1
|
Pickering TR, Cazenave M, Clarke RJ, Heile AJ, Caruana MV, Kuman K, Stratford D, Brain CK, Heaton JL. First articulating os coxae, femur, and tibia of a small adult Paranthropus robustus from Member 1 (Hanging Remnant) of the Swartkrans Formation, South Africa. J Hum Evol 2025; 201:103647. [PMID: 40043506 DOI: 10.1016/j.jhevol.2024.103647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 04/08/2025]
Abstract
Since paleontological work began there in 1948, Swartkrans (South Africa) has yielded hundreds of Early Pleistocene hominin fossils, currently attributed to (in ascending order of quantity) cf. Australopithecus africanus, Homo spp., and Paranthropus robustus. The bulk of that large sample comprises craniodental remains, with (mostly fragmentary) postcranial materials being much less abundant at the site. In that context, our announcement here of the first articulating partial os coxae, nearly complete femur, and complete tibia of a young adult hominin (SWT1/HR-2), excavated from the <2.3 to >1.7-million-year-old Hanging Remnant (Member 1) of the Swartkrans Formation, represents an important addition to the understanding of hominin postural and locomotor behavior in Early Pleistocene South Africa. We provide qualitative and quantitative descriptions and initial functional morphological interpretations of the fossils, based mostly on external bone morphology. Epiphyseal fusion data, element dimensions, the crural index, and live body stature and mass estimates that we provide all indicate that SWT1/HR-2 is one of the smallest known adult hominins in the fossil record. We discuss the paleobiological implications of these findings in relation to our taxonomic diagnosis of SWT1/HR-2 as representing P. robustus.
Collapse
Affiliation(s)
- Travis Rayne Pickering
- Department of Anthropology, University of Wisconsin-Madison, Madison, WI, 53706, USA; Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa.
| | - Marine Cazenave
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany; Division of Anthropology, American Museum of Natural History, New York, 10024, USA; Department of Anatomy, Faculty of Health Sciences, University of Pretoria, 0084, Pretoria, South Africa
| | - R J Clarke
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa
| | - A J Heile
- Department of Anthropology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Matthew V Caruana
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa; Palaeo-Research Institute, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Kathleen Kuman
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa
| | - Dominic Stratford
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa; Department of Anthropology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - C K Brain
- Department of Vertebrates, Ditsong National Museum of Natural History (Transvaal Museum), Pretoria, 0001, South Africa
| | - Jason L Heaton
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa; Department of Biology, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
| |
Collapse
|
2
|
Lawrence AB, Hammond AS, Ward CV. Acetabular orientation, pelvic shape, and the evolution of hominin bipedality. J Hum Evol 2025; 200:103633. [PMID: 39765141 DOI: 10.1016/j.jhevol.2024.103633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 03/09/2025]
Abstract
Hominin pelvic form differs dramatically from that of other primates by having more laterally facing iliac blades, a wider sacrum, and a larger, transversely broad pelvic inlet. The orientation of the acetabulum may also differ, plausibly related to differences in load transmission during upright posture and habitual bipedal locomotion, which may, in turn, affect overall pelvic geometry. We compared acetabular orientation in humans, a phylogenetically broad sample of extant anthropoid primates, and fossil hominins including Australopithecus afarensis (A.L. 288-1, KSD-VP-1/1), Australopithecus africanus (Sts 14), Australopithecus sediba (MH2), and Homo neanderthalensis (Kebara 2). We measured the three-dimensional orientation of the acetabulum on in silico models of individual hipbones aligned to the median plane by registering models to landmark coordinates on articulated pelves. Humans and fossil hominins both possess significantly more ventrally opening acetabula than other extant anthropoids, which exhibit laterally facing acetabula. The orientation of the hominin acetabulum was essentially humanlike by at least 3.6 Ma, well before the appearance of other unique features in the pelvis of Homo that may be associated with long-distance walking or running, thermoregulation, parturition, and larger body size in this genus. These results suggest that the ventral orientation of the acetabulum is a key component in the suite of pelvic characteristics related to habitual bipedality in hominins and should be considered in future analyses of hominin pelvic morphology.
Collapse
Affiliation(s)
- Austin B Lawrence
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA.
| | - Ashley S Hammond
- Division of Anthropology, American Museum of Natural History, New York, NY 10024, USA; New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
| | - Carol V Ward
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
3
|
Lukova A, Dunmore CJ, Tsegai ZJ, Bachmann S, Synek A, Skinner MM. Technical note: Does scan resolution or downsampling impact the analysis of trabecular bone architecture? AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e25023. [PMID: 39237469 DOI: 10.1002/ajpa.25023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024]
Abstract
The "gold standard" for the assessment of trabecular bone structure is high-resolution micro-CT. In this technical note, we test the influence of initial scan resolution and post hoc downsampling on the quantitative and qualitative analysis of trabecular bone in a Gorilla tibia. We analyzed trabecular morphology in the right distal tibia of one Gorilla gorilla individual to investigate the impact of variation in voxel size on measured trabecular variables. For each version of the micro-CT volume, trabecular bone was segmented using the medical image analysis method. Holistic morphometric analysis was then used to analyze bone volume (BV/TV), anisotropy (DA), trabecular thickness (Tb.Th), spacing (Tb.Sp), and number (Tb.N). Increasing voxel size during initial scanning was found to have a strong impact on DA and Tb.Th measures, while BV/TV, Tb.Sp, and Tb.N were found to be less sensitive to variations in initial scan resolution. All tested parameters were not substantially influenced by downsampling up to 90 μm resolution. Color maps of BV/TV and DA also retained their distribution up to 90 μm. This study is the first to examine the effect of variation in micro-CT voxel size on the analysis of trabecular bone structure using whole epiphysis approaches. Our results indicate that microstructural variables may be measured for most trabecular parameters up to a voxel size of 90 μm for both scan and downsampled resolutions. Moreover, if only BV/TV, Tb.Sp or Tb.N is measured, even larger voxel sizes might be used without substantially affecting the results.
Collapse
Affiliation(s)
- Andrea Lukova
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Christopher J Dunmore
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Zewdi J Tsegai
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| | - Sebastian Bachmann
- Computatioal Biomechanics, Institute of Lightweight Design and Structural Biomechanics, Wien, Austria
| | - Alexander Synek
- Computatioal Biomechanics, Institute of Lightweight Design and Structural Biomechanics, Wien, Austria
| | - Matthew M Skinner
- Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
4
|
Lukova A, Dunmore CJ, Bachmann S, Synek A, Pahr DH, Kivell TL, Skinner MM. Trabecular architecture of the distal femur in extant hominids. J Anat 2024; 245:156-180. [PMID: 38381116 PMCID: PMC11161831 DOI: 10.1111/joa.14026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Extant great apes are characterized by a wide range of locomotor, postural and manipulative behaviours that each require the limbs to be used in different ways. In addition to external bone morphology, comparative investigation of trabecular bone, which (re-)models to reflect loads incurred during life, can provide novel insights into bone functional adaptation. Here, we use canonical holistic morphometric analysis (cHMA) to analyse the trabecular morphology in the distal femoral epiphysis of Homo sapiens (n = 26), Gorilla gorilla (n = 14), Pan troglodytes (n = 15) and Pongo sp. (n = 9). We test two predictions: (1) that differing locomotor behaviours will be reflected in differing trabecular architecture of the distal femur across Homo, Pan, Gorilla and Pongo; (2) that trabecular architecture will significantly differ between male and female Gorilla due to their different levels of arboreality but not between male and female Pan or Homo based on previous studies of locomotor behaviours. Results indicate that trabecular architecture differs among extant great apes based on their locomotor repertoires. The relative bone volume and degree of anisotropy patterns found reflect habitual use of extended knee postures during bipedalism in Homo, and habitual use of flexed knee posture during terrestrial and arboreal locomotion in Pan and Gorilla. Trabecular architecture in Pongo is consistent with a highly mobile knee joint that may vary in posture from extension to full flexion. Within Gorilla, trabecular architecture suggests a different loading of knee in extension/flexion between females and males, but no sex differences were found in Pan or Homo, supporting our predictions. Inter- and intra-specific variation in trabecular architecture of distal femur provides a comparative context to interpret knee postures and, in turn, locomotor behaviours in fossil hominins.
Collapse
Affiliation(s)
- Andrea Lukova
- Skeletal Biology Research Centre, School of Anthropology and ConservationUniversity of KentCanterburyUK
| | - Christopher J. Dunmore
- Skeletal Biology Research Centre, School of Anthropology and ConservationUniversity of KentCanterburyUK
| | - Sebastian Bachmann
- Institute of Lightweight Design and Structural BiomechanicsTU WienWienAustria
| | - Alexander Synek
- Institute of Lightweight Design and Structural BiomechanicsTU WienWienAustria
| | - Dieter H. Pahr
- Institute of Lightweight Design and Structural BiomechanicsTU WienWienAustria
- Department of Anatomy and Biomechanics, Division BiomechanicsKarl Landsteiner University of Health SciencesKremsAustria
| | - Tracy L. Kivell
- Department of Human OriginsMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Matthew M. Skinner
- Department of Human OriginsMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| |
Collapse
|
5
|
Syeda SM, Tsegai ZJ, Cazenave M, Skinner MM, Kivell TL. Cortical bone architecture of hominid intermediate phalanges reveals functional signals of locomotion and manipulation. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24902. [PMID: 38400773 DOI: 10.1002/ajpa.24902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/03/2023] [Accepted: 01/13/2024] [Indexed: 02/26/2024]
Abstract
OBJECTIVES Reconstruction of fossil hominin manual behaviors often relies on comparative analyses of extant hominid hands to understand the relationship between hand use and skeletal morphology. In this context, the intermediate phalanges remain understudied. Thus, here we investigate cortical bone morphology of the intermediate phalanges of extant hominids and compare it to the cortical structure of the proximal phalanges, to investigate the relationship between cortical bone structure and inferred loading during manual behaviors. MATERIALS AND METHODS Using micro-CT data, we analyze cortical bone structure of the intermediate phalangeal shaft of digits 2-5 in Pongo pygmaeus (n = 6 individuals), Gorilla gorilla (n = 22), Pan spp. (n = 23), and Homo sapiens (n = 23). The R package morphomap is used to study cortical bone distribution, cortical thickness and cross-sectional properties within and across taxa. RESULTS Non-human great apes generally have thick cortical bone on the palmar shaft, with Pongo only having thick cortex on the peaks of the flexor sheath ridges, while African apes have thick cortex along the entire flexor sheath ridge and proximal to the trochlea. Humans are distinct in having thicker dorsal shaft cortex as well as thick cortex at the disto-palmar region of the shaft. DISCUSSION Variation in cortical bone distribution and properties of the intermediate phalanges is consistent with differences in locomotor and manipulative behaviors in extant great apes. Comparisons between the intermediate and proximal phalanges reveals similar patterns of cortical bone distribution within each taxon but with potentially greater load experienced by the proximal phalanges, even in knuckle-walking African apes. This study provides a comparative context for the reconstruction of habitual hand use in fossil hominins and hominids.
Collapse
Affiliation(s)
- Samar M Syeda
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Zewdi J Tsegai
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| | - Marine Cazenave
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Division of Anthropology, American Museum of Natural History (AMNH), New York, USA
| | - Matthew M Skinner
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tracy L Kivell
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
6
|
Dunmore CJ, Bachmann S, Synek A, Pahr DH, Skinner MM, Kivell TL. The deep trabecular structure of first metacarpals in extant hominids. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24695. [PMID: 36790736 DOI: 10.1002/ajpa.24695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/07/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVES Recent studies have associated subarticular trabecular bone distribution in the extant hominid first metacarpal (Mc1) with observed thumb use, to infer fossil hominin thumb use. Here, we analyze the entire Mc1 to test for interspecific differences in: (1) the absolute volume of trabecular volume fraction, (2) the distribution of the deeper trabecular network, and (3) the distribution of trabeculae in the medullary cavity, especially beneath the Mc1 disto-radial flange. MATERIALS AND METHODS Trabecular bone was imaged using micro-computed tomography in a sample of Homo sapiens (n = 11), Pan paniscus (n = 10), Pan troglodytes (n = 11), Gorilla gorilla (n = 10) and Pongo sp., (n = 7). Using Canonical Holistic Morphometric Analysis (cHMA), we tested for interspecific differences in the trabecular bone volume fraction (BV/TV) and its relative distribution (rBV/TV) throughout the Mc1, including within the head, medullary cavity, and base. RESULTS P. paniscus had the highest, and H. sapiens the lowest, BV/TV relative to other species. rBV/TV distribution statistically distinguished the radial concentrations and lack of medullary trabecular bone in the H. sapiens Mc1 from all other hominids. H. sapiens and, to a lesser extent, G. gorilla also had a significantly higher trabecular volume beneath the disto-radial flange relative to other hominids. DISCUSSION These results are consistent with differences in observed thumb use in these species and may also reflect systemic differences in bone volume fraction. The trabecular bone extension into the medullary cavity and concentrations beneath the disto-radial flange may represent crucial biomechanical signals that will aid in the inference of fossil hominin thumb use.
Collapse
Affiliation(s)
- Christopher J Dunmore
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Sebastian Bachmann
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
| | - Alexander Synek
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
| | - Dieter H Pahr
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
- Department of Anatomy and Biomechanics, Division Biomechanics, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Matthew M Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
7
|
Bird EE, Kivell TL, Dunmore CJ, Tocheri MW, Skinner MM. Trabecular bone structure of the proximal capitate in extant hominids and fossil hominins with implications for midcarpal joint loading and the dart-thrower's motion. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24824. [PMID: 37493308 DOI: 10.1002/ajpa.24824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 05/05/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023]
Abstract
OBJECTIVES This research examines whether the distribution of trabecular bone in the proximal capitates of extant hominids, as well as several fossil hominin taxa, is associated with the oblique path of the midcarpal joint known as the dart-thrower's motion (DTM). MATERIALS AND METHODS We analyzed proximal capitates from extant (Pongo n = 12; Gorilla n = 11; Pan n = 10; fossil and recent Homo sapiens n = 29) and extinct (Australopithecus sediba n = 2; Homo naledi n = 1; Homo floresiensis n = 2; Neandertals n = 3) hominids using a new canonical holistic morphometric analysis, which quantifies and visualizes the distribution of trabecular bone using relative bone volume as a fraction of total volume (rBV/TV). RESULTS Homo sapiens and Neandertals had a continuous band of high rBV/TV that extended across the scaphoid, lunate, and hamate subarticular regions, but other fossil hominins and extant great apes did not. A. sediba expressed a distinct combination of human-like and Pan-like rBV/TV distribution. Both H. floresiensis and H. naledi had high rBV/TV on the ulnar-side of the capitate but low rBV/TV on the radial-side. CONCLUSION The proximal capitates of H. sapiens and Neandertals share a distinctive distribution of trabecular bone that suggests that these two species of Homo regularly load(ed) their midcarpal joints along the full extent of the oblique path of the DTM. The observed pattern in A. sediba suggests that human-like stress at the capito-scaphoid articular surface was combined with Pan-like wrist postures, whereas the patterns in H. floresiensis and H. naledi suggest their midcarpal joints were loaded differently from that of H. sapiens and Neandertals.
Collapse
Affiliation(s)
- Emma E Bird
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Centre for Human Evolution Research, Natural History Museum, London, UK
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| | - Christopher J Dunmore
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Matthew W Tocheri
- Department of Anthropology, Lakehead University, Thunder Bay, Ontario, Canada
- Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Australian Research Council, Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New South Wales, Australia
| | - Matthew M Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
8
|
Aramendi J, Mabulla A, Baquedano E, Domínguez-Rodrigo M. Biomechanical and taxonomic diversity in the Early Pleistocene in East Africa: Structural analysis of a recently discovered femur shaft from Olduvai Gorge (bed I). J Hum Evol 2024; 186:103469. [PMID: 38071888 DOI: 10.1016/j.jhevol.2023.103469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/30/2023]
Abstract
Recent Plio-Pleistocene hominin findings have revealed the complexity of human evolutionary history and the difficulties involved in its interpretation. Moreover, the study of hominin long bone remains is particularly problematic, since it commonly depends on the analysis of fragmentary skeletal elements that in many cases are merely represented by small diaphyseal portions and appear in an isolated fashion in the fossil record. Nevertheless, the study of the postcranial skeleton is particularly important to ascertain locomotor patterns. Here we report on the discovery of a robust hominin femoral fragment (OH 84) at the site of Amin Mturi Korongo dated to 1.84 Ma (Olduvai Bed I). External anatomy and internal bone structure of OH 84 were analyzed and compared with previously published data for modern humans and chimpanzees, as well as for Australopithecus, Paranthropus and Homo specimens ranging from the Late Pliocene to Late Pleistocene. Biomechanical analyses based on transverse cross-sections and the comparison of OH 84 with another robust Olduvai specimen (OH 80) suggest that OH 84 might be tentatively allocated to Paranthropus boisei. More importantly, the identification of a unique combination of traits in OH 84 could indicate both terrestrial bipedalism and an arboreal component in the locomotor repertoire of this individual. If interpreted correctly, OH 84 could thus add to the already mounting evidence of substantial locomotor diversity among Early Pleistocene hominins. Likewise, our results also highlight the difficulties in accurately interpreting the link between form and function in the human fossil record based on fragmentary remains, and ultimately in distinguishing between coeval hominin groups due to the heterogeneous pattern of inter- and intraspecific morphological variability detected among fossil femora.
Collapse
Affiliation(s)
- Julia Aramendi
- McDonald Institute for Archaeological Research, University of Cambridge, CB2 1TN, UK.
| | - Audax Mabulla
- Department of Archaeology and Heritage Studies, University of Dar Es Salaam, P.O. Box 35050, Dar Es Salaam, Tanzania
| | - Enrique Baquedano
- Archaeological and Paleontological Museum of the Community of Madrid, Plaza de Las Bernardas s/n, 28801, Alcalá de Henares, Spain; Institute of Evolution in Africa (IDEA), University of Alcalá and Archaeological and Paleontological Museum of the Community of Madrid, C/Covarrubias 36, 28010, Madrid, Spain
| | - Manuel Domínguez-Rodrigo
- Institute of Evolution in Africa (IDEA), University of Alcalá and Archaeological and Paleontological Museum of the Community of Madrid, C/Covarrubias 36, 28010, Madrid, Spain; University of Alcalá, Department of History and Philosophy, Area of Prehistory, C/Colegios 2, 28801, Alcalá de Henares, Spain; Rice University, Department of Anthropology, 6100 Main St., Houston, TX, 77005 1827, USA
| |
Collapse
|
9
|
Gônet J, Laurin M, Hutchinson JR. Evolution of posture in amniotes-Diving into the trabecular architecture of the femoral head. J Evol Biol 2023; 36:1150-1165. [PMID: 37363887 DOI: 10.1111/jeb.14187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/29/2023] [Accepted: 04/16/2023] [Indexed: 06/28/2023]
Abstract
Extant amniotes show remarkable postural diversity. Broadly speaking, limbs with erect (strongly adducted, more vertically oriented) posture are found in mammals that are particularly heavy (graviportal) or show good running skills (cursorial), while crouched (highly flexed) limbs are found in taxa with more generalized locomotion. In Reptilia, crocodylians have a "semi-erect" (somewhat adducted) posture, birds have more crouched limbs and lepidosaurs have sprawling (well-abducted) limbs. Both synapsids and reptiles underwent a postural transition from sprawling to more erect limbs during the Mesozoic Era. In Reptilia, this postural change is prominent among archosauriforms in the Triassic Period. However, limb posture in many key Triassic taxa remains poorly known. In Synapsida, the chronology of this transition is less clear, and competing hypotheses exist. On land, the limb bones are subject to various stresses related to body support that partly shape their external and internal morphology. Indeed, bone trabeculae (lattice-like bony struts that form the spongy bone tissue) tend to orient themselves along lines of force. Here, we study the link between femoral posture and the femoral trabecular architecture using phylogenetic generalized least squares. We show that microanatomical parameters measured on bone cubes extracted from the femoral head of a sample of amniote femora depend strongly on body mass, but not on femoral posture or lifestyle. We reconstruct ancestral states of femoral posture and various microanatomical parameters to study the "sprawling-to-erect" transition in reptiles and synapsids, and obtain conflicting results. We tentatively infer femoral posture in several hypothetical ancestors using phylogenetic flexible discriminant analysis from maximum likelihood estimates of the microanatomical parameters. In general, the trabecular network of the femoral head is not a good indicator of femoral posture. However, ancestral state reconstruction methods hold great promise for advancing our understanding of the evolution of posture in amniotes.
Collapse
Affiliation(s)
- Jordan Gônet
- Centre de recherche en paléontologie - Paris, UMR 7207, Sorbonne Université, Muséum national d'histoire naturelle, Centre national de la recherche scientifique, Paris, France
| | - Michel Laurin
- Centre de recherche en paléontologie - Paris, UMR 7207, Sorbonne Université, Muséum national d'histoire naturelle, Centre national de la recherche scientifique, Paris, France
| | - John R Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
| |
Collapse
|
10
|
Cazenave M, Kivell TL. Challenges and perspectives on functional interpretations of australopith postcrania and the reconstruction of hominin locomotion. J Hum Evol 2023; 175:103304. [PMID: 36563461 DOI: 10.1016/j.jhevol.2022.103304] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
In 1994, Hunt published the 'postural feeding hypothesis'-a seminal paper on the origins of hominin bipedalism-founded on the detailed study of chimpanzee positional behavior and the functional inferences derived from the upper and lower limb morphology of the Australopithecus afarensis A.L. 288-1 partial skeleton. Hunt proposed a model for understanding the potential selective pressures on hominins, made robust, testable predictions based on Au. afarensis functional morphology, and presented a hypothesis that aimed to explain the dual functional signals of the Au. afarensis and, more generally, early hominin postcranium. Here we synthesize what we have learned about Au. afarensis functional morphology and the dual functional signals of two new australopith discoveries with relatively complete skeletons (Australopithecus sediba and StW 573 'Australopithecus prometheus'). We follow this with a discussion of three research approaches that have been developed for the purpose of drawing behavioral inferences in early hominins: (1) developments in the study of extant apes as models for understanding hominin origins; (2) novel and continued developments to quantify bipedal gait and locomotor economy in extant primates to infer the locomotor costs from the anatomy of fossil taxa; and (3) novel developments in the study of internal bone structure to extract functional signals from fossil remains. In conclusion of this review, we discuss some of the inherent challenges of the approaches and methodologies adopted to reconstruct the locomotor modes and behavioral repertoires in extinct primate taxa, and notably the assessment of habitual terrestrial bipedalism in early hominins.
Collapse
Affiliation(s)
- Marine Cazenave
- Division of Anthropology, American Museum of Natural History, New York, USA; Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK; Department of Anatomy, Faculty of Health Sciences, University of Pretoria, South Africa.
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK; Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
11
|
Beaudet A. The Australopithecus assemblage from Sterkfontein Member 4 (South Africa) and the concept of variation in palaeontology. Evol Anthropol 2023. [PMID: 36632711 DOI: 10.1002/evan.21972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/06/2022] [Accepted: 12/17/2022] [Indexed: 01/13/2023]
Abstract
Interpreting morphological variation within the early hominin fossil record is particularly challenging. Apart from the fact that there is no absolute threshold for defining species boundaries in palaeontology, the degree of variation related to sexual dimorphism, temporal depth, geographic variation or ontogeny is difficult to appreciate in a fossil taxon mainly represented by fragmentary specimens, and such variation could easily be conflated with taxonomic diversity. One of the most emblematic examples in paleoanthropology is the Australopithecus assemblage from the Sterkfontein Caves in South Africa. Whereas some studies support the presence of multiple Australopithecus species at Sterkfontein, others explore alternative hypotheses to explain the morphological variation within the hominin assemblage. In this review, I briefly summarize the ongoing debates surrounding the interpretation of morphological variation at Sterkfontein Member 4 before exploring two promising avenues that would deserve specific attention in the future, that is, temporal depth and nonhuman primate diversity.
Collapse
Affiliation(s)
- Amélie Beaudet
- Department of Archaeology, University of Cambridge, Cambridge, UK.,School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa.,Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Sabadell, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
12
|
Drummond-Clarke RC, Kivell TL, Sarringhaus L, Stewart FA, Humle T, Piel AK. Wild chimpanzee behavior suggests that a savanna-mosaic habitat did not support the emergence of hominin terrestrial bipedalism. SCIENCE ADVANCES 2022; 8:eadd9752. [PMID: 36516260 PMCID: PMC9750136 DOI: 10.1126/sciadv.add9752] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Bipedalism, a defining feature of the human lineage, is thought to have evolved as forests retreated in the late Miocene-Pliocene. Chimpanzees living in analogous habitats to early hominins offer a unique opportunity to investigate the ecological drivers of bipedalism that cannot be addressed via the fossil record alone. We investigated positional behavior and terrestriality in a savanna-mosaic community of chimpanzees (Pan troglodytes schweinfurthii) in the Issa Valley, Tanzania as the first test in a living ape of the hypothesis that wooded, savanna habitats were a catalyst for terrestrial bipedalism. Contrary to widely accepted hypotheses of increased terrestriality selecting for habitual bipedalism, results indicate that trees remained an essential component of the hominin adaptive niche, with bipedalism evolving in an arboreal context, likely driven by foraging strategy.
Collapse
Affiliation(s)
| | - Tracy L. Kivell
- School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| | - Lauren Sarringhaus
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
| | - Fiona A. Stewart
- Department of Anthropology, University College London, London, UK
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Tatyana Humle
- School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Alex K. Piel
- Department of Anthropology, University College London, London, UK
| |
Collapse
|
13
|
Murray AA. Variability and the form-function framework in evolutionary biomechanics and human locomotion. EVOLUTIONARY HUMAN SCIENCES 2022; 4:e29. [PMID: 37588899 PMCID: PMC10426129 DOI: 10.1017/ehs.2022.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The form-function conceptual framework, which assumes a strong relationship between the structure of a particular trait and its function, has been crucial for understanding morphological variation and locomotion among extant and fossil species across many disciplines. In biological anthropology, it is the lens through which many important questions and hypotheses have been tackled with respect to relationships between morphology and locomotor kinematics, energetics and performance. However, it is becoming increasingly evident that the morphologies of fossil hominins, apes and humans can confer considerable locomotor diversity and flexibility, and can do so with a range of kinematics depending on soft tissue plasticity and environmental and cultural factors. This complexity is not built into traditional biomechanical or mathematical models of relationships between structure and kinematics or energetics, limiting our interpretation of what bone structure is telling us about behaviour in the past. The nine papers presented in this Special Collection together address some of the challenges that variation in the relationship between form and function pose in evolutionary biomechanics, to better characterise the complexity linking structure and function and to provide tools through which we may begin to incorporate some of this complexity into our functional interpretations.
Collapse
Affiliation(s)
- Alison A. Murray
- Department of Anthropology, University of Victoria, Cornett Building Room B228, 3800 Finnerty Road, Victoria, BC, CanadaV8P 5C2
| |
Collapse
|
14
|
Bachmann S, Dunmore CJ, Skinner MM, Pahr DH, Synek A. A computational framework for canonical holistic morphometric analysis of trabecular bone. Sci Rep 2022; 12:5187. [PMID: 35338187 PMCID: PMC8956643 DOI: 10.1038/s41598-022-09063-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/14/2022] [Indexed: 11/22/2022] Open
Abstract
Bone is a remarkable, living tissue that functionally adapts to external loading. Therefore, bone shape and internal structure carry information relevant to many disciplines, including medicine, forensic science, and anthropology. However, morphometric comparisons of homologous regions across different individuals or groups are still challenging. In this study, two methods were combined to quantify such differences: (1) Holistic morphometric analysis (HMA) was used to quantify morphometric values in each bone, (2) which could then be mapped to a volumetric mesh of a canonical bone created by a statistical free-form deformation model (SDM). Required parameters for this canonical holistic morphometric analysis (cHMA) method were identified and the robustness of the method was evaluated. The robustness studies showed that the SDM converged after one to two iterations, had only a marginal bias towards the chosen starting image, and could handle large shape differences seen in bones of different species. Case studies were performed on metacarpal bones and proximal femora of different primate species to confirm prior study results. The differences between species could be visualised and statistically analysed in both case studies. cHMA provides a framework for performing quantitative comparisons of different morphometric quantities across individuals or groups. These comparisons facilitate investigation of the relationship between spatial morphometric variations and function or pathology, or both.
Collapse
Affiliation(s)
- Sebastian Bachmann
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria.
| | - Christopher J Dunmore
- School of Anthropology and Conservation, Skeletal Biology Research Centre, University of Kent, Canterbury, UK
| | - Matthew M Skinner
- School of Anthropology and Conservation, Skeletal Biology Research Centre, University of Kent, Canterbury, UK
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Dieter H Pahr
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
- Department of Anatomy and Biomechanics, Division Biomechanics, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Alexander Synek
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
| |
Collapse
|
15
|
Bird EE, Kivell TL, Skinner MM. Patterns of internal bone structure and functional adaptation in the hominoid scaphoid, lunate, and triquetrum. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021. [DOI: 10.1002/ajpa.24449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Emma E. Bird
- Skeletal Biology Research Centre, School of Anthropology and Conservation University of Kent Canterbury UK
| | - Tracy L. Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation University of Kent Canterbury UK
- Department of Human Evolution Max Planck Institute for Evolutionary Anthropology Leipzig Germany
| | - Matthew M. Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation University of Kent Canterbury UK
- Department of Human Evolution Max Planck Institute for Evolutionary Anthropology Leipzig Germany
| |
Collapse
|
16
|
Harper CM, Ruff CB, Sylvester AD. Calcaneal shape variation in humans, nonhuman primates, and early hominins. J Hum Evol 2021; 159:103050. [PMID: 34438297 DOI: 10.1016/j.jhevol.2021.103050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 01/08/2023]
Abstract
The foot has played a prominent role in evaluating early hominin locomotion. The calcaneus, in particular, plays an important role in weight-bearing. Although the calcanei of early hominins have been previously scrutinized, a three-dimensional analysis of the entire calcaneal shape has not been conducted. Here, we investigate the relationship between external calcaneal shape and locomotion in modern Homo sapiens (n = 130), Gorilla (n = 86), Pan (n = 112), Pongo (n = 31), Papio (n = 28), and hylobatids (Hylobates, Symphalangus; n = 32). We use these results to place the calcanei attributed to Australopithecus sediba, A. africanus, A. afarensis, H. naledi, and Homo habilis/Paranthropus boisei into a locomotor context. Calcanei were scanned using either surface scanning or micro-CT and their external shape analyzed using a three-dimensional geometric morphometric sliding semilandmark analysis. Blomberg's K statistic was used to estimate phylogenetic signal in the shape data. Shape variation was summarized using a principal components analysis. Procrustes distances between all taxa as well as distances between each fossil and the average of each taxon were calculated. Blomberg's K statistic was small (K = 0.1651), indicating weak phylogenetic effects, suggesting variation is driven by factors other than phylogeny (e.g., locomotion or body size). Modern humans have a large calcaneus relative to body size and display a uniquely convex cuboid facet, facilitating a rigid midfoot for bipedalism. More arboreal great apes display relatively deeper cuboid facet pivot regions for increased midfoot mobility. Australopithecus afarensis demonstrates the most human-like calcaneus, consistent with obligate bipedalism. Homo naledi is primarily modern human-like, but with some intermediate traits, suggesting a different form of bipedalism than modern humans. Australopithecus africanus, A. sediba, and H. habilis/P. boisei calcanei all possess unique combinations of human and nonhuman ape-like morphologies, suggesting a combination of bipedal and arboreal behaviors.
Collapse
Affiliation(s)
- Christine M Harper
- The Johns Hopkins University School of Medicine, Center for Functional Anatomy and Evolution, 1830 East Monument Street, Room 302, Baltimore, MD 21205, United States; Cooper Medical School of Rowan University, Department of Biomedical Sciences, 401 S Broadway, Room 453, Camden, NJ 08103, United States.
| | - Christopher B Ruff
- The Johns Hopkins University School of Medicine, Center for Functional Anatomy and Evolution, 1830 East Monument Street, Room 302, Baltimore, MD 21205, United States
| | - Adam D Sylvester
- The Johns Hopkins University School of Medicine, Center for Functional Anatomy and Evolution, 1830 East Monument Street, Room 302, Baltimore, MD 21205, United States
| |
Collapse
|
17
|
Webb NM. The Functional and Allometric Implications of Hipbone Trabecular Microarchitecture in a Sample of Eutherian and Metatherian Mammals. Evol Biol 2021. [DOI: 10.1007/s11692-021-09543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe pelvis plays an active role in weight bearing and countering the ground reaction forces incurred by the hindlimbs thus making it a critical component of the locomotor skeleton. Accordingly, this anatomical region is theoretically ideal for inferring locomotor behavior from both external skeletal morphology and trabecular microarchitecture, with the latter possibly offering nuanced insights into the mechanical loading environment given its increased plasticity and higher turnover rate. However, trabecular microarchitecture is also known to be influenced by a variety of factors including body size, sex, age, genetic regulation, diet and activity level, that collectively hinder the ability to generate consistent functional inferences. In this study, a comparative sample of mammals (42 species spanning four orders) of varying sizes, yet comparable locomotor repertoires, were evaluated to determine the effects of body size, phylogeny and locomotion on hipbone trabecular microarchitecture. This study found a weak functional signal detected in differences in bone volume fraction and the degree of anisotropy across certain pre-assigned locomotor categories, while confirming previously recognized allometric scaling trends reported for other mammalian samples based on the femur. Within primates, a more anisotropic pattern was observed for quadrupedal species attributed to their repetitive loading regimes and stereotypical limb excursions, while isotropic values were revealed for taxa utilizing more varied arboreal repertoires. Humans, despite a frequent and predictable loading environment associated with their use of bipedalism, showed relatively isotropic values. This study highlights the confounding factors that influence trabecular microarchitecture and consequently limit its utility as a method for investigating locomotor adaptation.
Collapse
|
18
|
Prabhat AM, Miller CK, Prang TC, Spear J, Williams SA, DeSilva JM. Homoplasy in the evolution of modern human-like joint proportions in Australopithecus afarensis. eLife 2021; 10:65897. [PMID: 33978569 PMCID: PMC8116054 DOI: 10.7554/elife.65897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/19/2021] [Indexed: 11/22/2022] Open
Abstract
The evolution of bipedalism and reduced reliance on arboreality in hominins resulted in larger lower limb joints relative to the joints of the upper limb. The pattern and timing of this transition, however, remains unresolved. Here, we find the limb joint proportions of Australopithecus afarensis, Homo erectus, and Homo naledi to resemble those of modern humans, whereas those of A. africanus, Australopithecus sediba, Paranthropus robustus, Paranthropus boisei, Homo habilis, and Homo floresiensis are more ape-like. The homology of limb joint proportions in A. afarensis and modern humans can only be explained by a series of evolutionary reversals irrespective of differing phylogenetic hypotheses. Thus, the independent evolution of modern human-like limb joint proportions in A. afarensis is a more parsimonious explanation. Overall, these results support an emerging perspective in hominin paleobiology that A. afarensis was the most terrestrially adapted australopith despite the importance of arboreality throughout much of early hominin evolution.
Collapse
Affiliation(s)
| | - Catherine K Miller
- Anthropology, Dartmouth College, Hanover, United States.,Ecology, Evolution, Ecosystems, and Society, Dartmouth College, Hanover, United States
| | - Thomas Cody Prang
- Department of Anthropology, Texas A&M University, College Station, United States
| | - Jeffrey Spear
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, United States.,New York Consortium in Evolutionary Primatology, New York, United States
| | - Scott A Williams
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, United States.,New York Consortium in Evolutionary Primatology, New York, United States
| | - Jeremy M DeSilva
- Anthropology, Dartmouth College, Hanover, United States.,Ecology, Evolution, Ecosystems, and Society, Dartmouth College, Hanover, United States
| |
Collapse
|
19
|
Bird EE, Kivell TL, Skinner MM. Cortical and trabecular bone structure of the hominoid capitate. J Anat 2021; 239:351-373. [PMID: 33942895 PMCID: PMC8273598 DOI: 10.1111/joa.13437] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/02/2023] Open
Abstract
Morphological variation in the hominoid capitate has been linked to differences in habitual locomotor activity due to its importance in movement and load transfer at the midcarpal joint proximally and carpometacarpal joints distally. Although the shape of bones and their articulations are linked to joint mobility, the internal structure of bones has been shown experimentally to reflect, at least in part, the loading direction and magnitude experienced by the bone. To date, it is uncertain whether locomotor differences among hominoids are reflected in the bone microarchitecture of the capitate. Here, we apply a whole‐bone methodology to quantify the cortical and trabecular architecture (separately and combined) of the capitate across bipedal (modern Homo sapiens), knuckle‐walking (Pan paniscus, Pan troglodytes, Gorilla sp.), and suspensory (Pongo sp.) hominoids (n = 69). It is hypothesized that variation in bone microarchitecture will differentiate these locomotor groups, reflecting differences in habitual postures and presumed loading force and direction. Additionally, it is hypothesized that trabecular and cortical architecture in the proximal and distal regions, as a result of being part of mechanically divergent joints proximally and distally, will differ across these portions of the capitate. Results indicate that the capitate of knuckle‐walking and suspensory hominoids is differentiated from bipedal Homo primarily by significantly thicker distal cortical bone. Knuckle‐walking taxa are further differentiated from suspensory and bipedal taxa by more isotropic trabeculae in the proximal capitate. An allometric analysis indicates that size is not a significant determinate of bone variation across hominoids, although sexual dimorphism may influence some parameters within Gorilla. Results suggest that internal trabecular and cortical bone is subjected to different forces and functional adaptation responses across the capitate (and possibly other short bones). Additionally, while separating trabecular and cortical bone is normal protocol of current whole‐bone methodologies, this study shows that when applied to carpals, removing or studying the cortical bone separately potentially obfuscates functionally relevant signals in bone structure.
Collapse
Affiliation(s)
- Emma E Bird
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matthew M Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
20
|
Cazenave M, Oettlé A, Pickering TR, Heaton JL, Nakatsukasa M, Francis Thackeray J, Hoffman J, Macchiarelli R. Trabecular organization of the proximal femur in Paranthropus robustus: Implications for the assessment of its hip joint loading conditions. J Hum Evol 2021; 153:102964. [PMID: 33713985 DOI: 10.1016/j.jhevol.2021.102964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 11/19/2022]
Abstract
Reconstruction of the locomotor repertoire of the australopiths (Australopithecus and Paranthropus) has progressively integrated information from the mechanosensitive internal structure of the appendicular skeleton. Recent investigations showed that the arrangement of the trabecular network at the femoral head center is biomechanically compatible with the pattern of cortical bone distribution across the neck, both suggesting a full commitment to bipedalism in australopiths, but associated with a slightly altered gait kinematics compared to Homo involving more lateral deviation of the body center of mass over the stance limb. To provide a global picture in Paranthropus robustus of the trabecular architecture of the proximal femur across the head, neck and greater trochanter compartments, we applied techniques of virtual imaging to the variably preserved Early Pleistocene specimens SK 82, SK 97, SK 3121, SKW 19 and SWT1/LB-2 from the cave site of Swartkrans, South Africa. We also assessed the coherence between the structural signals from the center of the head and those from the trabecular network of the inferolateral portion of the head and the inferior margin of the neck, sampling the so-called vertical bundle, which in humans represents the principal compressive system of the joint. Our analyses show a functionally related trabecular organization in Pa. robustus that closely resembles the extant human condition, but which also includes some specificities in local textural arrangement. The network of the inferolateral portion of the head shows a humanlike degree of anisotropy and a bone volume fraction intermediate between the extant human and the African ape patterns. These results suggest slight differences in gait kinematics between Pa. robustus and extant humans. The neck portion of the vertical bundle revealed a less biomechanically sensitive signal. Future investigations on the australopith hip joint loading environment should more carefully investigate the trabecular structure of the trochanteric region and possible structural covariation between cortical bone distribution across the neck and site-specific trabecular properties of the arcuate bundle.
Collapse
Affiliation(s)
- Marine Cazenave
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK.
| | - Anna Oettlé
- Department of Anatomy and Histology, Sefako Makgatho Health Sciences University, Ga-Rankuwa, Pretoria, South Africa
| | - Travis Rayne Pickering
- Department of Anthropology, University of Wisconsin, Madison, USA; Evolutionary Studies Institute and School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa; Plio-Pleistocene Palaeontology Section, Department of Vertebrates, Ditsong National Museum of Natural History (Transvaal Museum), Pretoria, South Africa
| | - Jason L Heaton
- Department of Biology, Birmingham-Southern College, Birmingham, USA; Evolutionary Studies Institute and School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa; Plio-Pleistocene Palaeontology Section, Department of Vertebrates, Ditsong National Museum of Natural History (Transvaal Museum), Pretoria, South Africa
| | - Masato Nakatsukasa
- Laboratory of Physical Anthropology, Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - J Francis Thackeray
- Evolutionary Studies Institute and School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jakobus Hoffman
- South African Nuclear Energy Corporation SOC Ltd., Pelindaba, South Africa
| | - Roberto Macchiarelli
- Département Homme & Environnement, UMR 7194 CNRS, Muséum national d'Histoire naturelle, 75116, Paris, France; Unité de Formation Géosciences, Université de Poitiers, Poitiers, France
| |
Collapse
|
21
|
Reply to Haeusler et al.: Internal structure of the femur provides robust evidence for locomotor and taxonomic diversity at Sterkfontein. Proc Natl Acad Sci U S A 2020; 117:28570-28571. [PMID: 33082221 DOI: 10.1073/pnas.2016647117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
22
|
Locomotor and taxonomic diversity of Sterkfontein hominins not supported by current trabecular evidence of the femoral head. Proc Natl Acad Sci U S A 2020; 117:28568-28569. [PMID: 33082222 DOI: 10.1073/pnas.2014033117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|