0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/25/2023] [Indexed: 03/19/2024] Open
Abstract
The Pacific oyster Crassostrea gigas lives in microbe-rich marine coastal systems subjected to rapid environmental changes. It harbours a diversified and fluctuating microbiota that cohabits with immune cells expressing a diversified immune gene repertoire. In the early stages of oyster development, just after fertilization, the microbiota plays a key role in educating the immune system. Exposure to a rich microbial environment at the larval stage leads to an increase in immune competence throughout the life of the oyster, conferring a better protection against pathogenic infections at later juvenile/adult stages. This beneficial effect, which is intergenerational, is associated with epigenetic remodelling. At juvenile stages, the educated immune system participates in the control of the homeostasis. In particular, the microbiota is fine-tuned by oyster antimicrobial peptides acting through specific and synergistic effects. However, this balance is fragile, as illustrated by the Pacific Oyster Mortality Syndrome, a disease causing mass mortalities in oysters worldwide. In this disease, the weakening of oyster immune defences by OsHV-1 µVar virus induces a dysbiosis leading to fatal sepsis. This review illustrates the continuous interaction between the highly diversified oyster immune system and its dynamic microbiota throughout its life, and the importance of this cross-talk for oyster health. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Delphine Destoumieux-Garzón
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Caroline Montagnani
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Luc Dantan
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Noémie de San Nicolas
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Marie-Agnès Travers
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Léo Duperret
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Guillaume M. Charrière
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Eve Toulza
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Guillaume Mitta
- Ifremer, IRD, ILM, Université de Polynésie Française, UMR EIO, Vairao 98179, French Polynesia
| | - Céline Cosseau
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Jean-Michel Escoubas
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| |
Collapse
|
11
|
Oyanedel D, Lagorce A, Bruto M, Haffner P, Morot A, Labreuche Y, Dorant Y, de La Forest Divonne S, Delavat F, Inguimbert N, Montagnani C, Morga B, Toulza E, Chaparro C, Escoubas JM, Gueguen Y, Vidal-Dupiol J, de Lorgeril J, Petton B, Degremont L, Tourbiez D, Pimparé LL, Leroy M, Romatif O, Pouzadoux J, Mitta G, Le Roux F, Charrière GM, Travers MA, Destoumieux-Garzón D. Cooperation and cheating orchestrate Vibrio assemblages and polymicrobial synergy in oysters infected with OsHV-1 virus. Proc Natl Acad Sci U S A 2023; 120:e2305195120. [PMID: 37751557 PMCID: PMC10556616 DOI: 10.1073/pnas.2305195120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/10/2023] [Indexed: 09/28/2023] Open
Abstract
Polymicrobial infections threaten the health of humans and animals but remain understudied in natural systems. We recently described the Pacific Oyster Mortality Syndrome (POMS), a polymicrobial disease affecting oyster production worldwide. In the French Atlantic coast, the disease involves coinfection with ostreid herpesvirus 1 (OsHV-1) and virulent Vibrio. However, it is unknown whether consistent Vibrio populations are associated with POMS in different regions, how Vibrio contribute to POMS, and how they interact with OsHV-1 during pathogenesis. By connecting field-based approaches in a Mediterranean ecosystem, laboratory infection assays and functional genomics, we uncovered a web of interdependencies that shape the structure and function of the POMS pathobiota. We show that Vibrio harveyi and Vibrio rotiferianus are predominant in OsHV-1-diseased oysters and that OsHV-1 drives the partition of the Vibrio community observed in the field. However only V. harveyi synergizes with OsHV-1 by promoting mutual growth and accelerating oyster death. V. harveyi shows high-virulence potential and dampens oyster cellular defenses through a type 3 secretion system, making oysters a more favorable niche for microbe colonization. In addition, V. harveyi produces a key siderophore called vibrioferrin. This important resource promotes the growth of V. rotiferianus, which cooccurs with V. harveyi in diseased oysters, and behaves as a cheater by benefiting from V. harveyi metabolite sharing. Our data show that cooperative behaviors contribute to synergy between bacterial and viral coinfecting partners. Additional cheating behaviors further shape the polymicrobial consortium. Controlling cooperative behaviors or countering their effects opens avenues for mitigating polymicrobial diseases.
Collapse
Affiliation(s)
- Daniel Oyanedel
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Arnaud Lagorce
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Maxime Bruto
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, PlouzanéF-29280, France
- Sorbonne Université, Université Pierre et Marie Curie Paris 06, CNRS, UMR8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, RoscoffF-29680, France
| | - Philippe Haffner
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Amandine Morot
- Université de Bretagne Occidentale, CNRS, Institut de recherche pour le développement (IRD), Ifremer, Laboratoire des sciences de l'environnement marin (LEMAR), Plouzané,F-29280, France
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, Institut Universitaire Européen de la Mer, LorientF-56100, France
| | - Yannick Labreuche
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, PlouzanéF-29280, France
- Sorbonne Université, Université Pierre et Marie Curie Paris 06, CNRS, UMR8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, RoscoffF-29680, France
| | - Yann Dorant
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Sébastien de La Forest Divonne
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - François Delavat
- Nantes Université, CNRS, Unité en Sciences Biologiques et Biotechnologies (US2B), UMR6286, Nantes,F-44000, France
| | - Nicolas Inguimbert
- Centre de Recherches Insulaires et OBservatoire de l’Environnement (CRIOBE), UAR3278, Ecole Pratique des Hautes Etudes (EPHE), Université de Perpignan Via Domitia, CNRS, PerpignanF-66860, France
| | - Caroline Montagnani
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Benjamin Morga
- Ifremer, Adaptation Santé des invertébrés Marins (ASIM), La TrembladeF-17390, France
| | - Eve Toulza
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Cristian Chaparro
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Jean-Michel Escoubas
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Yannick Gueguen
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
- MARine Biodiversity, Exploitation and Conservation (MARBEC) Univ Montpellier, CNRS, Ifremer, IRD, SèteF-34200, France
| | - Jeremie Vidal-Dupiol
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Julien de Lorgeril
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, ENTROPIE, Nouméa, Nouvelle-Calédonie,F-98800, France
| | - Bruno Petton
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, PlouzanéF-29280, France
- Université de Bretagne Occidentale, CNRS, Institut de recherche pour le développement (IRD), Ifremer, Laboratoire des sciences de l'environnement marin (LEMAR), Plouzané,F-29280, France
| | - Lionel Degremont
- Ifremer, Adaptation Santé des invertébrés Marins (ASIM), La TrembladeF-17390, France
| | - Delphine Tourbiez
- Ifremer, Adaptation Santé des invertébrés Marins (ASIM), La TrembladeF-17390, France
| | - Léa-Lou Pimparé
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Marc Leroy
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Océane Romatif
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Juliette Pouzadoux
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Guillaume Mitta
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
- Ifremer, Université de Polynésie Française, IRD, Institut Louis Malardé (ILM), Ecosystèmes Insulaires Océaniens (EIO), VairaoF-98719, Polynésie Française
| | - Frédérique Le Roux
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, PlouzanéF-29280, France
- Sorbonne Université, Université Pierre et Marie Curie Paris 06, CNRS, UMR8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, RoscoffF-29680, France
| | - Guillaume M. Charrière
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Marie-Agnès Travers
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| | - Delphine Destoumieux-Garzón
- Interactions Hôtes Pathogènes Environnements (IHPE), Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, MontpellierF-34090, France
| |
Collapse
|
12
|
Kanarek K, Fridman CM, Bosis E, Salomon D. The RIX domain defines a class of polymorphic T6SS effectors and secreted adaptors. Nat Commun 2023; 14:4983. [PMID: 37591831 PMCID: PMC10435454 DOI: 10.1038/s41467-023-40659-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
Bacteria use the type VI secretion system (T6SS) to deliver toxic effectors into bacterial or eukaryotic cells during interbacterial competition, host colonization, or when resisting predation. Identifying effectors is a challenging task, as they lack canonical secretion signals or universally conserved domains. Here, we identify a protein domain, RIX, that defines a class of polymorphic T6SS cargo effectors. RIX is widespread in the Vibrionaceae family and is located at N-termini of proteins containing diverse antibacterial and anti-eukaryotic toxic domains. We demonstrate that RIX-containing proteins are delivered via T6SS into neighboring cells and that RIX is necessary and sufficient for T6SS-mediated secretion. In addition, RIX-containing proteins can enable the T6SS-mediated delivery of other cargo effectors by a previously undescribed mechanism. The identification of RIX-containing proteins significantly enlarges the repertoire of known T6SS effectors, especially those with anti-eukaryotic activities. Furthermore, our findings also suggest that T6SSs may play an underappreciated role in the interactions between vibrios and eukaryotes.
Collapse
Affiliation(s)
- Katarzyna Kanarek
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chaya Mushka Fridman
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Bosis
- Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel.
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
13
|
Clerissi C, Luo X, Lucasson A, Mortaza S, de Lorgeril J, Toulza E, Petton B, Escoubas JM, Dégremont L, Gueguen Y, Destoumieux-Garzόn D, Jacq A, Mitta G. A core of functional complementary bacteria infects oysters in Pacific Oyster Mortality Syndrome. Anim Microbiome 2023; 5:26. [PMID: 37138356 PMCID: PMC10155333 DOI: 10.1186/s42523-023-00246-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND The Pacific oyster Crassostrea gigas is one of the main cultivated invertebrate species worldwide. Since 2008, oyster juveniles have been confronted with a lethal syndrome known as the Pacific Oyster Mortality Syndrome (POMS). POMS is a polymicrobial disease initiated by a primary infection with the herpesvirus OsHV-1 µVar that creates an oyster immunocompromised state and evolves towards a secondary fatal bacteremia. RESULTS In the present article, we describe the implementation of an unprecedented combination of metabarcoding and metatranscriptomic approaches to show that the sequence of events in POMS pathogenesis is conserved across infectious environments. We also identified a core bacterial consortium which, together with OsHV-1 µVar, forms the POMS pathobiota. This bacterial consortium is characterized by high transcriptional activities and complementary metabolic functions to exploit host's resources. A significant metabolic specificity was highlighted at the bacterial genus level, suggesting low competition for nutrients between members of the core bacteria. CONCLUSIONS Lack of metabolic competition between the core bacteria might favor complementary colonization of host tissues and contribute to the conservation of the POMS pathobiota across distinct infectious environments.
Collapse
Affiliation(s)
- Camille Clerissi
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
- Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, 66860, Perpignan, France
- CNRS, UAR 3278 CRIOBE, CRIOBE, EPHE, Université PSL, UPVD, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France
| | - Xing Luo
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-Sur-Yvette, France
| | - Aude Lucasson
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
- Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, 66860, Perpignan, France
| | - Shogofa Mortaza
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-Sur-Yvette, France
| | - Julien de Lorgeril
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
- Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, 66860, Perpignan, France
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, ENTROPIE, 98800, Nouméa, Nouvelle-Calédonie, France
| | - Eve Toulza
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
- Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, 66860, Perpignan, France
| | - Bruno Petton
- Ifremer, LEMAR UMR 6539, UBO, CNRS, IRD, Ifremer, 11 Presqu'île du Vivier, 29840, Argenton-en-Landunvez, France
| | - Jean-Michel Escoubas
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
- Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, 66860, Perpignan, France
| | - Lionel Dégremont
- Ifremer, SG2M, LGPMM, Avenue du Mus de Loup, 17930, La Tremblade, France
| | - Yannick Gueguen
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
- Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, 66860, Perpignan, France
- CNRS, Ifremer, IRD, MARBEC, Univ Montpellier, Sète, France
| | - Delphine Destoumieux-Garzόn
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
- Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, 66860, Perpignan, France
| | - Annick Jacq
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-Sur-Yvette, France.
| | - Guillaume Mitta
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France.
- Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, 66860, Perpignan, France.
- Ifremer, IRD, ILM, Université de Polynésie Française, UMR 241, Vairao, French Polynesia.
| |
Collapse
|
14
|
Singh RP, Kumari K. Bacterial type VI secretion system (T6SS): an evolved molecular weapon with diverse functionality. Biotechnol Lett 2023; 45:309-331. [PMID: 36683130 DOI: 10.1007/s10529-023-03354-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023]
Abstract
Bacterial secretion systems are nanomolecular complexes that release a diverse set of virulence factors/or proteins into its surrounding or translocate to their target host cells. Among these systems, type VI secretion system 'T6SS' is a recently discovered molecular secretion system which is widely distributed in Gram-negative (-ve) bacteria, and shares structural similarity with the puncturing device of bacteriophages. The presence of T6SS is an advantage to many bacteria as it delivers toxins to its neighbour pathogens for competitive survival, and also translocates protein effectors to the host cells, leading to disruption of lipid membranes, cell walls, and cytoskeletons etc. Recent studies have characterized both anti-prokaryotic and anti-eukaryotic effectors, where T6SS is involved in diverse cellular functions including favouring colonization, enhancing the survival, adhesive modifications, internalization, and evasion of the immune system. With the evolution of advanced genomics and proteomics tools, there has been an increase in the number of characterized T6SS effector arsenals and also more clear information about the adaptive significance of this complex system. The functions of T6SS are generally regulated at the transcription, post-transcription and post-translational levels through diverse mechanisms. In the present review, we aimed to provide information about the distribution of T6SS in diverse bacteria, any structural similarity/or dissimilarity, effectors proteins, functional significance, and regulatory mechanisms. We also tried to provide information about the diverse roles played by T6SS in its natural environments and hosts, and further any changes in the microbiome.
Collapse
Affiliation(s)
- Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| | - Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| |
Collapse
|
15
|
Oyanedel D, Rojas R, Brokordt K, Schmitt P. Crassostrea gigas oysters from a non-intensive farming area naturally harbor potentially pathogenic vibrio strains. J Invertebr Pathol 2023; 196:107856. [PMID: 36414122 DOI: 10.1016/j.jip.2022.107856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 09/05/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Farming intensification and climate change are inevitably linked to pathogen emergence in aquaculture. In this context, infectious diseases associated with vibrios span all developmental stages of the Pacific Oyster Crassostrea gigas. Moreover, virulence factors associated with pathogenicity spread among the vibrio community through horizontal gene transfer as part of the natural eco-evolutive dynamic of this group. Therefore, risk factors associated with the emergence of pathogens should be assessed before the appearance of mass mortalities in developing rearing areas. In this context, we characterized the vibrios community associated with oysters cultured in a non-intensive area free of massive mortalities located at Tongoy bay, Chile, through a culture-dependent approach. We taxonomically affiliated our isolates at the species level through the partial sequencing of the heat shock protein 60 gene and estimated their virulence potential through experimental infection of juvenile C. gigas. The vibrio community belonged almost entirely to the Splendidus clade, with Vibrio lentus being the most abundant species. The virulence potential of selected isolates was highly contrasted with oyster survival ranging between 100 and 30 %. Moreover, different vibrio species affected oyster survival at different rates, for instance V. splendidus TO2_12 produced most mortalities just 24 h after injection, while the V. lentus the most virulent strain TO6_11 produced sustained mortalities reaching 30 % of survival at day 4 after injection. Production of enzymes associated with pathogenicity was detected and hemolytic activity was positive for 50 % of the virulent strains and negative for 90 % of non-virulent strains, representing the phenotype that better relates to the virulence status of strains. Overall, results highlight that virulence is a trait present in the absence of disease expression, and therefore the monitoring of potentially pathogenic groups such as vibrios is essential to anticipate and manage oyster disease emergence in both established and under-development rearing areas.
Collapse
Affiliation(s)
- Daniel Oyanedel
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile.
| | - Rodrigo Rojas
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile; Centro de Innovación Acuícola (AquaPacífico), Universidad Católica del Norte, Coquimbo 1780000, Chile
| | - Katherina Brokordt
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile; Centro de Estudios avanzados en Zonas Áridas (CEAZA), Coquimbo 1780000, Chile; Centro de Innovación Acuícola (AquaPacífico), Universidad Católica del Norte, Coquimbo 1780000, Chile
| | - Paulina Schmitt
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
16
|
Jeria E, Oyanedel D, Rojas R, Farlora R, Lira G, Mercado A, Muñoz K, Destoumieux-Garzón D, Brokordt K, Schmitt P. Resistance of Argopecten purpuratus scallop larvae to vibriosis is associated with the front-loading of immune genes and enhanced antimicrobial response. Front Immunol 2023; 14:1150280. [PMID: 36936911 PMCID: PMC10020363 DOI: 10.3389/fimmu.2023.1150280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Mass mortality events caused by vibriosis have emerged in hatchery-reared scallop larvae from Chile, threatening scallop aquaculture. In an attempt to mitigate this emerging infectious disease and provide candidates for marker-assisted selective breeding, we tested here the existence of a genetic component of Argopecten purpuratus scallop resistance to the pathogen Vibrio bivalvicida. Through a dual RNA-seq approach we analyzed the basal transcriptome and the transcriptional response to infection in two resistant and two susceptible families as well as the pathogen transcriptomic response to host colonization. The results highlighted a genetic basis in the resistance of scallop larvae to the pathogen. The Vibrio response was characterized by a general metabolic adaptation to the host environment, along with several predicted virulence factors overexpressed in infected scallop larvae with no difference between resistant and susceptible host phenotypes. On the host side, several biological processes were enriched in uninfected resistant larvae. Within these enriched categories, immune-related processes were overexpressed, while morphogenesis, biomineral tissue development, and angiogenesis were under expressed. Particularly, genes involved in immune recognition and antimicrobial response, such as lipopolysaccharide-binding proteins (LBPs), lysozyme, and bactericidal permeability-increasing protein (BPI) were overexpressed in uninfected resistant larvae. As expected, immune-related biological processes were enriched in Vibrio-infected larvae, but they were more numerous in resistant larvae. Overexpressed immune genes in response to infection included several Toll-like receptors, TNF and NF-κB immune signaling genes, and the antimicrobial peptide Big defensin ApBD1. Results strongly suggest that both a front-loading of immune genes and an enhanced antimicrobial response to infection contribute to the resistance, while pathogen infective strategy does not discriminate between host phenotypes. Overall, early expression of host immune genes appears as a strong determinant of the disease outcome that could be used in marker-assisted selective breeding.
Collapse
Affiliation(s)
- Eduardo Jeria
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Daniel Oyanedel
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Rodrigo Rojas
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile
| | - Rodolfo Farlora
- Laboratorio de Biotecnología Acuática y Genómica Reproductiva (LABYGER), Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Investigación y Gestión de Recursos Naturales (CIGREN), Universidad de Valparaíso, Valparaíso, Chile
| | - German Lira
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile
| | - Ana Mercado
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile
| | - Katherine Muñoz
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | - Katherina Brokordt
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile
| | - Paulina Schmitt
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- *Correspondence: Paulina Schmitt,
| |
Collapse
|
17
|
Dotto-Maurel A, Pelletier C, Morga B, Jacquot M, Faury N, Dégremont L, Bereszczynki M, Delmotte J, Escoubas JM, Chevignon G. Evaluation of tangential flow filtration coupled to long-read sequencing for ostreid herpesvirus type 1 genome assembly. Microb Genom 2022; 8:mgen000895. [PMID: 36355418 PMCID: PMC9836095 DOI: 10.1099/mgen.0.000895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Whole-genome sequencing is widely used to better understand the transmission dynamics, the evolution and the emergence of new variants of viral pathogens. This can bring crucial information to stakeholders for disease management. Unfortunately, aquatic virus genomes are usually difficult to characterize because most of these viruses cannot be easily propagated in vitro. Developing methodologies for routine genome sequencing of aquatic viruses is timely given the ongoing threat of disease emergence. This is particularly true for pathogenic viruses infecting species of commercial interest that are widely exchanged between production basins or countries. For example, the ostreid herpesvirus type 1 (OsHV-1) is a Herpesvirus widely associated with mass mortality events of juvenile Pacific oyster Crassostrea gigas. Genomes of Herpesviruses are large and complex with long direct and inverted terminal repeats. In addition, OsHV-1 is unculturable. It therefore accumulates several features that make its genome sequencing and assembly challenging. To overcome these difficulties, we developed a tangential flow filtration (TFF) method to enrich OsHV-1 infective particles from infected host tissues. This virus purification allowed us to extract high molecular weight and high-quality viral DNA that was subjected to Illumina short-read and Nanopore long-read sequencing. Dedicated bioinformatic pipelines were developed to assemble complete OsHV-1 genomes with reads from both sequencing technologies. Nanopore sequencing allowed characterization of new structural variations and major viral isomers while having 99,98 % of nucleotide identity with the Illumina assembled genome. Our study shows that TFF-based purification method, coupled with Nanopore sequencing, is a promising approach to enable in field sequencing of unculturable aquatic DNA virus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jean Delmotte
- IHPE, Univ. Montpellier, CNRS, Ifremer, UPVD, F-34095 Montpellier, France
| | - Jean-Michel Escoubas
- IHPE, Univ. Montpellier, CNRS, Ifremer, UPVD, F-34095 Montpellier, France,*Correspondence: Jean-Michel Escoubas,
| | - Germain Chevignon
- Ifremer, ASIM, F-17390 La Tremblade, France,*Correspondence: Germain Chevignon,
| |
Collapse
|
18
|
Zhou Q, Chen Y, Chen Z, Wang L, Ma X, Wang J, Zhang Q, Chen S. Genomics and transcriptomics reveal new molecular mechanism of vibriosis resistance in fish. Front Immunol 2022; 13:974604. [PMID: 36304468 PMCID: PMC9592550 DOI: 10.3389/fimmu.2022.974604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
Infectious diseases have caused dramatic production decline and economic loss for fish aquaculture. However, the poor understanding of fish disease resistance severely hampered disease prevention. Chinese tongue sole (Cynoglossus semilaevis) is an important economic flatfish suffering from vibriosis. Here we used genomic, transcriptomic and experimental approaches to investigate the molecular genetic mechanisms underlying fish vibriosis resistance. A genome-wide comparison revealed that the genes under selective sweeps were enriched for glycosaminoglycan (GAG) chondroitin sulfate (CS)/dermatan sulfate (DS) metabolism. Transcriptomic analyses prioritized synergic gene expression patterns in this pathway, which may lead to an increased CS/DS content in the resistant family. Further experimental evidence showed that carbohydrate sulfotransferases 12 (Chst12), a key enzyme for CS/DS biosynthesis, has a direct antibacterial activity. To the best of our knowledge, this is the first report that the chst12 gene has a bactericidal effect. In addition, CS/DS is a major component of the extracellular matrix (ECM) and the selection signatures and fine-tuned gene expressions of ECM-receptor interaction genes indicated a modification in the ECM structure with an enhancement of the barrier function. Furthermore, functional studies conducted on Col6a2, encoding a collagen gene which constitutes the ECM, pointed to that it may act as a cellular receptor for Vibrio pathogens, thus plays an important role for the Vibrio invasion. Taken together, these findings provide new insights into the molecular protective mechanism underlying vibriosis resistance in fish, which offers crucial genomic resources for the resistant germplasm breeding and infectious disease control in fish culturing.
Collapse
Affiliation(s)
- Qian Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Shandong Key Laboratory for Marine Fishery Biotechnology and Genetic Breeding, Qingdao, China
| | - Yadong Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
| | - Zhangfan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
| | - Lei Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
| | - Xinran Ma
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
| | - Jie Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
| | - Qihao Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
| | - Songlin Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Shandong Key Laboratory for Marine Fishery Biotechnology and Genetic Breeding, Qingdao, China
- College of Life Science, Qingdao University, Qingdao, China
- *Correspondence: Songlin Chen,
| |
Collapse
|
19
|
Jiang C, Kasai H, Mino S, Romalde JL, Sawabe T. The pan‐genome of Splendidus clade species in the family
Vibrionaceae
: insights into evolution, adaptation, and pathogenicity. Environ Microbiol 2022; 24:4587-4606. [DOI: 10.1111/1462-2920.16209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Chunqi Jiang
- Laboratory of Microbiology, Faculty of Fisheries Sciences Hokkaido University Hakodate Japan
| | - Hisae Kasai
- Laboratory of Marine Biotechnology and Microbiology, Faculty of Fisheries Sciences Hokkaido University Hakodate Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences Hokkaido University Hakodate Japan
| | - Jesús L. Romalde
- Departamento de Microbiología y Parasitología, CRETUS & CIBUS‐Facultad de Biología. Universidade de Santiago de Compostela Spain
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences Hokkaido University Hakodate Japan
| |
Collapse
|
20
|
Ericson JA, Venter L, Welford MRV, Kumanan K, Alfaro AC, Ragg NLC. Effects of seawater temperature and acute Vibriosp. challenge on the haemolymph immune and metabolic responses of adult mussels (Perna canaliculus). FISH & SHELLFISH IMMUNOLOGY 2022; 128:664-675. [PMID: 35981703 DOI: 10.1016/j.fsi.2022.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The New Zealand Greenshell™ mussel (Perna canaliculus) is an endemic bivalve species with cultural importance, that is harvested recreationally and commercially. However, production is currently hampered by increasing incidences of summer mortality in farmed and wild populations. While the causative factors for these mortality events are still unknown, it is believed that increasing seawater temperatures and pathogen loads are potentially at play. To improve our understanding of these processes, challenge experiments were conducted to investigate the combined effects of increased seawater temperature and Vibrio infection on the immune and metabolic responses of adult mussels. Biomarkers that measure the physiological response of mussels to multiple-stressors can be utilised to study resilience in a changing environment, and support efforts to strengthen biosecurity management. Mussels acclimated to two temperatures (16 °C and 24 °C) were injected with either autoclaved, filtered seawater (control) or Vibriosp. DO1 (infected). Then, haemolymph was sampled 24 h post-injection and analysed to quantify haemocyte immune responses (via flow-cytometry), antioxidant capacity (measured electrochemically) and metabolic responses (via gas chromatography-mass spectrometry) to bacterial infection. Both seawater temperature and injection type significantly influenced the immune and metabolite status of mussels. A lack of interaction effects between temperature and injection type indicated that the effects of Vibrio sp. 24 h post-infection were similar between seawater temperatures. Infected mussels had a higher proportion of dead haemocytes and lower overall haemocyte counts than uninfected controls. The proportion of haemocytes showing evidence of apoptosis was higher in mussels held at 24 °C compared with those held at 16 °C. The proportion of haemocytes producing reactive oxygen species did not differ between temperatures or injection treatments. Mussels held at 24 °C exhibited elevated levels of metabolites linked to the glycolysis pathway to support energy production. The saccharopin-lysine pathway metabolites were also increased in these mussels, indicating the role of lysine metabolism. A decrease in metabolic activity (decreases in BCAAs, GABA, urea cycle metabolites, oxidative stress metabolites) was largely seen in mussels injected with Vibrio sp. Itaconate increased as seen in previous studies, suggesting that antimicrobial activity may have been activated in infected mussels. This study highlights the complex nature of immune and metabolic responses in mussels exposed to multiple stressors and gives an insight into Vibrio sp. infection mechanisms at different seawater temperatures.
Collapse
Affiliation(s)
| | - Leonie Venter
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Mena R V Welford
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Karthiga Kumanan
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand; Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
| | - Norman L C Ragg
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| |
Collapse
|
21
|
Liu S, Liu Y, Lu J, Mao J, Lin Z, Xue Q. Genome Wide Identification and Expression Profiling Indicate Expansion of Family I84 Protease Inhibitor via Gene Tandem Duplication and Divergence in Razor Clam Sinonovacula constricta. Front Immunol 2022; 13:907274. [PMID: 35720365 PMCID: PMC9198434 DOI: 10.3389/fimmu.2022.907274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
Family I84 protease inhibitors represent a novel family in the MEROPS peptidase database and are likely unique for molluscan host defense. Two Family I84 members, scSI-1 and scSI-2, were reported from the razor clam Sinonovacula constricta in a previous research. In the present study, 12 additional genes, named scSI-3 to scSI-14, were identified via genome wide sequence analyses. Among them, 10 genes were predicted to have a signal sequence, but one (scSI-7) was not. Besides, one sequence (scSI-14) was likely to encode a prematurely terminated peptide. The predicted mature peptides shared characteristics including 12 conserved cysteine residues, isoelectric points of 4.98 to 6.11, and molecular weights of 7.1 to 9.3 kDa with previously reported family members. Four motifs were characterized in 13 predicted mature peptides (with exception of scSI-14), which shared two to four conserved cysteine residues, are possibly to form two functional domain comprised 6 cysteine residues, respectively. At genomic level, all the 14 razor clam Family I84 genes were organized into 3 exons and 2 introns; 13 of them clustered in 3 regions of 100 kb on 3 separate chromosomes, suggesting tandem duplications of related genes. The promoter region of all the 14 genes was predicted to share some transcription factor binding sites, in particular those responsive to pathological and physiological stimuli, but no shared motifs were identified. Analyses also revealed differences in expression patterns among the genes. One gene in a tandem duplicated gene pairs usually showed a higher expression level than the other whereas non-tandem duplicated genes exhibited a higher degree of correlation in expression level. In addition, 8 of the 14 genes demonstrated higher level of expression in Vibrio tolerant clams than in non-tolerant clams following challenges with Vibrio parahaemolyticus. These results generated important information about the evolution of Family I84 protease inhibitors in S. constricta.
Collapse
Affiliation(s)
- Sheng Liu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China.,Zhejiang Key Laboratory of Aquatic Germplasm Resource, Zhejiang Wanli University, Ningbo, China
| | - Youli Liu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China.,Zhejiang Key Laboratory of Aquatic Germplasm Resource, Zhejiang Wanli University, Ningbo, China
| | - Jiali Lu
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, Zhejiang Wanli University, Ningbo, China
| | - Jinxia Mao
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, Zhejiang Wanli University, Ningbo, China
| | - Zhihua Lin
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China.,Zhejiang Key Laboratory of Aquatic Germplasm Resource, Zhejiang Wanli University, Ningbo, China
| | - Qinggang Xue
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
22
|
Variation in Survival and Gut Microbiome Composition of Hatchery-Grown Native Oysters at Various Locations within the Puget Sound. Microbiol Spectr 2022; 10:e0198221. [PMID: 35536036 PMCID: PMC9241838 DOI: 10.1128/spectrum.01982-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Olympia oyster (Ostrea lurida) of the Puget Sound suffered a dramatic population crash, but restoration efforts hope to revive this native species. One overlooked variable in the process of assessing ecosystem health is association of bacteria with marine organisms and the environments they occupy. Oyster microbiomes are known to differ significantly between species, tissue type, and the habitat in which they are found. The goals of this study were to determine the impact of field site and habitat on the oyster microbiome and to identify core oyster-associated bacteria in the Puget Sound. Olympia oysters from one parental family were deployed at four sites in the Puget Sound both inside and outside of eelgrass (Zostera marina) beds. Using 16S rRNA gene amplicon sequencing of the oyster gut, shell, and surrounding seawater and sediment, we demonstrate that gut-associated bacteria are distinct from the surrounding environment and vary by field site. Furthermore, regional differences in the gut microbiota are associated with the survival rates of oysters at each site after 2 months of field exposure. However, habitat type had no influence on microbiome diversity. Further work is needed to identify the specific bacterial dynamics that are associated with oyster physiology and survival rates. IMPORTANCE This is the first exploration of the microbial colonizers of the Olympia oyster, a native oyster species to the West Coast, which is a focus of restoration efforts. The patterns of differential microbial colonization by location reveal microscale characteristics of potential restoration sites which are not typically considered. These microbial dynamics can provide a more holistic perspective on the factors that may influence oyster performance.
Collapse
|
23
|
Witkop EM, Proestou DA, Gomez-Chiarri M. The expanded inhibitor of apoptosis gene family in oysters possesses novel domain architectures and may play diverse roles in apoptosis following immune challenge. BMC Genomics 2022; 23:201. [PMID: 35279090 PMCID: PMC8917759 DOI: 10.1186/s12864-021-08233-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
Background Apoptosis plays important roles in a variety of functions, including immunity and response to environmental stress. The Inhibitor of Apoptosis (IAP) gene family of apoptosis regulators is expanded in molluscs, including eastern, Crassostrea virginica, and Pacific, Crassostrea gigas, oysters. The functional importance of IAP expansion in apoptosis and immunity in oysters remains unknown. Results Phylogenetic analysis of IAP genes in 10 molluscs identified lineage specific gene expansion in bivalve species. Greater IAP gene family expansion was observed in C. virginica than C. gigas (69 vs. 40), resulting mainly from tandem duplications. Functional domain analysis of oyster IAP proteins revealed 3 novel Baculoviral IAP Repeat (BIR) domain types and 14 domain architecture types across gene clusters, 4 of which are not present in model organisms. Phylogenetic analysis of bivalve IAPs suggests a complex history of domain loss and gain. Most IAP genes in oysters (76% of C. virginica and 82% of C. gigas), representing all domain architecture types, were expressed in response to immune challenge (Ostreid Herpesvirus OsHV-1, bacterial probionts Phaeobacter inhibens and Bacillus pumilus, several Vibrio spp., pathogenic Aliiroseovarius crassostreae, and protozoan parasite Perkinsus marinus). Patterns of IAP and apoptosis-related differential gene expression differed between the two oyster species, where C. virginica, in general, differentially expressed a unique set of IAP genes in each challenge, while C. gigas differentially expressed an overlapping set of IAP genes across challenges. Apoptosis gene expression patterns clustered mainly by resistance/susceptibility of the oyster host to immune challenge. Weighted Gene Correlation Network Analysis (WGCNA) revealed unique combinations of transcripts for 1 to 12 IAP domain architecture types, including novel types, were significantly co-expressed in response to immune challenge with transcripts in apoptosis-related pathways. Conclusions Unprecedented diversity characterized by novel BIR domains and protein domain architectures was observed in oyster IAPs. Complex patterns of gene expression of novel and conserved IAPs in response to a variety of ecologically-relevant immune challenges, combined with evidence of direct co-expression of IAP genes with apoptosis-related transcripts, suggests IAP expansion facilitates complex and nuanced regulation of apoptosis and other immune responses in oysters. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08233-6.
Collapse
|
24
|
Gallegos-Monterrosa R, Coulthurst SJ. The ecological impact of a bacterial weapon: microbial interactions and the Type VI secretion system. FEMS Microbiol Rev 2021; 45:fuab033. [PMID: 34156081 PMCID: PMC8632748 DOI: 10.1093/femsre/fuab033] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/20/2021] [Indexed: 12/13/2022] Open
Abstract
Bacteria inhabit all known ecological niches and establish interactions with organisms from all kingdoms of life. These interactions are mediated by a wide variety of mechanisms and very often involve the secretion of diverse molecules from the bacterial cells. The Type VI secretion system (T6SS) is a bacterial protein secretion system that uses a bacteriophage-like machinery to secrete a diverse array of effectors, usually translocating them directly into neighbouring cells. These effectors display toxic activity in the recipient cell, making the T6SS an effective weapon during inter-bacterial competition and interactions with eukaryotic cells. Over the last two decades, microbiology research has experienced a shift towards using systems-based approaches to study the interactions between diverse organisms and their communities in an ecological context. Here, we focus on this aspect of the T6SS. We consider how our perspective of the T6SS has developed and examine what is currently known about the impact that bacteria deploying the T6SS can have in diverse environments, including niches associated with plants, insects and mammals. We consider how T6SS-mediated interactions can affect host organisms by shaping their microbiota, as well as the diverse interactions that can be established between different microorganisms through the deployment of this versatile secretion system.
Collapse
Affiliation(s)
| | - Sarah J Coulthurst
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
25
|
Lasa A, Auguste M, Lema A, Oliveri C, Borello A, Taviani E, Bonello G, Doni L, Millard AD, Bruto M, Romalde JL, Yakimov M, Balbi T, Pruzzo C, Canesi L, Vezzulli L. A deep-sea bacterium related to coastal marine pathogens. Environ Microbiol 2021; 23:5349-5363. [PMID: 34097814 PMCID: PMC8519021 DOI: 10.1111/1462-2920.15629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/26/2021] [Accepted: 06/06/2021] [Indexed: 11/29/2022]
Abstract
Evolution of virulence traits from adaptation to environmental niches other than the host is probably a common feature of marine microbial pathogens, whose knowledge might be crucial to understand their emergence and pathogenetic potential. Here, we report genome sequence analysis of a novel marine bacterial species, Vibrio bathopelagicus sp. nov., isolated from warm bathypelagic waters (3309 m depth) of the Mediterranean Sea. Interestingly, V. bathopelagicus sp. nov. is closely related to coastal Vibrio strains pathogenic to marine bivalves. V. bathopelagicus sp. nov. genome encodes genes involved in environmental adaptation to the deep-sea but also in virulence, such as the R5.7 element, MARTX toxin cluster, Type VI secretion system and zinc-metalloprotease, previously associated with Vibrio infections in farmed oysters. The results of functional in vitro assays on immunocytes (haemocytes) of the Mediterranean mussel Mytilus galloprovincialis and the Pacific oyster Crassostrea gigas, and of the early larval development assay in Mytilus support strong toxicity of V. bathopelagicus sp. nov. towards bivalves. V. bathopelagicus sp. nov., isolated from a remote Mediterranean bathypelagic site, is an example of a planktonic marine bacterium with genotypic and phenotypic traits associated with animal pathogenicity, which might have played an evolutionary role in the origin of coastal marine pathogens.
Collapse
Affiliation(s)
- Aide Lasa
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
- Department of Microbiology and ParasitologyCIBUS‐Facultade de Bioloxía & Institute CRETUS, Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - Manon Auguste
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
| | - Alberto Lema
- Department of Microbiology and ParasitologyCIBUS‐Facultade de Bioloxía & Institute CRETUS, Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - Caterina Oliveri
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
| | - Alessio Borello
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
| | - Elisa Taviani
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
| | - Guido Bonello
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
| | - Lapo Doni
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
| | - Andrew D. Millard
- Department of Genetics and Genome BiologyUniversity of LeicesterUniversity Road, LeicesterUK
| | - Maxime Bruto
- Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff CS 90074Roscoff CedexF‐29688France
| | - Jesus L. Romalde
- Department of Microbiology and ParasitologyCIBUS‐Facultade de Bioloxía & Institute CRETUS, Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - Michail Yakimov
- Institute of Biological Resources and Marine Biotechnology, National Research Council (IRBIM‐CNR)Messina98122Italy
| | - Teresa Balbi
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
| | - Carla Pruzzo
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
| | - Laura Canesi
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
| | - Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
| |
Collapse
|
26
|
Le Luyer J, Schull Q, Auffret P, Lopez P, Crusot M, Belliard C, Basset C, Carradec Q, Poulain J, Planes S, Saulnier D. Dual RNAseq highlights the kinetics of skin microbiome and fish host responsiveness to bacterial infection. Anim Microbiome 2021; 3:35. [PMID: 33962693 PMCID: PMC8106148 DOI: 10.1186/s42523-021-00097-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background Tenacibaculum maritimum is a fish pathogen known for causing serious damage to a broad range of wild and farmed marine fish populations worldwide. The recently sequenced genome of T. maritimum strain NCIMB 2154T provided unprecedented information on the possible molecular mechanisms involved in the virulence of this species. However, little is known about the dynamic of infection in vivo, and information is lacking on both the intrinsic host response (gene expression) and its associated microbiota. Here, we applied complementary omic approaches, including dual RNAseq and 16S rRNA gene metabarcoding sequencing using Nanopore and short-read Illumina technologies to unravel the host–pathogen interplay in an experimental infection system using the tropical fish Platax orbicularis as model. Results We showed that the infection of the host is characterised by an enhancement of functions associated with antibiotic and glucans catabolism functions but a reduction of sulfate assimilation process in T. maritimum. The fish host concurrently displays a large panel of immune effectors, notably involving innate response and triggering acute inflammatory response. In addition, our results suggest that fish activate an adaptive immune response visible through the stimulation of T-helper cells, Th17, with congruent reduction of Th2 and T-regulatory cells. Fish were, however, largely sensitive to infection, and less than 25% survived after 96 hpi. These surviving fish showed no evidence of stress (cortisol levels) or significant difference in microbiome diversity compared with controls at the same sampling time. The presence of T. maritimum in resistant fish skin and the total absence of any skin lesions suggest that these fish did not escape contact with the pathogen, but rather that some mechanisms prevented pathogens entry. In resistant individuals, we detected up-regulation of specific immune-related genes differentiating resistant individuals from controls at 96 hpi, which suggests a possible genomic basis of resistance, although no genetic variation in coding regions was found. Conclusion Here we focus in detail on the interplay between common fish pathogens and host immune response during experimental infection. We further highlight key actors of defence response, pathogenicity and possible genomic bases of fish resistance to T. maritimum. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00097-1.
Collapse
Affiliation(s)
- J Le Luyer
- Ifremer, IRD, Institut Louis-Malardé, Univ Polynésie Française, EIO, F-98719 Taravao, Tahiti, Polynésie Française.
| | - Q Schull
- Ifremer, IRD, Institut Louis-Malardé, Univ Polynésie Française, EIO, F-98719 Taravao, Tahiti, Polynésie Française.,MARBEC, Univ. Montpellier, Ifremer, IRD, CNRS, F-34200, Sète, France
| | - P Auffret
- Ifremer, IRD, Institut Louis-Malardé, Univ Polynésie Française, EIO, F-98719 Taravao, Tahiti, Polynésie Française
| | - P Lopez
- Ifremer, IRD, Institut Louis-Malardé, Univ Polynésie Française, EIO, F-98719 Taravao, Tahiti, Polynésie Française.,Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - M Crusot
- Ifremer, IRD, Institut Louis-Malardé, Univ Polynésie Française, EIO, F-98719 Taravao, Tahiti, Polynésie Française.,Univ Polynésie française, Ifremer, IRD, Institut Louis-Malardé, EIO, F-98702 Fa, 'a, Tahiti, Polynésie Française
| | - C Belliard
- Ifremer, IRD, Institut Louis-Malardé, Univ Polynésie Française, EIO, F-98719 Taravao, Tahiti, Polynésie Française
| | - C Basset
- Ifremer, IRD, Institut Louis-Malardé, Univ Polynésie Française, EIO, F-98719 Taravao, Tahiti, Polynésie Française
| | - Q Carradec
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - J Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - S Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Moorea, Polynésie Française.,Laboratoire d'Excellence "CORAIL," USR 3278 CNRS-EPHE-UPVD CRIOBE, Perpignan, France
| | - D Saulnier
- Ifremer, IRD, Institut Louis-Malardé, Univ Polynésie Française, EIO, F-98719 Taravao, Tahiti, Polynésie Française
| |
Collapse
|
27
|
Petton B, Destoumieux-Garzón D, Pernet F, Toulza E, de Lorgeril J, Degremont L, Mitta G. The Pacific Oyster Mortality Syndrome, a Polymicrobial and Multifactorial Disease: State of Knowledge and Future Directions. Front Immunol 2021; 12:630343. [PMID: 33679773 PMCID: PMC7930376 DOI: 10.3389/fimmu.2021.630343] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/06/2021] [Indexed: 01/22/2023] Open
Abstract
The Pacific oyster (Crassostreae gigas) has been introduced from Asia to numerous countries around the world during the 20th century. C. gigas is the main oyster species farmed worldwide and represents more than 98% of oyster production. The severity of disease outbreaks that affect C. gigas, which primarily impact juvenile oysters, has increased dramatically since 2008. The most prevalent disease, Pacific oyster mortality syndrome (POMS), has become panzootic and represents a threat to the oyster industry. Recently, major steps towards understanding POMS have been achieved through integrative molecular approaches. These studies demonstrated that infection by Ostreid herpesvirus type 1 µVar (OsHV-1 µvar) is the first critical step in the infectious process and leads to an immunocompromised state by altering hemocyte physiology. This is followed by dysbiosis of the microbiota, which leads to a secondary colonization by opportunistic bacterial pathogens, which in turn results in oyster death. Host and environmental factors (e.g. oyster genetics and age, temperature, food availability, and microbiota) have been shown to influence POMS permissiveness. However, we still do not understand the mechanisms by which these different factors control disease expression. The present review discusses current knowledge of this polymicrobial and multifactorial disease process and explores the research avenues that must be investigated to fully elucidate the complexity of POMS. These discoveries will help in decision-making and will facilitate the development of tools and applied innovations for the sustainable and integrated management of oyster aquaculture.
Collapse
Affiliation(s)
- Bruno Petton
- Ifremer, LEMAR UMR 6539, UBO/CNRS/IRD/Ifremer, Argenton-en-Landunvez, France
| | | | - Fabrice Pernet
- Ifremer, LEMAR UMR 6539, UBO/CNRS/IRD/Ifremer, Argenton-en-Landunvez, France
| | - Eve Toulza
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Julien de Lorgeril
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | | | - Guillaume Mitta
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| |
Collapse
|
28
|
Mao F, Liu K, Wong NK, Zhang X, Yi W, Xiang Z, Xiao S, Yu Z, Zhang Y. Virulence of Vibrio alginolyticus Accentuates Apoptosis and Immune Rigor in the Oyster Crassostrea hongkongensis. Front Immunol 2021; 12:746017. [PMID: 34621277 PMCID: PMC8490866 DOI: 10.3389/fimmu.2021.746017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/31/2021] [Indexed: 02/05/2023] Open
Abstract
Vibrio species are ubiquitously distributed in marine environments, with important implications for emerging infectious diseases. However, relatively little is known about defensive strategies deployed by hosts against Vibrio pathogens of distinct virulence traits. Being an ecologically relevant host, the oyster Crassostrea hongkongensis can serve as an excellent model for elucidating mechanisms underlying host-Vibrio interactions. We generated a Vibrio alginolyticus mutant strain (V. alginolyticus△vscC ) with attenuated virulence by knocking out the vscC encoding gene, a core component of type III secretion system (T3SS), which led to starkly reduced apoptotic rates in hemocyte hosts compared to the V. alginolyticusWT control. In comparative proteomics, it was revealed that distinct immune responses arose upon encounter with V. alginolyticus strains of different virulence. Quite strikingly, the peroxisomal and apoptotic pathways are activated by V. alginolyticusWT infection, whereas phagocytosis and cell adhesion were enhanced in V. alginolyticus△vscC infection. Results for functional studies further show that V. alginolyticusWT strain stimulated respiratory bursts to produce excess superoxide (O2•-) and hydrogen peroxide (H2O2) in oysters, which induced apoptosis regulated by p53 target protein (p53tp). Simultaneously, a drop in sGC content balanced off cGMP accumulation in hemocytes and repressed the occurrence of apoptosis to a certain extent during V. alginolyticus△vscC infection. We have thus provided the first direct evidence for a mechanistic link between virulence of Vibrio spp. and its immunomodulation effects on apoptosis in the oyster. Collectively, we conclude that adaptive responses in host defenses are partially determined by pathogen virulence, in order to safeguard efficiency and timeliness in bacterial clearance.
Collapse
Affiliation(s)
- Fan Mao
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Kunna Liu
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Nai-Kei Wong
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Xiangyu Zhang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjie Yi
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiming Xiang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Shu Xiao
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Ziniu Yu
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- *Correspondence: Yang Zhang, ; Ziniu Yu,
| | - Yang Zhang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- *Correspondence: Yang Zhang, ; Ziniu Yu,
| |
Collapse
|
29
|
Modak TH, Gomez-Chiarri M. Contrasting Immunomodulatory Effects of Probiotic and Pathogenic Bacteria on Eastern Oyster, Crassostrea Virginica, Larvae. Vaccines (Basel) 2020; 8:vaccines8040588. [PMID: 33036213 PMCID: PMC7720132 DOI: 10.3390/vaccines8040588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022] Open
Abstract
Several Vibrio spp. cause acute and severe mortality events in hatcheries where larvae of bivalve mollusks are reared, potentially leading to subsequent shortage of bivalve seed for the grow-out industry. In particular, strains of Vibrio coralliilyticus have been identified as a major cause of disease in Pacific, Crassostrea gigas, and eastern, C. virginica, oyster hatcheries in the United States of America. Probiotic bacteria are an inexpensive, practical, and natural method of disease control. Previous research shows that pretreatment of larval oysters with probiotic bacteria Bacillus pumilus RI06-95 (RI) and Phaeobacter inhibens S4 (S4) significantly decreases mortality caused by experimental challenge with the bacterial pathogen V. coralliilyticus RE22 (RE22). This study aims to characterize the immune response of 6-10-day-old eastern oyster larvae to experimental challenge with pathogen V. coralliilyticus RE22 and probionts RI and S4. Treatments included (a) pathogen and probiont exposure at a concentration of 5 × 104 CFU per mL (~2500 bacterial cells per larva) for a duration of 6 h, (b) probiont exposure at the same concentration for a duration of 24 h, and (c) probiont RI daily treatment of larvae in the hatchery for 4, 11, and 15 days. Differential gene expression analysis compared pathogen or probiotic-treated transcriptomes to unexposed controls. Probiotic and pathogen treatment led to upregulation of transcripts coding for several immune pattern recognition receptors (PRRs) involved in environmental sensing and detection of microbes in oyster larvae. Larval oyster responses to pathogen RE22 suggested suppression of expression of genes in immune signaling pathways (myd88, tak1, nkap), failure in upregulation of immune effector genes, high metabolic demand, and oxidative stress that potentially contributed to mortality. On the other hand, the transcriptomic response to probiotic bacteria RI and S4 suggested activation of immune signaling pathways and expression of immune effectors (e.g., Cv-spi2, mucins and perforin-2). These key features of the host immune response to probiotic bacteria were shared despite the length of probiotic exposure, probiotic species, and the type of environment in which exposures were conducted. This study suggests that pre-exposure of eastern oyster larvae to probiotics for 6-24 h prior to pathogenic challenge leads to a robust and effective immune response that may contribute to protecting larvae from subsequent challenge with V. coralliilyticus RE22. This research provides new insights into host-microbe interactions in larval oysters that could be applied in the management of vibriosis in bivalve hatcheries.
Collapse
Affiliation(s)
- Tejashree H. Modak
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA;
| | - Marta Gomez-Chiarri
- Department of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, Kingston, RI 02881, USA
- Correspondence:
| |
Collapse
|
30
|
Kehlet-Delgado H, Häse CC, Mueller RS. Comparative genomic analysis of Vibrios yields insights into genes associated with virulence towards C. gigas larvae. BMC Genomics 2020; 21:599. [PMID: 32867668 PMCID: PMC7457808 DOI: 10.1186/s12864-020-06980-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/11/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Vibriosis has been implicated in major losses of larvae at shellfish hatcheries. However, the species of Vibrio responsible for disease in aquaculture settings and their associated virulence genes are often variable or undefined. Knowledge of the specific nature of these factors is essential to developing a better understanding of the environmental and biological conditions that lead to larvae mortality events in hatcheries. We tested the virulence of 51 Vibrio strains towards Pacific Oyster (Crassostreae gigas) larvae and sequenced draft genomes of 42 hatchery-associated vibrios to determine groups of orthologous genes associated with virulence and to determine the phylogenetic relationships among pathogens and non-pathogens of C. gigas larvae. RESULTS V. coralliilyticus strains were the most prevalent pathogenic isolates. A phylogenetic logistic regression model identified over 500 protein-coding genes correlated with pathogenicity. Many of these genes had straightforward links to disease mechanisms, including predicted hemolysins, proteases, and multiple Type 3 Secretion System genes, while others appear to have possible indirect roles in pathogenesis and may be more important for general survival in the host environment. Multiple metabolism and nutrient acquisition genes were also identified to correlate with pathogenicity, highlighting specific features that may enable pathogen survival within C. gigas larvae. CONCLUSIONS These findings have important implications on the range of pathogenic Vibrio spp. found in oyster-rearing environments and the genetic determinants of virulence in these populations.
Collapse
Affiliation(s)
- Hanna Kehlet-Delgado
- Department of Microbiology, Oregon State University, Corvallis, Oregon, 97331, USA.
| | - Claudia C Häse
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Ryan S Mueller
- Department of Microbiology, Oregon State University, Corvallis, Oregon, 97331, USA
| |
Collapse
|
31
|
Delmotte J, Chaparro C, Galinier R, de Lorgeril J, Petton B, Stenger PL, Vidal-Dupiol J, Destoumieux-Garzon D, Gueguen Y, Montagnani C, Escoubas JM, Mitta G. Contribution of Viral Genomic Diversity to Oyster Susceptibility in the Pacific Oyster Mortality Syndrome. Front Microbiol 2020; 11:1579. [PMID: 32754139 PMCID: PMC7381293 DOI: 10.3389/fmicb.2020.01579] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Juvenile Pacific oysters (Crassostrea gigas) are subjected to recurrent episodes of mass mortalities that constitute a threat for the oyster industry. This mortality syndrome named “Pacific Oyster Mortality Syndrome” (POMS) is a polymicrobial disease whose pathogenesis is initiated by a primary infection by a variant of an Ostreid herpes virus named OsHV-1 μVar. The characterization of the OsHV-1 genome during different disease outbreaks occurring in different geographic areas has revealed the existence of a genomic diversity for OsHV-1 μVar. However, the biological significance of this diversity is still poorly understood. To go further in understanding the consequences of OsHV-1 diversity on POMS, we challenged five biparental families of oysters to two different infectious environments on the French coasts (Atlantic and Mediterranean). We observed that the susceptibility to POMS can be different among families within the same environment but also for the same family between the two environments. Viral diversity analysis revealed that Atlantic and Mediterranean POMS are caused by two distinct viral populations. Moreover, we observed that different oyster families are infected by distinct viral populations within a same infectious environment. Altogether these results suggest that the co-evolutionary processes at play between OsHV-1 μVar and oyster populations have selected a viral diversity that could facilitate the infection process and the transmission in oyster populations. These new data must be taken into account in the development of novel selective breeding programs better adapted to the oyster culture environment.
Collapse
Affiliation(s)
- Jean Delmotte
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Cristian Chaparro
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Richard Galinier
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Julien de Lorgeril
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Bruno Petton
- LEMAR UMR 6539, Université de Bretagne Occidentale, CNRS, IRD, Ifremer, Argenton-en-Landunvez, France
| | - Pierre-Louis Stenger
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Jeremie Vidal-Dupiol
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | | | - Yannick Gueguen
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Caroline Montagnani
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Jean-Michel Escoubas
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Guillaume Mitta
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| |
Collapse
|
32
|
Destoumieux-Garzón D, Canesi L, Oyanedel D, Travers MA, Charrière GM, Pruzzo C, Vezzulli L. Vibrio-bivalve interactions in health and disease. Environ Microbiol 2020; 22:4323-4341. [PMID: 32363732 DOI: 10.1111/1462-2920.15055] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022]
Abstract
In the marine environment, bivalve mollusks constitute habitats for bacteria of the Vibrionaceae family. Vibrios belong to the microbiota of healthy oysters and mussels, which have the ability to concentrate bacteria in their tissues and body fluids, including the hemolymph. Remarkably, these important aquaculture species respond differently to infectious diseases. While oysters are the subject of recurrent mass mortalities at different life stages, mussels appear rather resistant to infections. Thus, Vibrio species are associated with the main diseases affecting the worldwide oyster production. Here, we review the current knowledge on Vibrio-bivalve interaction in oysters (Crassostrea sp.) and mussels (Mytilus sp.). We discuss the transient versus stable associations of vibrios with their bivalve hosts as well as technical issues limiting the monitoring of these bacteria in bivalve health and disease. Based on the current knowledge of oyster/mussel immunity and their interactions with Vibrio species pathogenic for oyster, we discuss how differences in immune effectors could contribute to the higher resistance of mussels to infections. Finally, we review the multiple strategies evolved by pathogenic vibrios to circumvent the potent immune defences of bivalves and how key virulence mechanisms could have been positively or negatively selected in the marine environment through interactions with predators.
Collapse
Affiliation(s)
| | - Laura Canesi
- DISTAV, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Daniel Oyanedel
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Marie-Agnès Travers
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Guillaume M Charrière
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Carla Pruzzo
- DISTAV, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Luigi Vezzulli
- DISTAV, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
33
|
Oyanedel D, Labreuche Y, Bruto M, Amraoui H, Robino E, Haffner P, Rubio T, Charrière GM, Le Roux F, Destoumieux-Garzón D. Vibrio splendidus O-antigen structure: a trade-off between virulence to oysters and resistance to grazers. Environ Microbiol 2020; 22:4264-4278. [PMID: 32219965 DOI: 10.1111/1462-2920.14996] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/13/2020] [Accepted: 03/22/2020] [Indexed: 01/19/2023]
Abstract
A major debate in evolutionary biology is whether virulence is maintained as an adaptive trait and/or evolves to non-virulence. In the environment, virulence traits of non-obligatory parasites are subjected to diverse selective pressures and trade-offs. Here, we focus on a population of Vibrio splendidus that displays moderate virulence for oysters. A MARTX (Multifunctional-autoprocessing repeats-in-toxin) and a type-six secretion system (T6SS) were found to be necessary for virulence toward oysters, while a region (wbe) involved in O-antigen synthesis is necessary for resistance to predation against amoebae. Gene inactivation within the wbe region had major consequences on the O-antigen structure, conferring lower immunogenicity, competitive advantage and increased virulence in oyster experimental infections. Therefore, O-antigen structures that favour resistance to environmental predators result in an increased activation of the oyster immune system and a reduced virulence in that host. These trade-offs likely contribute to maintaining O-antigen diversity in the marine environment by favouring genomic plasticity of the wbe region. The results of this study indicate an evolution of V. splendidus towards moderate virulence as a compromise between fitness in the oyster as a host, and resistance to its predators in the environment.
Collapse
Affiliation(s)
- Daniel Oyanedel
- IHPE, Univ Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Yannick Labreuche
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, CS 10070, F-29280, Plouzané, France.,Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| | - Maxime Bruto
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, CS 10070, F-29280, Plouzané, France.,Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| | - Hajar Amraoui
- IHPE, Univ Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Etienne Robino
- IHPE, Univ Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Philippe Haffner
- IHPE, Univ Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Tristan Rubio
- IHPE, Univ Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France.,Molecular Microbiology and Structural Biochemistry (UMR 5086). CNRS, University of Lyon, 69367, Lyon, France
| | - Guillaume M Charrière
- IHPE, Univ Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Frédérique Le Roux
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, CS 10070, F-29280, Plouzané, France.,Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| | | |
Collapse
|
34
|
Clerissi C, de Lorgeril J, Petton B, Lucasson A, Escoubas JM, Gueguen Y, Dégremont L, Mitta G, Toulza E. Microbiota Composition and Evenness Predict Survival Rate of Oysters Confronted to Pacific Oyster Mortality Syndrome. Front Microbiol 2020; 11:311. [PMID: 32174904 PMCID: PMC7056673 DOI: 10.3389/fmicb.2020.00311] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/12/2020] [Indexed: 01/01/2023] Open
Abstract
Pacific Oyster Mortality Syndrome (POMS) affects Crassostrea gigas oysters worldwide and causes important economic losses. Disease dynamic was recently deciphered and revealed a multiple and progressive infection caused by the Ostreid herpesvirus OsHV-1 μVar, triggering an immunosuppression followed by microbiota destabilization and bacteraemia by opportunistic bacterial pathogens. However, it remains unknown if microbiota might participate to protect oysters against POMS, and if microbiota characteristics might be predictive of oyster mortalities. To tackle this issue, we transferred full-sib progenies of resistant and susceptible oyster families from hatchery to the field during a period in favor of POMS. After 5 days of transplantation, oysters from each family were either sampled for individual microbiota analyses using 16S rRNA gene-metabarcoding or transferred into facilities to record their survival using controlled condition. As expected, all oysters from susceptible families died, and all oysters from the resistant family survived. Quantification of OsHV-1 and bacteria showed that 5 days of transplantation were long enough to contaminate oysters by POMS, but not for entering the pathogenesis process. Thus, it was possible to compare microbiota characteristics between resistant and susceptible oysters families at the early steps of infection. Strikingly, we found that microbiota evenness and abundances of Cyanobacteria (Subsection III, family I), Mycoplasmataceae, Rhodobacteraceae, and Rhodospirillaceae were significantly different between resistant and susceptible oyster families. We concluded that these microbiota characteristics might predict oyster mortalities.
Collapse
Affiliation(s)
- Camille Clerissi
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France.,PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan, France
| | - Julien de Lorgeril
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Bruno Petton
- Ifremer, LEMAR UMR 6539 (Université de Bretagne Occidentale, CNRS, IRD, Ifremer), Argenton-en-Landunvez, France
| | - Aude Lucasson
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Jean-Michel Escoubas
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Yannick Gueguen
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | | | - Guillaume Mitta
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Eve Toulza
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
35
|
de Lorgeril J, Petton B, Lucasson A, Perez V, Stenger PL, Dégremont L, Montagnani C, Escoubas JM, Haffner P, Allienne JF, Leroy M, Lagarde F, Vidal-Dupiol J, Gueguen Y, Mitta G. Differential basal expression of immune genes confers Crassostrea gigas resistance to Pacific oyster mortality syndrome. BMC Genomics 2020; 21:63. [PMID: 31959106 PMCID: PMC6971885 DOI: 10.1186/s12864-020-6471-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/08/2020] [Indexed: 02/08/2023] Open
Abstract
Background As a major threat to the oyster industry, Pacific Oyster Mortality Syndrome (POMS) is a polymicrobial disease affecting the main oyster species farmed across the world. POMS affects oyster juveniles and became panzootic this last decade, but POMS resistance in some oyster genotypes has emerged. While we know some genetic loci associated with resistance, the underlying mechanisms remained uncharacterized. So, we developed a comparative transcriptomic approach using basal gene expression profiles between different oyster biparental families with contrasted phenotypes when confronted to POMS (resistant or susceptible). Results We showed that POMS resistant oysters show differential expression of genes involved in stress responses, protein modifications, maintenance of DNA integrity and repair, and immune and antiviral pathways. We found similarities and clear differences among different molecular pathways in the different resistant families. These results suggest that the resistance process is polygenic and partially varies according to the oyster genotype. Conclusions We found differences in basal expression levels of genes related to TLR-NFκB, JAK-STAT and STING-RLR pathways. These differences could explain the best antiviral response, as well as the robustness of resistant oysters when confronted to POMS. As some of these genes represent valuable candidates for selective breeding, we propose future studies should further examine their function.
Collapse
Affiliation(s)
- Julien de Lorgeril
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
| | - Bruno Petton
- Ifremer, LEMAR UMR 6539, UBO/CNRS/IRD/Ifremer, 11 presqu'île du vivier, 29840, Argenton-en-Landunvez, France
| | - Aude Lucasson
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
| | - Valérie Perez
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
| | - Pierre-Louis Stenger
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France.,Ifremer, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre Ifremer du Pacifique, BP 49, 98725, Tahiti, French Polynesia
| | - Lionel Dégremont
- Ifremer, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue du Mus de Loup, 17930, La Tremblade, France
| | - Caroline Montagnani
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
| | - Jean-Michel Escoubas
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
| | - Philippe Haffner
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
| | - Jean-François Allienne
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
| | - Marc Leroy
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
| | - Franck Lagarde
- MARBEC, Université de Montpellier, CNRS, IRD, Ifremer, 87 Avenue Jean Monnet, 34200, Sète, France
| | - Jérémie Vidal-Dupiol
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
| | - Yannick Gueguen
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
| | - Guillaume Mitta
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France.
| |
Collapse
|
36
|
Piel D, Bruto M, James A, Labreuche Y, Lambert C, Janicot A, Chenivesse S, Petton B, Wegner KM, Stoudmann C, Blokesch M, Le Roux F. Selection of
Vibrio crassostreae
relies on a plasmid expressing a type 6 secretion system cytotoxic for host immune cells. Environ Microbiol 2019; 22:4198-4211. [DOI: 10.1111/1462-2920.14776] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Damien Piel
- Unité Physiologie Fonctionnelle des Organismes Marins ZI de la Pointe du Diable, CS 10070 Ifremer F‐29280 Plouzané France
- Sorbonne Universités UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074 F‐29688 Roscoff cedex France
| | - Maxime Bruto
- Sorbonne Universités UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074 F‐29688 Roscoff cedex France
| | - Adèle James
- Unité Physiologie Fonctionnelle des Organismes Marins ZI de la Pointe du Diable, CS 10070 Ifremer F‐29280 Plouzané France
- Sorbonne Universités UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074 F‐29688 Roscoff cedex France
| | - Yannick Labreuche
- Unité Physiologie Fonctionnelle des Organismes Marins ZI de la Pointe du Diable, CS 10070 Ifremer F‐29280 Plouzané France
- Sorbonne Universités UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074 F‐29688 Roscoff cedex France
| | - Christophe Lambert
- Laboratoire des Sciences de l'Environnement Marin UMR 6539 CNRS UBO IRD IFREMER, Institut Universitaire Européen de la Mer, Technopôle Brest‐Iroise – Rue Dumont d'Urville F‐29280 Plouzané France
| | - Adrian Janicot
- Sorbonne Universités UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074 F‐29688 Roscoff cedex France
| | - Sabine Chenivesse
- Sorbonne Universités UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074 F‐29688 Roscoff cedex France
| | - Bruno Petton
- Unité Physiologie Fonctionnelle des Organismes Marins ZI de la Pointe du Diable, CS 10070 Ifremer F‐29280 Plouzané France
- Laboratoire des Sciences de l'Environnement Marin UMR 6539 CNRS UBO IRD IFREMER, Institut Universitaire Européen de la Mer, Technopôle Brest‐Iroise – Rue Dumont d'Urville F‐29280 Plouzané France
| | - K. Mathias Wegner
- AWI ‐ Alfred Wegener Institut, Helmholtz‐Zentrum für Polar und Meeresforschung, Coastal Ecology, Wadden Sea Station Sylt, 25992, Hafenstrasse 43, List Germany
| | - Candice Stoudmann
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences Ecole Polytechnique Fédérale de Lausanne CH‐1015 Lausanne Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences Ecole Polytechnique Fédérale de Lausanne CH‐1015 Lausanne Switzerland
| | - Frédérique Le Roux
- Unité Physiologie Fonctionnelle des Organismes Marins ZI de la Pointe du Diable, CS 10070 Ifremer F‐29280 Plouzané France
- Sorbonne Universités UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074 F‐29688 Roscoff cedex France
| |
Collapse
|
37
|
Robino E, Poirier AC, Amraoui H, Le Bissonnais S, Perret A, Lopez‐Joven C, Auguet J, Rubio TP, Cazevieille C, Rolland J, Héchard Y, Destoumieux‐Garzón D, Charrière GM. Resistance of the oyster pathogen
Vibrio tasmaniensis
LGP32 against grazing by
Vannella
sp. marine amoeba involves Vsm and CopA virulence factors. Environ Microbiol 2019; 22:4183-4197. [DOI: 10.1111/1462-2920.14770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/04/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Etienne Robino
- IHPE UMR 5244, CNRS, Ifremer, University of Montpellier, University of Perpignan Via Domitia Montpellier France
| | - Aurore C. Poirier
- IHPE UMR 5244, CNRS, Ifremer, University of Montpellier, University of Perpignan Via Domitia Montpellier France
| | - Hajar Amraoui
- IHPE UMR 5244, CNRS, Ifremer, University of Montpellier, University of Perpignan Via Domitia Montpellier France
| | - Sandra Le Bissonnais
- IHPE UMR 5244, CNRS, Ifremer, University of Montpellier, University of Perpignan Via Domitia Montpellier France
| | - Angélique Perret
- IHPE UMR 5244, CNRS, Ifremer, University of Montpellier, University of Perpignan Via Domitia Montpellier France
| | - Carmen Lopez‐Joven
- IHPE UMR 5244, CNRS, Ifremer, University of Montpellier, University of Perpignan Via Domitia Montpellier France
| | | | - Tristan P. Rubio
- IHPE UMR 5244, CNRS, Ifremer, University of Montpellier, University of Perpignan Via Domitia Montpellier France
| | | | - Jean‐Luc Rolland
- IHPE UMR 5244, CNRS, Ifremer, University of Montpellier, University of Perpignan Via Domitia Montpellier France
| | - Yann Héchard
- EBI UMR CNRS 7267, University of Poitiers Poitiers France
| | - Delphine Destoumieux‐Garzón
- IHPE UMR 5244, CNRS, Ifremer, University of Montpellier, University of Perpignan Via Domitia Montpellier France
| | - Guillaume M. Charrière
- IHPE UMR 5244, CNRS, Ifremer, University of Montpellier, University of Perpignan Via Domitia Montpellier France
| |
Collapse
|