1
|
Roy D, Verma SS, Chakraborty S, Dey D, Tudu S, Manna R, Chaudhary N, Banerjee R. Impact of pathogenic mutations on the refolding ability and stability of human mitochondrial Phenylalanyl-tRNA synthetase. Arch Biochem Biophys 2025; 769:110430. [PMID: 40254257 DOI: 10.1016/j.abb.2025.110430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Human mitochondrial phenylalanyl-tRNA synthetase (hmtPheRS) requires partial unfolding for mitochondrial import and subsequent refolding to maintain proper functionality. Mutations in the FARS2 gene, encoding hmtPheRS, cause disorders such as early-onset epileptic encephalopathy and spastic paraplegia. This study was intended to investigate the impact of mutations on hmtPheRS refolding ability, stability, and solubility. We have selected two mutations associated with early-onset epileptic encephalopathy (G309S, D325Y) with severe phenotype and three mutations associated with spastic paraplegia (P136H, D142Y, P361L) with less severe phenotypes. Some of those mutations were reported to have diminished aminoacylation activity. However, the molecular connection of pathogenicity remained elusive for these mutants. We observed that hmtPheRS showed exceptional structural flexibility and refolding ability even at lower pH. Mutations associated with severe phenotypes (G309S, D325Y) exhibited impaired refolding ability and stability, whereas other mutant versions of hmtPheRS linked to hereditary spastic paraplegia (P136H, D142Y, P361L) retained some stability and refolding capacity. Mutants exhibited expansion in hydrodynamic diameter, indicating significant perturbation in the internal architecture. Molecular simulation studies suggested the presence of structural deformities in hmtPheRS mutants at mildly acidic pH. This analysis reveals how mutations affect protein stability and function, which may play a role in mitochondrial disorders. It may act as a probable model for predicting pathogenicity-related mutants.
Collapse
Affiliation(s)
- Debraj Roy
- Department of Biotechnology and Dr. B C Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, 700019, West Bengal, India
| | - Shubhangini Singh Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, India
| | - Shruti Chakraborty
- Department of Biotechnology and Dr. B C Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, 700019, West Bengal, India; Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Debkanya Dey
- Department of Biotechnology and Dr. B C Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, 700019, West Bengal, India
| | - Surajit Tudu
- Department of Polymer Science and Technology, University of Calcutta, Kolkata, 700009, West Bengal, India; Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, 700106, West Bengal, India
| | - Riya Manna
- Department of Biotechnology and Dr. B C Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, 700019, West Bengal, India
| | - Nitin Chaudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, India
| | - Rajat Banerjee
- Department of Biotechnology and Dr. B C Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
2
|
Mahmood M, Little E, Girard N, Wu F, Samuels T, Heinemann IU, Reynolds NM. Yeast models for Charcot-Marie-Tooth disease-causing aminoacyl-tRNA synthetase alleles reveal the cellular basis of disease. IUBMB Life 2025; 77:e70017. [PMID: 40156251 PMCID: PMC11953622 DOI: 10.1002/iub.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/09/2025] [Indexed: 04/01/2025]
Abstract
Charcot-Marie-Tooth disease (CMT) is a genetically diverse hereditary disorder that affects the motor and sensory nerves, impacting about 1 in 2500 people. It can be inherited through autosomal dominant (AD), autosomal recessive (AR), or X-linked genetic patterns. CMT2, one of the primary subtypes, is characterized by axonal degeneration and commonly presents with muscle weakness, atrophy, foot deformities, and sensory loss. Aminoacyl-tRNA synthetases (aaRSs) play an important role in the genetic underpinnings of CMT2, with more than 60 disease-causing alleles identified across eight different aaRSs, including alanyl-, asparaginyl-, histidyl-, glycyl-, methionyl-, tryptophanyl-, seryl-, and tyrosyl-tRNA synthetases. Mutations in aaRS genes can lead to destabilization of the enzyme, reduced aminoacylation, and aberrant protein complex formation. Yeast as a simple organism provides a robust model system to study the pathogenic effects of aaRS CMT mutations. In this review, we discuss the advantages and limitations of the yeast model systems for CMT2-causative mutations in aaRS.
Collapse
Affiliation(s)
- Maria Mahmood
- Department of BiochemistryThe University of Western OntarioLondonOntarioCanada
| | - Emma Little
- School of Integrated Science, Sustainability, and Public HealthUniversity of Illinois SpringfieldSpringfieldIllinoisUSA
| | - Nicole Girard
- School of Integrated Science, Sustainability, and Public HealthUniversity of Illinois SpringfieldSpringfieldIllinoisUSA
| | - Fanqi Wu
- Department of BiochemistryThe University of Western OntarioLondonOntarioCanada
| | - Tristan Samuels
- Department of BiochemistryThe University of Western OntarioLondonOntarioCanada
| | - Ilka U. Heinemann
- Department of BiochemistryThe University of Western OntarioLondonOntarioCanada
- Children's Health Research InstituteLondonOntarioCanada
| | - Noah M. Reynolds
- School of Integrated Science, Sustainability, and Public HealthUniversity of Illinois SpringfieldSpringfieldIllinoisUSA
| |
Collapse
|
3
|
Zhang J, Li X, Liang J, Meng X, Zhu C, Yang G, Liang Y, Zhou Q, Qin Q, Li Z, Zhang T, Liu G, Sun L. Glycyl-tRNA Synthetase as a Target for Antiviral Drug Screening Against Influenza Virus. Int J Mol Sci 2025; 26:2912. [PMID: 40243525 PMCID: PMC11988775 DOI: 10.3390/ijms26072912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Influenza viruses are characterized by their high variability and pathogenicity, and effective therapeutic options remain limited. Given these challenges, targeting host cell proteins that facilitate viral replication presents a promising strategy for antiviral drug discovery. In the present study, we observed a significant upregulation of Glycyl-tRNA synthetase (GlyRS) within 24 h post-PR8 virus infection. The inhibition of GlyRS expression in A549 cells resulted in a marked reduction in infection rates across multiple influenza virus strains, while the overexpression of GlyRS led to an increase in viral infectivity during the early stages of infection. These findings suggest that GlyRS plays a critical role in the replication of influenza virus. Accordingly, we screened for potential inhibitors targeting GlyRS and identified Lycobetaine and Scutellarein using a multifaceted approach. Through a combination of molecular dynamics simulations, we further elucidated the mechanisms of action and potential binding sites of these compounds. Both inhibitors effectively suppressed the replication of influenza viruses, and their antiviral activity was confirmed to be mediated by GlyRS targeting. Therefore, GlyRS inhibitors, such as Lycobetaine and Scutellarein, represent promising candidates for combating influenza infections and provide novel insights into the treatment of influenza and aaRS-related diseases, opening new avenues for the development of aaRS-targeted therapeutics.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (J.Z.); (X.L.); (J.L.); (X.M.); (G.Y.); (Y.L.); (Q.Q.); (Z.L.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| | - Xiaorong Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (J.Z.); (X.L.); (J.L.); (X.M.); (G.Y.); (Y.L.); (Q.Q.); (Z.L.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| | - Jingxian Liang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (J.Z.); (X.L.); (J.L.); (X.M.); (G.Y.); (Y.L.); (Q.Q.); (Z.L.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| | - Xinru Meng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (J.Z.); (X.L.); (J.L.); (X.M.); (G.Y.); (Y.L.); (Q.Q.); (Z.L.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| | - Chenchen Zhu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (C.Z.); (T.Z.)
| | - Guangpu Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (J.Z.); (X.L.); (J.L.); (X.M.); (G.Y.); (Y.L.); (Q.Q.); (Z.L.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| | - Yali Liang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (J.Z.); (X.L.); (J.L.); (X.M.); (G.Y.); (Y.L.); (Q.Q.); (Z.L.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| | - Qikai Zhou
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China;
| | - Qianni Qin
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (J.Z.); (X.L.); (J.L.); (X.M.); (G.Y.); (Y.L.); (Q.Q.); (Z.L.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| | - Zan Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (J.Z.); (X.L.); (J.L.); (X.M.); (G.Y.); (Y.L.); (Q.Q.); (Z.L.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| | - Ting Zhang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (C.Z.); (T.Z.)
| | - Gen Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (J.Z.); (X.L.); (J.L.); (X.M.); (G.Y.); (Y.L.); (Q.Q.); (Z.L.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| | - Litao Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (J.Z.); (X.L.); (J.L.); (X.M.); (G.Y.); (Y.L.); (Q.Q.); (Z.L.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| |
Collapse
|
4
|
Vallee I, Shapiro R, Yang XL. Purification and validation of asparaginyl-tRNA synthetase heterodimer with indistinguishable subunits. IUBMB Life 2025; 77:e70000. [PMID: 39994779 PMCID: PMC11864589 DOI: 10.1002/iub.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/05/2024] [Indexed: 02/26/2025]
Abstract
Oligomerization can influence the stability and activity of a protein. The majority of enzymes, including aminoacyl-tRNA synthetases, become catalytically active upon forming homodimers. Residues located at the dimerization interface are highly conserved and mutations arising within can cause severe disease phenotypes. Beyond homozygous mutations, other disease-causing mutations, such as compound heterozygous and mono-allelic mutations, can lead to the formation of heterodimers between two distinct subunits. Purifying a recombinant heterodimer is required for its thorough characterization in vitro, yet there is a lack of established biochemical methods for the preparation. Here we describe a heterodimer purification and validation method with the example of a disease-causing mono-allelic, nonsense mutation R534* in cytoplasmic asparaginyl-tRNA synthetase (NARS1 or AsnRS). Our method involves co-expression of two separately tagged constructs to allow for purification of the wild-type and the R534* mutant heterodimers. While the two subunits can hardly be distinguished by size, their separate detection is achieved by western blotting against the tags. Quantification analysis confirmed that the subunits within the heterodimer are present in nearly equal proportions. This simple protocol can be adapted to study other size-indistinguishable heterodimers.
Collapse
Affiliation(s)
- Ingrid Vallee
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan Shapiro
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Samuels TN, Wu F, Mahmood M, Abuzaid WA, Sun N, Moresco A, Siu VM, O'Donoghue P, Heinemann IU. Transfer RNA and small molecule therapeutics for aminoacyl-tRNA synthetase diseases. FEBS J 2024. [PMID: 39702998 DOI: 10.1111/febs.17361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/08/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Aminoacyl-tRNA synthetases catalyze the ligation of a specific amino acid to its cognate tRNA. The resulting aminoacyl-tRNAs are indispensable intermediates in protein biosynthesis, facilitating the precise decoding of the genetic code. Pathogenic alleles in the aminoacyl-tRNA synthetases can lead to several dominant and recessive disorders. To date, disease-specific treatments for these conditions are largely unavailable. We review pathogenic human synthetase alleles, the molecular and cellular mechanisms of tRNA synthetase diseases, and emerging approaches to allele-specific treatments, including small molecules and nucleic acid-based therapeutics. Current treatment approaches to rescue defective or dysfunctional tRNA synthetase mutants include supplementation with cognate amino acids and delivery of cognate tRNAs to alleviate bottlenecks in translation. Complementary approaches use inhibitors to target the integrated stress response, which can be dysregulated in tRNA synthetase diseases.
Collapse
Affiliation(s)
- Tristan N Samuels
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Fanqi Wu
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Maria Mahmood
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Wajd A Abuzaid
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Nancy Sun
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Angelica Moresco
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Children's Health Research Institute, London, Canada
| | - Victoria M Siu
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Children's Health Research Institute, London, Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Department of Chemistry, Western University, London, Canada
| | - Ilka U Heinemann
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Children's Health Research Institute, London, Canada
| |
Collapse
|
6
|
Wilhelm SDP, Kakadia JH, Beharry A, Kenana R, Hoffman KS, O'Donoghue P, Heinemann IU. Transfer RNA supplementation rescues HARS deficiency in a humanized yeast model of Charcot-Marie-Tooth disease. Nucleic Acids Res 2024; 52:14043-14060. [PMID: 39530218 DOI: 10.1093/nar/gkae996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Aminoacyl-tRNA synthetases are indispensable enzymes in all cells, ensuring the correct pairing of amino acids to their cognate tRNAs to maintain translation fidelity. Autosomal dominant mutations V133F and Y330C in histidyl-tRNA synthetase (HARS) cause the genetic disorder Charcot-Marie-Tooth type 2W (CMT2W). Treatments are currently restricted to symptom relief, with no therapeutic available that targets the cause of disease. We previously found that histidine supplementation alleviated phenotypic defects in a humanized yeast model of CMT2W caused by HARS V155G and S356N that also unexpectedly exacerbated the phenotype of the two HARS mutants V133F and Y330C. Here, we show that V133F destabilizes recombinant HARS protein, which is rescued in the presence of tRNAHis. HARS V133F and Y330C cause mistranslation and cause changes to the proteome without activating the integrated stress response as validated by mass spectrometry and growth defects that persist with histidine supplementation. The growth defects and reduced translation fidelity caused by V133F and Y330C mutants were rescued by supplementation with human tRNAHis in a humanized yeast model. Our results demonstrate the feasibility of cognate tRNA as a therapeutic that rescues HARS deficiency and ameliorates toxic mistranslation generated by causative alleles for CMT.
Collapse
Affiliation(s)
- Sarah D P Wilhelm
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Jenica H Kakadia
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Aruun Beharry
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Rosan Kenana
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Kyle S Hoffman
- Bioinformatics Solutions Inc, Waterloo, Ontario, N2L 3K8 Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ilka U Heinemann
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
- Children's Health Research Institute, London, ON, N6C 4V3 Canada
| |
Collapse
|
7
|
Rhymes ER, Sleigh JN. Shared mechanisms and pathological phenotypes underlying aminoacyl-tRNA synthetase-related neuropathies. Neural Regen Res 2024; 21:01300535-990000000-00620. [PMID: 39851138 PMCID: PMC12094558 DOI: 10.4103/nrr.nrr-d-24-01080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 01/26/2025] Open
Affiliation(s)
- Elena R. Rhymes
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - James N. Sleigh
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
| |
Collapse
|
8
|
Wilhelm SDP, Moresco AA, Rivero AD, Siu VM, Heinemann IU. Characterization of a novel heterozygous variant in the histidyl-tRNA synthetase gene associated with Charcot-Marie-Tooth disease type 2W. IUBMB Life 2024; 76:1125-1138. [PMID: 39352000 PMCID: PMC11580374 DOI: 10.1002/iub.2918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/01/2024] [Indexed: 10/03/2024]
Abstract
Heterozygous pathogenic variants in the histidyl-tRNA synthetase (HARS) gene are associated with Charcot-Marie-Tooth (CMT) type 2W disease, classified as an axonal peripheral neuropathy. To date, at least 60 variants causing CMT symptoms have been identified in seven different aminoacyl-tRNA synthetases, with eight being found in the catalytic domain of HARS. The genetic data clearly show a causative role of aminoacyl-tRNA synthetases in CMT; however, the cellular mechanisms leading to pathology can vary widely and are unknown in the case of most identified variants. Here we describe a novel HARS variant, c.412T>C; p.Y138H, identified through a CMT gene panel in a patient with peripheral neuropathy. To determine the effect of p.Y138H we employed a humanized HARS yeast model and recombinant protein biochemistry, which identified a deficiency in protein dimerization and a growth defect which shows mild but significant improvement with histidine supplementation. This raises the potential for a clinical trial of histidine.
Collapse
Affiliation(s)
- Sarah D. P. Wilhelm
- Department of BiochemistryThe University of Western OntarioLondonOntarioCanada
| | - Angelica A. Moresco
- Division of Medical Genetics, Department of PaediatricsThe University of Western OntarioLondonOntarioCanada
| | | | - Victoria Mok Siu
- Division of Medical Genetics, Department of PaediatricsThe University of Western OntarioLondonOntarioCanada
- Children's Health Research InstituteLondonOntarioCanada
| | - Ilka U. Heinemann
- Department of BiochemistryThe University of Western OntarioLondonOntarioCanada
- Children's Health Research InstituteLondonOntarioCanada
| |
Collapse
|
9
|
Nasim F, Jakkula P, Kumar MS, Alvala M, Qureshi IA. Structural and catalytic properties of histidyl-tRNA synthetase: A potential drug target against leishmaniasis. Int J Biol Macromol 2024; 282:137357. [PMID: 39515693 DOI: 10.1016/j.ijbiomac.2024.137357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Visceral leishmaniasis is caused by Leishmania donovani which affects the poorer sections of society, and despite the global spread, effective treatment is unavailable. The current study investigates the potential of leishmanial histidyl-tRNA synthetase (LdHisRS) as a drug target. LdHisRS delineated more closeness to other protozoan parasites than its mammalian counterparts and contained relevant differences in the active site residues. The important ATP-binding residues were mutated to alanine and all the proteins, including human HisRS, were purified to homogeneity. LdHisRS exhibited a dimeric state in solution and showed maximal amino acid activation activity in physiological conditions. It also demonstrated a greater affinity for substrate over cofactor, while magnesium and potassium enhanced its activity better than other tested metal ions. Comp-7m, a benzothiazolo-coumarin derivative, proved to be specific inhibitor of LdHisRS with competitive mode of inhibition for ATP whereas it displayed lower binding affinity towards mutants. LdHisRS majorly contained α-helices and most of the aromatic residues were present in its hydrophobic core. Additionally, Comp-7m superimposed on ATP adenine ring during docking analysis and LdHisRS-ligand complexes had comparable stability as well as rigidity in molecular dynamics simulation. We thus provide structural and functional insights of LdHisRS which can be useful for devising antileishmanials.
Collapse
Affiliation(s)
- Fouzia Nasim
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India
| | - Pranay Jakkula
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India
| | - Muppidi Shravan Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Mallika Alvala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India.
| |
Collapse
|
10
|
Zhang J, Meng X, Qin Q, Liang Y, Yang G, Li S, Li X, Zhou JC, Sun L. Evaluation of the Role of Tanshinone I in an In Vitro System of Charcot-Marie-Tooth Disease Type 2N. Int J Mol Sci 2024; 25:11184. [PMID: 39456965 PMCID: PMC11509018 DOI: 10.3390/ijms252011184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Charcot-Marie-Tooth disease type 2N (CMT2N) is an inherited nerve disorder caused by mutations in the alanyl-tRNA synthetase (AlaRS) gene, resulting in muscle weakness and sensory issues. Currently, there is no cure for CMT2N. Here, we found that all five AlaRS mutations in the aminoacylation domain can interact with neuropilin-1 (Nrp1), which is consistent with our previous findings. Interestingly, three of these mutations did not affect alanine activation activity. We then performed a high-throughput screen of 2000 small molecules targeting the prevalent R329H mutant. Using thermal stability assays (TSA), biolayer interferometry (BLI), ATP consumption, and proteolysis assays, we identified Tanshinone I as a compound that binds to and modifies the conformation of the R329H mutant and other CMT-related AlaRS mutants interacting with Nrp1. Molecular docking and dynamic simulation studies further clarified Tanshinone I's binding mode, indicating its potential against various AlaRS mutants. Furthermore, co-immunoprecipitation (Co-IP) and pull-down assays showed that Tanshinone I significantly reduces the binding of AlaRS mutants to Nrp1. Collectively, these findings suggest that Tanshinone I, by altering the conformation of mutant proteins, disrupts the pathological interaction between AlaRS CMT mutants and Nrp1, potentially restoring normal Nrp1 function. This makes Tanshinone I a promising therapeutic candidate for CMT2N.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.Z.); (X.M.); (Q.Q.); (Y.L.); (G.Y.); (S.L.); (X.L.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| | - Xinru Meng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.Z.); (X.M.); (Q.Q.); (Y.L.); (G.Y.); (S.L.); (X.L.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| | - Qianni Qin
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.Z.); (X.M.); (Q.Q.); (Y.L.); (G.Y.); (S.L.); (X.L.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| | - Yali Liang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.Z.); (X.M.); (Q.Q.); (Y.L.); (G.Y.); (S.L.); (X.L.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| | - Guangpu Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.Z.); (X.M.); (Q.Q.); (Y.L.); (G.Y.); (S.L.); (X.L.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| | - Shen Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.Z.); (X.M.); (Q.Q.); (Y.L.); (G.Y.); (S.L.); (X.L.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| | - Xiaorong Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.Z.); (X.M.); (Q.Q.); (Y.L.); (G.Y.); (S.L.); (X.L.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.Z.); (X.M.); (Q.Q.); (Y.L.); (G.Y.); (S.L.); (X.L.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| | - Litao Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.Z.); (X.M.); (Q.Q.); (Y.L.); (G.Y.); (S.L.); (X.L.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| |
Collapse
|
11
|
Yin JZ, Keszei AFA, Houliston S, Filandr F, Beenstock J, Daou S, Kitaygorodsky J, Schriemer DC, Mazhab-Jafari MT, Gingras AC, Sicheri F. The HisRS-like domain of GCN2 is a pseudoenzyme that can bind uncharged tRNA. Structure 2024; 32:795-811.e6. [PMID: 38531363 DOI: 10.1016/j.str.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/09/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
GCN2 is a stress response kinase that phosphorylates the translation initiation factor eIF2α to inhibit general protein synthesis when activated by uncharged tRNA and stalled ribosomes. The presence of a HisRS-like domain in GCN2, normally associated with tRNA aminoacylation, led to the hypothesis that eIF2α kinase activity is regulated by the direct binding of this domain to uncharged tRNA. Here we solved the structure of the HisRS-like domain in the context of full-length GCN2 by cryoEM. Structure and function analysis shows the HisRS-like domain of GCN2 has lost histidine and ATP binding but retains tRNA binding abilities. Hydrogen deuterium exchange mass spectrometry, site-directed mutagenesis and computational docking experiments support a tRNA binding model that is partially shifted from that employed by bona fide HisRS enzymes. These results demonstrate that the HisRS-like domain of GCN2 is a pseudoenzyme and advance our understanding of GCN2 regulation and function.
Collapse
Affiliation(s)
- Jay Z Yin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alexander F A Keszei
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Scott Houliston
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada; Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Frantisek Filandr
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jonah Beenstock
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Salima Daou
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Julia Kitaygorodsky
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mohammad T Mazhab-Jafari
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
12
|
Rhymes ER, Simkin RL, Qu J, Villarroel-Campos D, Surana S, Tong Y, Shapiro R, Burgess RW, Yang XL, Schiavo G, Sleigh JN. Boosting BDNF in muscle rescues impaired axonal transport in a mouse model of DI-CMTC peripheral neuropathy. Neurobiol Dis 2024; 195:106501. [PMID: 38583640 PMCID: PMC11998923 DOI: 10.1016/j.nbd.2024.106501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.
Collapse
Affiliation(s)
- Elena R Rhymes
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Rebecca L Simkin
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Ji Qu
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - David Villarroel-Campos
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - Sunaina Surana
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - Yao Tong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan Shapiro
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - James N Sleigh
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; UK Dementia Research Institute at University College London, London WC1N 3BG, UK.
| |
Collapse
|
13
|
Rhymes ER, Simkin RL, Qu J, Villarroel-Campos D, Surana S, Tong Y, Shapiro R, Burgess RW, Yang XL, Schiavo G, Sleigh JN. Boosting BDNF in muscle rescues impaired axonal transport in a mouse model of DI-CMTC peripheral neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.09.536152. [PMID: 38559020 PMCID: PMC10979848 DOI: 10.1101/2023.04.09.536152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.
Collapse
Affiliation(s)
- Elena R. Rhymes
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Rebecca L. Simkin
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Ji Qu
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - David Villarroel-Campos
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - Sunaina Surana
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - Yao Tong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan Shapiro
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - James N. Sleigh
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| |
Collapse
|
14
|
Kalotay E, Klugmann M, Housley GD, Fröhlich D. Dominant aminoacyl-tRNA synthetase disorders: lessons learned from in vivo disease models. Front Neurosci 2023; 17:1182845. [PMID: 37274211 PMCID: PMC10234151 DOI: 10.3389/fnins.2023.1182845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/05/2023] [Indexed: 06/06/2023] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) play an essential role in protein synthesis, being responsible for ligating tRNA molecules to their corresponding amino acids in a reaction known as 'tRNA aminoacylation'. Separate ARSs carry out the aminoacylation reaction in the cytosol and in mitochondria, and mutations in almost all ARS genes cause pathophysiology most evident in the nervous system. Dominant mutations in multiple cytosolic ARSs have been linked to forms of peripheral neuropathy including Charcot-Marie-Tooth disease, distal hereditary motor neuropathy, and spinal muscular atrophy. This review provides an overview of approaches that have been employed to model each of these diseases in vivo, followed by a discussion of the existing animal models of dominant ARS disorders and key mechanistic insights that they have provided. In summary, ARS disease models have demonstrated that loss of canonical ARS function alone cannot fully account for the observed disease phenotypes, and that pathogenic ARS variants cause developmental defects within the peripheral nervous system, despite a typically later onset of disease in humans. In addition, aberrant interactions between mutant ARSs and other proteins have been shown to contribute to the disease phenotypes. These findings provide a strong foundation for future research into this group of diseases, providing methodological guidance for studies on ARS disorders that currently lack in vivo models, as well as identifying candidate therapeutic targets.
Collapse
Affiliation(s)
- Elizabeth Kalotay
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gary D. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Dominik Fröhlich
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
15
|
Sleigh JN, Villarroel-Campos D, Surana S, Wickenden T, Tong Y, Simkin RL, Vargas JNS, Rhymes ER, Tosolini AP, West SJ, Zhang Q, Yang XL, Schiavo G. Boosting peripheral BDNF rescues impaired in vivo axonal transport in CMT2D mice. JCI Insight 2023; 8:e157191. [PMID: 36928301 PMCID: PMC10243821 DOI: 10.1172/jci.insight.157191] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
Gain-of-function mutations in the housekeeping gene GARS1, which lead to the expression of toxic versions of glycyl-tRNA synthetase (GlyRS), cause the selective motor and sensory pathology characterizing Charcot-Marie-Tooth disease (CMT). Aberrant interactions between GlyRS mutants and different proteins, including neurotrophin receptor tropomyosin receptor kinase receptor B (TrkB), underlie CMT type 2D (CMT2D); however, our pathomechanistic understanding of this untreatable peripheral neuropathy remains incomplete. Through intravital imaging of the sciatic nerve, we show that CMT2D mice displayed early and persistent disturbances in axonal transport of neurotrophin-containing signaling endosomes in vivo. We discovered that brain-derived neurotrophic factor (BDNF)/TrkB impairments correlated with transport disruption and overall CMT2D neuropathology and that inhibition of this pathway at the nerve-muscle interface perturbed endosome transport in wild-type axons. Accordingly, supplementation of muscles with BDNF, but not other neurotrophins, completely restored physiological axonal transport in neuropathic mice. Together, these findings suggest that selectively targeting muscles with BDNF-boosting therapies could represent a viable therapeutic strategy for CMT2D.
Collapse
Affiliation(s)
- James N. Sleigh
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
- UK Dementia Research Institute, University College London (UCL), London, United Kingdom
| | - David Villarroel-Campos
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
| | - Sunaina Surana
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
- UK Dementia Research Institute, University College London (UCL), London, United Kingdom
| | - Tahmina Wickenden
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
| | - Yao Tong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Rebecca L. Simkin
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
| | - Jose Norberto S. Vargas
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
| | - Elena R. Rhymes
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
| | - Andrew P. Tosolini
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
| | | | - Qian Zhang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
- UK Dementia Research Institute, University College London (UCL), London, United Kingdom
| |
Collapse
|
16
|
Ermanoska B, Asselbergh B, Morant L, Petrovic-Erfurth ML, Hosseinibarkooie S, Leitão-Gonçalves R, Almeida-Souza L, Bervoets S, Sun L, Lee L, Atkinson D, Khanghahi A, Tournev I, Callaerts P, Verstreken P, Yang XL, Wirth B, Rodal AA, Timmerman V, Goode BL, Godenschwege TA, Jordanova A. Tyrosyl-tRNA synthetase has a noncanonical function in actin bundling. Nat Commun 2023; 14:999. [PMID: 36890170 PMCID: PMC9995517 DOI: 10.1038/s41467-023-35908-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 01/06/2023] [Indexed: 03/10/2023] Open
Abstract
Dominant mutations in tyrosyl-tRNA synthetase (YARS1) and six other tRNA ligases cause Charcot-Marie-Tooth peripheral neuropathy (CMT). Loss of aminoacylation is not required for their pathogenicity, suggesting a gain-of-function disease mechanism. By an unbiased genetic screen in Drosophila, we link YARS1 dysfunction to actin cytoskeleton organization. Biochemical studies uncover yet unknown actin-bundling property of YARS1 to be enhanced by a CMT mutation, leading to actin disorganization in the Drosophila nervous system, human SH-SY5Y neuroblastoma cells, and patient-derived fibroblasts. Genetic modulation of F-actin organization improves hallmark electrophysiological and morphological features in neurons of flies expressing CMT-causing YARS1 mutations. Similar beneficial effects are observed in flies expressing a neuropathy-causing glycyl-tRNA synthetase. Hence, in this work, we show that YARS1 is an evolutionary-conserved F-actin organizer which links the actin cytoskeleton to tRNA-synthetase-induced neurodegeneration.
Collapse
Affiliation(s)
- Biljana Ermanoska
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biology, Brandeis University, Waltham, MA, 02453, USA
| | - Bob Asselbergh
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, 2610, Antwerp, Belgium
- Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Laura Morant
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
| | - Maria-Luise Petrovic-Erfurth
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
| | - Seyyedmohsen Hosseinibarkooie
- Institute of Human Genetics; Center for Molecular Medicine Cologne; Center for Rare Diseases Cologne, University Hospital of Cologne; University of Cologne, 50931, Cologne, Germany
- Division of Endocrinology and Metabolism and Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Ricardo Leitão-Gonçalves
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
- Frontiers Media SA, Lausanne, Switzerland
| | - Leonardo Almeida-Souza
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
- Helsinki Institute of Life Science, Institute of Biotechnology & Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Sven Bervoets
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Litao Sun
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangdong, China
| | - LaTasha Lee
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, 33458, USA
- Center for Social and Clinical Research, National Minority Quality Forum, Washington, DC, USA
| | - Derek Atkinson
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Akram Khanghahi
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
| | - Ivaylo Tournev
- Department of Neurology, Medical University-Sofia, 1431, Sofia, Bulgaria
- Department of Cognitive Science and Psychology, New Bulgarian University, 1618, Sofia, Bulgaria
| | | | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Brunhilde Wirth
- Institute of Human Genetics; Center for Molecular Medicine Cologne; Center for Rare Diseases Cologne, University Hospital of Cologne; University of Cologne, 50931, Cologne, Germany
| | - Avital A Rodal
- Department of Biology, Brandeis University, Waltham, MA, 02453, USA
| | - Vincent Timmerman
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA, 02453, USA
| | - Tanja A Godenschwege
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Albena Jordanova
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium.
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium.
- Department of Medical Chemistry and Biochemistry, Medical University-Sofia, 1431, Sofia, Bulgaria.
| |
Collapse
|
17
|
Qiu Y, Kenana R, Beharry A, Wilhelm SDP, Hsu SY, Siu VM, Duennwald M, Heinemann IU. Histidine supplementation can escalate or rescue HARS deficiency in a Charcot-Marie-Tooth disease model. Hum Mol Genet 2023; 32:810-824. [PMID: 36164730 PMCID: PMC9941834 DOI: 10.1093/hmg/ddac239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/30/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Aminoacyl-tRNA synthetases are essential enzymes responsible for charging amino acids onto cognate tRNAs during protein synthesis. In histidyl-tRNA synthetase (HARS), autosomal dominant mutations V133F, V155G, Y330C and S356N in the HARS catalytic domain cause Charcot-Marie-Tooth disease type 2 W (CMT2W), while tRNA-binding domain mutation Y454S causes recessive Usher syndrome type IIIB. In a yeast model, all human HARS variants complemented a genomic deletion of the yeast ortholog HTS1 at high expression levels. CMT2W associated mutations, but not Y454S, resulted in reduced growth. We show mistranslation of histidine to glutamine and threonine in V155G and S356N but not Y330C mutants in yeast. Mistranslating V155G and S356N mutants lead to accumulation of insoluble proteins, which was rescued by histidine. Mutants V133F and Y330C showed the most significant growth defect and decreased HARS abundance in cells. Here, histidine supplementation led to insoluble protein aggregation and further reduced viability, indicating histidine toxicity associated with these mutants. V133F proteins displayed reduced thermal stability in vitro, which was rescued by tRNA. Our data will inform future treatment options for HARS patients, where histidine supplementation may either have a toxic or compensating effect depending on the nature of the causative HARS variant.
Collapse
Affiliation(s)
- Yi Qiu
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Rosan Kenana
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Aruun Beharry
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Sarah D P Wilhelm
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Sung Yuan Hsu
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Victoria M Siu
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Martin Duennwald
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Ilka U Heinemann
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
18
|
Towards a Cure for HARS Disease. Genes (Basel) 2023; 14:genes14020254. [PMID: 36833180 PMCID: PMC9956352 DOI: 10.3390/genes14020254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Histidyl-tRNA synthetase (HARS) ligates histidine to its cognate transfer RNA (tRNAHis). Mutations in HARS cause the human genetic disorders Usher syndrome type 3B (USH3B) and Charcot-Marie-Tooth syndrome type 2W (CMT2W). Treatment for these diseases remains symptomatic, and no disease specific treatments are currently available. Mutations in HARS can lead to destabilization of the enzyme, reduced aminoacylation, and decreased histidine incorporation into the proteome. Other mutations lead to a toxic gain-of-function and mistranslation of non-cognate amino acids in response to histidine codons, which can be rescued by histidine supplementation in vitro. We discuss recent advances in characterizing HARS mutations and potential applications of amino acid and tRNA therapy for future gene and allele specific therapy.
Collapse
|
19
|
Turvey AK, Horvath GA, Cavalcanti ARO. Aminoacyl-tRNA synthetases in human health and disease. Front Physiol 2022; 13:1029218. [PMID: 36330207 PMCID: PMC9623071 DOI: 10.3389/fphys.2022.1029218] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022] Open
Abstract
The Aminoacyl-tRNA Synthetases (aaRSs) are an evolutionarily ancient family of enzymes that catalyze the esterification reaction linking a transfer RNA (tRNA) with its cognate amino acid matching the anticodon triplet of the tRNA. Proper functioning of the aaRSs to create aminoacylated (or “charged”) tRNAs is required for efficient and accurate protein synthesis. Beyond their basic canonical function in protein biosynthesis, aaRSs have a surprisingly diverse array of non-canonical functions that are actively being defined. The human genome contains 37 genes that encode unique aaRS proteins. To date, 56 human genetic diseases caused by damaging variants in aaRS genes have been described: 46 are autosomal recessive biallelic disorders and 10 are autosomal dominant monoallelic disorders. Our appreciation of human diseases caused by damaging genetic variants in the aaRSs has been greatly accelerated by the advent of next-generation sequencing, with 89% of these gene discoveries made since 2010. In addition to these genetic disorders of the aaRSs, anti-synthetase syndrome (ASSD) is a rare autoimmune inflammatory myopathy that involves the production of autoantibodies that disrupt aaRS proteins. This review provides an overview of the basic biology of aaRS proteins and describes the rapidly growing list of human diseases known to be caused by genetic variants or autoimmune targeting that affect both the canonical and non-canonical functions of these essential proteins.
Collapse
Affiliation(s)
- Alexandra K. Turvey
- Department of Biology, Pomona College, Claremont, CA, United States
- *Correspondence: Alexandra K. Turvey,
| | - Gabriella A. Horvath
- Division of Biochemical Genetics, Department of Pediatrics, University of British Columbia, BC Children’s Hospital, Vancouver, BC, Canada
- Adult Metabolic Diseases Clinic, Vancouver General Hospital, Vancouver, BC, Canada
| | | |
Collapse
|
20
|
Zahid S, Gul M, Shafique S, Rashid S. E2 UbcH5B-derived peptide ligands target HECT E3-E2 binding site and block the Ub-dependent SARS-CoV-2 egression: A computational study. Comput Biol Med 2022; 146:105660. [PMID: 35751189 PMCID: PMC9124161 DOI: 10.1016/j.compbiomed.2022.105660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 01/12/2023]
Abstract
Homologous to E6AP carboxyl-terminus (HECT)-type E3 ligase performs ubiquitin (Ub)-proteasomal protein degradation via forming a complex with E2∼Ub. Enveloped viruses including SARS-CoV-2 escape from the infected cells by harnessing the E-class vacuolar protein-sorting (ESCRT) machinery and mimic the cellular system through PPAY motif-based linking to HECT Ub ligase activity. In the present study, we have characterized the binding pattern of E2UbcH5B to HECT domains of NEDD4L, WWP1, WWP2, HECW1, and HECW2 through in silico analysis to isolate the E2UbcH5B-specific peptide inhibitors that may target SARS-CoV-2 viral egression. Molecular dynamics analysis revealed more opening of E2UbcH5B-binding pocket upon binding to HECTNEDD4L, HECTWWP1, HECTWWP2, HECTHECW1, and HECTHECW2. We observed similar binding pattern for E2UbcH5B and mentioned HECT domains as previously reported for HECTNEDD4L where Trp762, Trp709, and Trp657 residues of HECTNEDD4L, HECTWWP1, and HECTWWP2 are involved in making contacts with Ser94 residue of E2UbcH5B. Similarly, corresponding to HECTNEDD4L Tyr756 residue, HECTWWP1, HECTWWP2, HECTHECW1, and HECTHECW2-specific Phe703, Phe651, Phe1387, and Phe1353 residues execute interaction with E2UbcH5B. Our analysis suggests that corresponding to Cys942 of HECTNEDD4L, Cys890, Cys838, Cys1574, and Cys1540 residues of HECTWWP1, HECTWWP2, HECTHECW1, and HECTHECW2, respectively are involved in E2-to-E3 Ub transfer. Furthermore, MM-PBSA free energy calculations revealed favorable energy values for E2UbcH5B-HECT complexes along with the individual residue contributions. Subsequently, two E2UbcH5B-derived peptides (His55-Phe69 and Asn81-Ala96) were tested for their binding abilities against HECT domains of NEDD4L, WWP1, WWP2, HECW1, and HECW2. Their binding was validated through substitution of Phe62, Pro65, Ile84, and Cys85 residues into Ala, which revealed an impaired binding, suggesting that the proposed peptide ligands may selectively target E2-HECT binding and Ub-transfer. Collectively, we propose that peptide-driven blocking of E2-to-HECT Ub loading may limit SARS-CoV-2 egression and spread in the host cells.
Collapse
|
21
|
Khan K, Gogonea V, Fox PL. Aminoacyl-tRNA synthetases of the multi-tRNA synthetase complex and their role in tumorigenesis. Transl Oncol 2022; 19:101392. [PMID: 35278792 PMCID: PMC8914993 DOI: 10.1016/j.tranon.2022.101392] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/16/2022] Open
Abstract
In mammalian cells, 20 aminoacyl-tRNA synthetases (AARS) catalyze the ligation of amino acids to their cognate tRNAs to generate aminoacylated-tRNAs. In higher eukaryotes, 9 of the 20 AARSs, along with 3 auxiliary proteins, join to form the cytoplasmic multi-tRNA synthetase complex (MSC). The complex is absent in prokaryotes, but evolutionary expansion of MSC constituents, primarily by addition of novel interacting domains, facilitates formation of subcomplexes that join to establish the holo-MSC. In some cases, environmental cues direct the release of constituents from the MSC which enables the execution of non-canonical, i.e., "moonlighting", functions distinct from their essential activities in protein translation. These activities are generally beneficial, but can also be deleterious to the cell. Elucidation of the non-canonical activities of several AARSs residing in the MSC suggest they are potential therapeutic targets for cancer, as well as metabolic and neurologic diseases. Here, we describe the role of MSC-resident AARSs in cancer progression, and the factors that regulate their release from the MSC. Also, we highlight recent developments in therapeutic modalities that target MSC AARSs for cancer prevention and treatment.
Collapse
Affiliation(s)
- Krishnendu Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| | - Valentin Gogonea
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, United States of America
| | - Paul L Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| |
Collapse
|
22
|
Zhang H, Yang XL, Sun L. The uniqueness of AlaRS and its human disease connections. RNA Biol 2021; 18:1501-1511. [PMID: 33317386 PMCID: PMC8583063 DOI: 10.1080/15476286.2020.1861803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
Among the 20 cytoplasmic aminoacyl-tRNA synthetases (aaRSs), alanyl-tRNA synthetase (AlaRS) has unique features. AlaRS is the only aaRS that exclusively recognizes a single G3:U70 wobble base pair in the acceptor stem of tRNA, which serves as the identity element for both the synthetic and the proofreading activities of the synthetase. The recognition is relaxed during evolution and eukaryotic AlaRS can mis-aminoacylate noncognate tRNAs with a G4:U69 base pair seemingly as a deliberate gain of function for unknown reasons. Unlike other class II aaRSs, dimerization of AlaRS is not necessarily required for aminoacylation possibly due to functional compensations from the C-terminal domain (C-Ala). In contrast to other 19 cytoplasmic aaRSs that append additional domains or motifs to acquire new functions during evolution, the functional expansion of AlaRS is likely achieved through transformations of the existing C-Ala. Given both essential canonical and diverse non-canonical roles of AlaRS, dysfunction of AlaRS leads to neurodegenerative disorders in human and various pathological phenotypes in mouse models. In this review, the uniqueness of AlaRS in both physiological and pathological events is systematically discussed, with a particular focus on its novel functions gained in evolution.
Collapse
Affiliation(s)
- Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Litao Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China
| |
Collapse
|
23
|
Morant L, Erfurth ML, Jordanova A. Drosophila Models for Charcot-Marie-Tooth Neuropathy Related to Aminoacyl-tRNA Synthetases. Genes (Basel) 2021; 12:1519. [PMID: 34680913 PMCID: PMC8536177 DOI: 10.3390/genes12101519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/29/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRS) represent the largest cluster of proteins implicated in Charcot-Marie-Tooth neuropathy (CMT), the most common neuromuscular disorder. Dominant mutations in six aaRS cause different axonal CMT subtypes with common clinical characteristics, including progressive distal muscle weakness and wasting, impaired sensory modalities, gait problems and skeletal deformities. These clinical manifestations are caused by "dying back" axonal degeneration of the longest peripheral sensory and motor neurons. Surprisingly, loss of aminoacylation activity is not a prerequisite for CMT to occur, suggesting a gain-of-function disease mechanism. Here, we present the Drosophila melanogaster disease models that have been developed to understand the molecular pathway(s) underlying GARS1- and YARS1-associated CMT etiology. Expression of dominant CMT mutations in these aaRSs induced comparable neurodegenerative phenotypes, both in larvae and adult animals. Interestingly, recent data suggests that shared molecular pathways, such as dysregulation of global protein synthesis, might play a role in disease pathology. In addition, it has been demonstrated that the important function of nuclear YARS1 in transcriptional regulation and the binding properties of mutant GARS1 are also conserved and can be studied in D. melanogaster in the context of CMT. Taken together, the fly has emerged as a faithful companion model for cellular and molecular studies of aaRS-CMT that also enables in vivo investigation of candidate CMT drugs.
Collapse
Affiliation(s)
- Laura Morant
- Molecular Neurogenomics Group, VIB-UAntwerp Center for Molecular Neurology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.E.)
| | - Maria-Luise Erfurth
- Molecular Neurogenomics Group, VIB-UAntwerp Center for Molecular Neurology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.E.)
| | - Albena Jordanova
- Molecular Neurogenomics Group, VIB-UAntwerp Center for Molecular Neurology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.E.)
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Faculty of Medicine, Medical University-Sofia, 1431 Sofia, Bulgaria
| |
Collapse
|
24
|
Lata E, Choquet K, Sagliocco F, Brais B, Bernard G, Teichmann M. RNA Polymerase III Subunit Mutations in Genetic Diseases. Front Mol Biosci 2021; 8:696438. [PMID: 34395528 PMCID: PMC8362101 DOI: 10.3389/fmolb.2021.696438] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
RNA polymerase (Pol) III transcribes small untranslated RNAs such as 5S ribosomal RNA, transfer RNAs, and U6 small nuclear RNA. Because of the functions of these RNAs, Pol III transcription is best known for its essential contribution to RNA maturation and translation. Surprisingly, it was discovered in the last decade that various inherited mutations in genes encoding nine distinct subunits of Pol III cause tissue-specific diseases rather than a general failure of all vital functions. Mutations in the POLR3A, POLR3C, POLR3E and POLR3F subunits are associated with susceptibility to varicella zoster virus-induced encephalitis and pneumonitis. In addition, an ever-increasing number of distinct mutations in the POLR3A, POLR3B, POLR1C and POLR3K subunits cause a spectrum of neurodegenerative diseases, which includes most notably hypomyelinating leukodystrophy. Furthermore, other rare diseases are also associated with mutations in genes encoding subunits of Pol III (POLR3H, POLR3GL) and the BRF1 component of the TFIIIB transcription initiation factor. Although the causal relationship between these mutations and disease development is widely accepted, the exact molecular mechanisms underlying disease pathogenesis remain enigmatic. Here, we review the current knowledge on the functional impact of specific mutations, possible Pol III-related disease-causing mechanisms, and animal models that may help to better understand the links between Pol III mutations and disease.
Collapse
Affiliation(s)
- Elisabeth Lata
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| | - Karine Choquet
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Francis Sagliocco
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| | - Bernard Brais
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Geneviève Bernard
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Martin Teichmann
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| |
Collapse
|
25
|
Roles of tRNA metabolism in aging and lifespan. Cell Death Dis 2021; 12:548. [PMID: 34039958 PMCID: PMC8154886 DOI: 10.1038/s41419-021-03838-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/17/2022]
Abstract
Transfer RNAs (tRNAs) mainly function as adapter molecules that decode messenger RNAs (mRNAs) during protein translation by delivering amino acids to the ribosome. Traditionally, tRNAs are considered as housekeepers without additional functions. Nevertheless, it has become apparent from biological research that tRNAs are involved in various physiological and pathological processes. Aging is a form of gradual decline in physiological function that ultimately leads to increased vulnerability to multiple chronic diseases and death. Interestingly, tRNA metabolism is closely associated with aging and lifespan. In this review, we summarize the emerging roles of tRNA-associated metabolism, such as tRNA transcription, tRNA molecules, tRNA modifications, tRNA aminoacylation, and tRNA derivatives, in aging and lifespan, aiming to provide new ideas for developing therapeutics and ultimately extending lifespan in humans.
Collapse
|
26
|
Vinogradova ES, Nikonov OS, Nikonova EY. Associations between Neurological Diseases and Mutations in the Human Glycyl-tRNA Synthetase. BIOCHEMISTRY (MOSCOW) 2021; 86:S12-S23. [PMID: 33827397 PMCID: PMC7905983 DOI: 10.1134/s0006297921140029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Aminoacyl-RNA synthetases (aaRSs) are among the key enzymes of protein biosynthesis. They are responsible for conducting the first step in the protein biosynthesis, namely attaching amino acids to the corresponding tRNA molecules both in cytoplasm and mitochondria. More and more research demonstrates that mutations in the genes encoding aaRSs lead to the development of various neurodegenerative diseases, such as incurable Charcot–Marie–Tooth disease (CMT) and distal spinal muscular atrophy. Some mutations result in the loss of tRNA aminoacylation activity, while other mutants retain their classical enzyme activity. In the latter case, disease manifestations are associated with additional neuron-specific functions of aaRSs. At present, seven aaRSs (GlyRS, TyrRS, AlaRS, HisRS, TrpRS, MetRS, and LysRS) are known to be involved in the CMT etiology with glycyl-tRNA synthetase (GlyRS) being the most studied of them.
Collapse
Affiliation(s)
| | - Oleg S Nikonov
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia
| | | |
Collapse
|
27
|
Periwal N, Rathod SB, Pal R, Sharma P, Nebhnani L, Barnwal RP, Arora P, Srivastava KR, Sood V. In silico characterization of mutations circulating in SARS-CoV-2 structural proteins. J Biomol Struct Dyn 2021; 40:8216-8231. [PMID: 33797336 PMCID: PMC8043164 DOI: 10.1080/07391102.2021.1908170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 has recently emerged as a pandemic that has caused more than 2.4 million deaths worldwide. Since the onset of infections, several full-length sequences of viral genome have been made available which have been used to gain insights into viral dynamics. We utilised a meta-data driven comparative analysis tool for sequences (Meta-CATS) algorithm to identify mutations in 829 SARS-CoV-2 genomes from around the world. The algorithm predicted sixty-one mutations among SARS-CoV-2 genomes. We observed that most of the mutations were concentrated around three protein coding genes viz nsp3 (non-structural protein 3), RdRp (RNA-directed RNA polymerase) and Nucleocapsid (N) proteins of SARS-CoV-2. We used various computational tools including normal mode analysis (NMA), C-α discrete molecular dynamics (DMD) and all-atom molecular dynamic simulations (MD) to study the effect of mutations on functionality, stability and flexibility of SARS-CoV-2 structural proteins including envelope (E), N and spike (S) proteins. PredictSNP predictor suggested that four mutations (L37H in E, R203K and P344S in N and D614G in S) out of seven were predicted to be neutral whilst the remaining ones (P13L, S197L and G204R in N) were predicted to be deleterious in nature thereby impacting protein functionality. NMA, C-α DMD and all-atom MD suggested some mutations to have stabilizing roles (P13L, S197L and R203K in N protein) where remaining ones were predicted to destabilize mutant protein. In summary, we identified significant mutations in SARS-CoV-2 genomes as well as used computational approaches to further characterize the possible effect of highly significant mutations on SARS-CoV-2 structural proteins. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Neha Periwal
- Department of Biochemistry, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| | - Shravan B Rathod
- Department of Chemistry, Smt. S. M. Panchal Science College, Talod, India
| | - Ranjan Pal
- Biocatalysis and Enzyme Engineering Lab, Regional Centre for Biotechnology, Faridabad, India
| | - Priya Sharma
- Department of Biochemistry, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| | - Lata Nebhnani
- Department of Chemistry, Gujarat University, Ahmedabad, India
| | - Ravi P Barnwal
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Pooja Arora
- Department of Zoology, Hansraj College, University of Delhi, New Delhi, India
| | - Kinshuk Raj Srivastava
- Biocatalysis and Enzyme Engineering Lab, Regional Centre for Biotechnology, Faridabad, India
| | - Vikas Sood
- Department of Biochemistry, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
28
|
Sun L, Wei N, Kuhle B, Blocquel D, Novick S, Matuszek Z, Zhou H, He W, Zhang J, Weber T, Horvath R, Latour P, Pan T, Schimmel P, Griffin PR, Yang XL. CMT2N-causing aminoacylation domain mutants enable Nrp1 interaction with AlaRS. Proc Natl Acad Sci U S A 2021; 118:e2012898118. [PMID: 33753480 PMCID: PMC8020758 DOI: 10.1073/pnas.2012898118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Through dominant mutations, aminoacyl-tRNA synthetases constitute the largest protein family linked to Charcot-Marie-Tooth disease (CMT). An example is CMT subtype 2N (CMT2N), caused by individual mutations spread out in AlaRS, including three in the aminoacylation domain, thereby suggesting a role for a tRNA-charging defect. However, here we found that two are aminoacylation defective but that the most widely distributed R329H is normal as a purified protein in vitro and in unfractionated patient cell samples. Remarkably, in contrast to wild-type (WT) AlaRS, all three mutant proteins gained the ability to interact with neuropilin 1 (Nrp1), the receptor previously linked to CMT pathogenesis in GlyRS. The aberrant AlaRS-Nrp1 interaction is further confirmed in patient samples carrying the R329H mutation. However, CMT2N mutations outside the aminoacylation domain do not induce the Nrp1 interaction. Detailed biochemical and biophysical investigations, including X-ray crystallography, small-angle X-ray scattering, hydrogen-deuterium exchange (HDX), switchSENSE hydrodynamic diameter determinations, and protease digestions reveal a mutation-induced structural loosening of the aminoacylation domain that correlates with the Nrp1 interaction. The b1b2 domains of Nrp1 are responsible for the interaction with R329H AlaRS. The results suggest Nrp1 is more broadly associated with CMT-associated members of the tRNA synthetase family. Moreover, we revealed a distinct structural loosening effect induced by a mutation in the editing domain and a lack of conformational impact with C-Ala domain mutations, indicating mutations in the same protein may cause neuropathy through different mechanisms. Our results show that, as with other CMT-associated tRNA synthetases, aminoacylation per se is not relevant to the pathology.
Collapse
Affiliation(s)
- Litao Sun
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- School of Public Health (Shenzhen), Sun Yat-sen University, 510006 Guangzhou, China
| | - Na Wei
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Bernhard Kuhle
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - David Blocquel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Scott Novick
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458
| | - Zaneta Matuszek
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Huihao Zhou
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Weiwei He
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237 Shanghai, China
| | - Jingjing Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, 510006 Guangzhou, China
| | - Thomas Weber
- Dynamic Biosensors GmbH, 82152 Martinsried, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, United Kingdom
| | - Philippe Latour
- Biology and Pathology Department, Hospices Civils, 68500 Lyon, France
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037;
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458
| | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037;
| |
Collapse
|
29
|
Beijer D, Baets J. The expanding genetic landscape of hereditary motor neuropathies. Brain 2021; 143:3540-3563. [PMID: 33210134 DOI: 10.1093/brain/awaa311] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Hereditary motor neuropathies are clinically and genetically diverse disorders characterized by length-dependent axonal degeneration of lower motor neurons. Although currently as many as 26 causal genes are known, there is considerable missing heritability compared to other inherited neuropathies such as Charcot-Marie-Tooth disease. Intriguingly, this genetic landscape spans a discrete number of key biological processes within the peripheral nerve. Also, in terms of underlying pathophysiology, hereditary motor neuropathies show striking overlap with several other neuromuscular and neurological disorders. In this review, we provide a current overview of the genetic spectrum of hereditary motor neuropathies highlighting recent reports of novel genes and mutations or recent discoveries in the underlying disease mechanisms. In addition, we link hereditary motor neuropathies with various related disorders by addressing the main affected pathways of disease divided into five major processes: axonal transport, tRNA aminoacylation, RNA metabolism and DNA integrity, ion channels and transporters and endoplasmic reticulum.
Collapse
Affiliation(s)
- Danique Beijer
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Belgium
| |
Collapse
|
30
|
Mullen P, Abbott JA, Wellman T, Aktar M, Fjeld C, Demeler B, Ebert AM, Francklyn CS. Neuropathy-associated histidyl-tRNA synthetase variants attenuate protein synthesis in vitro and disrupt axon outgrowth in developing zebrafish. FEBS J 2021; 288:142-159. [PMID: 32543048 PMCID: PMC7736457 DOI: 10.1111/febs.15449] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/11/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) encompasses a set of genetically and clinically heterogeneous neuropathies characterized by length-dependent dysfunction of the peripheral nervous system. Mutations in over 80 diverse genes are associated with CMT, and aminoacyl-tRNA synthetases (ARS) constitute a large gene family implicated in the disease. Despite considerable efforts to elucidate the mechanistic link between ARS mutations and the CMT phenotype, the molecular basis of the pathology is unknown. In this work, we investigated the impact of three CMT-associated substitutions (V155G, Y330C, and R137Q) in the cytoplasmic histidyl-tRNA synthetase (HARS1) on neurite outgrowth and peripheral nervous system development. The model systems for this work included a nerve growth factor-stimulated neurite outgrowth model in rat pheochromocytoma cells (PC12), and a zebrafish line with GFP/red fluorescent protein reporters of sensory and motor neuron development. The expression of CMT-HARS1 mutations led to attenuation of protein synthesis and increased phosphorylation of eIF2α in PC12 cells and was accompanied by impaired neurite and axon outgrowth in both models. Notably, these effects were phenocopied by histidinol, a HARS1 inhibitor, and cycloheximide, a protein synthesis inhibitor. The mutant proteins also formed heterodimers with wild-type HARS1, raising the possibility that CMT-HARS1 mutations cause disease through a dominant-negative mechanism. Overall, these findings support the hypothesis that CMT-HARS1 alleles exert their toxic effect in a neuronal context, and lead to dysregulated protein synthesis. These studies demonstrate the value of zebrafish as a model for studying mutant alleles associated with CMT, and for characterizing the processes that lead to peripheral nervous system dysfunction.
Collapse
Affiliation(s)
- Patrick Mullen
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Jamie A Abbott
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Theresa Wellman
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | - Mahafuza Aktar
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Christian Fjeld
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Borries Demeler
- Department of Chemistry & Biochemistry, University of Lethbridge, Canada
| | - Alicia M Ebert
- Department of Biology, University of Vermont, Burlington, VT, USA
| | | |
Collapse
|
31
|
Xie Y, Lin Z, Pakhrin PS, Li X, Wang B, Liu L, Huang S, Zhao H, Cao W, Hu Z, Guo J, Shen L, Tang B, Zhang R. Genetic and Clinical Features in 24 Chinese Distal Hereditary Motor Neuropathy Families. Front Neurol 2021; 11:603003. [PMID: 33381078 PMCID: PMC7767876 DOI: 10.3389/fneur.2020.603003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background and Objectives: Distal hereditary motor neuropathy (dHMN) is a clinically and genetically heterogeneous group of inherited neuropathies. The objectives of this study were to report the clinical and genetic features of dHMN patients in a Chinese cohort. Aims and Methods: We performed clinical assessments and whole-exome sequencing in 24 dHMN families from Mainland China. We conducted a retrospective analysis of the data and investigated the frequency and clinical features of patients with a confirmed mutation. Results: Two novel heterozygous mutations in GARS, c.373G>C (p.E125Q) and c.1015G>A (p.G339R), were identified and corresponded to the typical dHMN-V phenotype. Together with families with WARS, SORD, SIGMAR1, and HSPB1 mutations, 29.2% of families (7/24) acquired a definite genetic diagnosis. One novel heterozygous variant of uncertain significance, c.1834G>A (p.G612S) in LRSAM1, was identified in a patient with mild dHMN phenotype. Conclusion: Our study expanded the mutation spectrum of GARS mutations and added evidence that GARS mutations are associated with both axonal Charcot-Marie-Tooth and dHMN phenotypes. Mutations in genes encoding aminoamide tRNA synthetase (ARS) might be a frequent cause of autosomal dominant-dHMN, and SORD mutation might account for a majority of autosomal recessive-dHMN cases. The relatively low genetic diagnosis yield indicated more causative dHMN genes need to be discovered.
Collapse
Affiliation(s)
- Yongzhi Xie
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhiqiang Lin
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Pukar Singh Pakhrin
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Li
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Binghao Wang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lei Liu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shunxiang Huang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Huadong Zhao
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wanqian Cao
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhengmao Hu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ruxu Zhang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
32
|
Zhang H, Zhou ZW, Sun L. Aminoacyl-tRNA synthetases in Charcot-Marie-Tooth disease: A gain or a loss? J Neurochem 2020; 157:351-369. [PMID: 33236345 PMCID: PMC8247414 DOI: 10.1111/jnc.15249] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 01/05/2023]
Abstract
Charcot‐Marie‐Tooth disease (CMT) is one of the most common inherited neurodegenerative disorders with an increasing number of CMT‐associated variants identified as causative factors, however, there has been no effective therapy for CMT to date. Aminoacyl‐tRNA synthetases (aaRS) are essential enzymes in translation by charging amino acids onto their cognate tRNAs during protein synthesis. Dominant monoallelic variants of aaRSs have been largely implicated in CMT. Some aaRSs variants affect enzymatic activity, demonstrating a loss‐of‐function property. In contrast, loss of aminoacylation activity is neither necessary nor sufficient for some aaRSs variants to cause CMT. Instead, accumulating evidence from CMT patient samples, animal genetic studies or protein conformational analysis has pinpointed toxic gain‐of‐function of aaRSs variants in CMT, suggesting complicated mechanisms underlying the pathogenesis of CMT. In this review, we summarize the latest advances in studies on CMT‐linked aaRSs, with a particular focus on their functions. The current challenges, future direction and the promising candidates for potential treatment of CMT are also discussed. ![]()
Collapse
Affiliation(s)
- Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Zhong-Wei Zhou
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Litao Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Genetic mechanisms of peripheral nerve disease. Neurosci Lett 2020; 742:135357. [PMID: 33249104 DOI: 10.1016/j.neulet.2020.135357] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
Peripheral neuropathies of genetic etiology are a very diverse group of disorders manifesting either as non-syndromic inherited neuropathies without significant manifestations outside the peripheral nervous system, or as part of a systemic or syndromic genetic disorder. The former and most frequent group is collectively known as Charcot-Marie-Tooth disease (CMT), with prevalence as high as 1:2,500 world-wide, and has proven to be genetically highly heterogeneous. More than 100 different genes have been identified so far to cause various CMT forms, following all possible inheritance patterns. CMT causative genes belong to several common functional pathways that are essential for the integrity of the peripheral nerve. Their discovery has provided insights into the normal biology of axons and myelinating cells, and has highlighted the molecular mechanisms including both loss of function and gain of function effects, leading to peripheral nerve degeneration. Demyelinating neuropathies result from dysfunction of genes primarily affecting myelinating Schwann cells, while axonal neuropathies are caused by genes affecting mostly neurons and their long axons. Furthermore, mutation in genes expressed outside the nervous system, as in the case of inherited amyloid neuropathies, may cause peripheral neuropathy resulting from accumulation of β-structured amyloid fibrils in peripheral nerves in addition to various organs. Increasing insights into the molecular-genetic mechanisms have revealed potential therapeutic targets. These will enable the development of novel therapeutics for genetic neuropathies that remain, in their majority, without effective treatment.
Collapse
|
34
|
Leandro J, Khamrui S, Wang H, Suebsuwong C, Nemeria NS, Huynh K, Moustakim M, Secor C, Wang M, Dodatko T, Stauffer B, Wilson CG, Yu C, Arkin MR, Jordan F, Sanchez R, DeVita RJ, Lazarus MB, Houten SM. Inhibition and Crystal Structure of the Human DHTKD1-Thiamin Diphosphate Complex. ACS Chem Biol 2020; 15:2041-2047. [PMID: 32633484 DOI: 10.1021/acschembio.0c00114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DHTKD1 is the E1 component of the 2-oxoadipate dehydrogenase complex, which is an enzyme involved in the catabolism of (hydroxy-)lysine and tryptophan. Mutations in DHTKD1 have been associated with 2-aminoadipic and 2-oxoadipic aciduria, Charcot-Marie-Tooth disease type 2Q and eosinophilic esophagitis, but the pathophysiology of these clinically distinct disorders remains elusive. Here, we report the identification of adipoylphosphonic acid and tenatoprazole as DHTKD1 inhibitors using targeted and high throughput screening, respectively. We furthermore elucidate the DHTKD1 crystal structure with thiamin diphosphate bound at 2.25 Å. We also report the impact of 10 disease-associated missense mutations on DHTKD1. Whereas the majority of the DHTKD1 variants displayed impaired folding or reduced thermal stability in combination with absent or reduced enzyme activity, three variants showed no abnormalities. Our work provides chemical and structural tools for further understanding of the function of DHTKD1 and its role in several human pathologies.
Collapse
Affiliation(s)
- João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Susmita Khamrui
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Hui Wang
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Chalada Suebsuwong
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Natalia S. Nemeria
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102, United States
| | - Khoi Huynh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Moses Moustakim
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Cody Secor
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - May Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Tetyana Dodatko
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Brandon Stauffer
- Mount Sinai Genomics, Inc, Stamford, Connecticut 06902, United States
| | - Christopher G. Wilson
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Chunli Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Mount Sinai Genomics, Inc, Stamford, Connecticut 06902, United States
| | - Michelle R. Arkin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Frank Jordan
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102, United States
| | - Roberto Sanchez
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Robert J. DeVita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Michael B. Lazarus
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Sander M. Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
35
|
Wu TH, Peng J, Zhang CL, Wu LW, Yang LF, Peng P, Pang N, Yin F, He F. [Mutations in aminoacyl-tRNA synthetase genes: an analysis of 10 cases]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:595-601. [PMID: 32571458 PMCID: PMC7390216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/26/2020] [Indexed: 08/01/2024]
Abstract
OBJECTIVE To study the clinical features of the diseases associated with aminoacyl-tRNA synthetases (ARS) deficiency. METHODS A retrospective analysis was performed of the clinical and gene mutation data of 10 children who were diagnosed with ARS gene mutations, based on next-generation sequencing from January 2016 to October 2019. RESULTS The age of onset ranged from 0 to 9 years among the 10 children. Convulsion was the most common initial symptom (7 children). Clinical manifestations included ataxia and normal or mildly retarded intellectual development (with or without epilepsy; n=4) and onset of epilepsy in childhood with developmental regression later (n=2). Some children experienced disease onset in the neonatal period and had severe epileptic encephalopathy, with myoclonus, generalized tonic-clonic seizure, and convulsive seizure (n=4); 3 had severe delayed development, 2 had feeding difficulty, and 1 had hearing impairment. Mutations were found in five genes: 3 had novel mutations in the AARS2 gene (c.331G>C, c.2682+5G>A, c.2164C>T, and c.761G>A), 2 had known mutations in the DARS2 gene (c.228-16C>A and c.536G>A), 1 had novel mutations in the CARS2 gene (c.1036C>T and c.323T>G), 1 had novel mutations in the RARS2 gene (c.1210A>G and c.622C>T), and 3 had novel mutations in the AARS gene (c.1901T>A, c.229C>T, c.244C>T, c.961G>C, c.2248C>T, and Chr16:70298860-70316687del). CONCLUSIONS A high heterogeneity is observed in the clinical phenotypes of the diseases associated with the ARS deficiency. A total of 14 novel mutations in 5 genes are reported in this study, which enriches the clinical phenotypes and genotypes of the diseases associated with ARS deficiency.
Collapse
Affiliation(s)
- Teng-Hui Wu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wu TH, Peng J, Zhang CL, Wu LW, Yang LF, Peng P, Pang N, Yin F, He F. [Mutations in aminoacyl-tRNA synthetase genes: an analysis of 10 cases]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:595-601. [PMID: 32571458 PMCID: PMC7390216 DOI: 10.7499/j.issn.1008-8830.1912040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To study the clinical features of the diseases associated with aminoacyl-tRNA synthetases (ARS) deficiency. METHODS A retrospective analysis was performed of the clinical and gene mutation data of 10 children who were diagnosed with ARS gene mutations, based on next-generation sequencing from January 2016 to October 2019. RESULTS The age of onset ranged from 0 to 9 years among the 10 children. Convulsion was the most common initial symptom (7 children). Clinical manifestations included ataxia and normal or mildly retarded intellectual development (with or without epilepsy; n=4) and onset of epilepsy in childhood with developmental regression later (n=2). Some children experienced disease onset in the neonatal period and had severe epileptic encephalopathy, with myoclonus, generalized tonic-clonic seizure, and convulsive seizure (n=4); 3 had severe delayed development, 2 had feeding difficulty, and 1 had hearing impairment. Mutations were found in five genes: 3 had novel mutations in the AARS2 gene (c.331G>C, c.2682+5G>A, c.2164C>T, and c.761G>A), 2 had known mutations in the DARS2 gene (c.228-16C>A and c.536G>A), 1 had novel mutations in the CARS2 gene (c.1036C>T and c.323T>G), 1 had novel mutations in the RARS2 gene (c.1210A>G and c.622C>T), and 3 had novel mutations in the AARS gene (c.1901T>A, c.229C>T, c.244C>T, c.961G>C, c.2248C>T, and Chr16:70298860-70316687del). CONCLUSIONS A high heterogeneity is observed in the clinical phenotypes of the diseases associated with the ARS deficiency. A total of 14 novel mutations in 5 genes are reported in this study, which enriches the clinical phenotypes and genotypes of the diseases associated with ARS deficiency.
Collapse
Affiliation(s)
- Teng-Hui Wu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Rossaert E, Van Den Bosch L. HDAC6 inhibitors: Translating genetic and molecular insights into a therapy for axonal CMT. Brain Res 2020; 1733:146692. [PMID: 32006555 DOI: 10.1016/j.brainres.2020.146692] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/25/2022]
Abstract
Histone deacetylase 6 (HDAC6) plays a central role in various processes that are key for neuronal survival. In this review, we summarize the current evidence related to disease pathways in the axonal form of Charcot-Marie-Tooth disease (CMT) and highlight the role of HDAC6 in these pathways. We hypothesize that HDAC6 might in fact actively contribute to the pathogenesis of certain forms of axonal CMT. HDAC6 plays a deacetylase activity-dependent, negative role in axonal transport and axonal regeneration, which are both processes implicated in axonal CMT. On the other hand, HDAC6 coordinates a protective response during elimination of toxic misfolded proteins, but this is mostly mediated independent of its deacetylase activity. The current mechanistic insights on these functions of HDAC6 in axonal CMT, along with the selective druggability against its deacetylase activity, make the targeting of HDAC6 particularly attractive. We elaborate on the preclinical studies that demonstrated beneficial effects of HDAC6 inhibitors in axonal CMT models and outline possible modes of action. Overall, this overview ultimately provides a rationale for the use of small-molecule HDAC6 inhibitors as a therapeutic strategy for this devastating disease.
Collapse
Affiliation(s)
- Elisabeth Rossaert
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium; VIB - Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium; VIB - Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| |
Collapse
|