1
|
Zhou X, Bao Q, Cui Y, Li X, Yang C, Yang Y, Gao Y, Chen D, Huang J. Life destiny of erythrocyte in high altitude erythrocytosis: mechanisms underlying the progression from physiological (moderate) to pathological (excessive) high-altitude erythrocytosis. Front Genet 2025; 16:1528935. [PMID: 40242475 PMCID: PMC12000012 DOI: 10.3389/fgene.2025.1528935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
High-altitude polycythemia (HAPC) represents a pathological escalation of the physiological erythrocytosis induced by chronic hypoxia exposure. While moderate erythroid expansion enhances oxygen delivery, HAPC manifests as hematologic disorder characterized by hemoglobin thresholds (≥21 g/dL males; ≥19 g/dL females) and multi-organ complications including microcirculatory thrombosis, right ventricular hypertrophy, and uric acid dysmetabolism. This review critically evaluates the continuum between adaptive and maladaptive polycythemia through multiscale analysis of erythrocyte biology. We integrate genomic predisposition patterns, bone marrow erythroid kinetic studies, and peripheral erythrocyte pathophenotypes revealed by multi-omics profiling (iron-redox proteome, hypoxia-metabolome crosstalk). Current diagnostic limitations are highlighted, particularly the oversimplification of hemoglobin cutoffs that neglect transitional dynamics in erythrocyte turnover. By reconstructing the erythroid life cycle-from hypoxia-sensitive progenitor commitment to senescent cell clearance-we propose a phase transition model where cumulative epigenetic-metabolic derangements overcome homeostatic buffers, triggering pathological erythroid amplification. These insights reframe HAPC as a systems biology failure of erythroid adaptation, informing predictive biomarkers and targeted interventions to preserve hematological homeostasis in hypoxic environments.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Quanwei Bao
- Department of Emergency Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu Cui
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Xiaoxu Li
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Chengzhong Yang
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Yidong Yang
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Yuqi Gao
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
- College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Dewei Chen
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Jian Huang
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| |
Collapse
|
2
|
Wang S, Xu Q, Liu W, Zhang N, Qi Y, Tang F, Ge R. Regulation of PHD2 by HIF-1α in Erythroid Cells: Insights into Erythropoiesis Under Hypoxia. Int J Mol Sci 2025; 26:762. [PMID: 39859474 PMCID: PMC11765976 DOI: 10.3390/ijms26020762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
The hypoxia-inducible factor (HIF) pathway has been demonstrated to play a pivotal role in the process of high-altitude adaptation. PHD2, a key regulator of the HIF pathway, has been found to be associated with erythropoiesis. However, the relationship between changes in Phd2 abundance and erythroid differentiation under hypoxic conditions remains to be elucidated. A hemin-induced K562 erythroid differentiation model was used to explore the effects of PHD2 knockdown under hypoxia. Erythroid differentiation was assessed by flow cytometry and immunofluorescence. HIF-1α's regulation of PHD2 was examined using luciferase assays and ChIP-seq. CRISPR/Cas9 was applied to knock out EGLN1 and HIF1A, and a fluorescent reporter system was developed to track PHD2 expression. PHD2 knockdown enhanced erythroid differentiation, evident by increased CD71 and CD235a expression. Reporter assays and ChIP-seq identified an HIF-1α binding site in the EGLN1 5' UTR, confirming HIF-1α as a regulator of PHD2 expression. The fluorescent reporter system provided real-time monitoring of endogenous PHD2 expression, showing that HIF-1α significantly modulates PHD2 levels under hypoxic conditions. PHD2 influences erythropoiesis under hypoxia, with HIF-1α regulating its expression. This feedback loop between HIF-1α and PHD2 sheds light on mechanisms driving erythroid differentiation under low-oxygen conditions.
Collapse
Affiliation(s)
- Shunjuan Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| | - Qiying Xu
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| | - Wenjing Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| | - Na Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| | - Yuelin Qi
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| | - Feng Tang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| | - Rili Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| |
Collapse
|
3
|
Lu Y, Li M, Gao Z, Ma H, Chong Y, Hong J, Wu J, Wu D, Xi D, Deng W. Advances in Whole Genome Sequencing: Methods, Tools, and Applications in Population Genomics. Int J Mol Sci 2025; 26:372. [PMID: 39796227 PMCID: PMC11719799 DOI: 10.3390/ijms26010372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
With the rapid advancement of high-throughput sequencing technologies, whole genome sequencing (WGS) has emerged as a crucial tool for studying genetic variation and population structure. Utilizing population genomics tools to analyze resequencing data allows for the effective integration of selection signals with population history, precise estimation of effective population size, historical population trends, and structural insights, along with the identification of specific genetic loci and variations. This paper reviews current whole genome sequencing technologies, detailing primary research methods, relevant software, and their advantages and limitations within population genomics. The goal is to examine the application and progress of resequencing technologies in this field and to consider future developments, including deep learning models and machine learning algorithms, which promise to enhance analytical methodologies and drive further advancements in population genomics.
Collapse
Affiliation(s)
- Ying Lu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (M.L.); (Z.G.); (H.M.); (Y.C.); (J.H.); (J.W.); (D.W.)
| | - Mengfei Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (M.L.); (Z.G.); (H.M.); (Y.C.); (J.H.); (J.W.); (D.W.)
| | - Zhendong Gao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (M.L.); (Z.G.); (H.M.); (Y.C.); (J.H.); (J.W.); (D.W.)
| | - Hongming Ma
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (M.L.); (Z.G.); (H.M.); (Y.C.); (J.H.); (J.W.); (D.W.)
| | - Yuqing Chong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (M.L.); (Z.G.); (H.M.); (Y.C.); (J.H.); (J.W.); (D.W.)
| | - Jieyun Hong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (M.L.); (Z.G.); (H.M.); (Y.C.); (J.H.); (J.W.); (D.W.)
| | - Jiao Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (M.L.); (Z.G.); (H.M.); (Y.C.); (J.H.); (J.W.); (D.W.)
| | - Dongwang Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (M.L.); (Z.G.); (H.M.); (Y.C.); (J.H.); (J.W.); (D.W.)
| | - Dongmei Xi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (M.L.); (Z.G.); (H.M.); (Y.C.); (J.H.); (J.W.); (D.W.)
| | - Weidong Deng
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (M.L.); (Z.G.); (H.M.); (Y.C.); (J.H.); (J.W.); (D.W.)
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Kunming 650201, China
| |
Collapse
|
4
|
Procházková K, Uhlík J. Influence of Hypoxia on the Airway Epithelium. Physiol Res 2024; 73:S557. [PMID: 39589303 PMCID: PMC11627265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 06/26/2024] [Indexed: 11/27/2024] Open
Abstract
The necessity of oxygen for metabolic processes means that hypoxia can lead to serious cell and tissue damage. On the other hand, in some situations, hypoxia occurs under physiological conditions and serves as an important regulation factor. The airway epithelium is specific in that it gains oxygen not only from the blood supply but also directly from the luminal air. Many respiratory diseases are associated with airway obstruction or excessive mucus production thus leading to luminal hypoxia. The main goal of this review is to point out how the airway epithelium reacts to hypoxic conditions. Cells detect low oxygen levels using molecular mechanisms involving hypoxia-inducible factors (HIFs). In addition, the cells of the airway epithelium appear to overexpress HIFs in hypoxic conditions. HIFs then regulate many aspects of epithelial cell functions. The effects of hypoxia include secretory cell stimulation and hyperplasia, epithelial barrier changes, and ciliogenesis impairment. All the changes can impair mucociliary clearance, exacerbate infection, and promote inflammation leading to damage of airway epithelium and subsequent airway wall remodeling. The modulation of hypoxia regulatory mechanisms may be one of the strategies for the treatment of obstructive respiratory diseases or diseases with mucus hyperproduction. Keywords: Secretory cells, Motile cilia, Epithelial barrier, Oxygenation, Obstructive respiratory diseases.
Collapse
Affiliation(s)
- K Procházková
- Department of Histology and Embryology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | |
Collapse
|
5
|
Ye S, Sun J, Craig SR, Di Rienzo A, Witonsky D, Yu JJ, Moya EA, Simonson TS, Powell FL, Basnyat B, Strohl KP, Hoit BD, Beall CM. Higher oxygen content and transport characterize high-altitude ethnic Tibetan women with the highest lifetime reproductive success. Proc Natl Acad Sci U S A 2024; 121:e2403309121. [PMID: 39432765 PMCID: PMC11551319 DOI: 10.1073/pnas.2403309121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/22/2024] [Indexed: 10/23/2024] Open
Abstract
We chose the "natural laboratory" provided by high-altitude native ethnic Tibetan women who had completed childbearing to examine the hypothesis that multiple oxygen delivery traits were associated with lifetime reproductive success and had genomic associations. Four hundred seventeen (417) women aged 46 to 86 y residing at ≥3,500 m in Upper Mustang, Nepal, provided information on reproductive histories, sociocultural factors, physiological measurements, and DNA samples for this observational cohort study. Simultaneously assessing multiple traits identified combinations associated with lifetime reproductive success measured as the number of livebirths. Women with the most livebirths had distinctive hematological and cardiovascular traits. A hemoglobin concentration near the sample mode and a high percent of oxygen saturation of hemoglobin raised arterial oxygen concentration without risking elevated blood viscosity. We propose ongoing stabilizing selection on hemoglobin concentration because extreme values predicted fewer livebirths and directional selection favoring higher oxygen saturation because higher values had more predicted livebirths. EPAS1, an oxygen homeostasis locus with strong signals of positive natural selection and a high frequency of variants occurring only among populations indigenous to the Tibetan Plateau, associated with hemoglobin concentration. High blood flow into the lungs, wide left ventricles, and low hypoxic heart rate responses aided effective convective oxygen transport to tissues. Women with physiologies closer to unstressed, low altitude values had the highest lifetime reproductive success. This example of ethnic Tibetan women residing at high altitudes in Nepal links reproductive fitness with trait combinations increasing oxygen delivery under severe hypoxic stress and demonstrates ongoing natural selection.
Collapse
Affiliation(s)
- Shenghao Ye
- Statistics Department, George Mason University, Fairfax, VA22030
| | - Jiayang Sun
- Statistics Department, George Mason University, Fairfax, VA22030
| | - Sienna R. Craig
- Anthropology Department, Dartmouth College, Hanover, NH03755
| | - Anna Di Rienzo
- Human Genetics Department, University of Chicago, Chicago, IL60637
| | - David Witonsky
- Human Genetics Department, University of Chicago, Chicago, IL60637
| | - James J. Yu
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA92023
| | - Esteban A. Moya
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA92023
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA92023
| | - Frank L. Powell
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA92023
| | - Buddha Basnyat
- Oxford University Clinical Research Unit-Nepal, Kathmandu44600, Nepal
| | - Kingman P. Strohl
- School of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH44106
| | - Brian D. Hoit
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Departments of Medicine and Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH44106
| | - Cynthia M. Beall
- Anthropology Department, Case Western Reserve University, Cleveland, OH44106
| |
Collapse
|
6
|
Champigneulle B, Brugniaux JV, Stauffer E, Doutreleau S, Furian M, Perger E, Pina A, Baillieul S, Deschamps B, Hancco I, Connes P, Robach P, Pichon A, Verges S. Expedition 5300: limits of human adaptations in the highest city in the world. J Physiol 2024; 602:5449-5462. [PMID: 38146929 DOI: 10.1113/jp284550] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/06/2023] [Indexed: 12/27/2023] Open
Abstract
Exposure to chronic hypobaric hypoxia imposes a significant physiological burden to more than 80 million humans living above 2500 m throughout the world. Among them, 50 000 live in the world's highest city, La Rinconada, located at 5000-5300 m in southern Peru. Expedition 5300 is the first scientific and medical programme led in La Rinconada to investigate the physiological adaptations and altitude-related health issues in this unique population. Dwellers from La Rinconada have very high haemoglobin concentration (20.3 ± 2.4 g/dL; n = 57) and those with chronic mountain sickness (CMS) exhibit even higher concentrations (23.1 ± 1.7 g/dL; n = 150). These values are associated with large total haemoglobin mass and blood volume, without an associated iron deficit. These changes in intravascular volumes lead to a substantial increase in blood viscosity, which is even larger in CMS patients. Despite these large haematological changes, 24 h blood pressure monitoring is essentially normal in La Rinconada, but some results suggest impaired vascular reactivity. Echocardiography revealed large right heart dilatation and high pulmonary arterial pressure as well as left ventricle concentric remodelling and grade I diastolic dysfunction. These changes in heart dimension and function tend to be more severe in highlanders with CMS. Polygraphy evaluations revealed a large reduction in nocturnal pulse oxygen saturation (median SpO2 = 79%), which is even more severe in CMS patients who also tended to show a higher oxygen desaturation index. The population of La Rinconada offers a unique opportunity to investigate the human responses to chronic severe hypoxia, at an altitude that is probably close to the maximum altitude human beings can permanently tolerate without presenting major health issues.
Collapse
Affiliation(s)
- Benoit Champigneulle
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| | - Julien V Brugniaux
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| | - Emeric Stauffer
- Interuniversity Laboratory of Human Movement Biology (LIBM, EA7424), "Red Blood cell and Vascular Biology" Team, Univ Lyon - University Claude Bernard Lyon 1, Villeurbanne, France
| | - Stéphane Doutreleau
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| | - Michael Furian
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| | - Elisa Perger
- Istituto Auxologico Italiano, IRCCS, Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
| | - Alessandra Pina
- Istituto Auxologico Italiano, IRCCS, Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
| | - Sébastien Baillieul
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| | - Blandine Deschamps
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| | - Ivan Hancco
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| | - Philippe Connes
- Interuniversity Laboratory of Human Movement Biology (LIBM, EA7424), "Red Blood cell and Vascular Biology" Team, Univ Lyon - University Claude Bernard Lyon 1, Villeurbanne, France
| | - Paul Robach
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
- National School for Mountain Sports, Site of the National School for Skiing and Mountaineering (ENSA), Chamonix, France
| | - Aurélien Pichon
- Laboratory Mobility, Aging & Exercise (MOVE, EA6314), Faculty of Sport Sciences, University of Poitiers, Poitiers, France
| | - Samuel Verges
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| |
Collapse
|
7
|
Mitra A, Yi D, Dai Z, de Jesus Perez V. Unraveling the role of HIF and epigenetic regulation in pulmonary arterial hypertension: implications for clinical research and its therapeutic approach. Front Med (Lausanne) 2024; 11:1460376. [PMID: 39450110 PMCID: PMC11499164 DOI: 10.3389/fmed.2024.1460376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/12/2024] [Indexed: 10/26/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling with high pulmonary pressure, which ultimately leads to right heart failure and premature death. Emerging evidence suggests that both hypoxia and epigenetics play a pivotal role in the pathogenesis of PAH development. In this review article, we summarize the current developments in regulation of hypoxia inducible factor (HIF) isoforms in PAH vascular remodeling and the development of suitable animal models for discovery and testing of HIF pathway-targeting PAH therapeutics. In addition, we also discuss the epigenetic regulation of HIF-dependent isoforms in PAH and its therapeutic potential from a new perspective which highlights the importance of HIF isoform-specific targeting as a novel salutary strategy for PAH treatment.
Collapse
Affiliation(s)
- Ankita Mitra
- Division of Pulmonary and Critical Care, Stanford University, Palo Alto, CA, United States
| | - Dan Yi
- Department of Internal Medicine, University of Arizona College of Medicine Phoenix, Phoenix, AZ, United States
| | - Zhiyu Dai
- Department of Internal Medicine, University of Arizona College of Medicine Phoenix, Phoenix, AZ, United States
- Department of Medicine, Washington University School of Medicine in St. Louis (WashU), St. Louis, MO, United States
| | - Vinicio de Jesus Perez
- Division of Pulmonary and Critical Care, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
8
|
Tang S, Zhou W, Chen L, Yan H, Chen L, Luo F. High altitude polycythemia and its maladaptive mechanisms: an updated review. Front Med (Lausanne) 2024; 11:1448654. [PMID: 39257892 PMCID: PMC11383785 DOI: 10.3389/fmed.2024.1448654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024] Open
Abstract
High altitude polycythemia is a maladaptation of highlanders exposed to hypoxic environment, leading to high blood viscosity and severe cardiorespiratory dysfunction. Prolonged hypoxia causes respiratory depression and severe hypoxemia, and further mediates changes in genetic and molecular mechanisms that regulate erythropoiesis and apoptosis, ultimately resulting in excessive erythrocytosis (EE). This updated review investigated the maladaptive mechanisms of EE, including respiratory chemoreceptor passivation, sleep-related breathing disorders, sex hormones, iron metabolism, and hypoxia-related factors and pathways.
Collapse
Affiliation(s)
- Shijie Tang
- Department of High Altitude Medicine, Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- High Altitude Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenwen Zhou
- Department of High Altitude Medicine, Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- High Altitude Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Chen
- Department of High Altitude Medicine, Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- High Altitude Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hui Yan
- Department of High Altitude Medicine, Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- High Altitude Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lei Chen
- Department of High Altitude Medicine, Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- High Altitude Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fengming Luo
- Department of High Altitude Medicine, Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- High Altitude Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Huang T, Zhang X, Li Q, Li X, Yao J, Song J, Chen Y, Ye L, Li C, Xiran P, Wen Y. The Association between Obesity Susceptibility and Polymorphisms of MC4R, SH2B1, and NEGR1 in Tibetans. Genet Test Mol Biomarkers 2024; 28:267-274. [PMID: 39034913 DOI: 10.1089/gtmb.2023.0546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Background: A high-altitude environment has inhibitory effects on obesity. Tibetans are not a high-risk population for obesity, but there are still obese individuals within that population. Obesity has become a worldwide health problem, and previous studies have found that obesity is closely associated with hereditary factors. Few studies have investigated obesity in Tibetans, and the association between gene polymorphisms and obesity in Tibetans remains unclear. Methods: Our study investigated the fat mass of 140 native Tibetan individuals (70 men and 70 women) from Lhasa and analyzed the associations between polymorphisms of melanocortin 4 receptor (MC4R), Src homology 2B adapter protein 1 (SH2B1), and neuronal growth regulator 1 (NEGR1) and obesity. Result: Among Tibetan individuals, there were differences in genotype and allele frequencies between those in the obesity group and those in the healthy group at MC4R (rs17782313) and SH2B1 (rs7359397). The polymorphisms of MC4R (rs17782313) were associated with fat mass and obesity in Tibetan men and women, and there was an association between SH2B1 (rs7359397) polymorphisms and fat mass and obesity in Tibetan men. However, polymorphisms of NEGR1 (rs3101336) were not associated with fat mass or obesity in Tibetan individuals. Conclusion: Among Tibetan individuals, polymorphisms of MC4R (rs17782313) and SH2B1 (rs7359397) were associated with obesity, but NEGR1 (rs3101336) polymorphisms were not associated with obesity.
Collapse
Affiliation(s)
- Ting Huang
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Xianpeng Zhang
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Qiang Li
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Wuwei Occupational College, Wuwei, China
| | - Xin Li
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Jie Yao
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Jia Song
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Ying Chen
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Liping Ye
- Department of Radiology, Nagqu District People's Hospital, Nagqu, China
| | - Chunshan Li
- Department of Radiology, Nagqu District People's Hospital, Nagqu, China
| | - Pingcuo Xiran
- Maternal and Children Health Care Hospital of Ali District, Ali, China
| | - Youfeng Wen
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
10
|
Yue T, Guo Y, Qi X, Zheng W, Zhang H, Wang B, Liu K, Zhou B, Zeng X, Ouzhuluobu, He Y, Su B. Sex-biased regulatory changes in the placenta of native highlanders contribute to adaptive fetal development. eLife 2024; 12:RP89004. [PMID: 38869160 PMCID: PMC11175615 DOI: 10.7554/elife.89004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Compared with lowlander migrants, native Tibetans have a higher reproductive success at high altitude though the underlying mechanism remains unclear. Here, we compared the transcriptome and histology of full-term placentas between native Tibetans and Han migrants. We found that the placental trophoblast shows the largest expression divergence between Tibetans and Han, and Tibetans show decreased immune response and endoplasmic reticulum stress. Remarkably, we detected a sex-biased expression divergence, where the male-infant placentas show a greater between-population difference than the female-infant placentas. The umbilical cord plays a key role in the sex-biased expression divergence, which is associated with the higher birth weight of the male newborns of Tibetans. We also identified adaptive histological changes in the male-infant placentas of Tibetans, including larger umbilical artery wall and umbilical artery intima and media, and fewer syncytial knots. These findings provide valuable insights into the sex-biased adaptation of human populations, with significant implications for medical and genetic studies of human reproduction.
Collapse
Affiliation(s)
- Tian Yue
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesBeijingChina
| | - Yongbo Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesBeijingChina
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang HospitalKunmingChina
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
| | - Wangshan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Hui Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
| | - Bin Wang
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang HospitalKunmingChina
| | - Kai Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Bin Zhou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesBeijingChina
| | - Xuerui Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesBeijingChina
| | - Ouzhuluobu
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang HospitalKunmingChina
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of SciencesKunmingChina
| |
Collapse
|
11
|
Benetti A, Bertozzi I, Ceolotto G, Cortella I, Regazzo D, Biagetti G, Cosi E, Randi ML. Coexistence of Multiple Gene Variants in Some Patients with Erythrocytoses. Mediterr J Hematol Infect Dis 2024; 16:e2024021. [PMID: 38468832 PMCID: PMC10927185 DOI: 10.4084/mjhid.2024.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/10/2024] [Indexed: 03/13/2024] Open
Abstract
Background Erythrocytosis is a relatively common condition; however, a large proportion of these patients (70%) remain without a clear etiologic explanation. Methods We set up a targeted NGS panel for patients with erythrocytosis, and 118 sporadic patients with idiopathic erythrocytosis were studied. Results In 40 (34%) patients, no variant was found, while in 78 (66%), we identified at least one germinal variant; 55 patients (70.5%) had 1 altered gene, 18 (23%) had 2 alterations, and 5 (6.4%) had 3. An altered HFE gene was observed in 51 cases (57.1%), EGLN1 in 18 (22.6%) and EPAS1, EPOR, JAK2, and TFR2 variants in 7.7%, 10.3%, 11.5%, and 14.1% patients, respectively. In 23 patients (19.45%), more than 1 putative variant was found in multiple genes. Conclusions Genetic variants in patients with erythrocytosis were detected in about 2/3 of our cohort. An NGS panel including more candidate genes should reduce the number of cases diagnosed as "idiopathic" erythrocytosis in which a cause cannot yet be identified. It is known that HFE variants are common in idiopathic erythrocytosis. TFR2 alterations support the existence of a relationship between genes involved in iron metabolism and impaired erythropoiesis. Some novel multiple variants were identified. Erythrocytosis appears to be often multigenic.
Collapse
Affiliation(s)
- Andrea Benetti
- First Medical Clinic, Department of Medicine – DIMED, University of Padova, Padova, Italy
| | - Irene Bertozzi
- First Medical Clinic, Department of Medicine – DIMED, University of Padova, Padova, Italy
| | - Giulio Ceolotto
- Emergency Medicine, Department of Medicine – DIMED, University of Padova, Padova, Italy
| | - Irene Cortella
- First Medical Clinic, Department of Medicine – DIMED, University of Padova, Padova, Italy
| | - Daniela Regazzo
- First Medical Clinic, Department of Medicine – DIMED, University of Padova, Padova, Italy
| | - Giacomo Biagetti
- First Medical Clinic, Department of Medicine – DIMED, University of Padova, Padova, Italy
| | - Elisabetta Cosi
- First Medical Clinic, Department of Medicine – DIMED, University of Padova, Padova, Italy
| | - Maria Luigia Randi
- First Medical Clinic, Department of Medicine – DIMED, University of Padova, Padova, Italy
| |
Collapse
|
12
|
Lee FS. Hypoxia Inducible Factor pathway proteins in high-altitude mammals. Trends Biochem Sci 2024; 49:79-92. [PMID: 38036336 PMCID: PMC10841901 DOI: 10.1016/j.tibs.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Humans and other mammals inhabit hypoxic high-altitude locales. In many of these species, genes under positive selection include ones in the Hypoxia Inducible Factor (HIF) pathway. One is PHD2 (EGLN1), which encodes for a key oxygen sensor. Another is HIF2A (EPAS1), which encodes for a PHD2-regulated transcription factor. Recent studies have provided insights into mechanisms for these high-altitude alleles. These studies have (i) shown that selection can occur on nonconserved, unstructured regions of proteins, (ii) revealed that high altitude-associated amino acid substitutions can have differential effects on protein-protein interactions, (iii) provided evidence for convergent evolution by different molecular mechanisms, and (iv) suggested that mutations in different genes can complement one another to produce a set of adaptive phenotypes.
Collapse
Affiliation(s)
- Frank S Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Jorgensen K, Song D, Weinstein J, Garcia OA, Pearson LN, Inclán M, Rivera-Chira M, León-Velarde F, Kiyamu M, Brutsaert TD, Bigham AW, Lee FS. High-Altitude Andean H194R HIF2A Allele Is a Hypomorphic Allele. Mol Biol Evol 2023; 40:msad162. [PMID: 37463421 PMCID: PMC10370452 DOI: 10.1093/molbev/msad162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
For over 10,000 years, Andeans have resided at high altitude where the partial pressure of oxygen challenges human survival. Recent studies have provided evidence for positive selection acting in Andeans on the HIF2A (also known as EPAS1) locus, which encodes for a central transcription factor of the hypoxia-inducible factor pathway. However, the precise mechanism by which this allele might lead to altitude-adaptive phenotypes, if any, is unknown. By analyzing whole genome sequencing data from 46 high-coverage Peruvian Andean genomes, we confirm evidence for positive selection acting on HIF2A and a unique pattern of variation surrounding the Andean-specific single nucleotide variant (SNV), rs570553380, which encodes for an H194R amino acid substitution in HIF-2α. Genotyping the Andean-associated SNV rs570553380 in a group of 299 Peruvian Andeans from Cerro de Pasco, Peru (4,338 m), reveals a positive association with increased fraction of exhaled nitric oxide, a marker of nitric oxide biosynthesis. In vitro assays show that the H194R mutation impairs binding of HIF-2α to its heterodimeric partner, aryl hydrocarbon receptor nuclear translocator. A knockin mouse model bearing the H194R mutation in the Hif2a gene displays decreased levels of hypoxia-induced pulmonary Endothelin-1 transcripts and protection against hypoxia-induced pulmonary hypertension. We conclude the Andean H194R HIF2A allele is a hypomorphic (partial loss of function) allele.
Collapse
Affiliation(s)
- Kelsey Jorgensen
- Department of Anthropology, University of California, Los Angeles, CA, USA
| | - Daisheng Song
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Julien Weinstein
- Department of Anthropology, The University of Michigan, Ann Arbor, MI, USA
| | - Obed A Garcia
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Laurel N Pearson
- Department of Anthropology, The Pennsylvania State University, State College, PA, USA
| | - María Inclán
- División de. Estudios Políticos, Centro de Investigación y Docencia Económicas, Mexico City, CDMX, Mexico
| | - Maria Rivera-Chira
- Departamento de Ciencias Biológicas y Fisiológicas, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Lima, Peru
| | - Fabiola León-Velarde
- Departamento de Ciencias Biológicas y Fisiológicas, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Lima, Peru
| | - Melisa Kiyamu
- Departamento de Ciencias Biológicas y Fisiológicas, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Lima, Peru
| | - Tom D Brutsaert
- Department of Exercise Science, Syracuse University, Syracuse, NY, USA
| | - Abigail W Bigham
- Department of Anthropology, University of California, Los Angeles, CA, USA
| | - Frank S Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
14
|
Song D, Peng K, Palmer BE, Lee FS. The ribosomal chaperone NACA recruits PHD2 to cotranslationally modify HIF-α. EMBO J 2022; 41:e112059. [PMID: 36219563 PMCID: PMC9670199 DOI: 10.15252/embj.2022112059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 09/23/2022] [Indexed: 01/13/2023] Open
Abstract
Prolyl hydroxylase domain protein 2 (PHD2)-catalyzed modification of hypoxia-inducible factor (HIF)-α is a key event in oxygen sensing. We previously showed that the zinc finger of PHD2 binds to a Pro-Xaa-Leu-Glu (PXLE) motif. Here, we show that the zinc finger binds to this motif in the ribosomal chaperone nascent polypeptide complex-α (NACA). This recruits PHD2 to the translation machinery to cotranslationally modify HIF-α. Importantly, this cotranslational modification is enhanced by a translational pause sequence in HIF-α. Mice with a knock-in Naca gene mutation that abolishes the PXLE motif display erythrocytosis, a reflection of HIF pathway dysregulation. In addition, human erythrocytosis-associated mutations in the zinc finger of PHD2 ablate interaction with NACA. Tibetans, who have adapted to the hypoxia of high altitude, harbor a PHD2 variant that we previously showed displays a defect in zinc finger binding to p23, a PXLE-containing HSP90 cochaperone. We show here that Tibetan PHD2 maintains interaction with NACA, thereby showing differential interactions with PXLE-containing proteins and providing an explanation for why Tibetans are not predisposed to erythrocytosis.
Collapse
Affiliation(s)
- Daisheng Song
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Kai Peng
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Present address:
Chime BiologicsWuhanChina
| | - Bradleigh E Palmer
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Present address:
Department of BiologyJohns Hopkins UniversityBaltimoreMDUSA
| | - Frank S Lee
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
15
|
Chen X, An Z, Wei L, Zhang J, Li J, Wang Z, Gao C, Wei D. Vitamin D 3 Metabolic Enzymes in Plateau Zokor ( Myospalax baileyi) and Plateau Pika ( Ochotona curzoniae): Expression and Response to Hypoxia. Animals (Basel) 2022; 12:ani12182371. [PMID: 36139230 PMCID: PMC9495108 DOI: 10.3390/ani12182371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin D3 (D3) is produced endogenously from 7-dehydrocholesterol by irradiation and is an important secosteroid for the absorption of calcium and phosphate. Lithocholic acid (LCA) increases intestinal paracellular calcium absorption in a vitamin D receptor-dependent manner in vitamin D-deficient rats. The plateau zokor (Myospalax baileyi), a strictly subterranean species, and plateau pika are endemic to the Qinghai-Tibet Plateau. To verify whether the zokors were deficient in D3 and reveal the effects of hypoxia on D3 metabolism in the zokors and pikas, we measured the levels of 25(OH)D3, calcium, and LCA, and quantified the expression levels of D3 metabolism-related genes. The results showed an undetectable serum level of 25(OH)D3 and a significantly higher concentration of LCA in the serum of plateau zokor, but its calcium concentration was within the normal range compared with that of plateau pika and Sprague-Dawley rats. With increasing altitude, the serum 25(OH)D3 levels in plateau pika decreased significantly, and the mRNA and protein levels of CYP2R1 (in the liver) and CYP27B1 (in the kidney) in plateau pika decreased significantly. Our results indicate that plateau zokors were deficient in D3 and abundant in LCA, which might be a substitution of D3 in the zokor. Furthermore, hypoxia suppresses the metabolism of D3 by down-regulating the expression of CYP2R1 and CYP27B1 in plateau pika.
Collapse
Affiliation(s)
- Xiaoqi Chen
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Zhifang An
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Linna Wei
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Jiayu Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Jimei Li
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Zhijie Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Conghui Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Dengbang Wei
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Correspondence: ; Tel.: +86-971-531-0695
| |
Collapse
|
16
|
Villafuerte FC, Simonson TS, Bermudez D, León-Velarde F. High-Altitude Erythrocytosis: Mechanisms of Adaptive and Maladaptive Responses. Physiology (Bethesda) 2022; 37:0. [PMID: 35001654 PMCID: PMC9191173 DOI: 10.1152/physiol.00029.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/13/2021] [Accepted: 01/01/2022] [Indexed: 01/08/2023] Open
Abstract
Erythrocytosis, or increased production of red blood cells, is one of the most well-documented physiological traits that varies within and among in high-altitude populations. Although a modest increase in blood O2-carrying capacity may be beneficial for life in highland environments, erythrocytosis can also become excessive and lead to maladaptive syndromes such as chronic mountain sickness (CMS).
Collapse
Affiliation(s)
- Francisco C Villafuerte
- Laboratorio de Fisiología Comparada/Laboratorio de Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Tatum S Simonson
- Division of Pulmonary, Critical Care, and Sleep Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - Daniela Bermudez
- Laboratorio de Fisiología Comparada/Laboratorio de Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Fabiola León-Velarde
- Laboratorio de Fisiología Comparada/Laboratorio de Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| |
Collapse
|
17
|
Tsai JL, Chen CH, Wu MJ, Tsai SF. New Approaches to Diabetic Nephropathy from Bed to Bench. Biomedicines 2022; 10:biomedicines10040876. [PMID: 35453626 PMCID: PMC9031931 DOI: 10.3390/biomedicines10040876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 02/01/2023] Open
Abstract
Diabetic nephropathy (DN) is the main cause of end-stage kidney disease (ESKD). DN-related ESKD has the worst prognosis for survival compared with other causes. Due to the complex mechanisms of DN and the heterogeneous presentations, unmet needs exist for the renal outcome of diabetes mellitus. Clinical evidence for treating DN is rather solid. For example, the first Kidney Disease: Improving Global Outcomes (KDIGO) guideline was published in October 2020: KDIGO Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. In December of 2020, the International Society of Nephrology published 60 (+1) breakthrough discoveries in nephrology. Among these breakthroughs, four important ones after 1980 were recognized, including glomerular hyperfiltration theory, renal protection by renin-angiotensin system inhibition, hypoxia-inducible factor, and sodium-glucose cotransporter 2 inhibitors. Here, we present a review on the pivotal and new mechanisms of DN from the implications of clinical studies and medications.
Collapse
Affiliation(s)
- Jun-Li Tsai
- Division of Family Medicine, Cheng Ching General Hospital, Taichung 407, Taiwan;
- Division of Family Medicine, Cheng Ching Rehabilitation Hospital, Taichung 407, Taiwan
| | - Cheng-Hsu Chen
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan; (C.-H.C.); (M.-J.W.)
- Department of Life Science, Tunghai University, Taichung 407, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Ming-Ju Wu
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan; (C.-H.C.); (M.-J.W.)
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Shang-Feng Tsai
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan; (C.-H.C.); (M.-J.W.)
- Department of Life Science, Tunghai University, Taichung 407, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Correspondence:
| |
Collapse
|
18
|
Tenzing N, van Patot MT, Liu H, Xu Q, Liu J, Wang Z, Wang Y, Wuren T, Ge RL. Identification of a miRNA-mRNA Regulatory Networks in Placental Tissue Associated With Tibetan High Altitude Adaptation. Front Genet 2021; 12:671119. [PMID: 34567059 PMCID: PMC8460760 DOI: 10.3389/fgene.2021.671119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/30/2021] [Indexed: 11/15/2022] Open
Abstract
The Tibetan population has lived and successfully reproduced at high altitude for many generations. Studies have shown that Tibetans have various mechanisms for protection against high-altitude hypoxia, which are probably due, at least in part, to placental adaptation. However, comprehensive in silico analyses of placentas in Tibetans are lacking. We performed a microarray-based comparative transcriptome analysis of 10 Tibetan women from Yushu, Qinghai, CHN (∼3,780 m) and 10 European women living in Leadville, CO, United States (∼3,100 m) for less than three generations. Expression of HIF-1α, STAT3, EGFR, HSP5A, XBP1, and ATF6A mRNA was less in the Tibetan placentas as compared with European placentas. A total of 38 miRNAs were involved in regulating these genes. Differentially expressed genes were enriched for HIF1α signaling pathways, protein processing in the endoplasmic reticulum, PI3K-AKT signaling pathways, and MAPK signaling pathways. Based on the transcriptome profiles, the Tibetan population was distinct from the European population; placental tissues from the Tibetan population are lacking hypoxic responses, and “passivation” occurs in response to hypoxic stress. These results provide insights into the molecular signature of adaptation to high altitudes in these two populations.
Collapse
Affiliation(s)
- Noryung Tenzing
- Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China.,Clinical Department, Qinghai University Affiliated Hospital, Xining, China
| | | | - Huifang Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China.,Clinical Department, Qinghai University Affiliated Hospital, Xining, China
| | - Qiying Xu
- Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China.,Clinical Department, Qinghai University Affiliated Hospital, Xining, China
| | - Juanli Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China.,Qinghai Provincial People's Hospital, Xining, China
| | - Zhuoya Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China.,Clinical Department, Qinghai University Affiliated Hospital, Xining, China
| | - Yanjun Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China.,Clinical Department, Qinghai University Affiliated Hospital, Xining, China
| | - Tana Wuren
- Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
| |
Collapse
|
19
|
Abstract
Human physiology is likely to have been selected for endurance physical activity. However, modern humans have become largely sedentary, with physical activity becoming a leisure-time pursuit for most. Whereas inactivity is a strong risk factor for disease, regular physical activity reduces the risk of chronic disease and mortality. Although substantial epidemiological evidence supports the beneficial effects of exercise, comparatively little is known about the molecular mechanisms through which these effects operate. Genetic and genomic analyses have identified genetic variation associated with human performance and, together with recent proteomic, metabolomic and multi-omic analyses, are beginning to elucidate the molecular genetic mechanisms underlying the beneficial effects of physical activity on human health.
Collapse
Affiliation(s)
- Daniel Seung Kim
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew T Wheeler
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Euan A Ashley
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA. .,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA. .,Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
20
|
Zhang X, Ye L, Li X, Chen Y, Jiang Y, Li W, Wen Y. The association between sarcopenia susceptibility and polymorphisms of FTO, ACVR2B, and IRS1 in Tibetans. Mol Genet Genomic Med 2021; 9:e1747. [PMID: 34302448 PMCID: PMC8404241 DOI: 10.1002/mgg3.1747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/16/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Background Hypoxia within the plateau has a negative effect on skeletal muscle and may play a role in the development of sarcopenia in humans. Tibetans having lived in the Qinghai‐Tibet Plateau for thousands of years, are a high‐risk group for sarcopenia; however, they have a distinctive suite of genetic traits that enable them to tolerate environmental hypoxia and are genetically significantly different from Han Chinese and other lowland populations. Sarcopenia has been consistently found to be associated with single‐nucleotide polymorphisms, but few studies have investigated the role of single‐nucleotide polymorphisms in a range of muscle phenotypes and sarcopenia in Tibetan peoples. Methods Our study aimed to investigate the skeletal muscle mass and fat mass of 160 Tibetans (80 men and 80 women) from Lhasa (altitude of 3600 meters) and analyze the association between the polymorphisms of fat mass and obesity protein (FTO) rs9939609, FTO rs9936385, activin type IIB receptor (ACVR2B) rs2276541, insulin receptor substrate 1 (IRS1) 2943656 and sarcopenia. Result FTO rs9939609 and rs9936385 polymorphisms were associated with lower limb skeletal muscle mass and sarcopenia for Tibetan women, and TT homozygotes had a higher risk for sarcopenia. But ACVR2B rs2276541 and IRS1 2943656 polymorphisms were unassociated with sarcopenia in Tibetan. Conclusion In Tibetans, FTO rs9939609 and rs9936385 polymorphisms were associated with sarcopenia, and ACVR2B rs2276541 and IRS1 2943656 polymorphisms were unassociated with sarcopenia.
Collapse
Affiliation(s)
- Xianpeng Zhang
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Liping Ye
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou, China
| | - Xin Li
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Ying Chen
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Yaqiong Jiang
- Tama Community Health Center of Chengguan District, Lhasa, China
| | - Wenhui Li
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Youfeng Wen
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
21
|
Liu H, Tenzing N, van Patot MT, Qile M, Ge RL, Wuren T. Enhanced Placental Mitochondrial Respiration in Tibetan Women at High Altitude. Front Physiol 2021; 12:697022. [PMID: 34335303 PMCID: PMC8317222 DOI: 10.3389/fphys.2021.697022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/18/2021] [Indexed: 12/22/2022] Open
Abstract
Living at high altitudes is extremely challenging as it entails exposure to hypoxia, low temperatures, and high levels of UV radiation. However, the Tibetan population has adapted to such conditions on both a physiological and genetic level over 30,000–40,000 years. It has long been speculated that fetal growth restriction is caused by abnormal placental development. We previously demonstrated that placentas from high-altitude Tibetans were protected from oxidative stress induced by labor compared to those of European descent. However, little is known about how placental mitochondria change during high-altitude adaptation. In this study, we aimed to uncover the mechanism of such adaptation by studying the respiratory function of the placental mitochondria of high-altitude Tibetans, lower-altitude Tibetans, and lower-altitude Chinese Han. We discovered that mitochondrial respiration was greater in high-altitude than in lower-altitude Tibetans in terms of OXPHOS via complexes I and I+II, ETSmax capacity, and non-phosphorylating respiration, whereas non-ETS respiration, LEAK/ETS, and OXPHOS via complex IV did not differ. Respiration in lower-altitude Tibetans and Han was similar for all tested respiratory states. Placentas from high-altitude Tibetan women were protected from acute ischemic/hypoxic insult induced by labor, and increased mitochondrial respiration may represent an acute response that induces mitochondrial adaptations.
Collapse
Affiliation(s)
- Huifang Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Key Laboratory for Application of High-Altitude Medicine, Qinghai University, Xining, China.,Affiliated Hospital of Qinghai University, Xining, China
| | - Noryung Tenzing
- Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Key Laboratory for Application of High-Altitude Medicine, Qinghai University, Xining, China.,Affiliated Hospital of Qinghai University, Xining, China
| | | | - Muge Qile
- Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Key Laboratory for Application of High-Altitude Medicine, Qinghai University, Xining, China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Key Laboratory for Application of High-Altitude Medicine, Qinghai University, Xining, China
| | - Tana Wuren
- Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Key Laboratory for Application of High-Altitude Medicine, Qinghai University, Xining, China
| |
Collapse
|
22
|
Storz JF. High-Altitude Adaptation: Mechanistic Insights from Integrated Genomics and Physiology. Mol Biol Evol 2021; 38:2677-2691. [PMID: 33751123 PMCID: PMC8233491 DOI: 10.1093/molbev/msab064] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Population genomic analyses of high-altitude humans and other vertebrates have identified numerous candidate genes for hypoxia adaptation, and the physiological pathways implicated by such analyses suggest testable hypotheses about underlying mechanisms. Studies of highland natives that integrate genomic data with experimental measures of physiological performance capacities and subordinate traits are revealing associations between genotypes (e.g., hypoxia-inducible factor gene variants) and hypoxia-responsive phenotypes. The subsequent search for causal mechanisms is complicated by the fact that observed genotypic associations with hypoxia-induced phenotypes may reflect second-order consequences of selection-mediated changes in other (unmeasured) traits that are coupled with the focal trait via feedback regulation. Manipulative experiments to decipher circuits of feedback control and patterns of phenotypic integration can help identify causal relationships that underlie observed genotype–phenotype associations. Such experiments are critical for correct inferences about phenotypic targets of selection and mechanisms of adaptation.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
23
|
Monroe JG, McKay JK, Weigel D, Flood PJ. The population genomics of adaptive loss of function. Heredity (Edinb) 2021; 126:383-395. [PMID: 33574599 PMCID: PMC7878030 DOI: 10.1038/s41437-021-00403-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 12/23/2022] Open
Abstract
Discoveries of adaptive gene knockouts and widespread losses of complete genes have in recent years led to a major rethink of the early view that loss-of-function alleles are almost always deleterious. Today, surveys of population genomic diversity are revealing extensive loss-of-function and gene content variation, yet the adaptive significance of much of this variation remains unknown. Here we examine the evolutionary dynamics of adaptive loss of function through the lens of population genomics and consider the challenges and opportunities of studying adaptive loss-of-function alleles using population genetics models. We discuss how the theoretically expected existence of allelic heterogeneity, defined as multiple functionally analogous mutations at the same locus, has proven consistent with empirical evidence and why this impedes both the detection of selection and causal relationships with phenotypes. We then review technical progress towards new functionally explicit population genomic tools and genotype-phenotype methods to overcome these limitations. More broadly, we discuss how the challenges of studying adaptive loss of function highlight the value of classifying genomic variation in a way consistent with the functional concept of an allele from classical population genetics.
Collapse
Affiliation(s)
- J Grey Monroe
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany.
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA.
| | - John K McKay
- College of Agriculture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Pádraic J Flood
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Department of Plant Breeding, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
24
|
High-altitude deer mouse hypoxia-inducible factor-2α shows defective interaction with CREB-binding protein. J Biol Chem 2021; 296:100461. [PMID: 33639161 PMCID: PMC8024697 DOI: 10.1016/j.jbc.2021.100461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/26/2022] Open
Abstract
Numerous mammalian species have adapted to the chronic hypoxia of high altitude. Recent genomic studies have identified evidence for natural selection of genes and associated genetic changes in these species. A major gap in our knowledge is an understanding of the functional significance, if any, of these changes. Deer mice (Peromyscus maniculatus) live at both low and high altitudes in North America, providing an opportunity to identify functionally important genetic changes. High-altitude deer mice show evidence of natural selection on the Epas1 gene, which encodes for hypoxia-inducible factor-2α (Hif-2α), a central transcription factor of the hypoxia-inducible factor pathway. An SNP encoding for a T755M change in the Hif-2α protein is highly enriched in high-altitude deer mice, but its functional significance is unknown. Here, using coimmunoprecipitation and transcriptional activity assays, we show that the T755M mutation produces a defect in the interaction of Hif-2α with the transcriptional coactivator CREB-binding protein. This results in a loss of function because of decreased transcriptional activity. Intriguingly, the effect of this mutation depends on the amino acid context. Interchanges between methionine and threonine at the corresponding position in house mouse (Mus musculus) Hif-2α are without effects on CREB-binding protein binding. Furthermore, transfer of a set of deer mouse–specific Hif-2α amino acids to house mouse Hif-2α is sufficient to confer sensitivity of house mouse Hif-2α to the T755M substitution. These findings provide insight into high-altitude adaptation in deer mice and evolution at the Epas1 locus.
Collapse
|
25
|
Pullamsetti SS, Mamazhakypov A, Weissmann N, Seeger W, Savai R. Hypoxia-inducible factor signaling in pulmonary hypertension. J Clin Invest 2021; 130:5638-5651. [PMID: 32881714 DOI: 10.1172/jci137558] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pulmonary hypertension (PH) is characterized by pulmonary artery remodeling that can subsequently culminate in right heart failure and premature death. Emerging evidence suggests that hypoxia-inducible factor (HIF) signaling plays a fundamental and pivotal role in the pathogenesis of PH. This Review summarizes the regulation of HIF isoforms and their impact in various PH subtypes, as well as the elaborate conditional and cell-specific knockout mouse studies that brought the role of this pathway to light. We also discuss the current preclinical status of pan- and isoform-selective HIF inhibitors, and propose new research areas that may facilitate HIF isoform-specific inhibition as a novel therapeutic strategy for PH and right heart failure.
Collapse
Affiliation(s)
- Soni Savai Pullamsetti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, member of the DZL and CPI, Justus Liebig University, Giessen, Germany
| | - Argen Mamazhakypov
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Norbert Weissmann
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, member of the DZL and CPI, Justus Liebig University, Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, member of the DZL and CPI, Justus Liebig University, Giessen, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Rajkumar Savai
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, member of the DZL and CPI, Justus Liebig University, Giessen, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany.,Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
26
|
Abstract
Population genomic studies of humans and other animals at high altitude have generated many hypotheses about the genes and pathways that may have contributed to hypoxia adaptation. Future advances require experimental tests of such hypotheses to identify causal mechanisms. Studies to date illustrate the challenge of moving from lists of candidate genes to the identification of phenotypic targets of selection, as it can be difficult to determine whether observed genotype-phenotype associations reflect causal effects or secondary consequences of changes in other traits that are linked via homeostatic regulation. Recent work on high-altitude models such as deer mice has revealed both plastic and evolved changes in respiratory, cardiovascular, and metabolic traits that contribute to aerobic performance capacity in hypoxia, and analyses of tissue-specific transcriptomes have identified changes in regulatory networks that mediate adaptive changes in physiological phenotype. Here we synthesize recent results and discuss lessons learned from studies of high-altitude adaptation that lie at the intersection of genomics and physiology.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA;
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA;
| |
Collapse
|
27
|
Werren EA, Garcia O, Bigham AW. Identifying adaptive alleles in the human genome: from selection mapping to functional validation. Hum Genet 2020; 140:241-276. [PMID: 32728809 DOI: 10.1007/s00439-020-02206-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022]
Abstract
The suite of phenotypic diversity across geographically distributed human populations is the outcome of genetic drift, gene flow, and natural selection throughout human evolution. Human genetic variation underlying local biological adaptations to selective pressures is incompletely characterized. With the emergence of population genetics modeling of large-scale genomic data derived from diverse populations, scientists are able to map signatures of natural selection in the genome in a process known as selection mapping. Inferred selection signals further can be used to identify candidate functional alleles that underlie putative adaptive phenotypes. Phenotypic association, fine mapping, and functional experiments facilitate the identification of candidate adaptive alleles. Functional investigation of candidate adaptive variation using novel techniques in molecular biology is slowly beginning to unravel how selection signals translate to changes in biology that underlie the phenotypic spectrum of our species. In addition to informing evolutionary hypotheses of adaptation, the discovery and functional annotation of adaptive alleles also may be of clinical significance. While selection mapping efforts in non-European populations are growing, there remains a stark under-representation of diverse human populations in current public genomic databases, of both clinical and non-clinical cohorts. This lack of inclusion limits the study of human biological variation. Identifying and functionally validating candidate adaptive alleles in more global populations is necessary for understanding basic human biology and human disease.
Collapse
Affiliation(s)
- Elizabeth A Werren
- Department of Human Genetics, The University of Michigan, Ann Arbor, MI, USA
- Department of Anthropology, The University of Michigan, Ann Arbor, MI, USA
| | - Obed Garcia
- Department of Anthropology, The University of Michigan, Ann Arbor, MI, USA
| | - Abigail W Bigham
- Department of Anthropology, University of California Los Angeles, 341 Haines Hall, Los Angeles, CA, 90095, USA.
| |
Collapse
|
28
|
Pamenter ME, Hall JE, Tanabe Y, Simonson TS. Cross-Species Insights Into Genomic Adaptations to Hypoxia. Front Genet 2020; 11:743. [PMID: 32849780 PMCID: PMC7387696 DOI: 10.3389/fgene.2020.00743] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Over millions of years, vertebrate species populated vast environments spanning the globe. Among the most challenging habitats encountered were those with limited availability of oxygen, yet many animal and human populations inhabit and perform life cycle functions and/or daily activities in varying degrees of hypoxia today. Of particular interest are species that inhabit high-altitude niches, which experience chronic hypobaric hypoxia throughout their lives. Physiological and molecular aspects of adaptation to hypoxia have long been the focus of high-altitude populations and, within the past decade, genomic information has become increasingly accessible. These data provide an opportunity to search for common genetic signatures of selection across uniquely informative populations and thereby augment our understanding of the mechanisms underlying adaptations to hypoxia. In this review, we synthesize the available genomic findings across hypoxia-tolerant species to provide a comprehensive view of putatively hypoxia-adaptive genes and pathways. In many cases, adaptive signatures across species converge on the same genetic pathways or on genes themselves [i.e., the hypoxia inducible factor (HIF) pathway). However, specific variants thought to underlie function are distinct between species and populations, and, in most cases, the precise functional role of these genomic differences remains unknown. Efforts to standardize these findings and explore relationships between genotype and phenotype will provide important clues into the evolutionary and mechanistic bases of physiological adaptations to environmental hypoxia.
Collapse
Affiliation(s)
- Matthew E. Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - James E. Hall
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Yuuka Tanabe
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|