1
|
Rawat S, Heeger DJ, Martiniani S. Unconditional stability of a recurrent neural circuit implementing divisive normalization. ARXIV 2025:arXiv:2409.18946v3. [PMID: 39398197 PMCID: PMC11469413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Stability in recurrent neural models poses a significant challenge, particularly in developing biologically plausible neurodynamical models that can be seamlessly trained. Traditional cortical circuit models are notoriously difficult to train due to expansive nonlinearities in the dynamical system, leading to an optimization problem with nonlinear stability constraints that are difficult to impose. Conversely, recurrent neural networks (RNNs) excel in tasks involving sequential data but lack biological plausibility and interpretability. In this work, we address these challenges by linking dynamic divisive normalization (DN) to the stability of "oscillatory recurrent gated neural integrator circuits" (ORGaNICs), a biologically plausible recurrent cortical circuit model that dynamically achieves DN and that has been shown to simulate a wide range of neurophysiological phenomena. By using the indirect method of Lyapunov, we prove the remarkable property of unconditional local stability for an arbitrary-dimensional ORGaNICs circuit when the recurrent weight matrix is the identity. We thus connect ORGaNICs to a system of coupled damped harmonic oscillators, which enables us to derive the circuit's energy function, providing a normative principle of what the circuit, and individual neurons, aim to accomplish. Further, for a generic recurrent weight matrix, we prove the stability of the 2D model and demonstrate empirically that stability holds in higher dimensions. Finally, we show that ORGaNICs can be trained by backpropagation through time without gradient clipping/scaling, thanks to its intrinsic stability property and adaptive time constants, which address the problems of exploding, vanishing, and oscillating gradients. By evaluating the model's performance on RNN benchmarks, we find that ORGaNICs outperform alternative neurodynamical models on static image classification tasks and perform comparably to LSTMs on sequential tasks.
Collapse
Affiliation(s)
- Shivang Rawat
- Courant Institute of Mathematical Sciences, NYU
- Center for Soft Matter Research, Department of Physics, NYU
| | - David J Heeger
- Department of Psychology, NYU
- Center for Neural Science, NYU
| | - Stefano Martiniani
- Courant Institute of Mathematical Sciences, NYU
- Center for Soft Matter Research, Department of Physics, NYU
- Simons Center for Computational Physical Chemistry, Department of Chemistry, NYU
| |
Collapse
|
2
|
Phillips WA, Bachmann T, Spratling MW, Muckli L, Petro LS, Zolnik T. Cellular psychology: relating cognition to context-sensitive pyramidal cells. Trends Cogn Sci 2025; 29:28-40. [PMID: 39353837 DOI: 10.1016/j.tics.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
'Cellular psychology' is a new field of inquiry that studies dendritic mechanisms for adapting mental events to the current context, thus increasing their coherence, flexibility, effectiveness, and comprehensibility. Apical dendrites of neocortical pyramidal cells have a crucial role in cognition - those dendrites receive input from diverse sources, including feedback, and can amplify the cell's feedforward transmission if relevant in that context. Specialized subsets of inhibitory interneurons regulate this cooperative context-sensitive processing by increasing or decreasing amplification. Apical input has different effects on cellular output depending on whether we are awake, deeply asleep, or dreaming. Furthermore, wakeful thought and imagery may depend on apical input. High-resolution neuroimaging in humans supports and complements evidence on these cellular mechanisms from other mammals.
Collapse
Affiliation(s)
- William A Phillips
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Talis Bachmann
- Institute of Psychology, University of Tartu, Tartu, Estonia.
| | - Michael W Spratling
- Department of Behavioral and Cognitive Sciences, University of Luxembourg, L-4366 Esch-Belval, Luxembourg
| | - Lars Muckli
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QB, UK; Imaging Centre of Excellence, College of Medical, Veterinary and Life Sciences, University of Glasgow and Queen Elizabeth University Hospital, Glasgow, UK
| | - Lucy S Petro
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QB, UK; Imaging Centre of Excellence, College of Medical, Veterinary and Life Sciences, University of Glasgow and Queen Elizabeth University Hospital, Glasgow, UK
| | - Timothy Zolnik
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Berlin 10117, Germany; Department of Biology, Humboldt Universität zu Berlin, Berlin 10117, Germany
| |
Collapse
|
3
|
Song D, Ruff D, Cohen M, Huang C. Neuronal heterogeneity of normalization strength in a circuit model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624903. [PMID: 39605397 PMCID: PMC11601594 DOI: 10.1101/2024.11.22.624903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The size of a neuron's receptive field increases along the visual hierarchy. Neurons in higher-order visual areas integrate information through a canonical computation called normalization, where neurons respond sublinearly to multiple stimuli in the receptive field. Neurons in the visual cortex exhibit highly heterogeneous degrees of normalization. Recent population recordings from visual cortex find that the interactions between neurons, measured by spike count correlations, depend on their normalization strengths. However, the circuit mechanism underlying the heterogeneity of normalization is unclear. In this work, we study normalization in a spiking neuron network model of visual cortex. The model produces a range of neuronal heterogeneity of normalization strength and the heterogeneity is highly correlated with the inhibitory current each neuron receives. Our model reproduces the dependence of spike count correlations on normalization as observed in experimental data, which is explained by the covariance with the inhibitory current. We find that neurons with stronger normalization are more sensitive to contrast differences in images and encode information more efficiently. In addition, networks with more heterogeneity in normalization encode more information about visual stimuli. Together, our model provides a mechanistic explanation of heterogeneous normalization strengths in the visual cortex, and sheds new light on the computational benefits of neuronal heterogeneity.
Collapse
Affiliation(s)
- Deying Song
- Joint Program in Neural Computation and Machine Learning, Neuroscience Institute, and Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA
- Center for the Neural Basis of Cognition, Pittsburgh, PA
| | - Douglas Ruff
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, IL
| | - Marlene Cohen
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, IL
| | - Chengcheng Huang
- Center for the Neural Basis of Cognition, Pittsburgh, PA
- Department of Neuroscience and Department of Mathematics, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
4
|
Carriere M, Tomasello R, Pulvermüller F. Can human brain connectivity explain verbal working memory? NETWORK (BRISTOL, ENGLAND) 2024:1-42. [PMID: 39530651 DOI: 10.1080/0954898x.2024.2421196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
The ability of humans to store spoken words in verbal working memory and build extensive vocabularies is believed to stem from evolutionary changes in cortical connectivity across primate species. However, the underlying neurobiological mechanisms remain unclear. Why can humans acquire vast vocabularies, while non-human primates cannot? This study addresses this question using brain-constrained neural networks that realize between-species differences in cortical connectivity. It investigates how these structural differences support the formation of neural representations for spoken words and the emergence of verbal working memory, crucial for human vocabulary building. We develop comparative models of frontotemporal and occipital cortices, reflecting human and non-human primate neuroanatomy. Using meanfield and spiking neural networks, we simulate auditory word recognition and examine verbal working memory function. The "human models", characterized by denser inter-area connectivity in core language areas, produced larger cell assemblies than the "monkey models", with specific topographies reflecting semantic properties of the represented words. Crucially, longer-lasting reverberant neural activity was observed in human versus monkey architectures, compatible with robust verbal working memory, a necessary condition for vocabulary building. Our findings offer insights into the structural basis of human-specific symbol learning and verbal working memory, shedding light on humans' unique capacity for large vocabulary acquisition.
Collapse
Affiliation(s)
- Maxime Carriere
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin, Berlin, Germany
| | - Rosario Tomasello
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin, Berlin, Germany
- Cluster of Excellence' Matters of Activity. Image Space Material', Humboldt Universität zu Berlin, Berlin, Germany
| | - Friedemann Pulvermüller
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin, Berlin, Germany
- Cluster of Excellence' Matters of Activity. Image Space Material', Humboldt Universität zu Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Germany
- Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences, Berlin, Germany
| |
Collapse
|
5
|
Granato A, Phillips WA, Schulz JM, Suzuki M, Larkum ME. Dysfunctions of cellular context-sensitivity in neurodevelopmental learning disabilities. Neurosci Biobehav Rev 2024; 161:105688. [PMID: 38670298 DOI: 10.1016/j.neubiorev.2024.105688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Pyramidal neurons have a pivotal role in the cognitive capabilities of neocortex. Though they have been predominantly modeled as integrate-and-fire point processors, many of them have another point of input integration in their apical dendrites that is central to mechanisms endowing them with the sensitivity to context that underlies basic cognitive capabilities. Here we review evidence implicating impairments of those mechanisms in three major neurodevelopmental disabilities, fragile X, Down syndrome, and fetal alcohol spectrum disorders. Multiple dysfunctions of the mechanisms by which pyramidal cells are sensitive to context are found to be implicated in all three syndromes. Further deciphering of these cellular mechanisms would lead to the understanding of and therapies for learning disabilities beyond any that are currently available.
Collapse
Affiliation(s)
- Alberto Granato
- Dept. of Veterinary Sciences. University of Turin, Grugliasco, Turin 10095, Italy.
| | - William A Phillips
- Psychology, Faculty of Natural Sciences, University of Stirling, Scotland FK9 4LA, UK
| | - Jan M Schulz
- Roche Pharma Research & Early Development, Neuroscience & Rare Diseases Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Mototaka Suzuki
- Dept. of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Matthew E Larkum
- Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, Berlin 10117, Germany; Institute of Biology, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
6
|
Marvan T, Phillips WA. Cellular mechanisms of cooperative context-sensitive predictive inference. CURRENT RESEARCH IN NEUROBIOLOGY 2024; 6:100129. [PMID: 38665363 PMCID: PMC11043869 DOI: 10.1016/j.crneur.2024.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
We argue that prediction success maximization is a basic objective of cognition and cortex, that it is compatible with but distinct from prediction error minimization, that neither objective requires subtractive coding, that there is clear neurobiological evidence for the amplification of predicted signals, and that we are unconvinced by evidence proposed in support of subtractive coding. We outline recent discoveries showing that pyramidal cells on which our cognitive capabilities depend usually transmit information about input to their basal dendrites and amplify that transmission when input to their distal apical dendrites provides a context that agrees with the feedforward basal input in that both are depolarizing, i.e., both are excitatory rather than inhibitory. Though these intracellular discoveries require a level of technical expertise that is beyond the current abilities of most neuroscience labs, they are not controversial and acclaimed as groundbreaking. We note that this cellular cooperative context-sensitivity greatly enhances the cognitive capabilities of the mammalian neocortex, and that much remains to be discovered concerning its evolution, development, and pathology.
Collapse
Affiliation(s)
- Tomáš Marvan
- Institute of Philosophy, Czech Academy of Sciences (CAS), Czech Republic
| | | |
Collapse
|
7
|
Weiss O, Bounds HA, Adesnik H, Coen-Cagli R. Modeling the diverse effects of divisive normalization on noise correlations. PLoS Comput Biol 2023; 19:e1011667. [PMID: 38033166 PMCID: PMC10715670 DOI: 10.1371/journal.pcbi.1011667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 12/12/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
Divisive normalization, a prominent descriptive model of neural activity, is employed by theories of neural coding across many different brain areas. Yet, the relationship between normalization and the statistics of neural responses beyond single neurons remains largely unexplored. Here we focus on noise correlations, a widely studied pairwise statistic, because its stimulus and state dependence plays a central role in neural coding. Existing models of covariability typically ignore normalization despite empirical evidence suggesting it affects correlation structure in neural populations. We therefore propose a pairwise stochastic divisive normalization model that accounts for the effects of normalization and other factors on covariability. We first show that normalization modulates noise correlations in qualitatively different ways depending on whether normalization is shared between neurons, and we discuss how to infer when normalization signals are shared. We then apply our model to calcium imaging data from mouse primary visual cortex (V1), and find that it accurately fits the data, often outperforming a popular alternative model of correlations. Our analysis indicates that normalization signals are often shared between V1 neurons in this dataset. Our model will enable quantifying the relation between normalization and covariability in a broad range of neural systems, which could provide new constraints on circuit mechanisms of normalization and their role in information transmission and representation.
Collapse
Affiliation(s)
- Oren Weiss
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Hayley A. Bounds
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Hillel Adesnik
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Ruben Coen-Cagli
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
8
|
Levy ERJ, Carrillo-Segura S, Park EH, Redman WT, Hurtado JR, Chung S, Fenton AA. A manifold neural population code for space in hippocampal coactivity dynamics independent of place fields. Cell Rep 2023; 42:113142. [PMID: 37742193 PMCID: PMC10842170 DOI: 10.1016/j.celrep.2023.113142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/14/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Hippocampus place cell discharge is temporally unreliable across seconds and days, and place fields are multimodal, suggesting an "ensemble cofiring" spatial coding hypothesis with manifold dynamics that does not require reliable spatial tuning, in contrast to hypotheses based on place field (spatial tuning) stability. We imaged mouse CA1 (cornu ammonis 1) ensembles in two environments across three weeks to evaluate these coding hypotheses. While place fields "remap," being more distinct between than within environments, coactivity relationships generally change less. Decoding location and environment from 1-s ensemble location-specific activity is effective and improves with experience. Decoding environment from cell-pair coactivity relationships is also effective and improves with experience, even after removing place tuning. Discriminating environments from 1-s ensemble coactivity relies crucially on the cells with the most anti-coactive cell-pair relationships because activity is internally organized on a low-dimensional manifold of non-linear coactivity relationships that intermittently reregisters to environments according to the anti-cofiring subpopulation activity.
Collapse
Affiliation(s)
| | - Simón Carrillo-Segura
- Center for Neural Science, New York University, New York, NY 10003, USA; Graduate Program in Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA
| | - Eun Hye Park
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - William Thomas Redman
- Interdepartmental Graduate Program in Dynamical Neuroscience, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | | | - SueYeon Chung
- Center for Neural Science, New York University, New York, NY 10003, USA; Flatiron Institute Center for Computational Neuroscience, New York, NY 10010, USA
| | - André Antonio Fenton
- Center for Neural Science, New York University, New York, NY 10003, USA; Neuroscience Institute at the NYU Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
9
|
Benigno GB, Budzinski RC, Davis ZW, Reynolds JH, Muller L. Waves traveling over a map of visual space can ignite short-term predictions of sensory input. Nat Commun 2023; 14:3409. [PMID: 37296131 PMCID: PMC10256723 DOI: 10.1038/s41467-023-39076-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Recent analyses have found waves of neural activity traveling across entire visual cortical areas in awake animals. These traveling waves modulate the excitability of local networks and perceptual sensitivity. The general computational role of these spatiotemporal patterns in the visual system, however, remains unclear. Here, we hypothesize that traveling waves endow the visual system with the capacity to predict complex and naturalistic inputs. We present a network model whose connections can be rapidly and efficiently trained to predict individual natural movies. After training, a few input frames from a movie trigger complex wave patterns that drive accurate predictions many frames into the future solely from the network's connections. When the recurrent connections that drive waves are randomly shuffled, both traveling waves and the ability to predict are eliminated. These results suggest traveling waves may play an essential computational role in the visual system by embedding continuous spatiotemporal structures over spatial maps.
Collapse
Affiliation(s)
- Gabriel B Benigno
- Department of Mathematics, Western University, London, ON, Canada
- Brain and Mind Institute, Western University, London, ON, Canada
- Western Academy for Advanced Research, Western University, London, ON, Canada
| | - Roberto C Budzinski
- Department of Mathematics, Western University, London, ON, Canada
- Brain and Mind Institute, Western University, London, ON, Canada
- Western Academy for Advanced Research, Western University, London, ON, Canada
| | - Zachary W Davis
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - John H Reynolds
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lyle Muller
- Department of Mathematics, Western University, London, ON, Canada.
- Brain and Mind Institute, Western University, London, ON, Canada.
- Western Academy for Advanced Research, Western University, London, ON, Canada.
| |
Collapse
|
10
|
Different eigenvalue distributions encode the same temporal tasks in recurrent neural networks. Cogn Neurodyn 2023; 17:257-275. [PMID: 35469119 PMCID: PMC9020562 DOI: 10.1007/s11571-022-09802-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 01/26/2023] Open
Abstract
Different brain areas, such as the cortex and, more specifically, the prefrontal cortex, show great recurrence in their connections, even in early sensory areas. Several approaches and methods based on trained networks have been proposed to model and describe these regions. It is essential to understand the dynamics behind the models because they are used to build different hypotheses about the functioning of brain areas and to explain experimental results. The main contribution here is the description of the dynamics through the classification and interpretation carried out with a set of numerical simulations. This study sheds light on the multiplicity of solutions obtained for the same tasks and shows the link between the spectra of linearized trained networks and the dynamics of the counterparts. The patterns in the distribution of the eigenvalues of the recurrent weight matrix were studied and properly related to the dynamics in each task. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09802-5.
Collapse
|
11
|
Jun NY, Ruff DA, Kramer LE, Bowes B, Tokdar ST, Cohen MR, Groh JM. Coordinated multiplexing of information about separate objects in visual cortex. eLife 2022; 11:e76452. [PMID: 36444983 PMCID: PMC9708082 DOI: 10.7554/elife.76452] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 10/21/2022] [Indexed: 11/30/2022] Open
Abstract
Sensory receptive fields are large enough that they can contain more than one perceptible stimulus. How, then, can the brain encode information about each of the stimuli that may be present at a given moment? We recently showed that when more than one stimulus is present, single neurons can fluctuate between coding one vs. the other(s) across some time period, suggesting a form of neural multiplexing of different stimuli (Caruso et al., 2018). Here, we investigate (a) whether such coding fluctuations occur in early visual cortical areas; (b) how coding fluctuations are coordinated across the neural population; and (c) how coordinated coding fluctuations depend on the parsing of stimuli into separate vs. fused objects. We found coding fluctuations do occur in macaque V1 but only when the two stimuli form separate objects. Such separate objects evoked a novel pattern of V1 spike count ('noise') correlations involving distinct distributions of positive and negative values. This bimodal correlation pattern was most pronounced among pairs of neurons showing the strongest evidence for coding fluctuations or multiplexing. Whether a given pair of neurons exhibited positive or negative correlations depended on whether the two neurons both responded better to the same object or had different object preferences. Distinct distributions of spike count correlations based on stimulus preferences were also seen in V4 for separate objects but not when two stimuli fused to form one object. These findings suggest multiple objects evoke different response dynamics than those evoked by single stimuli, lending support to the multiplexing hypothesis and suggesting a means by which information about multiple objects can be preserved despite the apparent coarseness of sensory coding.
Collapse
Affiliation(s)
- Na Young Jun
- Department of Neurobiology, Duke UniversityDurhamUnited States
- Center for Cognitive Neuroscience, Duke UniversityDurhamUnited States
- Duke Institute for Brain SciencesDurhamUnited States
| | - Douglas A Ruff
- Department of Neuroscience, University of PittsburghPittsburghUnited States
- Center for the Neural Basis of Cognition, University of PittsburghPittsburghUnited States
| | - Lily E Kramer
- Department of Neuroscience, University of PittsburghPittsburghUnited States
- Center for the Neural Basis of Cognition, University of PittsburghPittsburghUnited States
| | - Brittany Bowes
- Department of Neuroscience, University of PittsburghPittsburghUnited States
- Center for the Neural Basis of Cognition, University of PittsburghPittsburghUnited States
| | - Surya T Tokdar
- Department of Statistical Science, Duke UniversityDurhamUnited States
| | - Marlene R Cohen
- Department of Neuroscience, University of PittsburghPittsburghUnited States
- Center for the Neural Basis of Cognition, University of PittsburghPittsburghUnited States
| | - Jennifer M Groh
- Department of Neurobiology, Duke UniversityDurhamUnited States
- Center for Cognitive Neuroscience, Duke UniversityDurhamUnited States
- Duke Institute for Brain SciencesDurhamUnited States
- Department of Psychology and Neuroscience, Duke UniversityDurhamUnited States
- Department of Biomedical Engineering, Duke UniversityDurhamUnited States
- Department of Computer Science, Duke UniversityDurhamUnited States
| |
Collapse
|
12
|
Inagaki HK, Chen S, Daie K, Finkelstein A, Fontolan L, Romani S, Svoboda K. Neural Algorithms and Circuits for Motor Planning. Annu Rev Neurosci 2022; 45:249-271. [PMID: 35316610 DOI: 10.1146/annurev-neuro-092021-121730] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The brain plans and executes volitional movements. The underlying patterns of neural population activity have been explored in the context of movements of the eyes, limbs, tongue, and head in nonhuman primates and rodents. How do networks of neurons produce the slow neural dynamics that prepare specific movements and the fast dynamics that ultimately initiate these movements? Recent work exploits rapid and calibrated perturbations of neural activity to test specific dynamical systems models that are capable of producing the observed neural activity. These joint experimental and computational studies show that cortical dynamics during motor planning reflect fixed points of neural activity (attractors). Subcortical control signals reshape and move attractors over multiple timescales, causing commitment to specific actions and rapid transitions to movement execution. Experiments in rodents are beginning to reveal how these algorithms are implemented at the level of brain-wide neural circuits.
Collapse
Affiliation(s)
| | - Susu Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Kayvon Daie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA.,Allen Institute for Neural Dynamics, Seattle, Washington, USA;
| | - Arseny Finkelstein
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Lorenzo Fontolan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Sandro Romani
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA.,Allen Institute for Neural Dynamics, Seattle, Washington, USA;
| |
Collapse
|
13
|
Asabuki T, Kokate P, Fukai T. Neural circuit mechanisms of hierarchical sequence learning tested on large-scale recording data. PLoS Comput Biol 2022; 18:e1010214. [PMID: 35727828 PMCID: PMC9249189 DOI: 10.1371/journal.pcbi.1010214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 07/01/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
The brain performs various cognitive functions by learning the spatiotemporal salient features of the environment. This learning requires unsupervised segmentation of hierarchically organized spike sequences, but the underlying neural mechanism is only poorly understood. Here, we show that a recurrent gated network of neurons with dendrites can efficiently solve difficult segmentation tasks. In this model, multiplicative recurrent connections learn a context-dependent gating of dendro-somatic information transfers to minimize error in the prediction of somatic responses by the dendrites. Consequently, these connections filter the redundant input features represented by the dendrites but unnecessary in the given context. The model was tested on both synthetic and real neural data. In particular, the model was successful for segmenting multiple cell assemblies repeating in large-scale calcium imaging data containing thousands of cortical neurons. Our results suggest that recurrent gating of dendro-somatic signal transfers is crucial for cortical learning of context-dependent segmentation tasks.
Collapse
Affiliation(s)
- Toshitake Asabuki
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
| | - Prajakta Kokate
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
| | - Tomoki Fukai
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
| |
Collapse
|
14
|
Josipovic Z. Implicit-explicit gradient of nondual awareness or consciousness as such. Neurosci Conscious 2021; 2021:niab031. [PMID: 34646576 PMCID: PMC8500298 DOI: 10.1093/nc/niab031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/29/2021] [Accepted: 08/19/2021] [Indexed: 01/04/2023] Open
Abstract
Consciousness is multi-dimensional but is most often portrayed with a two-dimensional (2D) map that has global levels or states on one axis and phenomenal contents on the other. On this map, awareness is conflated either with general alertness or with phenomenal content. This contributes to ongoing difficulties in the scientific understanding of consciousness. Previously, I have proposed that consciousness as such or nondual awareness-a basic non-conceptual, non-propositional awareness in itself free of subject-object fragmentation-is a unique kind that cannot be adequately specified by this 2D map of states and contents. Here, I propose an implicit-explicit gradient of nondual awareness to be added as the z-axis to the existing 2D map of consciousness. This gradient informs about the degree to which nondual awareness is manifest in any experience, independent of the specifics of global state or local content. Alternatively, within the multi-dimensional state space model of consciousness, nondual awareness can be specified by several vectors, each representing one of its properties. In the first part, I outline nondual awareness or consciousness as such in terms of its phenomenal description, its function and its neural correlates. In the second part, I explore the implicit-explicit gradient of nondual awareness and how including it as an additional axis clarifies certain features of everyday dualistic experiences and is especially relevant for understanding the unitary and nondual experiences accessed via different contemplative methods, mind-altering substances or spontaneously.
Collapse
Affiliation(s)
- Zoran Josipovic
- Psychology Department, Graduate School of Arts & Sciences, New York University, New York, NY 10003, USA
- Nonduality Institute, Woodstock, NY 12498, USA
| |
Collapse
|
15
|
Jordan ID, Sokół PA, Park IM. Gated Recurrent Units Viewed Through the Lens of Continuous Time Dynamical Systems. Front Comput Neurosci 2021; 15:678158. [PMID: 34366817 PMCID: PMC8339926 DOI: 10.3389/fncom.2021.678158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/28/2021] [Indexed: 11/18/2022] Open
Abstract
Gated recurrent units (GRUs) are specialized memory elements for building recurrent neural networks. Despite their incredible success on various tasks, including extracting dynamics underlying neural data, little is understood about the specific dynamics representable in a GRU network. As a result, it is both difficult to know a priori how successful a GRU network will perform on a given task, and also their capacity to mimic the underlying behavior of their biological counterparts. Using a continuous time analysis, we gain intuition on the inner workings of GRU networks. We restrict our presentation to low dimensions, allowing for a comprehensive visualization. We found a surprisingly rich repertoire of dynamical features that includes stable limit cycles (nonlinear oscillations), multi-stable dynamics with various topologies, and homoclinic bifurcations. At the same time we were unable to train GRU networks to produce continuous attractors, which are hypothesized to exist in biological neural networks. We contextualize the usefulness of different kinds of observed dynamics and support our claims experimentally.
Collapse
Affiliation(s)
- Ian D. Jordan
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States
- Institute of Advanced Computational Science, Stony Brook University, Stony Brook, NY, United States
| | - Piotr Aleksander Sokół
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Il Memming Park
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States
- Institute of Advanced Computational Science, Stony Brook University, Stony Brook, NY, United States
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
16
|
Wang B, Han C, Wang T, Dai W, Li Y, Yang Y, Yang G, Zhong L, Zhang Y, Wu Y, Wang G, Yu H, Xing D. Superimposed gratings induce diverse response patterns of gamma oscillations in primary visual cortex. Sci Rep 2021; 11:4941. [PMID: 33654121 PMCID: PMC7925546 DOI: 10.1038/s41598-021-83923-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 01/14/2021] [Indexed: 01/31/2023] Open
Abstract
Stimulus-dependence of gamma oscillations (GAMMA, 30-90 Hz) has not been fully understood, but it is important for revealing neural mechanisms and functions of GAMMA. Here, we recorded spiking activity (MUA) and the local field potential (LFP), driven by a variety of plaids (generated by two superimposed gratings orthogonal to each other and with different contrast combinations), in the primary visual cortex of anesthetized cats. We found two distinct narrow-band GAMMAs in the LFPs and a variety of response patterns to plaids. Similar to MUA, most response patterns showed that the second grating suppressed GAMMAs driven by the first one. However, there is only a weak site-by-site correlation between cross-orientation interactions in GAMMAs and those in MUAs. We developed a normalization model that could unify the response patterns of both GAMMAs and MUAs. Interestingly, compared with MUAs, the GAMMAs demonstrated a wider range of model parameters and more diverse response patterns to plaids. Further analysis revealed that normalization parameters for high GAMMA, but not those for low GAMMA, were significantly correlated with the discrepancy of spatial frequency between stimulus and sites' preferences. Consistent with these findings, normalization parameters and diversity of high GAMMA exhibited a clear transition trend and region difference between area 17 to 18. Our results show that GAMMAs are also regulated in the form of normalization, but that the neural mechanisms for these normalizations might differ from those of spiking activity. Normalizations in different brain signals could be due to interactions of excitation and inhibitions at multiple stages in the visual system.
Collapse
Affiliation(s)
- Bin Wang
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Chuanliang Han
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Tian Wang
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Weifeng Dai
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Yang Li
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Yi Yang
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Guanzhong Yang
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Lvyan Zhong
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Yange Zhang
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Yujie Wu
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Gang Wang
- grid.410318.f0000 0004 0632 3409Center of Brain Sciences, Beijing Institute of Basic Medical Sciences, Beijing, 100085 China
| | - Hongbo Yu
- grid.8547.e0000 0001 0125 2443Vision Research Laboratory, Center for Brain Science Research and School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200433 China
| | - Dajun Xing
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| |
Collapse
|
17
|
Heeger DJ, Zemlianova KO. A recurrent circuit implements normalization, simulating the dynamics of V1 activity. Proc Natl Acad Sci U S A 2020; 117:22494-22505. [PMID: 32843341 PMCID: PMC7486719 DOI: 10.1073/pnas.2005417117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The normalization model has been applied to explain neural activity in diverse neural systems including primary visual cortex (V1). The model's defining characteristic is that the response of each neuron is divided by a factor that includes a weighted sum of activity of a pool of neurons. Despite the success of the normalization model, there are three unresolved issues. 1) Experimental evidence supports the hypothesis that normalization in V1 operates via recurrent amplification, i.e., amplifying weak inputs more than strong inputs. It is unknown how normalization arises from recurrent amplification. 2) Experiments have demonstrated that normalization is weighted such that each weight specifies how one neuron contributes to another's normalization pool. It is unknown how weighted normalization arises from a recurrent circuit. 3) Neural activity in V1 exhibits complex dynamics, including gamma oscillations, linked to normalization. It is unknown how these dynamics emerge from normalization. Here, a family of recurrent circuit models is reported, each of which comprises coupled neural integrators to implement normalization via recurrent amplification with arbitrary normalization weights, some of which can recapitulate key experimental observations of the dynamics of neural activity in V1.
Collapse
Affiliation(s)
- David J Heeger
- Department of Psychology, New York University, New York, NY 10003;
- Center for Neural Science, New York University, New York, NY 10003
| | | |
Collapse
|
18
|
Swanson RA, Levenstein D, McClain K, Tingley D, Buzsáki G. Variable specificity of memory trace reactivation during hippocampal sharp wave ripples. Curr Opin Behav Sci 2020; 32:126-135. [DOI: 10.1016/j.cobeha.2020.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
19
|
Müsch K, Himberger K, Tan KM, Valiante TA, Honey CJ. Transformation of speech sequences in human sensorimotor circuits. Proc Natl Acad Sci U S A 2020; 117:3203-3213. [PMID: 31996476 PMCID: PMC7022155 DOI: 10.1073/pnas.1910939117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
After we listen to a series of words, we can silently replay them in our mind. Does this mental replay involve a reactivation of our original perceptual dynamics? We recorded electrocorticographic (ECoG) activity across the lateral cerebral cortex as people heard and then mentally rehearsed spoken sentences. For each region, we tested whether silent rehearsal of sentences involved reactivation of sentence-specific representations established during perception or transformation to a distinct representation. In sensorimotor and premotor cortex, we observed reliable and temporally precise responses to speech; these patterns transformed to distinct sentence-specific representations during mental rehearsal. In contrast, we observed less reliable and less temporally precise responses in prefrontal and temporoparietal cortex; these higher-order representations, which were sensitive to sentence semantics, were shared across perception and rehearsal of the same sentence. The mental rehearsal of natural speech involves the transformation of stimulus-locked speech representations in sensorimotor and premotor cortex, combined with diffuse reactivation of higher-order semantic representations.
Collapse
Affiliation(s)
- Kathrin Müsch
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD 21218;
| | - Kevin Himberger
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD 21218
| | - Kean Ming Tan
- Department of Statistics, University of Michigan, Ann Arbor, MI 48109
| | - Taufik A Valiante
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON M5T 2S8, Canada
| | - Christopher J Honey
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
20
|
Heeger DJ, Mackey WE. Oscillatory recurrent gated neural integrator circuits (ORGaNICs), a unifying theoretical framework for neural dynamics. Proc Natl Acad Sci U S A 2019; 116:22783-22794. [PMID: 31636212 PMCID: PMC6842604 DOI: 10.1073/pnas.1911633116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Working memory is an example of a cognitive and neural process that is not static but evolves dynamically with changing sensory inputs; another example is motor preparation and execution. We introduce a theoretical framework for neural dynamics, based on oscillatory recurrent gated neural integrator circuits (ORGaNICs), and apply it to simulate key phenomena of working memory and motor control. The model circuits simulate neural activity with complex dynamics, including sequential activity and traveling waves of activity, that manipulate (as well as maintain) information during working memory. The same circuits convert spatial patterns of premotor activity to temporal profiles of motor control activity and manipulate (e.g., time warp) the dynamics. Derivative-like recurrent connectivity, in particular, serves to manipulate and update internal models, an essential feature of working memory and motor execution. In addition, these circuits incorporate recurrent normalization, to ensure stability over time and robustness with respect to perturbations of synaptic weights.
Collapse
Affiliation(s)
- David J Heeger
- Department of Psychology, New York University, New York, NY 10003;
- Center for Neural Science, New York University, New York, NY 10003
| | - Wayne E Mackey
- Department of Psychology, New York University, New York, NY 10003
- Center for Neural Science, New York University, New York, NY 10003
| |
Collapse
|