1
|
Liu S, Ru J, Guo X, Gao Q, Deng S, Lei J, Song J, Zhai C, Wan S, Yang Y. Altered precipitation and nighttime warming reshape the vertical distribution of soil microbial communities. mSystems 2025:e0124824. [PMID: 40197052 DOI: 10.1128/msystems.01248-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/04/2025] [Indexed: 04/09/2025] Open
Abstract
Soil depth determines microbial community composition. Yet, it remains largely unexplored how climate changes affect the vertical distribution of soil microbial communities. Here, we investigated the effects of altered precipitation and nighttime warming on microbial communities in the topsoils (0-20 cm) and subsoils (20-50 cm) of a temperate grassland in Inner Mongolia, China. As commonly observed under nutrient scarcity conditions, bacterial and fungal α-diversity and network complexity decreased with soil depth. However, protistan α-diversity and network complexity increased, which was attributed to less niche overlap and smaller body size. Strikingly, the slopes of linear regressions of microbial α-diversity/network complexity and soil depth were all reduced by altered precipitation. Microbial community composition was significantly influenced by both depth and reduced precipitation, and to a lesser extent by nighttime warming and elevated precipitation. The ribosomal RNA gene operon (rrn) copy number, a genomic proxy of bacterial nutrient demand, decreased with soil depth, and the percentages of positive network links were higher in the subsoil, supporting the "hunger game" hypothesis. Both reduced precipitation and nighttime warming decreased the rrn copy number in the subsoils while increasing the percentages of positive links, enhancing potential niche sharing among bacterial species. The stochasticity level of bacterial and fungal community assemblies decreased with soil depth, showing that depth acted as a selection force. Altered precipitation increased stochasticity, attenuating the depth's filtering effect and diminishing its linear relationship with microbial diversity. Collectively, we unveiled the predominant influence of altered precipitation in affecting the vertical distribution of soil microbial communities.IMPORTANCEUnderstanding how climate change impacts the vertical distribution of soil microbial communities is critical for predicting ecosystem responses to global environmental shifts. Soil microbial communities exhibit strong depth-related stratification, yet the effects of climate change variables, such as altered precipitation and nighttime warming, on these vertical patterns have been inadequately studied. Our research uncovers that altered precipitation disrupts the previously observed relationships between soil depth and microbial diversity, a finding that challenges traditional models of soil microbial ecology. Furthermore, our study provides experimental support for the hunger game hypothesis, highlighting that oligotrophic microbes, characterized by lower ribosomal RNA gene operon (rrn) copy numbers, are selectively favored in nutrient-poor subsoils, fostering increased microbial cooperation for resource exchange. By unraveling these complexities in soil microbial communities, our findings offer crucial insights for predicting ecosystem responses to climate change and for developing strategies to mitigate its adverse impacts.
Collapse
Affiliation(s)
- Suo Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Jingyi Ru
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Xue Guo
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Qun Gao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education and State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Sihang Deng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Jiesi Lei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Jian Song
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Changchun Zhai
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Shiqiang Wan
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
2
|
Liang S, Zhu W, Zhang W, Geng J, Grossart HP, Fang L, Shi Y, Yang Y. Climate-Influenced Ecological Memory Modulates Microbial Responses to Soil Moisture. GLOBAL CHANGE BIOLOGY 2025; 31:e70099. [PMID: 39957545 DOI: 10.1111/gcb.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 02/18/2025]
Abstract
Long-term climatic differences shape the ecological memory of soil bacterial communities, which refers to the ability of past events to influence current environmental responses. However, their ecological mechanisms and consequences for bacterial responses to current environmental changes remain largely unknown, particularly in terms of temporal dynamics. Therefore, soil bacterial communities in the arid (Lhasa River Basin) and humid (Nyang River Basin) grasslands of the Qinghai-Tibet Plateau were compared to explore their temporal dynamics in response to current soil moisture and the resulting ecological consequences. Our results indicate that the differences between current and historical soil moisture determine the degree of divergence in bacterial community composition and potential function. The temporal dynamics of bacterial community composition, life strategies, and potential functions differed with environmental history, even under comparable moisture conditions. In contrast, bacterial communities with the same environmental history exhibited similar temporal dynamics, suggesting that environmental history has an important influence on bacterial community dynamics. This phenomenon may be caused by the continuous accumulation of bacterial community life strategies as an informational legacy, regulating future response patterns to soil moisture changes and thereby affecting biogeochemical cycles in the soil. For example, soil bacterial communities in relatively arid regions may increase their potential for dormancy, even when the current soil environment is moist, thereby enhancing ecosystem resilience by improving their capacity to respond to future drought events. This study provides new insights into the ecological memory of soil bacteria, emphasizing its critical role in influencing the compositional and functional changes of bacterial communities in response to current environmental changes. It highlights the significance of understanding the effect of environmental history in predicting the future responses of bacterial communities to disturbances and environmental changes.
Collapse
Affiliation(s)
- Shuxin Liang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibet Plateau, Ministry of Education, Ministry of Education, College of Ecology and Environment, Tibet University, Lhasa, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, The Chinese Academy of Sciences and Hubei Province, Wuhan, China
| | - Wenjin Zhu
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibet Plateau, Ministry of Education, Ministry of Education, College of Ecology and Environment, Tibet University, Lhasa, China
| | - Weihong Zhang
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, The Chinese Academy of Sciences and Hubei Province, Wuhan, China
| | - Jun Geng
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, The Chinese Academy of Sciences and Hubei Province, Wuhan, China
| | - Hans-Peter Grossart
- Leibniz-Institute for Freshwater Ecology and Inland Fisheries (IGB), Neuglobsow, Germany
- Institute for Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, China
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Yuyi Yang
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, The Chinese Academy of Sciences and Hubei Province, Wuhan, China
| |
Collapse
|
3
|
Rana MS, Alshehri D, Wang RL, Imran M, Abdellah YAY, Rahman FU, Alatawy M, Ghabban H, Abeed AHA, Hu CX. Effect of molybdenum supply on crop performance through rhizosphere soil microbial diversity and metabolite variation. FRONTIERS IN PLANT SCIENCE 2025; 15:1519540. [PMID: 39935684 PMCID: PMC11811785 DOI: 10.3389/fpls.2024.1519540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025]
Abstract
Molybdenum (Mo) deficiency is a global problem in acidic soils, limiting plant growth, development, and nutrient availability. To address this, we carried out a field study with two treatments, i.e., Mo applied (+Mo) and without Mo (-Mo) treatment to explore the effects of Mo application on crop growth and development, microbial diversity, and metabolite variations in maize and soybean cropping systems. Our results indicated that the nutrient availability (N, P, K) was higher under Mo supply leading to improved biological yield and nutrient uptake efficiency in both crops. Microbial community analysis revealed that Proteobacteria and Acidobacteria were the dominant phyla in Mo treated (+Mo) soils for both maize and soybean. Both these phyla accounted together 39.43% and 57.74% in -Mo and +Mo, respectively, in soybean rhizosphere soil, while they accounted for 44.51% and 46.64% in maize rhizosphere soil. This indicates more variations among the treatments in soybean soil compared to maize soil. At a lower taxonomic level, the diverse responses of the genera indicated the specific bacterial community adaptations to fertilization. Candidatus Koribacter and Kaistobacter were commonly significantly higher in both crops under Mo-applied conditions in both cropping systems. These taxa, sharing similar functions, could serve as potential markers for nutrient availability and soil fertility. Metabolite profiling revealed 8 and 10 significantly differential metabolites in maize and soybean, respectively, under +Mo treatment, highlighting the critical role of Mo in metabolite variation. Overall, these findings emphasize the importance of Mo in shaping soil microbial diversity by altering metabolite composition, which in turn may enhance the nutrient availability, nutrient uptake, and plant performance.
Collapse
Affiliation(s)
- Muhammad Shoaib Rana
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan, China
| | - Dikhnah Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Rui-Long Wang
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Muhammad Imran
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yousif Abdelrahman Yousif Abdellah
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Faiz Ur Rahman
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Marfat Alatawy
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Hanaa Ghabban
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Amany H. A. Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut Universityt, Assiu, Egypt
| | - Cheng-xiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Hu Z, Wu Y, Freire T, Gjini E, Wood K. Linking spatial drug heterogeneity to microbial growth dynamics in theory and experiment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624783. [PMID: 39605592 PMCID: PMC11601811 DOI: 10.1101/2024.11.21.624783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Diffusion and migration play pivotal roles in microbial communities - shaping, for example, colonization in new environments and the maintenance of spatial structures of biodiversity. While previous research has extensively studied free diffusion, such as range expansion, there remains a gap in understanding the effects of biologically or physically deleterious confined environments. In this study, we examine the interplay between migration and spatial drug heterogeneity within an experimental meta-community of E. faecalis, a Gram-positive opportunistic pathogen. When the community is confined to spatially-extended habitats ('islands') bordered by deleterious conditions, we find that the population level response depends on the trade-off between the growth rate within the island and the rate of transfer into regions with harsher conditions, a phenomenon we explore by modulating antibiotic concentration within the island. In heterogeneous islands, composed of spatially patterned patches that support varying levels of growth, the population's fate depends critically on the specific spatial arrangement of these patches - the same spatially averaged growth rate leads to diverging responses. These results are qualitatively captured by simple simulations, and analytical expressions which we derive using first-order perturbation approximations to reaction-diffusion models with explicit spatial dependence. Among all possible spatial arrangements, our theoretical and experimental findings reveal that the arrangement with the highest growth rates at the center most effectively mitigates population decline, while the arrangement with the lowest growth rates at the center is the least effective. Extending this approach to more complex experimental communities with varied spatial structures, such as a ring-structured community, further validates the impact of spatial drug arrangement. Our findings suggest new approaches to interpreting diverging clinical outcomes when applying identical drug doses and inform the possible optimization of spatially-explicit dosing strategies.
Collapse
Affiliation(s)
- Zhijian Hu
- Department of Biophysics, University of Michigan, Ann Arbor, USA
- Department of Mathematics, University of Michigan, Ann Arbor, USA
- Center for the Study of Complex Systems, University of Michigan, Ann Arbor, USA
| | - Yuzhen Wu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Tomas Freire
- Center for Computational and Stochastic Mathematics, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Erida Gjini
- Center for Computational and Stochastic Mathematics, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Kevin Wood
- Department of Biophysics, University of Michigan, Ann Arbor, USA
- Center for the Study of Complex Systems, University of Michigan, Ann Arbor, USA
- Department of Physics, University of Michigan, Ann Arbor, USA
| |
Collapse
|
5
|
Kang H, Xue Y, Cui Y, Moorhead DL, Lambers H, Wang D. Nutrient limitation mediates soil microbial community structure and stability in forest restoration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173266. [PMID: 38759924 DOI: 10.1016/j.scitotenv.2024.173266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Soil microorganisms are often limited by nutrients, representing an important control of heterotrophic metabolic processes. However, how nutrient limitations relate to microbial community structure and stability remains unclear, which creates a knowledge gap to understanding microbial biogeography and community changes during forest restoration. Here, we combined an eco-enzymatic stoichiometry model and high-throughput DNA sequencing to assess the potential roles of nutrient limitation on microbial community structure, assembly, and stability along a forest restoration sequence in the Qinling Mountains, China. Results showed that nutrient limitations tended to decrease during the oak forest restoration. Carbon and phosphorus limitations enhanced community dissimilarity and significantly increased bacterial alpha diversity, but not fungal diversity. Stochastic assembly processes primarily structured both bacterial (average contribution of 74.73 % and 74.17 % in bulk and rhizosheath soils, respectively) and fungal (average contribution of 77.23 % and 72.04 % in bulk and rhizosheath soils, respectively) communities during forest restoration, with nutrient limitation also contributing to the importance of stochastic processes in the bacterial communities. The migration rate (m) for bacteria was 0.19 and 0.23, respectively in both bulk soil and rhizosheath soil, and was greater than that for the fungi (m was 1.19 and 1.41, respectively), indicating a stronger dispersal limitation for fungal communities. Finally, nutrient limitations significantly affected bacterial and fungal co-occurrence with more interconnections occurring among weakly nutrient-limited microbial taxa and nutrient limitations reducing community stability when nutrient availability changed during forest restoration. Our findings highlight the fundamental effects of nutrient limitations on microbial communities and their self-regulation under changing environmental resources.
Collapse
Affiliation(s)
- Haibin Kang
- College of Forestry, Northwest Agriculture & Forestry University, Yangling 712100, China; School of Biological Sciences, The University of Western Australia, Perth 6009, Australia
| | - Yue Xue
- School of Geography and Oceanography, Nanjing University, Nanjing 210023, China
| | - Yongxing Cui
- Institute of Biology, Freie Universität Berlin, Berlin 14195, Germany
| | - Daryl L Moorhead
- Department of Environmental Sciences, University of Toledo, Toledo 43606, USA
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, Perth 6009, Australia
| | - Dexiang Wang
- College of Forestry, Northwest Agriculture & Forestry University, Yangling 712100, China.
| |
Collapse
|
6
|
Liu L, Gao Z, Li H, Yang W, Yang Y, Lin J, Wang Z, Liu J. Thresholds of Nitrogen and Phosphorus Input Substantially Alter Arbuscular Mycorrhizal Fungal Communities and Wheat Yield in Dryland Farmland. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10236-10246. [PMID: 38647353 DOI: 10.1021/acs.jafc.4c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Arbuscular mycorrhizal (AM) fungi are essential for preserving the multifunctionality of ecosystems. The nitrogen (N)/phosphorus (P) threshold that causes notable variations in the AM fungus community of the soil and plant productivity is still unclear. Herein, a long-term (18 years) field experiment with five N and five P fertilizer levels was conducted to investigate the change patterns of soil AM fungus, multifunctionality, and wheat yield. High-N and -P fertilizer inputs did not considerably increase the wheat yield. In the AM fungal network, a statistically significant positive correlation was observed between ecosystem multifunctionality and the biodiversity of two primary ecological clusters (N: Module #0 and P: Module #3). Furthermore, fertilizer input thresholds for N (92-160 kg ha-1) and P (78-100 kg ha-1) significantly altered the AM fungal community, soil characteristics, and plant productivity. Our study provided a basis for reduced N and P fertilizer application and sustainable agricultural development from the aspect of soil AM fungi.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs/College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiyuan Gao
- Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs/College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haifeng Li
- Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs/College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenjie Yang
- Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs/College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Yang
- Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs/College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiangyun Lin
- Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs/College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhaohui Wang
- Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs/College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinshan Liu
- Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs/College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
7
|
Wu H, Yang J, Fu W, Rillig MC, Cao Z, Zhao A, Hao Z, Zhang X, Chen B, Han X. Identifying thresholds of nitrogen enrichment for substantial shifts in arbuscular mycorrhizal fungal community metrics in a temperate grassland of northern China. THE NEW PHYTOLOGIST 2023; 237:279-294. [PMID: 36177721 DOI: 10.1111/nph.18516] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen (N) enrichment poses threats to biodiversity and ecosystem stability, while arbuscular mycorrhizal (AM) fungi play important roles in ecosystem stability and functioning. However, the ecological impacts, especially thresholds of N enrichment potentially causing AM fungal community shifts have not been adequately characterized. Based on a long-term field experiment with nine N addition levels ranging from 0 to 50 g N m-2 yr-1 in a temperate grassland, we characterized the community response patterns of AM fungi to N enrichment. Arbuscular mycorrhizal fungal biomass continuously decreased with increasing N addition levels. However, AM fungal diversity did not significantly change below 20 g N m-2 yr-1 , but dramatically decreased at higher N levels, which drove the AM fungal community to a potentially unstable state. Structural equation modeling showed that the decline in AM fungal biomass could be well explained by soil acidification, whereas key driving factors for AM fungal diversity shifted from soil nitrogen : phosphorus (N : P) ratio to soil pH with increasing N levels. Different aspects of AM fungal communities (biomass, diversity and community composition) respond differently to increasing N addition levels. Thresholds for substantial community shifts in response to N enrichment in this grassland ecosystem are identified.
Collapse
Affiliation(s)
- Hui Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junjie Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wei Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| | - Zhenjiao Cao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Aihua Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhipeng Hao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingguo Han
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
8
|
He D, Wan W. Distribution of Culturable Phosphate-Solubilizing Bacteria in Soil Aggregates and Their Potential for Phosphorus Acquisition. Microbiol Spectr 2022; 10:e0029022. [PMID: 35536021 PMCID: PMC9241762 DOI: 10.1128/spectrum.00290-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/21/2022] [Indexed: 11/22/2022] Open
Abstract
Deciphering distribution patterns of phosphate-solubilizing bacteria (PSB) and phosphorus-cycling-related genes in soils is important to evaluate phosphorus (P) transformation. However, the linkage between PSB number and P-cycling-related gene abundance in soils, especially soil aggregates, remains largely unknown. Here, we estimated the numbers of PSB and abundances of P-cycling-related genes (i.e., gcd and bpp) in soil aggregates under different fertilization regimes as well as P-solubilizing performance and plant-growth-promoting ability of PSB. We found that tricalcium phosphate-solubilizing bacteria, phytate-degrading bacteria, and gcd and bpp abundances were more abundant in silt plus clay (silt+clay; <53 μm) than in macroaggregate (250 to 2000 μm) and microaggregate (53 to 250 μm). Fertilization treatment and aggregate fractionation showed distinct effects on PSB number and P-cycling-related gene abundance. We found significantly negative correlation between gcd gene abundance and tricalcium phosphate-solubilizing bacterial number (Col-CaP) and dramatically positive correlation between bpp gene abundance and phytate-degrading bacterial number (Col-Phy). P fractions were responsible for PSB number and P-cycling-related gene abundance. The isolated Pseudomonas sp. strain PSB-2 and Arthrobacter sp. strain PSB-5 exhibited good performances for solubilizing tricalcium phosphate. The inoculation of Pseudomonas sp. PSB-2 could significantly enhance plant fresh weight, plant dry weight, and plant height. Our results emphasized distinct distribution characteristics of PSB and P-cycling-related genes in soil aggregates and deciphered a close linkage between PSB number and P-cycling-related gene abundance. Our findings might guide the isolation of PSB from agricultural soils and provide a candidate plant-growth-promoting bacterium for agro-ecosystems. IMPORTANCE Phosphate-solubilizing bacteria are responsible for inorganic P solubilization and organic P mineralization. Elucidating the linkage between phosphate-solubilizing bacterial number and P-cycling-related gene abundance is important to isolate plant-growth-promoting bacteria for agro-ecosystems. Our findings reveal differentiating strategies of phosphate-solubilizing bacteria in soil aggregates, and the deciphered P fractions show strong effects on distribution patterns of phosphate-solubilizing bacteria and P-cycling-related genes. Additionally, we isolated phosphate-solubilizing bacteria with good plant-growth-promoting ability. This study enriches our knowledge of P cycling in soil aggregates and might guide the production and management of farmland.
Collapse
Affiliation(s)
- Donglan He
- College of Life Science, South-Central University for Nationalities, Wuhan, People’s Republic of China
| | - Wenjie Wan
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| |
Collapse
|
9
|
Drug-dependent growth curve reshaping reveals mechanisms of antifungal resistance in Saccharomyces cerevisiae. Commun Biol 2022; 5:292. [PMID: 35361876 PMCID: PMC8971432 DOI: 10.1038/s42003-022-03228-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 03/07/2022] [Indexed: 11/15/2022] Open
Abstract
Microbial drug resistance is an emerging global challenge. Current drug resistance assays tend to be simplistic, ignoring complexities of resistance manifestations and mechanisms, such as multicellularity. Here, we characterize multicellular and molecular sources of drug resistance upon deleting the AMN1 gene responsible for clumping multicellularity in a budding yeast strain, causing it to become unicellular. Computational analysis of growth curve changes upon drug treatment indicates that the unicellular strain is more sensitive to four common antifungals. Quantitative models uncover entwined multicellular and molecular processes underlying these differences in sensitivity and suggest AMN1 as an antifungal target in clumping pathogenic yeasts. Similar experimental and mathematical modeling pipelines could reveal multicellular and molecular drug resistance mechanisms, leading to more effective treatments against various microbial infections and possibly even cancers. Combined growth curve experiments and quantitative modeling reveal antifungal responses of planktonic yeast, providing a future framework to examine antimicrobial drug resistance.
Collapse
|
10
|
Nutrient supply controls the linkage between species abundance and ecological interactions in marine bacterial communities. Nat Commun 2022; 13:175. [PMID: 35013303 PMCID: PMC8748817 DOI: 10.1038/s41467-021-27857-6] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022] Open
Abstract
Nutrient scarcity is pervasive for natural microbial communities, affecting species reproduction and co-existence. However, it remains unclear whether there are general rules of how microbial species abundances are shaped by biotic and abiotic factors. Here we show that the ribosomal RNA gene operon (rrn) copy number, a genomic trait related to bacterial growth rate and nutrient demand, decreases from the abundant to the rare biosphere in the nutrient-rich coastal sediment but exhibits the opposite pattern in the nutrient-scarce pelagic zone of the global ocean. Both patterns are underlain by positive correlations between community-level rrn copy number and nutrients. Furthermore, inter-species co-exclusion inferred by negative network associations is observed more in coastal sediment than in ocean water samples. Nutrient manipulation experiments yield effects of nutrient availability on rrn copy numbers and network associations that are consistent with our field observations. Based on these results, we propose a “hunger games” hypothesis to define microbial species abundance rules using the rrn copy number, ecological interaction, and nutrient availability. Environmental and biotic factors control ecological communities. Here, the authors study community ribosomal rRNA gene copy number in coastal sediment and ocean bacterial communities, and in microcosm nutrient addition experiments, to propose a conceptual framework of how nutrient supply and ecological interactions shape the community.
Collapse
|
11
|
Sharma A, Wood KB. Spatial segregation and cooperation in radially expanding microbial colonies under antibiotic stress. THE ISME JOURNAL 2021; 15:3019-3033. [PMID: 33953363 PMCID: PMC8443724 DOI: 10.1038/s41396-021-00982-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/19/2021] [Accepted: 04/09/2021] [Indexed: 02/01/2023]
Abstract
Antibiotic resistance in microbial communities reflects a combination of processes operating at different scales. In this work, we investigate the spatiotemporal dynamics of bacterial colonies comprised of drug-resistant and drug-sensitive cells undergoing range expansion under antibiotic stress. Using the opportunistic pathogen Enterococcus faecalis with plasmid-encoded β-lactamase, we track colony expansion dynamics and visualize spatial patterns in fluorescently labeled populations exposed to antibiotics. We find that the radial expansion rate of mixed communities is approximately constant over a wide range of drug concentrations and initial population compositions. Imaging of the final populations shows that resistance to ampicillin is cooperative, with sensitive cells surviving in the presence of resistant cells at otherwise lethal concentrations. The populations exhibit a diverse range of spatial segregation patterns that depend on drug concentration and initial conditions. Mathematical models indicate that the observed dynamics are consistent with global cooperation, despite the fact that β-lactamase remains cell-associated. Experiments confirm that resistant colonies provide a protective effect to sensitive cells on length scales multiple times the size of a single colony, and populations seeded with (on average) no more than a single resistant cell can produce mixed communities in the presence of the drug. While biophysical models of drug degradation suggest that individual resistant cells offer only short-range protection to neighboring cells, we show that long-range protection may arise from synergistic effects of multiple resistant cells, providing surprisingly large protection zones even at small population fractions.
Collapse
Affiliation(s)
- Anupama Sharma
- Department of Biophysics, University of Michigan, Ann Arbor, USA
- Department of Mathematics, BITS Pilani K K Birla Goa Campus, Goa, India
| | - Kevin B Wood
- Department of Biophysics, University of Michigan, Ann Arbor, USA.
- Department of Physics, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
12
|
Genealogical structure changes as range expansions transition from pushed to pulled. Proc Natl Acad Sci U S A 2021; 118:2026746118. [PMID: 34413189 DOI: 10.1073/pnas.2026746118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Range expansions accelerate evolution through multiple mechanisms, including gene surfing and genetic drift. The inference and control of these evolutionary processes ultimately rely on the information contained in genealogical trees. Currently, there are two opposing views on how range expansions shape genealogies. In invasion biology, expansions are typically approximated by a series of population bottlenecks producing genealogies with only pairwise mergers between lineages-a process known as the Kingman coalescent. Conversely, traveling wave models predict a coalescent with multiple mergers, known as the Bolthausen-Sznitman coalescent. Here, we unify these two approaches and show that expansions can generate an entire spectrum of coalescent topologies. Specifically, we show that tree topology is controlled by growth dynamics at the front and exhibits large differences between pulled and pushed expansions. These differences are explained by the fluctuations in the total number of descendants left by the early founders. High growth cooperativity leads to a narrow distribution of reproductive values and the Kingman coalescent. Conversely, low growth cooperativity results in a broad distribution, whose exponent controls the merger sizes in the genealogies. These broad distribution and non-Kingman tree topologies emerge due to the fluctuations in the front shape and position and do not occur in quasi-deterministic simulations. Overall, our results show that range expansions provide a robust mechanism for generating different types of multiple mergers, which could be similar to those observed in populations with strong selection or high fecundity. Thus, caution should be exercised in making inferences about the origin of non-Kingman genealogies.
Collapse
|
13
|
The spatial organization of microbial communities during range expansion. Curr Opin Microbiol 2021; 63:109-116. [PMID: 34329942 DOI: 10.1016/j.mib.2021.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/26/2021] [Accepted: 07/05/2021] [Indexed: 12/28/2022]
Abstract
Microbes in nature often live in dense and diverse communities exhibiting a variety of spatial structures. Microbial range expansion is a universal ecological process that enables populations to form spatial patterns. It can be driven by both passive and active processes, for example, mechanical forces from cell growth and bacterial motility. In this review, we provide a taste of recent creative and sophisticated efforts being made to address basic questions in spatial ecology and pattern formation during range expansion. We especially highlight the role of motility to shape community structures, and discuss the research challenges and future directions.
Collapse
|
14
|
Dahirel M, Bertin A, Haond M, Blin A, Lombaert E, Calcagno V, Fellous S, Mailleret L, Malausa T, Vercken E. Shifts from pulled to pushed range expansions caused by reduction of landscape connectivity. OIKOS 2021. [DOI: 10.1111/oik.08278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Maxime Dahirel
- Université Côte d'Azur, INRAE, CNRS, ISA Sophia Antipolis France
| | - Aline Bertin
- Université Côte d'Azur, INRAE, CNRS, ISA Sophia Antipolis France
| | - Marjorie Haond
- Université Côte d'Azur, INRAE, CNRS, ISA Sophia Antipolis France
| | - Aurélie Blin
- Université Côte d'Azur, INRAE, CNRS, ISA Sophia Antipolis France
| | - Eric Lombaert
- Université Côte d'Azur, INRAE, CNRS, ISA Sophia Antipolis France
| | - Vincent Calcagno
- Université Côte d'Azur, INRAE, CNRS, ISA Sophia Antipolis France
| | - Simon Fellous
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier Montpellier France
| | - Ludovic Mailleret
- Université Côte d'Azur, INRAE, CNRS, ISA Sophia Antipolis France
- Univ. Côte d'Azur, INRIA, INRAE, CNRS, Sorbonne Université, BIOCORE Sophia Antipolis France
| | - Thibaut Malausa
- Université Côte d'Azur, INRAE, CNRS, ISA Sophia Antipolis France
| | - Elodie Vercken
- Université Côte d'Azur, INRAE, CNRS, ISA Sophia Antipolis France
| |
Collapse
|
15
|
Miller TEX, Angert AL, Brown CD, Lee-Yaw JA, Lewis M, Lutscher F, Marculis NG, Melbourne BA, Shaw AK, Szűcs M, Tabares O, Usui T, Weiss-Lehman C, Williams JL. Eco-evolutionary dynamics of range expansion. Ecology 2020; 101:e03139. [PMID: 32697876 DOI: 10.1002/ecy.3139] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/05/2020] [Accepted: 06/08/2020] [Indexed: 01/31/2023]
Abstract
Understanding the movement of species' ranges is a classic ecological problem that takes on urgency in this era of global change. Historically treated as a purely ecological process, range expansion is now understood to involve eco-evolutionary feedbacks due to spatial genetic structure that emerges as populations spread. We synthesize empirical and theoretical work on the eco-evolutionary dynamics of range expansion, with emphasis on bridging directional, deterministic processes that favor evolved increases in dispersal and demographic traits with stochastic processes that lead to the random fixation of alleles and traits. We develop a framework for understanding the joint influence of these processes in changing the mean and variance of expansion speed and its underlying traits. Our synthesis of recent laboratory experiments supports the consistent role of evolution in accelerating expansion speed on average, and highlights unexpected diversity in how evolution can influence variability in speed: results not well predicted by current theory. We discuss and evaluate support for three classes of modifiers of eco-evolutionary range dynamics (landscape context, trait genetics, and biotic interactions), identify emerging themes, and suggest new directions for future work in a field that stands to increase in relevance as populations move in response to global change.
Collapse
Affiliation(s)
- Tom E X Miller
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, Houston, Texas, 77005, USA
| | - Amy L Angert
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z2, Canada
| | - Carissa D Brown
- Department of Geography, Memorial University, 230 Elizabeth Avenue, St John's, Newfoundland and Labrador, A1B 3X9, Canada
| | - Julie A Lee-Yaw
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z2, Canada.,Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, T1K 3M4, Canada
| | - Mark Lewis
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada
| | - Frithjof Lutscher
- Department of Mathematics and Statistics, and Department of Biology, University of Ottawa, Ottawa, Ottawa, K1N 6N5, Canada
| | - Nathan G Marculis
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada.,Department of Environmental Science and Policy, University of California-Davis, Davis, California, 95616, USA
| | - Brett A Melbourne
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
| | - Allison K Shaw
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Marianna Szűcs
- Department of Entomology, Michigan State University, 288 Farm Lane, East Lansing, Michigan, 48824, USA
| | - Olivia Tabares
- Department of Geography and Biodiversity Research Centre, University of British Columbia, 1984 West Mall, Vancouver, British Columbia, V6T 1Z2, Canada
| | - Takuji Usui
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z2, Canada
| | - Christopher Weiss-Lehman
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Jennifer L Williams
- Department of Geography and Biodiversity Research Centre, University of British Columbia, 1984 West Mall, Vancouver, British Columbia, V6T 1Z2, Canada
| |
Collapse
|
16
|
Mutualistic cross-feeding in microbial systems generates bistability via an Allee effect. Sci Rep 2020; 10:7763. [PMID: 32385386 PMCID: PMC7210978 DOI: 10.1038/s41598-020-63772-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/03/2020] [Indexed: 11/16/2022] Open
Abstract
In microbial ecosystems, species not only compete for common resources but may also display mutualistic interactions as a result from metabolic cross-feeding. Such mutualism can lead to bistability. Depending on the initial population sizes, species will either survive or go extinct. Various phenomenological models have been suggested to describe bistability in mutualistic systems. However, these models do not account for interaction mediators such as nutrients. In contrast, nutrient-explicit models do not provide an intuitive understanding of what causes bistability. Here, we reduce a theoretical nutrient-explicit model of two mutualistic cross-feeders in a chemostat, uncovering an explicit relation to a growth model with an Allee effect. We show that the dilution rate in the chemostat leads to bistability by turning a weak Allee effect into a strong Allee effect. This happens as long as there is more production than consumption of cross-fed nutrients. Thanks to the explicit relationship of the reduced model with the underlying experimental parameters, these results allow to predict the biological conditions that sustain or prevent the survival of mutualistic species.
Collapse
|
17
|
Conde-Pueyo N, Vidiella B, Sardanyés J, Berdugo M, Maestre FT, de Lorenzo V, Solé R. Synthetic Biology for Terraformation Lessons from Mars, Earth, and the Microbiome. Life (Basel) 2020; 10:E14. [PMID: 32050455 PMCID: PMC7175242 DOI: 10.3390/life10020014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022] Open
Abstract
What is the potential for synthetic biology as a way of engineering, on a large scale, complex ecosystems? Can it be used to change endangered ecological communities and rescue them to prevent their collapse? What are the best strategies for such ecological engineering paths to succeed? Is it possible to create stable, diverse synthetic ecosystems capable of persisting in closed environments? Can synthetic communities be created to thrive on planets different from ours? These and other questions pervade major future developments within synthetic biology. The goal of engineering ecosystems is plagued with all kinds of technological, scientific and ethic problems. In this paper, we consider the requirements for terraformation, i.e., for changing a given environment to make it hospitable to some given class of life forms. Although the standard use of this term involved strategies for planetary terraformation, it has been recently suggested that this approach could be applied to a very different context: ecological communities within our own planet. As discussed here, this includes multiple scales, from the gut microbiome to the entire biosphere.
Collapse
Affiliation(s)
- Nuria Conde-Pueyo
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Plaça de la Mercè, 10, 08002 Barcelona, Spain; (B.V.); (M.B.)
- Institut de Biologia Evolutiva, UPF-CSIC, 08003 Barcelona, Spain
| | - Blai Vidiella
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Plaça de la Mercè, 10, 08002 Barcelona, Spain; (B.V.); (M.B.)
- Institut de Biologia Evolutiva, UPF-CSIC, 08003 Barcelona, Spain
| | - Josep Sardanyés
- Centre de Recerca Matemàtica, Campus UAB Edifici C, 08193 Bellaterra, Barcelona, Spain;
- Barcelona Graduate School of Mathematics (BGSMath), Campus UAB Edifici C, 08193 Bellaterra, Barcelona, Spain
| | - Miguel Berdugo
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Plaça de la Mercè, 10, 08002 Barcelona, Spain; (B.V.); (M.B.)
- Institut de Biologia Evolutiva, UPF-CSIC, 08003 Barcelona, Spain
- Departamento de Ecología and Instituto Multidisciplinar para el Estudio del Medio “Ramon Margalef”, Universidad de Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain;
| | - Fernando T. Maestre
- Departamento de Ecología and Instituto Multidisciplinar para el Estudio del Medio “Ramon Margalef”, Universidad de Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain;
| | - Victor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
| | - Ricard Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Plaça de la Mercè, 10, 08002 Barcelona, Spain; (B.V.); (M.B.)
- Institut de Biologia Evolutiva, UPF-CSIC, 08003 Barcelona, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
18
|
Feasting yeast and the sweetness of diversity. Proc Natl Acad Sci U S A 2019; 116:23379-23381. [PMID: 31712426 DOI: 10.1073/pnas.1917141116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|