1
|
Monclús-Gonzalo O, Pal S, Püschel TA, Urciuoli A, Vinuesa V, Robles JM, Almécija S, Alba DM. A Dryopithecine Talus From Abocador de Can Mata (Vallès-Penedès Basin, NE Iberian Peninsula): Morphometric Affinities and Evolutionary Implications for Hominoid Locomotion. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2025; 186:e70043. [PMID: 40202193 DOI: 10.1002/ajpa.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 04/10/2025]
Abstract
OBJECTIVES The functional interpretation of postcranial remains of Middle Miocene great apes from Europe (dryopithecines) suggests a combination of quadrupedalism and orthograde behaviors without modern analogs. We provide further insights based on an isolated dryopithecine talus (IPS85037) from the Middle Miocene (11.7 Ma) Abocador de Can Mata locality ACM/C8-B* (Vallès-Penedès Basin, NE Iberian Peninsula), which represents the most complete one known to date. MATERIAL AND METHODS We compare the specimen with an extant anthropoid sample (n = 68) and the stem hominoid Ekembo heseloni (KMN RU 2036, ~18 Ma, Kenya) using 3D geometric morphometrics. For the two fossil tali, we assess their phenetic affinities using a between-group principal components analysis (bgPCA), estimate body mass based on centroid size, and make locomotor inferences using a partial least-squares regression (PLSR) between talar shape and locomotor repertoire. RESULTS Its large inferred body mass (~38 kg) and the possession of several modern hominoid-like features (albeit combined with more plesiomorphic traits) support the attribution of IPS85037 to a male dryopithecine. The bgPCA indicates that IPS85037 falls close to the extant hominoid variation and is less cercopithecoid-like than that of Ekembo, whose inferred locomotor repertoire is vastly dominated by quadrupedalism (81%). In contrast, the locomotor repertoire inferred from IPS85037 combines important quadrupedal (32%) and vertical climbing/clambering (50%) components with only moderate suspension (10%). DISCUSSION Our results align with previous inferences derived from other postcranial elements of Middle Miocene dryopithecines and, given their classification as crown hominoids, support the hypothesis that certain suspensory adaptations shared by extant hylobatids and hominids likely evolved independently.
Collapse
Affiliation(s)
- Oriol Monclús-Gonzalo
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Shubham Pal
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Thomas A Püschel
- Institute of Human Sciences, School of Anthropology, University of Oxford, Oxford, UK
| | - Alessandro Urciuoli
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Paleontology, University of Zurich, Zurich, Switzerland
- Departamento de Ciencias de la Vida, Universidad de Alcalá, Cátedra de Otoacústica Evolutiva y Paleoantropología (HM Hospitales-UAH), Madrid, Spain
| | - Víctor Vinuesa
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep M Robles
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergio Almécija
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Barcelona, Spain
- Division of Anthropology, American Museum of Natural History, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - David M Alba
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Spear JK. Reduced limb integration characterizes primate clades with diverse locomotor adaptations. J Hum Evol 2024; 194:103567. [PMID: 39068699 DOI: 10.1016/j.jhevol.2024.103567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/30/2024]
Abstract
Hominoids exhibit a strikingly diverse set of locomotor adaptations-including knuckle-walking, brachiation, quadrumanuous suspension, and striding bipedalism-while also possessing morphologies associated with forelimb suspension. It has been suggested that changes in limb element integration facilitated the evolution of diverse locomotor modes by reducing covariation between serial homologs and allowing the evolution of a greater diversity of limb lengths. Here, I compare limb element integration in hominoids with that of other primate taxa, including two that have converged with them in forelimb morphology, Ateles and Pygathrix. Ateles is part of a clade that, such as hominoids, exhibits diverse locomotor adaptations, whereas Pygathrix is an anomaly in a much more homogeneous (in terms of locomotor adaptations) clade. I find that all atelines (and possibly all atelids), not just Ateles, share reduced limb element integration with hominoids. Pygathrix does not, however, instead resembling other members of its own family. Indriids also seem to have higher limb integration than apes, despite using their forelimbs and hindlimbs in divergent ways, although there is more uncertainty in this group due to poor sample size. These results suggest that reduced limb integration is characteristic of certain taxonomic groups with high locomotor diversity rather than taxa with specific, specialized locomotor adaptations. This is consistent with the hypothesis that reduced integration serves to open new areas of morphospace to those clades while suggesting that derived locomotion with divergent demands on limbs is not necessarily associated with reduced limb integration.
Collapse
Affiliation(s)
- Jeffrey K Spear
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 E 57th Street, Chicago, 60637, USA; Center for the Study of Human Origins and Department of Anthropology, New York University, 25 Waverly Place, New York, 10003, USA; New York Consortium in Evolutionary Primatology, New York, USA.
| |
Collapse
|
3
|
Zhang Y, Ni X, Li Q, Stidham T, Lu D, Gao F, Zhang C, Harrison T. Lufengpithecus inner ear provides evidence of a common locomotor repertoire ancestral to human bipedalism. Innovation (N Y) 2024; 5:100580. [PMID: 38476202 PMCID: PMC10928440 DOI: 10.1016/j.xinn.2024.100580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/13/2024] [Indexed: 03/14/2024] Open
Abstract
Various lines of evidence have been used to infer the origin of human bipedalism, but the paucity of hominoid postcranial fossils and the diversity of inferred locomotor modes have tended to confound the reconstruction of ancestral morphotypes. Examination of the bony labyrinth morphology of the inner ear of extinct and living hominoids provides independent evidence for inferring the evolution of hominoid locomotor patterns. New computed tomography data and morphometric analyses of the Late Miocene ape Lufengpithecus indicate that it and other stem great apes possess labyrinths similar to one another and show that hominoids initially evolved from a positional repertoire that included orthogrady, below-branch forelimb suspension and progression, above-branch bipedalism, climbing, clambering, and leaping (hylobatid-like) to one that comprised above-branch quadrupedalism, below-branch forelimb suspension, vertical climbing, limited leaping, terrestrial quadrupedal running and walking, possibly with knuckle walking, and short bouts of bipedalism (chimpanzee-like). The bony labyrinth morphology of Lufengpithecus indicates that it probably conforms more closely to the last common ancestors of crown hominoids and hominids in its locomotor behavior than do other Miocene hominoids. Human bipedalism evolved from this common archetypal Lufengpithecus-like locomotor repertoire. The low evolutionary rate of semicircular canal morphology suggests that Lufengpithecus experienced a relative stasis in locomotor behavior, probably due to the uplift of the Tibetan Plateau, which created a stable environment in the Miocene of southwestern China.
Collapse
Affiliation(s)
- Yinan Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xijun Ni
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Li
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Thomas Stidham
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Lu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Gao
- Yunnan Institute of Cultural Relics and Archeology, Kunming 650118, China
| | - Chi Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Terry Harrison
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, NY 10003, USA
| |
Collapse
|
4
|
Spear JK, Grabowski M, Sekhavati Y, Costa CE, Goldstein DM, Petrullo LA, Peterson AL, Lee AB, Shattuck MR, Gómez-Olivencia A, Williams SA. Evolution of vertebral numbers in primates, with a focus on hominoids and the last common ancestor of hominins and panins. J Hum Evol 2023; 179:103359. [PMID: 37099927 DOI: 10.1016/j.jhevol.2023.103359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 04/28/2023]
Abstract
The primate vertebral column has been extensively studied, with a particular focus on hominoid primates and the last common ancestor of humans and chimpanzees. The number of vertebrae in hominoids-up to and including the last common ancestor of humans and chimpanzees-is subject to considerable debate. However, few formal ancestral state reconstructions exist, and none include a broad sample of primates or account for the correlated evolution of the vertebral column. Here, we conduct an ancestral state reconstruction using a model of evolution that accounts for both homeotic (changes of one type of vertebra to another) and meristic (addition or loss of a vertebra) changes. Our results suggest that ancestral primates were characterized by 29 precaudal vertebrae, with the most common formula being seven cervical, 13 thoracic, six lumbar, and three sacral vertebrae. Extant hominoids evolved tail loss and a reduced lumbar column via sacralization (homeotic transition at the last lumbar vertebra). Our results also indicate that the ancestral hylobatid had seven cervical, 13 thoracic, five lumbar, and four sacral vertebrae, and the ancestral hominid had seven cervical, 13 thoracic, four lumbar, and five sacral vertebrae. The last common ancestor of humans and chimpanzees likely either retained this ancestral hominid formula or was characterized by an additional sacral vertebra, possibly acquired through a homeotic shift at the sacrococcygeal border. Our results support the 'short-back' model of hominin vertebral evolution, which postulates that hominins evolved from an ancestor with an African ape-like numerical composition of the vertebral column.
Collapse
Affiliation(s)
- Jeffrey K Spear
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, NY, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA.
| | - Mark Grabowski
- Research Centre in Evolutionary Anthropology and Paleoecology, Liverpool John Moores University, Liverpool, UK; Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Yeganeh Sekhavati
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO, USA
| | - Christina E Costa
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, NY, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Deanna M Goldstein
- Department of Anatomical Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Lauren A Petrullo
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Amy L Peterson
- Smithsonian Institution, National Museum of Natural History, Washington DC, USA
| | - Amanda B Lee
- Data Scientist, Jellyfish, Suite 3033, 220 N Green St, Chicago, IL, USA
| | | | - Asier Gómez-Olivencia
- Departamento de Geología, Facultad de Ciencia y Tecnología, Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Barrio Sarriena S/n, 48940 Bilbao, Spain; Sociedad de Ciencias Aranzadi, Zorroagagaina 11, 20014 Donostia-San Sebastián, Spain; Centro UCM-ISCIII de Investigación Sobre Evolución y Comportamiento Humanos, Avda. Monforte de Lemos 5 (Pabellón 14), 28029 Madrid, Spain
| | - Scott A Williams
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, NY, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA
| |
Collapse
|
5
|
Urciuoli A, Alba DM. Systematics of Miocene apes: State of the art of a neverending controversy. J Hum Evol 2023; 175:103309. [PMID: 36716680 DOI: 10.1016/j.jhevol.2022.103309] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/29/2023]
Abstract
Hominoids diverged from cercopithecoids during the Oligocene in Afro-Arabia, initially radiating in that continent and subsequently dispersing into Eurasia. From the Late Miocene onward, the geographic range of hominoids progressively shrank, except for hominins, which dispersed out of Africa during the Pleistocene. Although the overall picture of hominoid evolution is clear based on available fossil evidence, many uncertainties persist regarding the phylogeny and paleobiogeography of Miocene apes (nonhominin hominoids), owing to their sparse record, pervasive homoplasy, and the decimated current diversity of this group. We review Miocene ape systematics and evolution by focusing on the most parsimonious cladograms published during the last decade. First, we provide a historical account of the progress made in Miocene ape phylogeny and paleobiogeography, report an updated classification of Miocene apes, and provide a list of Miocene ape species-locality occurrences together with an analysis of their paleobiodiversity dynamics. Second, we discuss various critical issues of Miocene ape phylogeny and paleobiogeography (hylobatid and crown hominid origins, plus the relationships of Oreopithecus) in the light of the highly divergent results obtained from cladistic analyses of craniodental and postcranial characters separately. We conclude that cladistic efforts to disentangle Miocene ape phylogeny are potentially biased by a long-branch attraction problem caused by the numerous postcranial similarities shared between hylobatids and hominids-despite the increasingly held view that they are likely homoplastic to a large extent, as illustrated by Sivapithecus and Pierolapithecus-and further aggravated by abundant missing data owing to incomplete preservation. Finally, we argue that-besides the recovery of additional fossils, the retrieval of paleoproteomic data, and a better integration between cladistics and geometric morphometrics-Miocene ape phylogenetics should take advantage of total-evidence (tip-dating) Bayesian methods of phylogenetic inference combining morphologic, molecular, and chronostratigraphic data. This would hopefully help ascertain whether hylobatid divergence was more basal than currently supported.
Collapse
Affiliation(s)
- Alessandro Urciuoli
- Universitat Autònoma de Barcelona, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain; Division of Palaeoanthropology, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - David M Alba
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
6
|
Spengler RN, Kienast F, Roberts P, Boivin N, Begun DR, Ashastina K, Petraglia M. Bearing Fruit: Miocene Apes and Rosaceous Fruit Evolution. BIOLOGICAL THEORY 2023; 18:134-151. [PMID: 37214192 PMCID: PMC10191964 DOI: 10.1007/s13752-022-00413-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 09/08/2022] [Indexed: 05/24/2023]
Abstract
Extinct megafaunal mammals in the Americas are often linked to seed-dispersal mutualisms with large-fruiting tree species, but large-fruiting species in Europe and Asia have received far less attention. Several species of arboreal Maloideae (apples and pears) and Prunoideae (plums and peaches) evolved large fruits starting around nine million years ago, primarily in Eurasia. As evolutionary adaptations for seed dispersal by animals, the size, high sugar content, and bright colorful visual displays of ripeness suggest that mutualism with megafaunal mammals facilitated the evolutionary change. There has been little discussion as to which animals were likely candidate(s) on the late Miocene landscape of Eurasia. We argue that several possible dispersers could have consumed the large fruits, with endozoochoric dispersal usually relying on guilds of species. During the Pleistocene and Holocene, the dispersal guild likely included ursids, equids, and elephantids. During the late Miocene, large primates were likely also among the members of this guild, and the potential of a long-held mutualism between the ape and apple clades merits further discussion. If primates were a driving factor in the evolution of this large-fruit seed-dispersal system, it would represent an example of seed-dispersal-based mutualism with hominids millions of years prior to crop domestication or the development of cultural practices, such as farming.
Collapse
Affiliation(s)
- Robert N. Spengler
- Department of Archaeology, Max Planck Institute for Geoanthropology, Jena, Germany
- Domestication and Anthropogenic Evolution Research Group, Max Planck Institute for Geoanthropology, Jena, Germany
| | - Frank Kienast
- Senckenberg Research Station of Quaternary, Palaeontology, Weimar, Germany
| | - Patrick Roberts
- Department of Archaeology, Max Planck Institute for Geoanthropology, Jena, Germany
- isoTROPIC Research Group, Max Planck Institute for Geoanthropology, Jena, Germany
| | - Nicole Boivin
- Department of Archaeology, Max Planck Institute for Geoanthropology, Jena, Germany
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC USA
- School of Social Science, The University of Queensland, Brisbane, Australia
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Canada
| | - David R. Begun
- Department of Anthropology, University of Toronto, Toronto, Canada
| | - Kseniia Ashastina
- Department of Archaeology, Max Planck Institute for Geoanthropology, Jena, Germany
- Domestication and Anthropogenic Evolution Research Group, Max Planck Institute for Geoanthropology, Jena, Germany
| | - Michael Petraglia
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC USA
- Australian Research Centre for Human Evolution, Griffith University, Nathan, Queensland Australia
| |
Collapse
|
7
|
Chai H. On the evolution of the morphology and resilience of molar cusps in fossil hominid teeth. J Mech Behav Biomed Mater 2022; 133:105357. [PMID: 35841750 DOI: 10.1016/j.jmbbm.2022.105357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 10/17/2022]
Abstract
Teeth play an important role in evolutionary studies due to their good preservation and direct link to diet. The present work makes use of a previously generated database on molar teeth of fossil hominids which consists of cuspal enamel thickness dc, dentin horn angle φ and section width D, all measured on a given histological tooth section. These data are here interpreted with the aid of "fracture stress" QF = PF/D2 and geological age t, where PF is the occlusal force needed to cause cusp failure as determined from dc and φ. QF is virtually a constant in non-hominins ("apes") while monotonically increasing toward present time in hominins. These two trends intersect at t = ts = 4.5 (0.11) mya, a value similar to other divergence estimates. QF was fitted with a function f(t) which is proportional to (dc/D)2. The monotonic variation of QF and in turn dc/D with t contrasts the more complex behavior generally characterizing other physical entities of fossil hominids. The increase in dc/D in hominins promotes tooth resilience and in turn life span. Finally, it is suggested that PF provides an upper bound to the maximum bite force produced by the jaw structure.
Collapse
Affiliation(s)
- Herzl Chai
- School of Mechanical Engineering, Tel-Aviv University, Israel.
| |
Collapse
|
8
|
O'Neill MC, Demes B, Thompson NE, Larson SG, Stern JT, Umberger BR. Adaptations for bipedal walking: Musculoskeletal structure and three-dimensional joint mechanics of humans and bipedal chimpanzees (Pan troglodytes). J Hum Evol 2022; 168:103195. [PMID: 35596976 DOI: 10.1016/j.jhevol.2022.103195] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 11/25/2022]
Abstract
Humans are unique among apes and other primates in the musculoskeletal design of their lower back, pelvis, and lower limbs. Here, we describe the three-dimensional ground reaction forces and lower/hindlimb joint mechanics of human and bipedal chimpanzees walking over a full stride and test whether: 1) the estimated limb joint work and power during the stance phase, especially the single-support period, is lower in humans than bipedal chimpanzees, 2) the limb joint work and power required for limb swing is lower in humans than in bipedal chimpanzees, and 3) the estimated total mechanical power during walking, accounting for the storage of passive elastic strain energy in humans, is lower in humans than in bipedal chimpanzees. Humans and bipedal chimpanzees were compared at matched dimensionless and dimensional velocities. Our results indicate that humans walk with significantly less work and power output in the first double-support period and the single-support period of stance, but markedly exceed chimpanzees in the second double-support period (i.e., push-off). Humans generate less work and power in limb swing, although the species difference in limb swing power was not statistically significant. We estimated that total mechanical positive 'muscle fiber' work and power were 46.9% and 35.8% lower, respectively, in humans than in bipedal chimpanzees at matched dimensionless speeds. This is due in part to mechanisms for the storage and release of elastic energy at the ankle and hip in humans. Furthermore, these results indicate distinct 'heel strike' and 'lateral balance' mechanics in humans and bipedal chimpanzees and suggest a greater dissipation of mechanical energy through soft tissue deformations in humans. Together, our results document important differences between human and bipedal chimpanzee walking mechanics over a full stride, permitting a more comprehensive understanding of the mechanics and energetics of chimpanzee bipedalism and the evolution of hominin walking.
Collapse
Affiliation(s)
- Matthew C O'Neill
- Department of Anatomy, Midwestern University, Glendale, AZ 85308, USA.
| | - Brigitte Demes
- Department of Anatomical Sciences, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Nathan E Thompson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Susan G Larson
- Department of Anatomical Sciences, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Jack T Stern
- Department of Anatomical Sciences, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Brian R Umberger
- School of Kinesiology, University of Michigan, Ann Arbor, MI 48109-2013, USA
| |
Collapse
|
9
|
Rosen KH, Jones CE, DeSilva JM. Bipedal locomotion in zoo apes: Revisiting the hylobatian model for bipedal origins. EVOLUTIONARY HUMAN SCIENCES 2022; 4:e12. [PMID: 37588936 PMCID: PMC10426021 DOI: 10.1017/ehs.2022.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bipedal locomotion is a hallmark of being human. Yet the body form from which bipedalism evolved remains unclear. Specifically, the positional behaviour (i.e. orthograde vs. pronograde) and the length of the lumbar spine (i.e. long and mobile vs. short and stiff) of the last common ancestor (LCA) of the African great apes and humans require further investigation. While fossil evidence would be the most conclusive, the paucity of hominid fossils from 5-10 million years ago makes this field of research challenging. In their absence, extant primate anatomy and behaviour may offer some insight into the ancestral body form from which bipedalism could most easily evolve. Here, we quantify the frequency of bipedalism in a large sample (N = 496) of zoo-housed hominoids and cercopithecines. Our results show that while each studied species of ape and monkey can move bipedally, hylobatids are significantly more bipedal and engage in bipedal locomotion more frequently and for greater distances than any other primate sampled. These data support hypotheses of an orthograde, long-backed and arboreal LCA, which is consistent with hominoid fossils from the middle-to-late Miocene. If true, knuckle-walking evolved in parallel in Pan and Gorilla, and the human body form, particularly the long lower back and orthograde posture, is conserved.
Collapse
Affiliation(s)
- Kyle H. Rosen
- Department of Anthropology, Dartmouth College, 6047 Silsby Hall, Hanover, NH, USA
| | - Caroline E. Jones
- Department of Psychology, University of Georgia, 125 Baldwin Street, Athens, GA, USA
| | - Jeremy M. DeSilva
- Department of Anthropology, Dartmouth College, 6047 Silsby Hall, Hanover, NH, USA
| |
Collapse
|
10
|
Prang TC. New analyses of the Ardipithecus ramidus foot provide additional evidence of its African ape–like affinities: A reply to. J Hum Evol 2022; 164:103135. [DOI: 10.1016/j.jhevol.2021.103135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022]
|
11
|
Almécija S, Hammond AS, Thompson NE, Pugh KD, Moyà-Solà S, Alba DM. Fossil apes and human evolution. Science 2021; 372:372/6542/eabb4363. [DOI: 10.1126/science.abb4363] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Humans diverged from apes (chimpanzees, specifically) toward the end of the Miocene ~9.3 million to 6.5 million years ago. Understanding the origins of the human lineage (hominins) requires reconstructing the morphology, behavior, and environment of the chimpanzee-human last common ancestor. Modern hominoids (that is, humans and apes) share multiple features (for example, an orthograde body plan facilitating upright positional behaviors). However, the fossil record indicates that living hominoids constitute narrow representatives of an ancient radiation of more widely distributed, diverse species, none of which exhibit the entire suite of locomotor adaptations present in the extant relatives. Hence, some modern ape similarities might have evolved in parallel in response to similar selection pressures. Current evidence suggests that hominins originated in Africa from Miocene ape ancestors unlike any living species.
Collapse
Affiliation(s)
- Sergio Almécija
- Division of Anthropology, American Museum of Natural History (AMNH), New York, NY 10024, USA
- New York Consortium in Evolutionary Primatology at AMNH, New York, NY 10024, USA
- Institut Català de Paleontologia Miquel Crusafont (ICP), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Ashley S. Hammond
- Division of Anthropology, American Museum of Natural History (AMNH), New York, NY 10024, USA
- New York Consortium in Evolutionary Primatology at AMNH, New York, NY 10024, USA
| | - Nathan E. Thompson
- Department of Anatomy, New York Institute of Technology (NYIT) College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Kelsey D. Pugh
- Division of Anthropology, American Museum of Natural History (AMNH), New York, NY 10024, USA
- New York Consortium in Evolutionary Primatology at AMNH, New York, NY 10024, USA
| | - Salvador Moyà-Solà
- Institut Català de Paleontologia Miquel Crusafont (ICP), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Unitat d’Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - David M. Alba
- Institut Català de Paleontologia Miquel Crusafont (ICP), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
12
|
Chaney ME, Ruiz CA, Meindl RS, Lovejoy CO. The foot of the human-chimpanzee last common ancestor was not African ape-like: A response to Prang (2019). J Hum Evol 2021; 164:102940. [PMID: 33441261 DOI: 10.1016/j.jhevol.2020.102940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Morgan E Chaney
- Department of Anthropology & School of Biomedical Sciences, Kent State University, Kent, OH, 44242, USA.
| | - Cody A Ruiz
- Department of Anthropology & School of Biomedical Sciences, Kent State University, Kent, OH, 44242, USA
| | - Richard S Meindl
- Department of Anthropology & School of Biomedical Sciences, Kent State University, Kent, OH, 44242, USA
| | - C Owen Lovejoy
- Department of Anthropology & School of Biomedical Sciences, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
13
|
|
14
|
|
15
|
Machnicki AL, Reno PL. Great apes and humans evolved from a long-backed ancestor. J Hum Evol 2020; 144:102791. [DOI: 10.1016/j.jhevol.2020.102791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
|
16
|
Urciuoli A, Zanolli C, Beaudet A, Dumoncel J, Santos F, Moyà-Solà S, Alba DM. The evolution of the vestibular apparatus in apes and humans. eLife 2020; 9:e51261. [PMID: 32122463 PMCID: PMC7054002 DOI: 10.7554/elife.51261] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/18/2020] [Indexed: 12/17/2022] Open
Abstract
Phylogenetic relationships among extinct hominoids (apes and humans) are controversial due to pervasive homoplasy and the incompleteness of the fossil record. The bony labyrinth might contribute to this debate, as it displays strong phylogenetic signal among other mammals. However, the potential of the vestibular apparatus for phylogenetic reconstruction among fossil apes remains understudied. Here we test and quantify the phylogenetic signal embedded in the vestibular morphology of extant anthropoids (monkeys, apes and humans) and two extinct apes (Oreopithecus and Australopithecus) as captured by a deformation-based 3D geometric morphometric analysis. We also reconstruct the ancestral morphology of various hominoid clades based on phylogenetically-informed maximum likelihood methods. Besides revealing strong phylogenetic signal in the vestibule and enabling the proposal of potential synapomorphies for various hominoid clades, our results confirm the relevance of vestibular morphology for addressing the controversial phylogenetic relationships of fossil apes.
Collapse
Affiliation(s)
- Alessandro Urciuoli
- Institut Català de Paleontologia Miquel CrusafontUniversitat Autònoma de Barcelona, Cerdanyola del VallèsBarcelonaSpain
| | - Clément Zanolli
- Laboratoire PACEA, UMR 5199 CNRS, Université de BordeauxPessacFrance
| | - Amélie Beaudet
- School of Geography, Archaeology and Environmental StudiesUniversity of the WitwatersrandJohannesburgSouth Africa
- Department of AnatomyUniversity of PretoriaPretoriaSouth Africa
| | - Jean Dumoncel
- Laboratoire AMIS, UMR 5288 CNRS, Université de ToulouseToulouseFrance
| | - Frédéric Santos
- Laboratoire PACEA, UMR 5199 CNRS, Université de BordeauxPessacFrance
| | - Salvador Moyà-Solà
- Institut Català de Paleontologia Miquel CrusafontUniversitat Autònoma de Barcelona, Cerdanyola del VallèsBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
- Unitat d’Antropologia (Departament de Biologia Animal, Biologia Vegetal i Ecologia)Universitat Autònoma de Barcelona, Cerdanyola del VallèsBarcelonaSpain
| | - David M Alba
- Institut Català de Paleontologia Miquel CrusafontUniversitat Autònoma de Barcelona, Cerdanyola del VallèsBarcelonaSpain
| |
Collapse
|