1
|
Linstra R, Stappenbelt C, Bakker FJ, Everts M, Bhattacharya A, Yu S, van Bergen SD, van der Vegt B, Wisman GBA, Fehrmann RSN, de Bruyn M, van Vugt MATM. MYC controls STING levels to downregulate inflammatory signaling in breast cancer cells upon DNA damage. J Biol Chem 2025; 301:108560. [PMID: 40311680 DOI: 10.1016/j.jbc.2025.108560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025] Open
Abstract
Amplification of the MYC proto-oncogene is frequently observed in various cancer types, including triple-negative breast cancer (TNBC). Emerging evidence suggests that suppression of local antitumor immune responses by MYC, at least in part, explains the tumor-promoting effects of MYC. Specifically, MYC upregulation was demonstrated to suppress the tumor-cell intrinsic activation of a type I interferon response and thereby hamper innate inflammatory signaling, which may contribute to the disappointing response to immunotherapy in patients with TNBC. In this study, we show that MYC interferes with protein expression and functionality of the STING pathway. MYC-mediated STING downregulation in BT-549 and MDA-MB-231 TNBC cell lines requires the DNA-binding ability of MYC and is independent of binding of MYC to its co-repressor MIZ1. Both STAT1 and STAT3 promote the steady-state expression levels of STING, and STAT3 cooperates with MYC in regulating STING. Conversely, MYC-mediated downregulation of STING affects protein levels of STAT1 and downstream chemokine production. Furthermore, we show that MYC overexpression hampers immune cell activation triggered by DNA damage through etoposide or irradiation treatment and specifically impedes the activation of natural killer cells. Collectively, these results show that MYC controls STING levels and thereby regulates tumor cell-intrinsic inflammatory signaling. These results contribute to our understanding of how MYC suppresses inflammatory signaling in TNBC and may explain why a large fraction of patients with TNBC do not benefit from immunotherapy.
Collapse
Affiliation(s)
- Renske Linstra
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Chantal Stappenbelt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Femke J Bakker
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marieke Everts
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arkajyoti Bhattacharya
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Shibo Yu
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stella D van Bergen
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bert van der Vegt
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - G Bea A Wisman
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rudolf S N Fehrmann
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
2
|
Ma Z, Zhou M, Chen H, Shen Q, Zhou J. Deubiquitinase-Targeting Chimeras (DUBTACs) as a Potential Paradigm-Shifting Drug Discovery Approach. J Med Chem 2025; 68:6897-6915. [PMID: 40135978 DOI: 10.1021/acs.jmedchem.4c02975] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Developing proteolysis-targeting chimeras (PROTACs) is well recognized through target protein degradation (TPD) toward promising therapeutics. While a variety of diseases are driven by aberrant ubiquitination and degradation of critical proteins with protective functions, target protein stabilization (TPS) rather than TPD is emerging as a unique therapeutic modality. Deubiquitinase-targeting chimeras (DUBTACs), a class of heterobifunctional protein stabilizers consisting of deubiquitinase (DUB) and protein-of-interest (POI) targeting ligands conjugated with a linker, can rescue such proteins from aberrant elimination. DUBTACs stabilize the levels of POIs in a DUB-dependent manner, removing ubiquitin from polyubiquitylated and degraded proteins. DUBTACs can induce a new interaction between POI and DUB by forming a POI-DUBTAC-DUB ternary complex. Herein, therapeutic benefits of TPS approaches for human diseases are introduced, and recent advances in developing DUBTACs are summarized. Relevant challenges, opportunities, and future perspectives are also discussed.
Collapse
Affiliation(s)
- Zonghui Ma
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Mingxiang Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Qiang Shen
- Department of Interdisciplinary Oncology, School of Medicine, LSU LCMC Health Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| |
Collapse
|
3
|
Liu Q, Yuan X, Shao Y, Guan X, Feng K, Chu M, Chen L, Li H, Liu H, Zhang J, Tian Y, Wei L. Investigating the Mechanism of IFN-γ-Inducible Lysosomal Thiol Reductase-Mediated Inhibition of Breast Cancer Cell Proliferation. CANCER INNOVATION 2025; 4:e161. [PMID: 40094073 PMCID: PMC11909800 DOI: 10.1002/cai2.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/27/2024] [Accepted: 09/18/2024] [Indexed: 03/19/2025]
Abstract
Background Breast cancer has become a severe threat to human health, making it imperative to identify effective drugs and therapeutic targets. Methods Various molecular biology experiments, such as western blot analysis, cytologic effect, co-immunoprecipitation, and immunofluorescence assays, as well as a nude mouse xenograft tumor model, were used to comprehensively analyze the impact of gamma-interferon-inducible lysosomal thiol reductase (GILT) on the malignant phenotype of breast cancer cells. This work was performed to examine GILT expression levels and explore the potential mechanism in breast cancer. Results GILT protein expression levels were significantly lower in breast cancer cells than in normal breast epithelial cells. Overexpressing GILT inhibited breast cancer cell proliferation and migration and slowed tumor growth. GILT inhibited the interaction between the MYC and WDR5 transcription complex and played a tumor-suppressive role. The MYC/WDR5 transcription complex inhibitor OICR-9429 could synergize with GILT to inhibit breast cancer cell proliferation. Conclusion This study reveals a potential mechanism by which GILT can slow breast cancer growth, as well as identifying the possible clinical application value of small molecule inhibitor OICR-9429. These data collectively provide novel treatment strategies for breast cancer therapy.
Collapse
Affiliation(s)
- Qin Liu
- Department of Pathology and Pathophysiology Hubei Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University Wuhan Hubei China
| | - Xiaoning Yuan
- Department of Pathology and Pathophysiology Hubei Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University Wuhan Hubei China
| | - Youcheng Shao
- Department of Pathology and Pathophysiology Hubei Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University Wuhan Hubei China
| | - Xiaoqing Guan
- Department of Pathology and Pathophysiology Hubei Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University Wuhan Hubei China
| | - Kaixiang Feng
- Department of Breast and Thyroid Surgery Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center Wuhan Hubei China
| | - Mengfei Chu
- Department of Human Anatomy TaiKang Medical School (School of Basic Medical Sciences), Wuhan University Wuhan Hubei China
| | - Le Chen
- Department of Pathology and Pathophysiology Hubei Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University Wuhan Hubei China
| | - Hui Li
- Department of Pathology and Pathophysiology Hubei Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University Wuhan Hubei China
| | - Hanhui Liu
- Department of Pathology and Pathophysiology Hubei Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University Wuhan Hubei China
| | - Jingwei Zhang
- Department of Breast and Thyroid Surgery Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center Wuhan Hubei China
| | - Yihao Tian
- Department of Human Anatomy TaiKang Medical School (School of Basic Medical Sciences), Wuhan University Wuhan Hubei China
| | - Lei Wei
- Department of Pathology and Pathophysiology Hubei Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University Wuhan Hubei China
| |
Collapse
|
4
|
Howard GC, Tansey WP. Ribosome-directed cancer therapies: the tip of the iceberg? Trends Pharmacol Sci 2025; 46:303-310. [PMID: 40044536 PMCID: PMC11972149 DOI: 10.1016/j.tips.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 03/09/2025]
Abstract
Ribosomes and ribosome biogenesis (RiBi) are universally corrupted in cancer, fueling the high rates of translation that sustain malignancy and creating opportunities for discriminating therapeutic intervention. Despite longstanding recognition of the promise of ribosome-directed cancer therapies, only a handful of such agents have been used in the clinic, and with limited success, and the true potential of this approach is unknown. In the past few years, however, understanding of cancer ribosome specialization and the intricacies of RiBi have advanced dramatically, opening opportunities that could not be imagined when existing agents were discovered. Here, we discuss the rationale for targeting ribosomes to treat cancer, review the limitations of current agents, and highlight an important set of recent discoveries we propose could be exploited to discover molecularly-targeted ribosome-directed cancer therapeutics.
Collapse
Affiliation(s)
- Gregory C Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
5
|
Han Q, Gu Y, Xiang H, Zhang L, Wang Y, Yang C, Li J, Steiner C, Lapalombella R, Woyach JA, Yang Y, Dovat S, Song C, Ge Z. Targeting WDR5/ATAD2 signaling by the CK2/IKAROS axis demonstrates therapeutic efficacy in T-ALL. Blood 2025; 145:1407-1421. [PMID: 39785511 PMCID: PMC11969266 DOI: 10.1182/blood.2024024130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/21/2024] [Accepted: 11/06/2024] [Indexed: 01/12/2025] Open
Abstract
ABSTRACT T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with a poor prognosis and limited options for targeted therapies. Identifying new molecular targets to develop novel therapeutic strategies is the pressing immediate issue in T-ALL. Here, we observed high expression of WD repeat-containing protein 5 (WDR5) in T-ALL. With in vitro and in vivo models, we demonstrated the oncogenic role of WDR5 in T-ALL by activating cell cycle signaling through its new downstream effector, ATPase family AAA domain-containing 2 (ATAD2). Moreover, the function of a zinc finger transcription factor of the Kruppel family (IKAROS) is often impaired by genetic alteration and casein kinase II (CK2) which is overexpressed in T-ALL. We found that IKAROS directly regulates WDR5 transcription; CK2 inhibitor, CX-4945, strongly suppresses WDR5 expression by restoring IKAROS function. Last, combining CX-4945 with WDR5 inhibitor demonstrates synergistic efficacy in the patient-derived xenograft mouse models. In conclusion, our results demonstrated that WDR5/ATAD2 is a new oncogenic signaling pathway in T-ALL, and simultaneous targeting of WRD5 and CK2/IKAROS has synergistic antileukemic efficacy and represents a promising potential strategy for T-ALL therapy.
Collapse
Affiliation(s)
- Qi Han
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Yan Gu
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Huimin Xiang
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Linyao Zhang
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Yan Wang
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Chan Yang
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Jun Li
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Chelsea Steiner
- Division of Hematology, The Ohio State University Wexner Medical Center, The James Cancer Hospital, Columbus, OH
| | - Rosa Lapalombella
- Division of Hematology, The Ohio State University Wexner Medical Center, The James Cancer Hospital, Columbus, OH
| | - Jennifer A. Woyach
- Division of Hematology, The Ohio State University Wexner Medical Center, The James Cancer Hospital, Columbus, OH
| | - Yiping Yang
- Division of Hematology, The Ohio State University Wexner Medical Center, The James Cancer Hospital, Columbus, OH
| | - Sinisa Dovat
- Division of Hematology and Oncology, Department of Pediatrics, Hershey Medical Center, Pennsylvania State University Medical College, Hershey, PA
| | - Chunhua Song
- Division of Hematology, The Ohio State University Wexner Medical Center, The James Cancer Hospital, Columbus, OH
| | - Zheng Ge
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| |
Collapse
|
6
|
Obisesan OA, Ofori S, Orobator ON, Sharma H, Groetecke E, Awuah SG. Discovery of a Pyrazolopyridinone-Based MYC Inhibitor That Selectively Engages Intracellular c-MYC and Disrupts MYC-MAX Heterodimerization. J Med Chem 2025; 68:6233-6251. [PMID: 40077826 DOI: 10.1021/acs.jmedchem.4c02556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
c-MYC is an oncogenic transcription factor that plays a crucial role in the regulation of downstream targets involved in proliferation, apoptosis, differentiation, metabolism, signaling, and immune response processes whose deregulation leads to the progression of different pathologies. The development of selective and potent small-molecule inhibitors of c-MYC remains a grand challenge in chemical biology and medicine due to its undruggability, derived from extensive intrinsic disorder. In this study, we identified a novel dihydro pyrazolo pyridinone scaffold, MY05, that selectively targets c-MYC in cells and disrupts MYC-MAX interaction. MY05 engages intracellular c-MYC, modulates c-MYC thermal stability, reduces c-MYC transcriptional targets, and inhibits proliferation in cancer cells and tumor growth in mice. In summary, we identified a novel compound that directly interacts with c-MYC to disrupt the transcriptional program.
Collapse
Affiliation(s)
- Oluwatosin A Obisesan
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Samuel Ofori
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Owamagbe N Orobator
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Himanshi Sharma
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Emma Groetecke
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
- Center for Pharmaceutical Research and Innovation, Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Markey NCI Comprehensive Cancer Center, University of Kentucky, Lexington, Kentucky 40536, United States
- University of Kentucky Bioelectronics and Nanomedicine Research Center, Lexington, Kentucky 40506, United States
| |
Collapse
|
7
|
Fesik SW. Drugging Challenging Cancer Targets Using Fragment-Based Methods. Chem Rev 2025; 125:3586-3594. [PMID: 40043012 PMCID: PMC11951080 DOI: 10.1021/acs.chemrev.4c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025]
Abstract
There are many highly validated cancer targets that are difficult or impossible to drug due to the absence of suitable pockets that can bind small molecules. Fragment-based methods have been shown to be a useful approach for identifying ligands to proteins that were previously thought to be undruggable. In this review, I will give an overview of fragment-based ligand discovery and provide examples from our own work on how fragment-based methods were used to discover high affinity ligands for challenging cancer drug targets.
Collapse
Affiliation(s)
- Stephen W. Fesik
- Department of Biochemistry,
Chemistry, and Pharmacology, Vanderbilt
University, Nashville, Tennessee 37235 United States
| |
Collapse
|
8
|
Masschelin PM, Ochsner SA, Hartig SM, McKenna NJ, Cox AR. Islet single-cell transcriptomic profiling during obesity-induced beta cell expansion in female mice. iScience 2025; 28:112031. [PMID: 40104055 PMCID: PMC11914824 DOI: 10.1016/j.isci.2025.112031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/06/2024] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Targeting beta cell proliferation is an appealing approach to restore glucose control in type 1 diabetes. However, the underlying mechanisms of beta cell proliferation remain incompletely understood, limiting identification of new therapeutic targets. Obesity is a naturally occurring process that potently induces human and rodent beta cell replication, representing an ideal model to study mechanisms of beta cell proliferation. We showed previously acute whole-body Lepr gene deletion in adult mice induces obesity and massive beta cell expansion. Here, using single-cell transcriptomics with female Lepr KO islets, we identified distinct populations of beta cells undergoing unfolded protein response (UPR), stress resolution, and cell cycle progression. Lepr KO beta cells undergoing UPR markedly increased chaperone protein, ribosomal biogenesis, and cell cycle transcriptional programs that were enriched for Xbp1 and Myc target genes. Our findings suggest a coordinated transcriptional mechanism involving Xbp1 and Myc to alleviate UPR and stimulate beta cell proliferation in obese female mice.
Collapse
Affiliation(s)
- Peter M Masschelin
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77019, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Scott A Ochsner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sean M Hartig
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77019, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Neil J McKenna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Aaron R Cox
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77019, USA
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, Univeristy of Texas Health Science Center at Houston, Houston TX 77019, USA
| |
Collapse
|
9
|
Sun J, Skanata A, Movileanu L. Single-Molecule Observation of Competitive Protein-Protein Interactions Utilizing a Nanopore. ACS NANO 2025; 19:1103-1115. [PMID: 39718930 PMCID: PMC11752528 DOI: 10.1021/acsnano.4c13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024]
Abstract
Two or more protein ligands may compete against each other to interact transiently with a protein receptor. While this is a ubiquitous phenomenon in cell signaling, existing technologies cannot identify its kinetic complexity because specific subpopulations of binding events of different ligands are hidden in the averaging process in an ensemble. In addition, the limited time resolution of prevailing methods makes detecting and discriminating binding events among diverse interacting partners challenging. Here, we utilize a genetically encoded nanopore sensor to disentangle competitive protein-protein interactions (PPIs) in a one-on-one and label-free fashion. Our measurements involve binary mixtures of protein ligands of varying binding affinity against the same receptor, which was externally immobilized on the nanopore tip. We use the resistive-pulse technique to monitor the kinetics and dynamics of reversible PPIs without the nanopore confinement, with a high-time bandwidth, and at titratable ligand concentrations. In this way, we systematically evaluate how individual protein ligands take their turn to reside on the receptor's binding site. Further, our single-molecule determinations of these interactions are quantitatively compared with data generated by a two-ligand, one-receptor queuing model. The outcomes of this work provide a fundamental basis for future developments aimed at a better mechanistic understanding of competitive PPIs. Moreover, they may also form a platform in drug development pipelines targeting high-complexity PPIs mediated by protein hubs.
Collapse
Affiliation(s)
- Jiaxin Sun
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
| | - Antun Skanata
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- The
BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States
| | - Liviu Movileanu
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- The
BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, 114 Life Sciences Complex, Syracuse, New York 13244, United States
| |
Collapse
|
10
|
Coker JA, Stauffer SR. WD repeat domain 5 (WDR5) inhibitors: a patent review (2016-present). Expert Opin Ther Pat 2025; 35:31-45. [PMID: 39706200 DOI: 10.1080/13543776.2024.2441658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/01/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
INTRODUCTION WDR5 is an epigenetic scaffolding protein that has attracted significant interest as an anti-cancer drug target, especially in MLL-rearranged leukemias. The most druggable 'WIN-site' on WDR5, which tethers WDR5 to chromatin, has been successfully targeted with multiple classes of exquisitely potent small-molecule protein-protein interaction inhibitors. Earlier progress has also been made on the development of WDR5 degraders and inhibitors at the 'WBM-site' on the opposite face of WDR5. AREAS COVERED Based on an international survey of the patent literature using SciFinder from 2016-2024, herein we provide a comprehensive account of the chemical matter targeting WDR5, with a particular focus on proprietary compounds that are underreported in the existing academic literature. Our survey illuminates challenges for the field to overcome: a broad lack of chemical diversity, confusion about the molecular mechanism of WIN-site inhibitors, a paucity of brain-penetrant scaffolds despite emerging evidence of activity in brain cancers, sparse pharmacokinetic, metabolic, and disposition characterization, and the absence of safety or efficacy data in humans. EXPERT OPINION It is our opinion that the best-in-class WIN-site inhibitors (from the imidazole class) merit advancement into clinical testing, likely against leukemia, which should provide much-needed clarity about the exciting but unproven potential of WDR5 as a next-generation therapeutic target.
Collapse
Affiliation(s)
- Jesse A Coker
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Shaun R Stauffer
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
11
|
Mabanglo MF, Wilson B, Noureldin M, Kimani SW, Mamai A, Krausser C, González-Álvarez H, Srivastava S, Mohammed M, Hoffer L, Chan M, Avrumutsoae J, Li ASM, Hajian T, Tucker S, Green S, Szewczyk M, Barsyte-Lovejoy D, Santhakumar V, Ackloo S, Loppnau P, Li Y, Seitova A, Kiyota T, Wang JG, Privé GG, Kuntz DA, Patel B, Rathod V, Vala A, Rout B, Aman A, Poda G, Uehling D, Ramnauth J, Halabelian L, Marcellus R, Al-Awar R, Vedadi M. Crystal structures of DCAF1-PROTAC-WDR5 ternary complexes provide insight into DCAF1 substrate specificity. Nat Commun 2024; 15:10165. [PMID: 39580491 PMCID: PMC11585590 DOI: 10.1038/s41467-024-54500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) have been explored for the degradation of drug targets for more than two decades. However, only a handful of E3 ligase substrate receptors have been efficiently used. Downregulation and mutation of these receptors would reduce the effectiveness of such PROTACs. We recently developed potent ligands for DCAF1, a substrate receptor of EDVP and CUL4 E3 ligases. Here, we focus on DCAF1 toward the development of PROTACs for WDR5, a drug target in various cancers. We report four DCAF1-based PROTACs with endogenous and exogenous WDR5 degradation effects and high-resolution crystal structures of the ternary complexes of DCAF1-PROTAC-WDR5. The structures reveal detailed insights into the interaction of DCAF1 with various WDR5-PROTACs, indicating a significant role of DCAF1 loops in providing needed surface plasticity, and reflecting the mechanism by which DCAF1 functions as a substrate receptor for E3 ligases with diverse sets of substrates.
Collapse
Affiliation(s)
- Mark F Mabanglo
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Brian Wilson
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Mahmoud Noureldin
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Serah W Kimani
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Ahmed Mamai
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Chiara Krausser
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Héctor González-Álvarez
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Smriti Srivastava
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Mohammed Mohammed
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Laurent Hoffer
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Manuel Chan
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Jamie Avrumutsoae
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Alice Shi Ming Li
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Taraneh Hajian
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Sarah Tucker
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Stuart Green
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Magdalena Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | | | - Suzanne Ackloo
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Yanjun Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Almagul Seitova
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Taira Kiyota
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Jue George Wang
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Gilbert G Privé
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Douglas A Kuntz
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Bhashant Patel
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Ahmedabad, Gujarat, India
| | - Vaibhavi Rathod
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Ahmedabad, Gujarat, India
| | - Anand Vala
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Ahmedabad, Gujarat, India
| | - Bhimsen Rout
- Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Ahmedabad, Gujarat, India
| | - Ahmed Aman
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Gennady Poda
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - David Uehling
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Jailall Ramnauth
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Richard Marcellus
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Rima Al-Awar
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, Canada.
| | - Masoud Vedadi
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Meyer CT, Smith BN, Wang J, Teuscher KB, Grieb BC, Howard GC, Silver AJ, Lorey SL, Stott GM, Moore WJ, Lee T, Savona MR, Weissmiller AM, Liu Q, Quaranta V, Fesik SW, Tansey WP. Expanded profiling of WD repeat domain 5 inhibitors reveals actionable strategies for the treatment of hematologic malignancies. Proc Natl Acad Sci U S A 2024; 121:e2408889121. [PMID: 39167600 PMCID: PMC11363251 DOI: 10.1073/pnas.2408889121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
WD40 Repeat Domain 5 (WDR5) is a highly conserved nuclear protein that recruits MYC oncoprotein transcription factors to chromatin to stimulate ribosomal protein gene expression. WDR5 is tethered to chromatin via an arginine-binding cavity known as the "WIN" site. Multiple pharmacological inhibitors of the WDR5-interaction site of WDR5 (WINi) have been described, including those with picomolar affinity and oral bioavailability in mice. Thus far, however, WINi have only been shown to be effective against a number of rare cancer types retaining wild-type p53. To explore the full potential of WINi for cancer therapy, we systematically profiled WINi across a panel of cancer cells, alone and in combination with other agents. We report that WINi are unexpectedly active against cells derived from both solid and blood-borne cancers, including those with mutant p53. Among hematologic malignancies, we find that WINi are effective as a single agent against leukemia and diffuse large B cell lymphoma xenograft models, and can be combined with the approved drug venetoclax to suppress disseminated acute myeloid leukemia in vivo. These studies reveal actionable strategies for the application of WINi to treat blood-borne cancers and forecast expanded utility of WINi against other cancer types.
Collapse
Affiliation(s)
- Christian T. Meyer
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO80309
- Duet BioSystems, Nashville, TN37212
| | - Brianna N. Smith
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN37232
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN37232
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN37232
| | - Kevin B. Teuscher
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37240
| | - Brian C. Grieb
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | - Gregory C. Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37240
| | - Alexander J. Silver
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | - Shelly L. Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37240
| | - Gordon M. Stott
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD21701-4907
| | - William J. Moore
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD21702-1201
| | - Taekyu Lee
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37240
| | - Michael R. Savona
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | | | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN37232
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN37232
| | - Vito Quaranta
- Duet BioSystems, Nashville, TN37212
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37240
| | - Stephen W. Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37240
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN37240
- Department of Chemistry, Vanderbilt University, Nashville, TN37240
| | - William P. Tansey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37240
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37240
| |
Collapse
|
13
|
Vogt M, Dudvarski Stankovic N, Cruz Garcia Y, Hofstetter J, Schneider K, Kuybu F, Hauck T, Adhikari B, Hamann A, Rocca Y, Grysczyk L, Martin B, Gebhardt-Wolf A, Wiegering A, Diefenbacher M, Gasteiger G, Knapp S, Saur D, Eilers M, Rosenfeldt M, Erhard F, Vos SM, Wolf E. Targeting MYC effector functions in pancreatic cancer by inhibiting the ATPase RUVBL1/2. Gut 2024; 73:1509-1528. [PMID: 38821858 PMCID: PMC11347226 DOI: 10.1136/gutjnl-2023-331519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/15/2024] [Indexed: 06/02/2024]
Abstract
OBJECTIVE The hallmark oncogene MYC drives the progression of most tumours, but direct inhibition of MYC by a small-molecule drug has not reached clinical testing. MYC is a transcription factor that depends on several binding partners to function. We therefore explored the possibility of targeting MYC via its interactome in pancreatic ductal adenocarcinoma (PDAC). DESIGN To identify the most suitable targets among all MYC binding partners, we constructed a targeted shRNA library and performed screens in cultured PDAC cells and tumours in mice. RESULTS Unexpectedly, many MYC binding partners were found to be important for cultured PDAC cells but dispensable in vivo. However, some were also essential for tumours in their natural environment and, among these, the ATPases RUVBL1 and RUVBL2 ranked first. Degradation of RUVBL1 by the auxin-degron system led to the arrest of cultured PDAC cells but not untransformed cells and to complete tumour regression in mice, which was preceded by immune cell infiltration. Mechanistically, RUVBL1 was required for MYC to establish oncogenic and immunoevasive gene expression identifying the RUVBL1/2 complex as a druggable vulnerability in MYC-driven cancer. CONCLUSION One implication of our study is that PDAC cell dependencies are strongly influenced by the environment, so genetic screens should be performed in vitro and in vivo. Moreover, the auxin-degron system can be applied in a PDAC model, allowing target validation in living mice. Finally, by revealing the nuclear functions of the RUVBL1/2 complex, our study presents a pharmaceutical strategy to render pancreatic cancers potentially susceptible to immunotherapy.
Collapse
Affiliation(s)
- Markus Vogt
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Nevenka Dudvarski Stankovic
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Yiliam Cruz Garcia
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Julia Hofstetter
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Katharina Schneider
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
- Institute of Biochemistry, University of Kiel, Kiel, Germany
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Filiz Kuybu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Theresa Hauck
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Bikash Adhikari
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Anton Hamann
- Institute for Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Yamila Rocca
- Max Planck Research Group and Institute of Systems Immunology, University of Würzburg, Würzburg, Germany
| | - Lara Grysczyk
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Benedikt Martin
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Anneli Gebhardt-Wolf
- Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Armin Wiegering
- Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Markus Diefenbacher
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL/CPC-M), Munich, Germany
- Ludwig-Maximilian-Universität München (LMU), Munich, Germany
| | - Georg Gasteiger
- Max Planck Research Group and Institute of Systems Immunology, University of Würzburg, Würzburg, Germany
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Dieter Saur
- Institute of Translational Cancer Research, TUM School of Medicine and Health, Munich, Germany
| | - Martin Eilers
- Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | | | - Florian Erhard
- Computational Systems Virology and Bioinformatics, Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Seychelle M Vos
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Elmar Wolf
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| |
Collapse
|
14
|
Mayse L, Wang Y, Ahmad M, Movileanu L. Real-Time Measurement of a Weak Interaction of a Transcription Factor Motif with a Protein Hub at Single-Molecule Precision. ACS NANO 2024; 18:20468-20481. [PMID: 39049818 PMCID: PMC11308778 DOI: 10.1021/acsnano.4c04857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Transcription factors often interact with other protein cofactors, regulating gene expression. Direct detection of these brief events using existing technologies remains challenging due to their transient nature. In addition, intrinsically disordered domains, intranuclear location, and lack of cofactor-dependent active sites of transcription factors further complicate the quantitative analysis of these critical processes. Here, we create a genetically encoded label-free sensor to identify the interaction between a motif of the MYC transcription factor, a primary cancer driver, and WDR5, a chromatin-associated protein hub. Using an engineered nanopore equipped with this motif, WDR5 is probed through reversible captures and releases in a one-by-one and time-resolved fashion. Our single-molecule kinetic measurements indicate a weak-affinity interaction arising from a relatively slow complex association and a fast dissociation of WDR5 from the tethered motif. Further, we validate this subtle interaction by determinations in an ensemble using single nanodisc-wrapped nanopores immobilized on a biolayer interferometry sensor. This study also provides the proof-of-concept for a sensor that reveals unique recognition signatures of different protein binding sites. Our foundational work may be further developed to produce sensing elements for analytical proteomics and cancer nanomedicine.
Collapse
Affiliation(s)
- Lauren
A. Mayse
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United States
| | - Yazheng Wang
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United States
| | - Mohammad Ahmad
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244, United States
| | - Liviu Movileanu
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, 114 Life Sciences Complex, Syracuse, New York 13244, United States
- The
BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
15
|
Ghasemi N, Azizi H. Exploring Myc puzzle: Insights into cancer, stem cell biology, and PPI networks. Gene 2024; 916:148447. [PMID: 38583818 DOI: 10.1016/j.gene.2024.148447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/13/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
"The grand orchestrator," "Universal Amplifier," "double-edged sword," and "Undruggable" are just some of the Myc oncogene so-called names. It has been around 40 years since the discovery of the Myc, and it remains in the mainstream of cancer treatment drugs. Myc is part of basic helix-loop-helix leucine zipper (bHLH-LZ) superfamily proteins, and its dysregulation can be seen in many malignant human tumors. It dysregulates critical pathways in cells that are connected to each other, such as proliferation, growth, cell cycle, and cell adhesion, impacts miRNAs action, intercellular metabolism, DNA replication, differentiation, microenvironment regulation, angiogenesis, and metastasis. Myc, surprisingly, is used in stem cell research too. Its family includes three members, MYC, MYCN, and MYCL, and each dysfunction was observed in different cancer types. This review aims to introduce Myc and its function in the body. Besides, Myc deregulatory mechanisms in cancer cells, their intricate aspects will be discussed. We will look at promising drugs and Myc-based therapies. Finally, Myc and its role in stemness, Myc pathways based on PPI network analysis, and future insights will be explained.
Collapse
Affiliation(s)
- Nima Ghasemi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran.
| |
Collapse
|
16
|
Wang H, Zhou Y, Lu L, Cen J, Wu Z, Yang B, Zhu C, Cao J, Yu Y, Chen W. Identification of 5-Thiocyanatothiazol-2-amines Disrupting WDR5-MYC Protein-Protein Interactions. ACS Med Chem Lett 2024; 15:1143-1150. [PMID: 39015274 PMCID: PMC11247650 DOI: 10.1021/acsmedchemlett.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
MYC amplification is frequently observed in approximately 50% of human cancers, rendering it a highly desired anticancer target. Given the challenge of direct pharmacological inhibiting of MYC, impairing the interaction of MYC and its key cofactor WDR5 has been proposed as a promising strategy for MYC-driven cancer treatment. Herein, we report the discovery of 5-thiocyanatothiazol-2-amines that disrupt the WDR5-MYC interaction. Hit fragments were initially identified in a fluorescence polarization (FP)-based screening of an in-house library, and structural-activity relationship exploration resulted in the lead compounds 4m and 4o with potent inhibitory activities on WDR5-MYC interaction (K i = 2.4 μM for 4m; K i = 1.0 μM for 4o). These compounds were further validated via differential scanning fluorimetry (DSF) and coimmunoprecipitation (Co-IP). Moreover, 4m and 4o exhibited good cellular activities with the IC50 values at the micromolar level (IC50 = 0.71-7.40 μM) against multiple MYC-driven cancer cell lines. Our findings afforded a potential small molecule blocking the WDR5-MYC interaction.
Collapse
Affiliation(s)
- Haiyang Wang
- Zhejiang
Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yihui Zhou
- Zhejiang
Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou 310058, China
- Department
of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Li Lu
- Zhejiang
Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Cen
- Zhejiang
Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenying Wu
- Zhejiang
Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Zhejiang
Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou 310058, China
- Engineering
Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310000, China
- Center
for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou 310020, China
| | - Chengliang Zhu
- Zhejiang
Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou 310058, China
- Engineering
Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310000, China
- Center
for Drug Safety Evaluation and Research of ZJU, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou City 310058, China
| | - Ji Cao
- Zhejiang
Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou 310058, China
- Engineering
Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310000, China
- Center
for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou 310020, China
- Jinhua Institute
of Zhejiang University, Jinhua 321299, China
| | - Yongping Yu
- Zhejiang
Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou 310058, China
- School
of Pharmacy, Xinjiang Medical University, Urumqi 830054, China
- Jinhua Institute
of Zhejiang University, Jinhua 321299, China
| | - Wenteng Chen
- Zhejiang
Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute
of Zhejiang University, Jinhua 321299, China
| |
Collapse
|
17
|
Thompson PE, Shortt J. Defeating MYC with drug combinations or dual-targeting drugs. Trends Pharmacol Sci 2024; 45:490-502. [PMID: 38782688 DOI: 10.1016/j.tips.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Members of the MYC family of proteins are a major target for cancer drug discovery, but the development of drugs that block MYC-driven cancers has not yet been successful. Approaches to achieve success may include the development of combination therapies or dual-acting drugs that target MYC at multiple nodes. Such treatments hold the possibility of additive or synergistic activity, potentially reducing side effect profiles and the emergence of resistance. In this review, we examine the prominent MYC-related targets and highlight those that have been targeted in combination and/or dual-target approaches. Finally, we explore the challenges of combination and dual-target approaches from a drug development perspective.
Collapse
Affiliation(s)
- Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Jake Shortt
- Blood Cancer Therapeutics Laboratory, School of Clinical Sciences at Monash Health, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Victoria 3168, Australia; Monash Hematology, Monash Health, Melbourne, Victoria 3168, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
18
|
Howard GC, Wang J, Rose KL, Jones C, Patel P, Tsui T, Florian AC, Vlach L, Lorey SL, Grieb BC, Smith BN, Slota MJ, Reynolds EM, Goswami S, Savona MR, Mason FM, Lee T, Fesik S, Liu Q, Tansey WP. Ribosome subunit attrition and activation of the p53-MDM4 axis dominate the response of MLL-rearranged cancer cells to WDR5 WIN site inhibition. eLife 2024; 12:RP90683. [PMID: 38682900 PMCID: PMC11057873 DOI: 10.7554/elife.90683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the 'WIN' site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.
Collapse
Affiliation(s)
- Gregory Caleb Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical CenterNashvilleUnited States
- Center for Quantitative Sciences, Vanderbilt University Medical CenterNashvilleUnited States
| | - Kristie L Rose
- Mass Spectrometry Research Center, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| | - Camden Jones
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Purvi Patel
- Mass Spectrometry Research Center, Vanderbilt University School of MedicineNashvilleUnited States
| | - Tina Tsui
- Mass Spectrometry Research Center, Vanderbilt University School of MedicineNashvilleUnited States
| | - Andrea C Florian
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Logan Vlach
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Shelly L Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Brian C Grieb
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Brianna N Smith
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Macey J Slota
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Elizabeth M Reynolds
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Soumita Goswami
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Michael R Savona
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Frank M Mason
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Taekyu Lee
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| | - Stephen Fesik
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Pharmacology, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical CenterNashvilleUnited States
- Center for Quantitative Sciences, Vanderbilt University Medical CenterNashvilleUnited States
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| |
Collapse
|
19
|
Streeter SA, Williams AG, Evans JR, Wang J, Guarnaccia AD, Florian AC, Al-Tobasei R, Liu Q, Tansey WP, Weissmiller AM. Mitotic gene regulation by the N-MYC-WDR5-PDPK1 nexus. BMC Genomics 2024; 25:360. [PMID: 38605297 PMCID: PMC11007937 DOI: 10.1186/s12864-024-10282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND During mitosis the cell depends on proper attachment and segregation of replicated chromosomes to generate two identical progeny. In cancers defined by overexpression or dysregulation of the MYC oncogene this process becomes impaired, leading to genomic instability and tumor evolution. Recently it was discovered that the chromatin regulator WDR5-a critical MYC cofactor-regulates expression of genes needed in mitosis through a direct interaction with the master kinase PDPK1. However, whether PDPK1 and WDR5 contribute to similar mitotic gene regulation in MYC-overexpressing cancers remains unclear. Therefore, to characterize the influence of WDR5 and PDPK1 on mitotic gene expression in cells with high MYC levels, we performed a comparative transcriptomic analysis in neuroblastoma cell lines defined by MYCN-amplification, which results in high cellular levels of the N-MYC protein. RESULTS Using RNA-seq analysis, we identify the genes regulated by N-MYC and PDPK1 in multiple engineered CHP-134 neuroblastoma cell lines and compare them to previously published gene expression data collected in CHP-134 cells following inhibition of WDR5. We find that as expected N-MYC regulates a multitude of genes, including those related to mitosis, but that PDPK1 regulates specific sets of genes involved in development, signaling, and mitosis. Analysis of N-MYC- and PDPK1-regulated genes reveals a small group of commonly controlled genes associated with spindle pole formation and chromosome segregation, which overlap with genes that are also regulated by WDR5. We also find that N-MYC physically interacts with PDPK1 through the WDR5-PDPK1 interaction suggesting regulation of mitotic gene expression may be achieved through a N-MYC-WDR5-PDPK1 nexus. CONCLUSIONS Overall, we identify a small group of genes highly enriched within functional gene categories related to mitotic processes that are commonly regulated by N-MYC, WDR5, and PDPK1 and suggest that a tripartite interaction between the three regulators may be responsible for setting the level of mitotic gene regulation in N-MYC amplified cell lines. This study provides a foundation for future studies to determine the exact mechanism by which N-MYC, WDR5, and PDPK1 converge on cell cycle related processes.
Collapse
Affiliation(s)
- Sarah A Streeter
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Alexandria G Williams
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - James R Evans
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Jing Wang
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37203, USA
| | - Alissa D Guarnaccia
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, 94080, USA
| | - Andrea C Florian
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
- Department of Biology, Belmont University, Nashville, TN, 37212, USA
| | - Rafet Al-Tobasei
- Department of Computer Science, Middle Tennessee State University, Murfreesboro, TN, 32132, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37203, USA
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
| | - April M Weissmiller
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA.
| |
Collapse
|
20
|
Chan KI, Zhang S, Li G, Xu Y, Cui L, Wang Y, Su H, Tan W, Zhong Z. MYC Oncogene: A Druggable Target for Treating Cancers with Natural Products. Aging Dis 2024; 15:640-697. [PMID: 37450923 PMCID: PMC10917530 DOI: 10.14336/ad.2023.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/20/2023] [Indexed: 07/18/2023] Open
Abstract
Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.
Collapse
Affiliation(s)
- Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Siyuan Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yida Xu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524000, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Huanxing Su
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| |
Collapse
|
21
|
Shen L, Fang J, Liu L, Yang F, Jenkins JL, Kutchukian PS, Wang H. Pocket Crafter: a 3D generative modeling based workflow for the rapid generation of hit molecules in drug discovery. J Cheminform 2024; 16:33. [PMID: 38515171 PMCID: PMC10958880 DOI: 10.1186/s13321-024-00829-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/16/2024] [Indexed: 03/23/2024] Open
Abstract
We present a user-friendly molecular generative pipeline called Pocket Crafter, specifically designed to facilitate hit finding activity in the drug discovery process. This workflow utilized a three-dimensional (3D) generative modeling method Pocket2Mol, for the de novo design of molecules in spatial perspective for the targeted protein structures, followed by filters for chemical-physical properties and drug-likeness, structure-activity relationship analysis, and clustering to generate top virtual hit scaffolds. In our WDR5 case study, we acquired a focused set of 2029 compounds after a targeted searching within Novartis archived library based on the virtual scaffolds. Subsequently, we experimentally profiled these compounds, resulting in a novel chemical scaffold series that demonstrated activity in biochemical and biophysical assays. Pocket Crafter successfully prototyped an effective end-to-end 3D generative chemistry-based workflow for the exploration of new chemical scaffolds, which represents a promising approach in early drug discovery for hit identification.
Collapse
Affiliation(s)
- Lingling Shen
- Novartis Biomedical Research, Cambridge, MA, 02139, USA.
| | - Jian Fang
- Novartis Biomedical Research, Cambridge, MA, 02139, USA
| | - Lulu Liu
- Novartis Biomedical Research, Cambridge, MA, 02139, USA
| | - Fei Yang
- Novartis Biomedical Research, Cambridge, MA, 02139, USA
| | | | | | - He Wang
- Novartis Biomedical Research, Cambridge, MA, 02139, USA.
| |
Collapse
|
22
|
Papadimitropoulou A, Makri M, Zoidis G. MYC the oncogene from hell: Novel opportunities for cancer therapy. Eur J Med Chem 2024; 267:116194. [PMID: 38340508 DOI: 10.1016/j.ejmech.2024.116194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Cancer comprises a heterogeneous disease, characterized by diverse features such as constitutive expression of oncogenes and/or downregulation of tumor suppressor genes. MYC constitutes a master transcriptional regulator, involved in many cellular functions and is aberrantly expressed in more than 70 % of human cancers. The Myc protein belongs to a family of transcription factors whose structural pattern is referred to as basic helix-loop-helix-leucine zipper. Myc binds to its partner, a smaller protein called Max, forming an Myc:Max heterodimeric complex that interacts with specific DNA recognition sequences (E-boxes) and regulates the expression of downstream target genes. Myc protein plays a fundamental role for the life of a cell, as it is involved in many physiological functions such as proliferation, growth and development since it controls the expression of a very large percentage of genes (∼15 %). However, despite the strict control of MYC expression in normal cells, MYC is often deregulated in cancer, exhibiting a key role in stimulating oncogenic process affecting features such as aberrant proliferation, differentiation, angiogenesis, genomic instability and oncogenic transformation. In this review we aim to meticulously describe the fundamental role of MYC in tumorigenesis and highlight its importance as an anticancer drug target. We focus mainly on the different categories of novel small molecules that act as inhibitors of Myc function in diverse ways hence offering great opportunities for an efficient cancer therapy. This knowledge will provide significant information for the development of novel Myc inhibitors and assist to the design of treatments that would effectively act against Myc-dependent cancers.
Collapse
Affiliation(s)
- Adriana Papadimitropoulou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - Maria Makri
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771, Athens, Greece
| | - Grigoris Zoidis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771, Athens, Greece.
| |
Collapse
|
23
|
Liu Z, Zhang X, Xu M, Hong JJ, Ciardiello A, Lei H, Shern JF, Thiele CJ. MYCN drives oncogenesis by cooperating with the histone methyltransferase G9a and the WDR5 adaptor to orchestrate global gene transcription. PLoS Biol 2024; 22:e3002240. [PMID: 38547242 PMCID: PMC11003700 DOI: 10.1371/journal.pbio.3002240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 04/09/2024] [Accepted: 02/28/2024] [Indexed: 04/11/2024] Open
Abstract
MYCN activates canonical MYC targets involved in ribosome biogenesis, protein synthesis, and represses neuronal differentiation genes to drive oncogenesis in neuroblastoma (NB). How MYCN orchestrates global gene expression remains incompletely understood. Our study finds that MYCN binds promoters to up-regulate canonical MYC targets but binds to both enhancers and promoters to repress differentiation genes. MYCN binding also increases H3K4me3 and H3K27ac on canonical MYC target promoters and decreases H3K27ac on neuronal differentiation gene enhancers and promoters. WDR5 facilitates MYCN promoter binding to activate canonical MYC target genes, whereas MYCN recruits G9a to enhancers to repress neuronal differentiation genes. Targeting both MYCN's active and repressive transcriptional activities using both WDR5 and G9a inhibitors synergistically suppresses NB growth. We demonstrate that MYCN cooperates with WDR5 and G9a to orchestrate global gene transcription. The targeting of both these cofactors is a novel therapeutic strategy to indirectly target the oncogenic activity of MYCN.
Collapse
Affiliation(s)
- Zhihui Liu
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Xiyuan Zhang
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Man Xu
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jason J. Hong
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Amanda Ciardiello
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Haiyan Lei
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jack F. Shern
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Carol J. Thiele
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
24
|
Ahmad M, Imran A, Movileanu L. Overlapping characteristics of weak interactions of two transcriptional regulators with WDR5. Int J Biol Macromol 2024; 258:128969. [PMID: 38158065 PMCID: PMC10922662 DOI: 10.1016/j.ijbiomac.2023.128969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
The WD40 repeat protein 5 (WDR5) is a nuclear hub that critically influences gene expression by interacting with transcriptional regulators. Utilizing the WDR5 binding motif (WBM) site, WDR5 interacts with the myelocytomatosis (MYC), an oncoprotein transcription factor, and the retinoblastoma-binding protein 5 (RbBP5), a scaffolding element of an epigenetic complex. Given the clinical significance of these protein-protein interactions (PPIs), there is a pressing necessity for a quantitative assessment of these processes. Here, we use biolayer interferometry (BLI) to examine interactions of WDR5 with consensus peptide ligands of MYC and RbBP5. We found that both interactions exhibit relatively weak affinities arising from a fast dissociation process. Remarkably, live-cell imaging identified distinctive WDR5 localizations in the absence and presence of full-length binding partners. Although WDR5 tends to accumulate within nucleoli, WBM-mediated interactions with MYC and RbBP5 require their localization outside nucleoli. We utilize fluorescence resonance energy transfer (FRET) microscopy to confirm these weak interactions through a low FRET efficiency of the MYC-WDR5 and RbBP5-WDR5 complexes in living cells. In addition, we evaluate the impact of peptide and small-molecule inhibitors on these interactions. These outcomes form a fundamental basis for further developments to clarify the multitasking role of the WBM binding site of WDR5.
Collapse
Affiliation(s)
- Mohammad Ahmad
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA
| | - Ali Imran
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA; Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, NY 13244, USA; The BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
25
|
Howard GC, Wang J, Rose KL, Jones C, Patel P, Tsui T, Florian AC, Vlach L, Lorey SL, Grieb BC, Smith BN, Slota MJ, Reynolds EM, Goswami S, Savona MR, Mason FM, Lee T, Fesik SW, Liu Q, Tansey WP. Ribosome subunit attrition and activation of the p53-MDM4 axis dominate the response of MLL-rearranged cancer cells to WDR5 WIN site inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.26.550648. [PMID: 37546802 PMCID: PMC10402127 DOI: 10.1101/2023.07.26.550648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the "WIN" site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small molecule WIN site inhibitors, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anti-cancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anti-cancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.
Collapse
Affiliation(s)
- Gregory C. Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Kristie Lindsey Rose
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Camden Jones
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Purvi Patel
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tina Tsui
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrea C. Florian
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Current address: Department of Biology, Belmont University, Nashville, TN 37212, USA
| | - Logan Vlach
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shelly L. Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Brian C. Grieb
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Brianna N. Smith
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Macey J. Slota
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Current address: Department of Urology, University of California San Francisco, San Francisco CA 94143, USA
| | - Elizabeth M. Reynolds
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Soumita Goswami
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Michael R. Savona
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Frank M. Mason
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Taekyu Lee
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Stephen W. Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - William P. Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
26
|
Weissmiller AM, Fesik SW, Tansey WP. WD Repeat Domain 5 Inhibitors for Cancer Therapy: Not What You Think. J Clin Med 2024; 13:274. [PMID: 38202281 PMCID: PMC10779565 DOI: 10.3390/jcm13010274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
WDR5 is a conserved nuclear protein that scaffolds the assembly of epigenetic regulatory complexes and moonlights in functions ranging from recruiting MYC oncoproteins to chromatin to facilitating the integrity of mitosis. It is also a high-value target for anti-cancer therapies, with small molecule WDR5 inhibitors and degraders undergoing extensive preclinical assessment. WDR5 inhibitors were originally conceived as epigenetic modulators, proposed to inhibit cancer cells by reversing oncogenic patterns of histone H3 lysine 4 methylation-a notion that persists to this day. This premise, however, does not withstand contemporary inspection and establishes expectations for the mechanisms and utility of WDR5 inhibitors that can likely never be met. Here, we highlight salient misconceptions regarding WDR5 inhibitors as epigenetic modulators and provide a unified model for their action as a ribosome-directed anti-cancer therapy that helps focus understanding of when and how the tumor-inhibiting properties of these agents can best be understood and exploited.
Collapse
Affiliation(s)
- April M. Weissmiller
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 32132, USA;
| | - Stephen W. Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - William P. Tansey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
27
|
Teuscher KB, Mills JJ, Tian J, Han C, Meyers KM, Sai J, South TM, Crow MM, Van Meveren M, Sensintaffar JL, Zhao B, Amporndanai K, Moore WJ, Stott GM, Tansey WP, Lee T, Fesik SW. Structure-Based Discovery of Potent, Orally Bioavailable Benzoxazepinone-Based WD Repeat Domain 5 Inhibitors. J Med Chem 2023; 66:16783-16806. [PMID: 38085679 DOI: 10.1021/acs.jmedchem.3c01529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The chromatin-associated protein WDR5 (WD repeat domain 5) is an essential cofactor for MYC and a conserved regulator of ribosome protein gene transcription. It is also a high-profile target for anti-cancer drug discovery, with proposed utility against both solid and hematological malignancies. We have previously discovered potent dihydroisoquinolinone-based WDR5 WIN-site inhibitors with demonstrated efficacy and safety in animal models. In this study, we sought to optimize the bicyclic core to discover a novel series of WDR5 WIN-site inhibitors with improved potency and physicochemical properties. We identified the 3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one core as an alternative scaffold for potent WDR5 inhibitors. Additionally, we used X-ray structural analysis to design partially saturated bicyclic P7 units. These benzoxazepinone-based inhibitors exhibited increased cellular potency and selectivity and favorable physicochemical properties compared to our best-in-class dihydroisoquinolinone-based counterparts. This study opens avenues to discover more advanced WDR5 WIN-site inhibitors and supports their development as novel anti-cancer therapeutics.
Collapse
Affiliation(s)
| | | | - Jianhua Tian
- Molecular Design and Synthesis Center, Vanderbilt Institute of Chemical Biology, Nashville, Tennessee 37232-0142, United States
| | | | | | | | | | | | | | | | | | | | - William J Moore
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Gordon M Stott
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701-4907, United States
| | | | | | - Stephen W Fesik
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232-0142, United States
| |
Collapse
|
28
|
Yu X, Li D, Kottur J, Kim HS, Herring LE, Yu Y, Xie L, Hu X, Chen X, Cai L, Liu J, Aggarwal AK, Wang GG, Jin J. Discovery of Potent and Selective WDR5 Proteolysis Targeting Chimeras as Potential Therapeutics for Pancreatic Cancer. J Med Chem 2023; 66:16168-16186. [PMID: 38019706 PMCID: PMC10872723 DOI: 10.1021/acs.jmedchem.3c01521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
As a core chromatin-regulatory scaffolding protein, WDR5 mediates numerous protein-protein interactions (PPIs) with other partner oncoproteins. However, small-molecule inhibitors that block these PPIs exert limited cell-killing effects. Here, we report structure-activity relationship studies in pancreatic ductal adenocarcinoma (PDAC) cells that led to the discovery of several WDR5 proteolysis-targeting chimer (PROTAC) degraders, including 11 (MS132), a highly potent and selective von Hippel-Lindau (VHL)-recruiting WDR5 degrader, which displayed positive binding cooperativity between WDR5 and VHL, effectively inhibited proliferation in PDAC cells, and was bioavailable in mice and 25, a cereblon (CRBN)-recruiting WDR5 degrader, which selectively degraded WDR5 over the CRBN neo-substrate IKZF1. Furthermore, by conducting site-directed mutagenesis studies, we determined that WDR5 K296, but not K32, was involved in the PROTAC-induced WDR5 degradation. Collectively, these studies resulted in a highly effective WDR5 degrader, which could be a potential therapeutic for pancreatic cancer and several potentially useful tool compounds.
Collapse
Affiliation(s)
- Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Dongxu Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jithesh Kottur
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Huen Suk Kim
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Laura E Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Yao Yu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina 27710, United States
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina 27710, United States
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Xiaoping Hu
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ling Cai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina 27710, United States
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Aneel K Aggarwal
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina 27710, United States
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina 27710, United States
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
29
|
Li H, Jiao W, Song J, Wang J, Chen G, Li D, Wang X, Bao B, Du X, Cheng Y, Yang C, Tong Q, Zheng L. circ-hnRNPU inhibits NONO-mediated c-Myc transactivation and mRNA stabilization essential for glycosylation and cancer progression. J Exp Clin Cancer Res 2023; 42:313. [PMID: 37993881 PMCID: PMC10666356 DOI: 10.1186/s13046-023-02898-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Recent evidence reveals the emerging functions of circular RNA (circRNA) and protein glycosylation in cancer progression. However, the roles of circRNA in regulating glycosyltransferase expression in gastric cancer remain to be determined. METHODS Circular RNAs (circRNAs) were validated by Sanger sequencing. Co-immunoprecipitation, mass spectrometry, and RNA sequencing assays were applied to explore protein interaction and target genes. Gene expression regulation was observed by chromatin immunoprecipitation, RNA immunoprecipitation, dual-luciferase reporter, real-time quantitative RT-PCR, and western blot assays. Gain- and loss-of-function studies were performed to observe the impacts of circRNA and its partners on the glycosylation, growth, invasion, and metastasis of gastric cancer cells. RESULTS Circ-hnRNPU, an exonic circRNA derived from heterogenous nuclear ribonuclear protein U (hnRNPU), was identified to exert tumor suppressive roles in protein glycosylation and progression of gastric cancer. Mechanistically, circ-hnRNPU physically interacted with non-POU domain containing octamer binding (NONO) protein to induce its cytoplasmic retention, resulting in down-regulation of glycosyltransferases (GALNT2, GALNT6, MGAT1) and parental gene hnRNPU via repression of nuclear NONO-mediated c-Myc transactivation or cytoplasmic NONO-facilitated mRNA stability. Rescue studies indicated that circ-hnRNPU inhibited the N- and O-glycosylation, growth, invasion, and metastasis of gastric cancer cells via interacting with NONO protein. Pre-clinically, administration of lentivirus carrying circ-hnRNPU suppressed the protein glycosylation, tumorigenesis, and aggressiveness of gastric cancer xenografts. In clinical cases, low circ-hnRNPU levels and high NONO or c-Myc expression were associated with poor survival outcome of gastric cancer patients. CONCLUSIONS These findings indicate that circ-hnRNPU inhibits NONO-mediated c-Myc transactivation and mRNA stabilization essential for glycosylation and cancer progression.
Collapse
Affiliation(s)
- Hongjun Li
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, P. R. China
| | - Wanju Jiao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, P. R. China
| | - Jiyu Song
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, P. R. China
| | - Jianqun Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, P. R. China
| | - Guo Chen
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, P. R. China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, P. R. China
| | - Xiaojing Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, P. R. China
| | - Banghe Bao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, P. R. China
| | - Xinyi Du
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, P. R. China
| | - Yang Cheng
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, P. R. China
| | - Chunhui Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, P. R. China
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, P. R. China.
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, P. R. China.
| |
Collapse
|
30
|
Liu F, Liao Z, Zhang Z. MYC in liver cancer: mechanisms and targeted therapy opportunities. Oncogene 2023; 42:3303-3318. [PMID: 37833558 DOI: 10.1038/s41388-023-02861-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
MYC, a major oncogenic transcription factor, regulates target genes involved in various pathways such as cell proliferation, metabolism and immune evasion, playing a critical role in the tumor initiation and development in multiple types of cancer. In liver cancer, MYC and its signaling pathways undergo significant changes, exerting a profound impact on liver cancer progression, including tumor proliferation, metastasis, dedifferentiation, metabolism, immune microenvironment, and resistance to comprehensive therapies. This makes MYC an appealing target, despite it being previously considered an undruggable protein. In this review, we discuss the role and mechanisms of MYC in liver physiology, chronic liver diseases, hepatocarcinogenesis, and liver cancer progression, providing a theoretical basis for targeting MYC as an ideal therapeutic target for liver cancer. We also summarize and prospect the strategies for targeting MYC, including direct and indirect approaches to abolish the oncogenic function of MYC in liver cancer.
Collapse
Affiliation(s)
- Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
31
|
Zhang C, He Y, Sun X, Wei W, Liu Y, Rao Y. PROTACs Targeting Epigenetic Proteins. ACTA MATERIA MEDICA 2023; 2:409-429. [PMID: 39221114 PMCID: PMC11364368 DOI: 10.15212/amm-2023-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Epigenetics, a field that investigates alterations in gene function that can be inherited without changes in DNA sequence, encompasses molecular pathways such as histone variants, posttranslational modifications of amino acids, and covalent modifications of DNA bases. These pathways modulate the transformation of genotypes into specific phenotypes. Epigenetics plays a substantial role in cell growth, development, and differentiation by dynamically regulating gene transcription and ensuring genomic stability. This regulation is carried out by three key players: writers, readers, and erasers. In recent years, epigenetic proteins have played a crucial role in epigenetic regulation and have gradually become important targets in drug research and development. Targeted therapy is an essential strategy; however, the effectiveness of targeted drugs is often limited by drug resistance, posing a significant dilemma in clinical practice. Targeted protein degradation technologies, including proteolysis-targeting chimeras (PROTACs), have great potential in overcoming drug resistance and targeting undruggable targets. These areas of research are gaining increasing attention to various epigenetic related disease. In this review, we have provided a summary of the recently developed degraders targeting epigenetic readers, writers, and erasers. Additionally, we have outlined new applications for epigenetic protein degraders. Finally, we have addressed several unresolved challenges within the PROTAC field and offered potential solutions from our perspective. As the field continues to advance, the integration of these innovative methodologies holds great promise for addressing the challenges associated with PROTAC development.
Collapse
Affiliation(s)
- Chao Zhang
- Changping Laboratory, Beijing 102206, China
| | - Yuna He
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Xiuyun Sun
- Changping Laboratory, Beijing 102206, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Yanlong Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Yu Rao
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Changping Laboratory, Beijing 102206, China
| |
Collapse
|
32
|
Gurung R, Om D, Pun R, Hyun S, Shin D. Recent Progress in Modulation of WD40-Repeat Domain 5 Protein (WDR5): Inhibitors and Degraders. Cancers (Basel) 2023; 15:3910. [PMID: 37568727 PMCID: PMC10417795 DOI: 10.3390/cancers15153910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
WD40-repeat (WDR) domain proteins play a crucial role in mediating protein-protein interactions that sustain oncogenesis in human cancers. One prominent example is the interaction between the transcription factor MYC and its chromatin co-factor, WD40-repeat domain protein 5 (WDR5), which is essential for oncogenic processes. The MYC family of proteins is frequently overexpressed in various cancers and has been validated as a promising target for anticancer therapies. The recruitment of MYC to chromatin is facilitated by WDR5, highlighting the significance of their interaction. Consequently, inhibiting the MYC-WDR5 interaction has been shown to induce the regression of malignant tumors, offering an alternative approach to targeting MYC in the development of anticancer drugs. WDR5 has two protein interaction sites, the "WDR5-binding motif" (WBM) site for MYC interaction and the histone methyltransferases SET1 recognition motif "WDR5-interacting" (WIN) site forming MLL complex. Significant efforts have been dedicated to the discovery of inhibitors that target the WDR5 protein. More recently, the successful application of targeted protein degradation technology has enabled the removal of WDR5. This breakthrough has opened up new avenues for inhibiting the interaction between WDR5 and the binding partners. In this review, we address the recent progress made in targeting WDR5 to inhibit MDR5-MYC and MDR5-MLL1 interactions, including its targeted protein degradation and their potential impact on anticancer drug discovery.
Collapse
Affiliation(s)
- Raju Gurung
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea; (R.G.); (D.O.); (R.P.)
| | - Darlami Om
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea; (R.G.); (D.O.); (R.P.)
| | - Rabin Pun
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea; (R.G.); (D.O.); (R.P.)
| | - Soonsil Hyun
- College of Pharmacy, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Heungdeok-gu, Cheongju-si 28160, Republic of Korea
| | - Dongyun Shin
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea; (R.G.); (D.O.); (R.P.)
- Gachon Institute of Pharmaceutical Science, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| |
Collapse
|
33
|
Liu Z, Zhang X, Xu M, Hong JJ, Ciardiello A, Lei H, Shern JF, Thiele CJ. MYCN driven oncogenesis involves cooperation with WDR5 to activate canonical MYC targets and G9a to repress differentiation genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.11.548643. [PMID: 37781575 PMCID: PMC10541123 DOI: 10.1101/2023.07.11.548643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
MYCN activates canonical MYC targets involved in ribosome biogenesis, protein synthesis and represses neuronal differentiation genes to drive oncogenesis in neuroblastoma (NB). How MYCN orchestrates global gene expression remains incompletely understood. Our study finds that MYCN binds promoters to up-regulate canonical MYC targets but binds to both enhancers and promoters to repress differentiation genes. MYCN-binding also increases H3K4me3 and H3K27ac on canonical MYC target promoters and decreases H3K27ac on neuronal differentiation gene enhancers and promoters. WDR5 is needed to facilitate MYCN promoter binding to activate canonical MYC target genes, whereas MYCN recruits G9a to enhancers to repress neuronal differentiation genes. Targeting both MYCN's active and repressive transcriptional activities using both WDR5 and G9a inhibitors synergistically suppresses NB growth. We demonstrate that MYCN cooperates with WDR5 and G9a to orchestrate global gene transcription. The targeting of both these cofactors is a novel therapeutic strategy to indirectly target the oncogenic activity of MYCN.
Collapse
Affiliation(s)
- Zhihui Liu
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Xiyuan Zhang
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Man Xu
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Jason J. Hong
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Amanda Ciardiello
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Haiyan Lei
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Jack F. Shern
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Carol J. Thiele
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
34
|
Khameneh HJ, Fonta N, Zenobi A, Niogret C, Ventura P, Guerra C, Kwee I, Rinaldi A, Pecoraro M, Geiger R, Cavalli A, Bertoni F, Vivier E, Trumpp A, Guarda G. Myc controls NK cell development, IL-15-driven expansion, and translational machinery. Life Sci Alliance 2023; 6:e202302069. [PMID: 37105715 PMCID: PMC10140547 DOI: 10.26508/lsa.202302069] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
MYC is a pleiotropic transcription factor involved in cancer, cell proliferation, and metabolism. Its regulation and function in NK cells, which are innate cytotoxic lymphocytes important to control viral infections and cancer, remain poorly defined. Here, we show that mice deficient for Myc in NK cells presented a severe reduction in these lymphocytes. Myc was required for NK cell development and expansion in response to the key cytokine IL-15, which induced Myc through transcriptional and posttranslational mechanisms. Mechanistically, Myc ablation in vivo largely impacted NK cells' ribosomagenesis, reducing their translation and expansion capacities. Similar results were obtained by inhibiting MYC in human NK cells. Impairing translation by pharmacological intervention phenocopied the consequences of deleting or blocking MYC in vitro. Notably, mice lacking Myc in NK cells exhibited defective anticancer immunity, which reflected their decreased numbers of mature NK cells exerting suboptimal cytotoxic functions. These results indicate that MYC is a central node in NK cells, connecting IL-15 to translational fitness, expansion, and anticancer immunity.
Collapse
Affiliation(s)
- Hanif J Khameneh
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Nicolas Fonta
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Alessandro Zenobi
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Charlène Niogret
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Pedro Ventura
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Concetta Guerra
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Ivo Kwee
- BigOmics Analytics SA, Lugano, Switzerland
| | - Andrea Rinaldi
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute of Oncology Research, Bellinzona, Switzerland
| | - Matteo Pecoraro
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Roger Geiger
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute of Oncology Research, Bellinzona, Switzerland
| | - Andrea Cavalli
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Francesco Bertoni
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute of Oncology Research, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Eric Vivier
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France
- Innate Pharma Research Laboratories, Marseille, France
- APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, DKFZ, Heidelberg, Germany
- HI-STEM: The Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany
| | - Greta Guarda
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| |
Collapse
|
35
|
Bumpous LA, Moe KC, Wang J, Carver LA, Williams AG, Romer AS, Scobee JD, Maxwell JN, Jones CA, Chung DH, Tansey WP, Liu Q, Weissmiller AM. WDR5 facilitates recruitment of N-MYC to conserved WDR5 gene targets in neuroblastoma cell lines. Oncogenesis 2023; 12:32. [PMID: 37336886 PMCID: PMC10279693 DOI: 10.1038/s41389-023-00477-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/11/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023] Open
Abstract
Collectively, the MYC family of oncoprotein transcription factors is overexpressed in more than half of all malignancies. The ability of MYC proteins to access chromatin is fundamental to their role in promoting oncogenic gene expression programs in cancer and this function depends on MYC-cofactor interactions. One such cofactor is the chromatin regulator WDR5, which in models of Burkitt lymphoma facilitates recruitment of the c-MYC protein to chromatin at genes associated with protein synthesis, allowing for tumor progression and maintenance. However, beyond Burkitt lymphoma, it is unknown whether these observations extend to other cancers or MYC family members, and whether WDR5 can be deemed as a "universal" MYC recruiter. Here, we focus on N-MYC amplified neuroblastoma to determine the extent of colocalization between N-MYC and WDR5 on chromatin while also demonstrating that like c-MYC, WDR5 can facilitate the recruitment of N-MYC to conserved WDR5-bound genes. We conclude based on this analysis that N-MYC and WDR5 colocalize invariantly across cell lines at predicted sites of facilitated recruitment associated with protein synthesis genes. Surprisingly, we also identify N-MYC-WDR5 cobound genes that are associated with DNA repair and cell cycle processes. Dissection of chromatin binding characteristics for N-MYC and WDR5 at all cobound genes reveals that sites of facilitated recruitment are inherently different than most N-MYC-WDR5 cobound sites. Our data reveals that WDR5 acts as a universal MYC recruiter at a small cohort of previously identified genes and highlights novel biological functions that may be coregulated by N-MYC and WDR5 to sustain the neuroblastoma state.
Collapse
Affiliation(s)
- Leigh A Bumpous
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Kylie C Moe
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Jing Wang
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37240, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37240, USA
| | - Logan A Carver
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Alexandria G Williams
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Alexander S Romer
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Jesse D Scobee
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Jack N Maxwell
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Cheyenne A Jones
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Dai H Chung
- Department of Pediatric Surgery, University of Texas Southwestern Medical Center and Children's Health, Dallas, TX, 75234, USA
| | - William P Tansey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37240, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37240, USA
| | - April M Weissmiller
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA.
| |
Collapse
|
36
|
Ding J, Liu L, Chiang YL, Zhao M, Liu H, Yang F, Shen L, Lin Y, Deng H, Gao J, Sage DR, West L, Llamas LA, Hao X, Kawatkar S, Li E, Jain RK, Tallarico JA, Canham SM, Wang H. Discovery and Structure-Based Design of Inhibitors of the WD Repeat-Containing Protein 5 (WDR5)-MYC Interaction. J Med Chem 2023. [PMID: 37307526 DOI: 10.1021/acs.jmedchem.3c00787] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
WDR5 is a critical chromatin cofactor of MYC. WDR5 interacts with MYC through the WBM pocket and is hypothesized to anchor MYC to chromatin through its WIN site. Blocking the interaction of WDR5 and MYC impairs the recruitment of MYC to its target genes and disrupts the oncogenic function of MYC in cancer development, thus providing a promising strategy for the treatment of MYC-dysregulated cancers. Here, we describe the discovery of novel WDR5 WBM pocket antagonists containing a 1-phenyl dihydropyridazinone 3-carboxamide core that was identified from high-throughput screening and subsequent structure-based design. The leading compounds showed sub-micromolar inhibition in the biochemical assay. Among them, compound 12 can disrupt WDR5-MYC interaction in cells and reduce MYC target gene expression. Our work provides useful probes to study WDR5-MYC interaction and its function in cancers, which can also be used as the starting point for further optimization toward drug-like small molecules.
Collapse
Affiliation(s)
- Jian Ding
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Lulu Liu
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Ying-Ling Chiang
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
- Novartis Institutes for BioMedical Research, Shanghai 201203, China
| | - Mengxi Zhao
- Novartis Institutes for BioMedical Research, Shanghai 201203, China
| | - Hejun Liu
- Novartis Institutes for BioMedical Research, Shanghai 201203, China
- Novartis Institutes for BioMedical Research, San Diego, California 92121, United States
| | - Fei Yang
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Lingling Shen
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Ying Lin
- Novartis Institutes for BioMedical Research, Shanghai 201203, China
| | - Huiwen Deng
- Novartis Institutes for BioMedical Research, Shanghai 201203, China
| | - Jingyan Gao
- Novartis Institutes for BioMedical Research, Shanghai 201203, China
| | - David R Sage
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Laura West
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Luis A Llamas
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Xin Hao
- Novartis Institutes for BioMedical Research, Shanghai 201203, China
| | - Sameer Kawatkar
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - En Li
- Novartis Institutes for BioMedical Research, Shanghai 201203, China
| | - Rishi K Jain
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - John A Tallarico
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Stephen M Canham
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - He Wang
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
- Novartis Institutes for BioMedical Research, Shanghai 201203, China
| |
Collapse
|
37
|
Wang H, Langlais D, Nijnik A. Histone H2A deubiquitinases in the transcriptional programs of development and hematopoiesis: a consolidated analysis. Int J Biochem Cell Biol 2023; 157:106384. [PMID: 36738766 DOI: 10.1016/j.biocel.2023.106384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Monoubiquitinated lysine 119 of histone H2A (H2AK119ub) is a highly abundant epigenetic mark, associated with gene repression and deposited on chromatin by the polycomb repressor complex 1 (PRC1), which is an essential regulator of diverse transcriptional programs in mammalian development and tissue homeostasis. While multiple deubiquitinases (DUBs) with catalytic activity for H2AK119ub (H2A-DUBs) have been identified, we lack systematic analyses of their roles and cross-talk in transcriptional regulation. Here, we address H2A-DUB functions in epigenetic regulation of mammalian development and tissue maintenance by conducting a meta-analysis of 248 genomics datasets from 32 independent studies, focusing on the mouse model and covering embryonic stem cells (ESCs), hematopoietic, and immune cell lineages. This covers all the publicly available datasets that map genomic H2A-DUB binding and H2AK119ub distributions (ChIP-Seq), and all datasets assessing dysregulation in gene expression in the relevant H2A-DUB knockout models (RNA-Seq). Many accessory datasets for PRC1-2 and DUB-interacting proteins are also analyzed and interpreted, as well as further data assessing chromatin accessibility (ATAC-Seq) and transcriptional activity (RNA-seq). We report co-localization in the binding of H2A-DUBs BAP1, USP16, and to a lesser extent others that is conserved across different cell-types, and also the enrichment of antagonistic PRC1-2 protein complexes at the same genomic locations. Such conserved sites enriched for the H2A-DUBs and PRC1-2 are proximal to transcriptionally active genes that engage in housekeeping cellular functions. Nevertheless, they exhibit H2AK119ub levels significantly above the genomic average that can undergo further increase with H2A-DUB knockout. This indicates a cooperation between H2A-DUBs and PRC1-2 in the modulation of housekeeping transcriptional programs, conserved across many cell types, likely operating through their antagonistic effects on H2AK119ub and the regulation of local H2AK119ub turnover. Our study further highlights existing knowledge gaps and discusses important directions for future work.
Collapse
Affiliation(s)
- HanChen Wang
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, McGill University, QC, Canada
| | - David Langlais
- McGill University Research Centre on Complex Traits, McGill University, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada; McGill Genome Centre, Montreal, QC, Canada.
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, McGill University, QC, Canada.
| |
Collapse
|
38
|
Han QL, Zhang XL, Ren PX, Mei LH, Lin WH, Wang L, Cao Y, Li K, Bai F. Discovery, evaluation and mechanism study of WDR5-targeted small molecular inhibitors for neuroblastoma. Acta Pharmacol Sin 2023; 44:877-887. [PMID: 36207403 PMCID: PMC10043273 DOI: 10.1038/s41401-022-00999-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022]
Abstract
Neuroblastoma is the most common and deadliest tumor in infancy. WDR5 (WD Repeat Domain 5), a critical factor supporting an N-myc transcriptional complex via its WBM site and interacting with chromosome via its WIN site, promotes the progression of neuroblastoma, thus making it a potential anti-neuroblastoma drug target. So far, a few WIN site inhibitors have been reported, and the WBM site disruptors are rare to see. In this study we conducted virtual screening to identify candidate hit compounds targeting the WBM site of WDR5. As a result, 60 compounds were selected as candidate WBM site inhibitors. Cell proliferation assay demonstrated 6 structurally distinct WBM site inhibitors, numbering as compounds 4, 7, 11, 13, 19 and 22, which potently suppressed 3 neuroblastoma cell lines (MYCN-amplified IMR32 and LAN5 cell lines, and MYCN-unamplified SK-N-AS cell line). Among them, compound 19 suppressed the proliferation of IMR32 and LAN5 cells with EC50 values of 12.34 and 14.89 μM, respectively, and exerted a moderate inhibition on SK-N-AS cells, without affecting HEK293T cells at 20 μM. Analysis of high-resolution crystal complex structure of compound 19 against WDR5 revealed that it competitively occupied the hydrophobic pocket where V264 was located, which might disrupt the interaction of MYC with WDR5 and further MYC-medicated gene transcription. By performing RNA-seq analysis we demonstrated the differences in molecular action mechanisms of the compound 19 and a WIN site inhibitor OICR-9429. Most interestingly, we established the particularly high synergy rate by combining WBM site inhibitor 19 and the WIN site inhibitor OICR-9429, providing a novel therapeutic avenue for neuroblastoma.
Collapse
Affiliation(s)
- Qi-Lei Han
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Xiang-Lei Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Peng-Xuan Ren
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Liang-He Mei
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei-Hong Lin
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Lin Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yu Cao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Kai Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, 201102, China.
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China.
| |
Collapse
|
39
|
Lim TY, Wilde BR, Thomas ML, Murphy KE, Vahrenkamp JM, Conway ME, Varley KE, Gertz J, Ayer DE. TXNIP loss expands Myc-dependent transcriptional programs by increasing Myc genomic binding. PLoS Biol 2023; 21:e3001778. [PMID: 36930677 PMCID: PMC10058090 DOI: 10.1371/journal.pbio.3001778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 03/29/2023] [Accepted: 02/13/2023] [Indexed: 03/18/2023] Open
Abstract
The c-Myc protooncogene places a demand on glucose uptake to drive glucose-dependent biosynthetic pathways. To meet this demand, c-Myc protein (Myc henceforth) drives the expression of glucose transporters, glycolytic enzymes, and represses the expression of thioredoxin interacting protein (TXNIP), which is a potent negative regulator of glucose uptake. A Mychigh/TXNIPlow gene signature is clinically significant as it correlates with poor clinical prognosis in triple-negative breast cancer (TNBC) but not in other subtypes of breast cancer, suggesting a functional relationship between Myc and TXNIP. To better understand how TXNIP contributes to the aggressive behavior of TNBC, we generated TXNIP null MDA-MB-231 (231:TKO) cells for our study. We show that TXNIP loss drives a transcriptional program that resembles those driven by Myc and increases global Myc genome occupancy. TXNIP loss allows Myc to invade the promoters and enhancers of target genes that are potentially relevant to cell transformation. Together, these findings suggest that TXNIP is a broad repressor of Myc genomic binding. The increase in Myc genomic binding in the 231:TKO cells expands the Myc-dependent transcriptome we identified in parental MDA-MB-231 cells. This expansion of Myc-dependent transcription following TXNIP loss occurs without an apparent increase in Myc's intrinsic capacity to activate transcription and without increasing Myc levels. Together, our findings suggest that TXNIP loss mimics Myc overexpression, connecting Myc genomic binding and transcriptional programs to the nutrient and progrowth signals that control TXNIP expression.
Collapse
Affiliation(s)
- Tian-Yeh Lim
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - Blake R Wilde
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - Mallory L Thomas
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - Kristin E Murphy
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - Jeffery M Vahrenkamp
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - Megan E Conway
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - Katherine E Varley
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - Donald E Ayer
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| |
Collapse
|
40
|
Sarraf G, Chhabra R. Emerging role of mRNA methylation in regulating the hallmarks of cancer. Biochimie 2023; 206:61-72. [PMID: 36244577 DOI: 10.1016/j.biochi.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/29/2022] [Accepted: 10/10/2022] [Indexed: 11/02/2022]
Abstract
The dynamic chemical modifications of DNA, RNA, and proteins can transform normal cells into malignant ones. While the DNA and protein modifications in cancer have been described extensively in the literature, there are fewer reports about the role of RNA modifications in cancer. There are over 100 forms of RNA modifications and one of these, mRNA methylation, plays a critical role in the malignant properties of the cells. mRNA methylation is a reversible modification responsible for regulating protein expression at the post-transcriptional level. Despite being discovered in the 1970s, a complete understanding of the different proteins involved and the mechanism behind mRNA methylation remains largely unknown. However, these mRNA methylations have been shown to foster cancer hallmarks via specific cellular targets inside the cell. In this review, we provide a brief overview of mRNA methylation and its emerging role in regulating the various hallmarks of cancer.
Collapse
Affiliation(s)
- Gargi Sarraf
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Ravindresh Chhabra
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
41
|
Liu L, Guo X, Wang Y, Li G, Yu Y, Song Y, Zeng C, Ding Z, Qiu Y, Yan F, Zhang YX, Zhao C, Zhang Y, Dou Y, Atadja P, Li E, Wang H. Loss of Wdr5 attenuates MLL-rearranged leukemogenesis by suppressing Myc targets. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166600. [PMID: 36402263 DOI: 10.1016/j.bbadis.2022.166600] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
WD repeat domain 5 (WDR5) is a prominent target for pharmacological inhibition in cancer through its scaffolding role with various oncogenic partners such as MLL and MYC. WDR5-related drug discovery efforts center on blocking these binding interfaces or degradation have been devoted to developing small-molecule inhibitors or degraders of WDR5 for cancer treatment. Nevertheless, the precise role of WDR5 in these cancer cells has not been well elucidated genetically. Here, by using an MLL-AF9 murine leukemia model, we found that genetically deletion of Wdr5 impairs cell growth and colony forming ability of MLL-AF9 leukemia cells in vitro or ex vivo and attenuates the leukemogenesis in vivo as well, which acts through direct regulation of ribosomal genes. Pharmacological inhibition of Wdr5 recapitulates genetic study results in the same model. In conclusion, our current study demonstrated the first genetic evidence for the indispensable role of Wdr5 in MLL-r leukemogenesis in vivo, which supports therapeutically targeting WDR5 in MLL-rearranged leukemia by strengthening its disease linkage genetically and deepening insights into its mechanism of action.
Collapse
Affiliation(s)
- Lulu Liu
- Novartis Institutes for BioMedical Research, 181 Massachusetts Ave., Cambridge, MA 02139, USA; Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Xin Guo
- Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Yao Wang
- Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Guo Li
- Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Yanyan Yu
- Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Yang Song
- Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Chenhui Zeng
- Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Zhilou Ding
- Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Yuanjun Qiu
- Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Feifei Yan
- Novartis Institutes for BioMedical Research, 181 Massachusetts Ave., Cambridge, MA 02139, USA; Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Yi-Xiang Zhang
- Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Caiqi Zhao
- Institut Pasteur of Shanghai, 320 Yueyang Road, Shanghai 200031, China
| | - Yan Zhang
- Department of Hematology, Shanghai General Hospital affiliated to Shanghai Jiao Tong University, No. 650 Songjiang Road, Shanghai 201620, China
| | - Yali Dou
- Department of Medicine, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Ave., Los Angeles, CA 90007, USA
| | - Peter Atadja
- Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - En Li
- Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - He Wang
- Novartis Institutes for BioMedical Research, 181 Massachusetts Ave., Cambridge, MA 02139, USA; Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China.
| |
Collapse
|
42
|
Ding J, Li G, Liu H, Liu L, Lin Y, Gao J, Zhou G, Shen L, Zhao M, Yu Y, Guo W, Hommel U, Ottl J, Blank J, Aubin N, Wei Y, He H, Sage DR, Atadja PW, Li E, Jain RK, Tallarico JA, Canham SM, Chiang YL, Wang H. Discovery of Potent Small-Molecule Inhibitors of WDR5-MYC Interaction. ACS Chem Biol 2023; 18:34-40. [PMID: 36594833 DOI: 10.1021/acschembio.2c00843] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
WD repeat domain 5 (WDR5) is a member of the WD40-repeat protein family that plays a critical role in multiple processes. It is also a prominent target for pharmacological inhibition in diseases such as cancer, aging, and neurodegenerative disorders. Interactions between WDR5 and various partners are essential for sustaining its function. Most drug discovery efforts center on the WIN (WDR5 interaction motif) site of WDR5 that is responsible for the recruitment of WDR5 to chromatin. Here, we describe the discovery of novel WDR5 inhibitors for the other WBM (WDR5 binding motif) pocket on this scaffold protein, to disrupt WDR5 interaction with its binding partner MYC by high-throughput biochemical screening, subsequent molecule optimization, and biological assessment. These new WDR5 inhibitors provide useful probes for future investigations of WDR5 and an avenue for targeting WDR5 as a therapeutic strategy.
Collapse
Affiliation(s)
- Jian Ding
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts02139, United States
| | - Guo Li
- Novartis Institutes for BioMedical Research, Shanghai201203, China
| | - Hejun Liu
- Novartis Institutes for BioMedical Research, Shanghai201203, China.,Novartis Institutes for BioMedical Research, San Diego, California92121, United States
| | - Lulu Liu
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts02139, United States
| | - Ying Lin
- Novartis Institutes for BioMedical Research, Shanghai201203, China
| | - Jingyan Gao
- Novartis Institutes for BioMedical Research, Shanghai201203, China
| | - Guoqiang Zhou
- Novartis Institutes for BioMedical Research, Shanghai201203, China
| | - Lingling Shen
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts02139, United States.,Novartis Institutes for BioMedical Research, Shanghai201203, China
| | - Mengxi Zhao
- Novartis Institutes for BioMedical Research, Shanghai201203, China
| | - Yanyan Yu
- Novartis Institutes for BioMedical Research, Shanghai201203, China
| | - Weihui Guo
- Novartis Institutes for BioMedical Research, Shanghai201203, China
| | - Ulrich Hommel
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| | - Johannes Ottl
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| | - Jutta Blank
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| | - Nicola Aubin
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| | - Yi Wei
- Novartis Institutes for BioMedical Research, Shanghai201203, China
| | - Hu He
- Novartis Institutes for BioMedical Research, Shanghai201203, China
| | - David R Sage
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts02139, United States
| | - Peter W Atadja
- Novartis Institutes for BioMedical Research, Shanghai201203, China
| | - En Li
- Novartis Institutes for BioMedical Research, Shanghai201203, China
| | - Rishi K Jain
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts02139, United States
| | - John A Tallarico
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts02139, United States
| | - Stephen M Canham
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts02139, United States
| | - Ying-Ling Chiang
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts02139, United States.,Novartis Institutes for BioMedical Research, Shanghai201203, China
| | - He Wang
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts02139, United States.,Novartis Institutes for BioMedical Research, Shanghai201203, China
| |
Collapse
|
43
|
Teuscher KB, Chowdhury S, Meyers KM, Tian J, Sai J, Van Meveren M, South TM, Sensintaffar JL, Rietz TA, Goswami S, Wang J, Grieb BC, Lorey SL, Howard GC, Liu Q, Moore WJ, Stott GM, Tansey WP, Lee T, Fesik SW. Structure-based discovery of potent WD repeat domain 5 inhibitors that demonstrate efficacy and safety in preclinical animal models. Proc Natl Acad Sci U S A 2023; 120:e2211297120. [PMID: 36574664 PMCID: PMC9910433 DOI: 10.1073/pnas.2211297120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/30/2022] [Indexed: 12/28/2022] Open
Abstract
WD repeat domain 5 (WDR5) is a core scaffolding component of many multiprotein complexes that perform a variety of critical chromatin-centric processes in the nucleus. WDR5 is a component of the mixed lineage leukemia MLL/SET complex and localizes MYC to chromatin at tumor-critical target genes. As a part of these complexes, WDR5 plays a role in sustaining oncogenesis in a variety of human cancers that are often associated with poor prognoses. Thus, WDR5 has been recognized as an attractive therapeutic target for treating both solid and hematological tumors. Previously, small-molecule inhibitors of the WDR5-interaction (WIN) site and WDR5 degraders have demonstrated robust in vitro cellular efficacy in cancer cell lines and established the therapeutic potential of WDR5. However, these agents have not demonstrated significant in vivo efficacy at pharmacologically relevant doses by oral administration in animal disease models. We have discovered WDR5 WIN-site inhibitors that feature bicyclic heteroaryl P7 units through structure-based design and address the limitations of our previous series of small-molecule inhibitors. Importantly, our lead compounds exhibit enhanced on-target potency, excellent oral pharmacokinetic (PK) profiles, and potent dose-dependent in vivo efficacy in a mouse MV4:11 subcutaneous xenograft model by oral dosing. Furthermore, these in vivo probes show excellent tolerability under a repeated high-dose regimen in rodents to demonstrate the safety of the WDR5 WIN-site inhibition mechanism. Collectively, our results provide strong support for WDR5 WIN-site inhibitors to be utilized as potential anticancer therapeutics.
Collapse
Affiliation(s)
- Kevin B. Teuscher
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Somenath Chowdhury
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Kenneth M. Meyers
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Jianhua Tian
- Molecular Design and Synthesis Center, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN37232-0142
| | - Jiqing Sai
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Mayme Van Meveren
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Taylor M. South
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - John L. Sensintaffar
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Tyson A. Rietz
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Soumita Goswami
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN37232-0004
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN37232-0004
| | - Brian C. Grieb
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37232-0146
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232-0011
| | - Shelly L. Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Gregory C. Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN37232-0004
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN37232-0004
| | - William J. Moore
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD21702-1201
| | - Gordon M. Stott
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD21701-4907
| | - William P. Tansey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Taekyu Lee
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Stephen W. Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN37232-0146
- Department of Chemistry, Vanderbilt University, Nashville, TN37232-0146
| |
Collapse
|
44
|
Nussinov R, Tsai CJ, Jang H. A New View of Activating Mutations in Cancer. Cancer Res 2022; 82:4114-4123. [PMID: 36069825 PMCID: PMC9664134 DOI: 10.1158/0008-5472.can-22-2125] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022]
Abstract
A vast effort has been invested in the identification of driver mutations of cancer. However, recent studies and observations call into question whether the activating mutations or the signal strength are the major determinant of tumor development. The data argue that signal strength determines cell fate, not the mutation that initiated it. In addition to activating mutations, factors that can impact signaling strength include (i) homeostatic mechanisms that can block or enhance the signal, (ii) the types and locations of additional mutations, and (iii) the expression levels of specific isoforms of genes and regulators of proteins in the pathway. Because signal levels are largely decided by chromatin structure, they vary across cell types, states, and time windows. A strong activating mutation can be restricted by low expression, whereas a weaker mutation can be strengthened by high expression. Strong signals can be associated with cell proliferation, but too strong a signal may result in oncogene-induced senescence. Beyond cancer, moderate signal strength in embryonic neural cells may be associated with neurodevelopmental disorders, and moderate signals in aging may be associated with neurodegenerative diseases, like Alzheimer's disease. The challenge for improving patient outcomes therefore lies in determining signaling thresholds and predicting signal strength.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI, Frederick, Maryland
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI, Frederick, Maryland
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI, Frederick, Maryland
| |
Collapse
|
45
|
Liu J, Yu X, Chen H, Kaniskan HÜ, Xie L, Chen X, Jin J, Wei W. TF-DUBTACs Stabilize Tumor Suppressor Transcription Factors. J Am Chem Soc 2022; 144:12934-12941. [PMID: 35786952 PMCID: PMC10981454 DOI: 10.1021/jacs.2c04824] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Targeted protein degradation approaches have been widely used for degrading oncogenic proteins, providing a potentially promising therapeutic strategy for cancer treatment. However, approaches to targeting tumor suppressor proteins are very limited, and only a few agonists have been developed to date. Here, we report the development of a platform termed TF-DUBTAC, which links a DNA oligonucleotide to a covalent ligand of the deubiquitinase OTUB1 via a click reaction, to selectively stabilize tumor suppressor transcription factors. We developed three series of TF-DUBTACs, namely, FOXO-DUBTAC, p53-DUBTAC, and IRF-DUBTAC, which stabilize FOXO3A, p53, and IRF3 in cells, respectively, in an OTUB1-dependent manner. These results suggest that TF-DUBTAC is a generalizable platform to achieve selective stabilization of tumor suppressor transcription factors as a therapeutic means to suppress tumorigenesis.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - He Chen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
46
|
Imran A, Moyer BS, Kalina D, Duncan TM, Moody KJ, Wolfe AJ, Cosgrove MS, Movileanu L. Convergent Alterations of a Protein Hub Produce Divergent Effects within a Binding Site. ACS Chem Biol 2022; 17:1586-1597. [PMID: 35613319 PMCID: PMC9207812 DOI: 10.1021/acschembio.2c00273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/11/2022] [Indexed: 11/29/2022]
Abstract
Progress in tumor sequencing and cancer databases has created an enormous amount of information that scientists struggle to sift through. While several research groups have created computational methods to analyze these databases, much work still remains in distinguishing key implications of pathogenic mutations. Here, we describe an approach to identify and evaluate somatic cancer mutations of WD40 repeat protein 5 (WDR5), a chromatin-associated protein hub. This multitasking protein maintains the functional integrity of large multi-subunit enzymatic complexes of the six human SET1 methyltransferases. Remarkably, the somatic cancer mutations of WDR5 preferentially distribute within and around an essential cavity, which hosts the WDR5 interaction (Win) binding site. Hence, we assessed the real-time binding kinetics of the interactions of key clustered WDR5 mutants with the Win motif peptide ligands of the SET1 family members (SET1Win). Our measurements highlight that this subset of mutants exhibits divergent perturbations in the kinetics and strength of interactions not only relative to those of the native WDR5 but also among various SET1Win ligands. These outcomes could form a fundamental basis for future drug discovery and other developments in medical biotechnology.
Collapse
Affiliation(s)
- Ali Imran
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
| | - Brandon S. Moyer
- Ichor
Life Sciences, Inc., 2651 US Route 11, LaFayette, New York 13084, United
States
| | - Dan Kalina
- Ichor
Life Sciences, Inc., 2651 US Route 11, LaFayette, New York 13084, United
States
- Department
of Chemistry, State University of New York
College of Environmental Science and Forestry, 1 Forestry Dr., Syracuse, New York 13210, United States
| | - Thomas M. Duncan
- Department
of Biochemistry and Molecular Biology, State
University of New York Upstate Medical University, 4249 Weiskotten Hall, 766 Irving
Avenue, Syracuse, New York 13210, United States
| | - Kelsey J. Moody
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- Ichor
Life Sciences, Inc., 2651 US Route 11, LaFayette, New York 13084, United
States
- Department
of Chemistry, State University of New York
College of Environmental Science and Forestry, 1 Forestry Dr., Syracuse, New York 13210, United States
- Lewis
School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Aaron J. Wolfe
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- Ichor
Life Sciences, Inc., 2651 US Route 11, LaFayette, New York 13084, United
States
- Department
of Chemistry, State University of New York
College of Environmental Science and Forestry, 1 Forestry Dr., Syracuse, New York 13210, United States
- Lewis
School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Michael S. Cosgrove
- Department
of Biochemistry and Molecular Biology, State
University of New York Upstate Medical University, 4249 Weiskotten Hall, 766 Irving
Avenue, Syracuse, New York 13210, United States
| | - Liviu Movileanu
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United
States
- The
BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
47
|
Grieb BC, Eischen CM. MTBP and MYC: A Dynamic Duo in Proliferation, Cancer, and Aging. BIOLOGY 2022; 11:881. [PMID: 35741402 PMCID: PMC9219613 DOI: 10.3390/biology11060881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 12/21/2022]
Abstract
The oncogenic transcription factor c-MYC (MYC) is highly conserved across species and is frequently overexpressed or dysregulated in human cancers. MYC regulates a wide range of critical cellular and oncogenic activities including proliferation, metabolism, metastasis, apoptosis, and differentiation by transcriptionally activating or repressing the expression of a large number of genes. This activity of MYC is not carried out in isolation, instead relying on its association with a myriad of protein cofactors. We determined that MDM Two Binding Protein (MTBP) indirectly binds MYC and is a novel MYC transcriptional cofactor. MTBP promotes MYC-mediated transcriptional activity, proliferation, and cellular transformation by binding in a protein complex with MYC at MYC-bound promoters. This discovery provided critical context for data linking MTBP to aging as well as a rapidly expanding body of evidence demonstrating MTBP is overexpressed in many human malignancies, is often linked to poor patient outcomes, and is necessary for cancer cell survival. As such, MTBP represents a novel and potentially broad reaching oncologic drug target, particularly when MYC is dysregulated. Here we have reviewed the discovery of MTBP and the initial controversy with its function as well as its associations with proliferation, MYC, DNA replication, aging, and human cancer.
Collapse
Affiliation(s)
- Brian C. Grieb
- Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Christine M. Eischen
- Department of Cancer Biology and the Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
48
|
Moe KC, Maxwell JN, Wang J, Jones CA, Csaki GT, Florian AC, Romer AS, Bryant DL, Farone AL, Liu Q, Tansey WP, Weissmiller AM. The SWI/SNF ATPase BRG1 facilitates multiple pro-tumorigenic gene expression programs in SMARCB1-deficient cancer cells. Oncogenesis 2022; 11:30. [PMID: 35650187 PMCID: PMC9160003 DOI: 10.1038/s41389-022-00406-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022] Open
Abstract
Malignant rhabdoid tumor (MRT) is driven by the loss of the SNF5 subunit of the SWI/SNF chromatin remodeling complex and then thought to be maintained by residual SWI/SNF (rSWI/SNF) complexes that remain present in the absence of SNF5. rSWI/SNF subunits colocalize extensively on chromatin with the transcription factor MYC, an oncogene identified as a novel driver of MRT. Currently, the role of rSWI/SNF in modulating MYC activity has neither been delineated nor has a direct link between rSWI/SNF and other oncogenes been uncovered. Here, we expose the connection between rSWI/SNF and oncogenic processes using a well-characterized chemical degrader to deplete the SWI/SNF ATPase, BRG1. Using a combination of gene expression and chromatin accessibility assays we show that rSWI/SNF complexes facilitate MYC target gene expression. We also find that rSWI/SNF maintains open chromatin at sites associated with hallmark cancer genes linked to the AP-1 transcription factor, suggesting that AP-1 may drive oncogenesis in MRT. Interestingly, changes in MYC target gene expression are not overtly connected to the chromatin remodeling function of rSWI/SNF, revealing multiple mechanisms used by rSWI/SNF to control transcription. This work provides an understanding of how residual SWI/SNF complexes may converge on multiple oncogenic processes when normal SWI/SNF function is impaired.
Collapse
Affiliation(s)
- Kylie C Moe
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 32132, USA
| | - Jack N Maxwell
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 32132, USA
| | - Jing Wang
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37240, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37240, USA
| | - Cheyenne A Jones
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 32132, USA
| | - Grace T Csaki
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 32132, USA
| | - Andrea C Florian
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
| | - Alexander S Romer
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 32132, USA
| | - Daniel L Bryant
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 32132, USA
| | - Anthony L Farone
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 32132, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37240, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37240, USA
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
| | - April M Weissmiller
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 32132, USA.
| |
Collapse
|
49
|
Phelps GB, Hagen HR, Amsterdam A, Lees JA. MITF deficiency accelerates GNAQ-driven uveal melanoma. Proc Natl Acad Sci U S A 2022; 119:e2107006119. [PMID: 35512098 PMCID: PMC9172632 DOI: 10.1073/pnas.2107006119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 02/17/2022] [Indexed: 01/02/2023] Open
Abstract
Cutaneous melanoma (CM) and uveal melanoma (UM) both originate from the melanocytic lineage but are primarily driven by distinct oncogenic drivers, BRAF/NRAS or GNAQ/GNA11, respectively. The melanocytic master transcriptional regulator, MITF, is essential for both CM development and maintenance, but its role in UM is largely unexplored. Here, we use zebrafish models to dissect the key UM oncogenic signaling events and establish the role of MITF in UM tumors. Using a melanocytic lineage expression system, we showed that patient-derived mutations of GNAQ (GNAQQ209L) or its upstream CYSLTR2 receptor (CYSLTR2L129Q) both drive UM when combined with a cooperating mutation, tp53M214K/M214K. The tumor-initiating potential of the major GNAQ/11 effector pathways, YAP, and phospholipase C-β (PLCβ)–ERK was also investigated in this system and thus showed that while activated YAP (YAPAA) induced UM with high potency, the patient-derived PLCβ4 mutation (PLCB4D630Y) very rarely yielded UM tumors in the tp53M214K/M214K context. Remarkably, mitfa deficiency was profoundly UM promoting, dramatically accelerating the onset and progression of tumors induced by Tg(mitfa:GNAQQ209L);tp53M214K/M214K or Tg(mitfa:CYSLTR2L129Q);tp53M214K/M214K. Moreover, mitfa loss was sufficient to cooperate with GNAQQ209L to drive tp53–wild type UM development and allowed Tg(mitfa:PLCB4D630Y);tp53M214K/M214K melanocyte lineage cells to readily form tumors. Notably, all of the mitfa−/− UM tumors, including those arising in Tg(mitfa:PLCB4D630Y);tp53M214K/M214K;mitfa−/− zebrafish, displayed nuclear YAP while lacking hyperactive ERK indicative of PLCβ signaling. Collectively, these data show that YAP signaling is the major mediator of UM and that MITF acts as a bona fide tumor suppressor in UM in direct opposition to its essential role in CM.
Collapse
Affiliation(s)
- Grace B. Phelps
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Hannah R. Hagen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Adam Amsterdam
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jacqueline A. Lees
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
50
|
Teuscher KB, Meyers KM, Wei Q, Mills JJ, Tian J, Alvarado J, Sai J, Van Meveren M, South TM, Rietz TA, Zhao B, Moore WJ, Stott GM, Tansey WP, Lee T, Fesik SW. Discovery of Potent Orally Bioavailable WD Repeat Domain 5 (WDR5) Inhibitors Using a Pharmacophore-Based Optimization. J Med Chem 2022; 65:6287-6312. [PMID: 35436124 PMCID: PMC10081510 DOI: 10.1021/acs.jmedchem.2c00195] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
WD repeat domain 5 (WDR5) is a nuclear scaffolding protein that forms many biologically important multiprotein complexes. The WIN site of WDR5 represents a promising pharmacological target in a variety of human cancers. Here, we describe the optimization of our initial WDR5 WIN-site inhibitor using a structure-guided pharmacophore-based convergent strategy to improve its druglike properties and pharmacokinetic profile. The core of the previous lead remained constant while a focused SAR effort on the three pharmacophore units was combined to generate a new in vivo lead series. Importantly, this new series of compounds has picomolar binding affinity, improved cellular antiproliferative activity and selectivity, and increased kinetic aqueous solubility. They also exhibit a desirable oral pharmacokinetic profile with manageable intravenous clearance and high oral bioavailability. Thus, these new leads are useful probes toward studying the effects of WDR5 inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - William J Moore
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701-4907, United States
| | - Gordon M Stott
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701-4907, United States
| | | | | | | |
Collapse
|