1
|
Rimniceanu M, Limbania D, Wasserman SM, Frye MA. Divergent visual ecology of Drosophila species drives object-tracking strategies matched to landscape sparsity. Curr Biol 2024; 34:4743-4755.e3. [PMID: 39293439 PMCID: PMC11496026 DOI: 10.1016/j.cub.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/29/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024]
Abstract
Maintaining stable gaze while tracking moving objects is commonplace across animal taxa, yet how diverse ecological needs impact these processes is poorly understood. During flight, the fruit-eating fly Drosophila melanogaster maintains course by making smooth steering adjustments to fixate the image of the distant visual background on the retina, while executing body saccades to investigate nearby objects such as food sources. Cactophilic Drosophila mojavensis live where there is no canopy; rather, the flora forming visual "background" and "objects" are one and the same. We tested whether D. mojavensis have adapted their flight control strategies for a visually sparse landscape. We used a magnetic tether that allows free movement in the yaw axis. In response to a textured bar moving across a similarly textured stationary background, D. melanogaster fixates the background, thereby stabilizing gaze while integrating bar dynamics to trigger tracking saccades. By contrast, two mojavensis subspecies in the repleta subgroup and one species in the melanogaster subgroup steer to smoothly fixate the bar, seemingly ignoring the stationary surround. Desert flies execute frequent bar-tracking saccades, but theirs are triggered when rotational velocity lags the bar. Thus, D. melanogaster, which lives in visually cluttered cosmopolitan habitats, leverages the optical disparities between nearby objects and distant foliage for a hybrid control strategy: "ground-fixate, object-saccade." Flies in distant phylogenetic subgroups with similar visual ecology use a "fixate-and-saccade" strategy, which would be adaptive in a visually sparse environment where individual landscape features are both approached and used to maintain a straight course.
Collapse
Affiliation(s)
- Martha Rimniceanu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniela Limbania
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sara M Wasserman
- Department of Neuroscience, Wellesley College, Wellesley, MA 02481, USA
| | - Mark A Frye
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Rauscher MJ, Fox JL. Asynchronous haltere input drives specific wing and head movements in Drosophila. Proc Biol Sci 2024; 291:20240311. [PMID: 38864337 PMCID: PMC11338569 DOI: 10.1098/rspb.2024.0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 04/05/2024] [Accepted: 04/19/2024] [Indexed: 06/13/2024] Open
Abstract
Halteres are multifunctional mechanosensory organs unique to the true flies (Diptera). A set of reduced hindwings, the halteres beat at the same frequency as the lift-generating forewings and sense inertial forces via mechanosensory campaniform sensilla. Though haltere ablation makes stable flight impossible, the specific role of wing-synchronous input has not been established. Using small iron filings attached to the halteres of tethered flies and an alternating electromagnetic field, we experimentally decoupled the wings and halteres of flying Drosophila and observed the resulting changes in wingbeat amplitude and head orientation. We find that asynchronous haltere input results in fast amplitude changes in the wing (hitches), but does not appreciably move the head. In multi-modal experiments, we find that wing and gaze optomotor responses are disrupted differently by asynchronous input. These effects of wing-asynchronous haltere input suggest that specific sensory information is necessary for maintaining wing amplitude stability and adaptive gaze control.
Collapse
Affiliation(s)
| | - Jessica L. Fox
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
3
|
Kittelmann M, McGregor AP. Looking across the gap: Understanding the evolution of eyes and vision among insects. Bioessays 2024; 46:e2300240. [PMID: 38593308 DOI: 10.1002/bies.202300240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 04/11/2024]
Abstract
The compound eyes of insects exhibit stunning variation in size, structure, and function, which has allowed these animals to use their vision to adapt to a huge range of different environments and lifestyles, and evolve complex behaviors. Much of our knowledge of eye development has been learned from Drosophila, while visual adaptations and behaviors are often more striking and better understood from studies of other insects. However, recent studies in Drosophila and other insects, including bees, beetles, and butterflies, have begun to address this gap by revealing the genetic and developmental bases of differences in eye morphology and key new aspects of compound eye structure and function. Furthermore, technical advances have facilitated the generation of high-resolution connectomic data from different insect species that enhances our understanding of visual information processing, and the impact of changes in these processes on the evolution of vision and behavior. Here, we review these recent breakthroughs and propose that future integrated research from the development to function of visual systems within and among insect species represents a great opportunity to understand the remarkable diversification of insect eyes and vision.
Collapse
Affiliation(s)
- Maike Kittelmann
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | | |
Collapse
|
4
|
Wagner H, Egelhaaf M, Carr C. Model organisms and systems in neuroethology: one hundred years of history and a look into the future. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:227-242. [PMID: 38227005 PMCID: PMC10995084 DOI: 10.1007/s00359-023-01685-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/17/2024]
Abstract
The Journal of Comparative Physiology lived up to its name in the last 100 years by including more than 1500 different taxa in almost 10,000 publications. Seventeen phyla of the animal kingdom were represented. The honeybee (Apis mellifera) is the taxon with most publications, followed by locust (Locusta migratoria), crayfishes (Cambarus spp.), and fruitfly (Drosophila melanogaster). The representation of species in this journal in the past, thus, differs much from the 13 model systems as named by the National Institutes of Health (USA). We mention major accomplishments of research on species with specific adaptations, specialist animals, for example, the quantitative description of the processes underlying the axon potential in squid (Loligo forbesii) and the isolation of the first receptor channel in the electric eel (Electrophorus electricus) and electric ray (Torpedo spp.). Future neuroethological work should make the recent genetic and technological developments available for specialist animals. There are many research questions left that may be answered with high yield in specialists and some questions that can only be answered in specialists. Moreover, the adaptations of animals that occupy specific ecological niches often lend themselves to biomimetic applications. We go into some depth in explaining our thoughts in the research of motion vision in insects, sound localization in barn owls, and electroreception in weakly electric fish.
Collapse
Affiliation(s)
- Hermann Wagner
- Institute of Biology II, RWTH Aachen University, 52074, Aachen, Germany.
| | - Martin Egelhaaf
- Department of Neurobiology, Bielefeld University, Bielefeld, Germany
| | - Catherine Carr
- Department of Biology, University of Maryland at College Park, College Park, USA
| |
Collapse
|
5
|
Cellini B, Ferrero M, Mongeau JM. Drosophila flying in augmented reality reveals the vision-based control autonomy of the optomotor response. Curr Biol 2024; 34:68-78.e4. [PMID: 38113890 DOI: 10.1016/j.cub.2023.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/03/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023]
Abstract
For walking, swimming, and flying animals, the optomotor response is essential to stabilize gaze. How flexible is the optomotor response? Classic work in Drosophila has argued that flies adapt flight control under augmented visual feedback conditions during goal-directed bar fixation. However, whether the lower-level, reflexive optomotor response can similarly adapt to augmented visual feedback (partially autonomous) or not (autonomous) over long timescales is poorly understood. To address this question, we developed an augmented reality paradigm to study the vision-based control autonomy of the yaw optomotor response of flying fruit flies (Drosophila). Flies were placed in a flight simulator, which permitted free body rotation about the yaw axis. By feeding back body movements in real time to a visual display, we augmented and inverted visual feedback. Thus, this experimental paradigm caused a constant visual error between expected and actual visual feedback to study potential adaptive visuomotor control. By combining experiments with control theory, we demonstrate that the optomotor response is autonomous during augmented reality flight bouts of up to 30 min, which exceeds the reported learning epoch during bar fixation. Agreement between predictions from linear systems theory and experimental data supports the notion that the optomotor response is approximately linear and time invariant within our experimental assay. Even under positive visual feedback, which revealed the stability limit of flies in augmented reality, the optomotor response was autonomous. Our results support a hierarchical motor control architecture in flies with fast and autonomous reflexes at the bottom and more flexible behavior at higher levels.
Collapse
Affiliation(s)
- Benjamin Cellini
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; Department of Mechanical Engineering, University of Nevada, Reno, NV 89557, USA.
| | - Marioalberto Ferrero
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Jean-Michel Mongeau
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
6
|
Prusty AD, Sane SP. The motor apparatus of head movements in the Oleander hawkmoth (Daphnis nerii, Lepidoptera). J Comp Neurol 2024; 532:e25577. [PMID: 38289189 DOI: 10.1002/cne.25577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/29/2023] [Accepted: 12/17/2023] [Indexed: 02/01/2024]
Abstract
Head movements of insects play a vital role in diverse locomotory behaviors including flying and walking. Because insect eyes move minimally within their sockets, their head movements are essential to reduce visual blur and maintain a stable gaze. As in most vertebrates, gaze stabilization behavior in insects requires the integration of both visual and mechanosensory feedback by the neck motor neurons. Although visual feedback is derived from the optic flow over the retina of their compound eyes, mechanosensory feedback is derived from their organs of balance, similar to the vestibular system in vertebrates. In Diptera, vestibular feedback is derived from the halteres-modified hindwings that evolved into mechanosensory organs-and is integrated with visual feedback to actuate compensatory head movements. However, non-Dipteran insects, including Lepidoptera, lack halteres. In these insects, vestibular feedback is obtained from the antennal Johnston's organs but it is not well-understood how it integrates with visual feedback during head movements. Indeed, although head movements are well-studied in flies, the underlying motor apparatus in non-Dipteran taxa has received relatively less attention. As a first step toward understanding compensatory head movements in the Oleander hawkmoth Daphnis nerii, we image the anatomy and architecture of their neck joint sclerites and muscles using X-ray microtomography, and the associated motor neurons using fluorescent dye fills and confocal microscopy. Based on these morphological data, we propose testable hypotheses about the putative function of specific neck muscles during head movements, which can shed light on their role in neck movements and gaze stabilization.
Collapse
Affiliation(s)
- Agnish D Prusty
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Sanjay P Sane
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
7
|
Davis BA, Mongeau JM. The influence of saccades on yaw gaze stabilization in fly flight. PLoS Comput Biol 2023; 19:e1011746. [PMID: 38127819 PMCID: PMC10769041 DOI: 10.1371/journal.pcbi.1011746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/05/2024] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
In a way analogous to human vision, the fruit fly D. melanogaster and many other flying insects generate smooth and saccadic movements to stabilize and shift their gaze in flight, respectively. It has been hypothesized that this combination of continuous and discrete movements benefits both flight stability and performance, particularly at high frequencies or speeds. Here we develop a hybrid control system model to explore the effects of saccades on the yaw stabilization reflex of D. melanogaster. Inspired from experimental data, the model includes a first order plant, a Proportional-Integral (PI) continuous controller, and a saccadic reset system that fires based on the integrated error of the continuous controller. We explore the gain, delay and switching threshold parameter space to quantify the optimum regions for yaw stability and performance. We show that the addition of saccades to a continuous controller provides benefits to both stability and performance across a range of frequencies. Our model suggests that Drosophila operates near its optimal switching threshold for its experimental gain set. We also show that based on experimental data, D. melanogaster operates in a region that trades off performance and stability. This trade-off increases flight robustness to compensate for internal perturbations such as wing damage.
Collapse
Affiliation(s)
- Brock A. Davis
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jean-Michel Mongeau
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
8
|
Ogawa Y, Nicholas S, Thyselius M, Leibbrandt R, Nowotny T, Knight JC, Nordström K. Descending neurons of the hoverfly respond to pursuits of artificial targets. Curr Biol 2023; 33:4392-4404.e5. [PMID: 37776861 DOI: 10.1016/j.cub.2023.08.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/11/2023] [Accepted: 08/31/2023] [Indexed: 10/02/2023]
Abstract
Many animals use motion vision information to control dynamic behaviors. Predatory animals, for example, show an exquisite ability to detect rapidly moving prey, followed by pursuit and capture. Such target detection is not only used by predators but is also important in conspecific interactions, such as for male hoverflies defending their territories against conspecific intruders. Visual target detection is believed to be subserved by specialized target-tuned neurons found in a range of species, including vertebrates and arthropods. However, how these target-tuned neurons respond to actual pursuit trajectories is currently not well understood. To redress this, we recorded extracellularly from target-selective descending neurons (TSDNs) in male Eristalis tenax hoverflies. We show that they have dorso-frontal receptive fields with a preferred direction up and away from the visual midline. We reconstructed visual flow fields as experienced during pursuits of artificial targets (black beads). We recorded TSDN responses to six reconstructed pursuits and found that each neuron responded consistently at remarkably specific time points but that these time points differed between neurons. We found that the observed spike probability was correlated with the spike probability predicted from each neuron's receptive field and size tuning. Interestingly, however, the overall response rate was low, with individual neurons responding to only a small part of each reconstructed pursuit. In contrast, the TSDN population responded to substantially larger proportions of the pursuits but with lower probability. This large variation between neurons could be useful if different neurons control different parts of the behavioral output.
Collapse
Affiliation(s)
- Yuri Ogawa
- Flinders Health and Medical Research Institute, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Sarah Nicholas
- Flinders Health and Medical Research Institute, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Malin Thyselius
- Department of Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro 701 82, Sweden
| | - Richard Leibbrandt
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Thomas Nowotny
- School of Engineering and Informatics, University of Sussex, Brighton BN1 9QJ, UK
| | - James C Knight
- School of Engineering and Informatics, University of Sussex, Brighton BN1 9QJ, UK
| | - Karin Nordström
- Flinders Health and Medical Research Institute, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia; Department of Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden.
| |
Collapse
|
9
|
Salem W, Cellini B, Jaworski E, Mongeau JM. Flies adaptively control flight to compensate for added inertia. Proc Biol Sci 2023; 290:20231115. [PMID: 37817597 PMCID: PMC10565401 DOI: 10.1098/rspb.2023.1115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023] Open
Abstract
Animal locomotion is highly adaptive, displaying a large degree of flexibility, yet how this flexibility arises from the integration of mechanics and neural control remains elusive. For instance, animals require flexible strategies to maintain performance as changes in mass or inertia impact stability. Compensatory strategies to mechanical loading are especially critical for animals that rely on flight for survival. To shed light on the capacity and flexibility of flight neuromechanics to mechanical loading, we pushed the performance of fruit flies (Drosophila) near its limit and implemented a control theoretic framework. Flies with added inertia were placed inside a virtual reality arena which permitted free rotation about the vertical (yaw) axis. Adding inertia increased the fly's response time yet had little influence on overall gaze stabilization performance. Flies maintained stability following the addition of inertia by adaptively modulating both visuomotor gain and damping. By contrast, mathematical modelling predicted a significant decrease in gaze stabilization performance. Adding inertia altered saccades, however, flies compensated for the added inertia by increasing saccade torque. Taken together, in response to added inertia flies increase reaction time but maintain flight performance through adaptive neural control. Overall, adding inertia decreases closed-loop flight robustness. Our work highlights the flexibility and capacity of motor control in flight.
Collapse
Affiliation(s)
- Wael Salem
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Benjamin Cellini
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Eric Jaworski
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Jean-Michel Mongeau
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
10
|
Lapshin DN, Vorontsov DD. Mapping the Auditory Space of Culex pipiens Female Mosquitoes in 3D. INSECTS 2023; 14:743. [PMID: 37754711 PMCID: PMC10532353 DOI: 10.3390/insects14090743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
The task of directional hearing faces most animals that possess ears. They approach this task in different ways, but a common trait is the use of binaural cues to find the direction to the source of sound. In insects, the task is further complicated by their small size and, hence, minute temporal and level differences between two ears. A single symmetric flagellar particle velocity receiver, such as the antenna of a mosquito, should not be able to discriminate between the two opposite directions along the vector of the sound wave. Paired antennae of mosquitoes presume the usage of binaural hearing, but its mechanisms are expected to be significantly different from the ones typical for the pressure receivers. However, the directionality of flagellar auditory organs has received little attention. Here, we measured the in-flight orientation of antennae in female Culex pipiens pipiens mosquitoes and obtained a detailed physiological mapping of the Johnston's organ directionality at the level of individual sensory units. By combining these data, we created a three-dimensional model of the mosquito's auditory space. The orientation of the antennae was found to be coordinated with the neuronal asymmetry of the Johnston's organs to maintain a uniformly shaped auditory space, symmetric relative to a flying mosquito. The overlap of the directional characteristics of the left and right sensory units was found to be optimal for binaural hearing focused primarily in front of, above and below a flying mosquito.
Collapse
Affiliation(s)
- Dmitry N. Lapshin
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Bolshoy Karetny per. 19, 127994 Moscow, Russia;
| | - Dmitry D. Vorontsov
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Vavilova 26, 119334 Moscow, Russia
| |
Collapse
|
11
|
Rimniceanu M, Currea JP, Frye MA. Proprioception gates visual object fixation in flying flies. Curr Biol 2023; 33:1459-1471.e3. [PMID: 37001520 PMCID: PMC10133043 DOI: 10.1016/j.cub.2023.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/24/2023] [Accepted: 03/07/2023] [Indexed: 04/27/2023]
Abstract
Visual object tracking in animals as diverse as felines, frogs, and fish supports behaviors including predation, predator avoidance, and landscape navigation. Decades of experimental results show that a rigidly body-fixed tethered fly in a "virtual reality" visual flight simulator steers to follow the motion of a vertical bar, thereby "fixating" it on visual midline. This behavior likely reflects a desire to seek natural features such as plant stalks and has inspired algorithms for visual object tracking predicated on robust responses to bar velocity, particularly near visual midline. Using a modified flight simulator equipped with a magnetic pivot to allow frictionless turns about the yaw axis, we discovered that bar fixation as well as smooth steering responses to bar velocity are attenuated or eliminated in yaw-free conditions. Body-fixed Drosophila melanogaster respond to bar oscillation on a stationary ground with frequency-matched wing kinematics and fixate the bar on midline. Yaw-free flies respond to the same stimulus by ignoring the bar and maintaining their original heading. These differences are driven by proprioceptive signals, rather than visual signals, as artificially "clamping" a bar in the periphery of a yaw-free fly has no effect. When presented with a bar and ground oscillating at different frequencies, a yaw-free fly follows the frequency of the ground only, whereas a body-fixed fly robustly steers at the frequencies of both the bar and ground. Our findings support a model in which proprioceptive feedback promote active damping of high-gain optomotor responses to object motion.
Collapse
Affiliation(s)
- Martha Rimniceanu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - John P Currea
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mark A Frye
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
12
|
Yadipour M, Billah MA, Faruque IA. Optic flow enrichment via Drosophila head and retina motions to support inflight position regulation. J Theor Biol 2023; 562:111416. [PMID: 36681182 DOI: 10.1016/j.jtbi.2023.111416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/13/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
Developing a functional description of the neural control circuits and visual feedback paths underlying insect flight behaviors is an active research area. Feedback controllers incorporating engineering models of the insect visual system outputs have described some flight behaviors, yet they do not explain how insects are able to stabilize their body position relative to nearby targets such as neighbors or forage sources, especially in challenging environments in which optic flow is poor. The insect experimental community is simultaneously recording a growing library of in-flight head and eye motions that may be linked to increased perception. This study develops a quantitative model of the optic flow experienced by a flying insect or robot during head yawing rotations (distinct from lateral peering motions in previous work) with a single other target in view. This study then applies a model of insect visuomotor feedback to show via analysis and simulation of five species that these head motions sufficiently enrich the optic flow and that the output feedback can provide relative position regulation relative to the single target (asymptotic stability). In the simplifying case of pure rotation relative to the body, theoretical analysis provides a stronger stability guarantee. The results are shown to be robust to anatomical neck angle limits and body vibrations, persist with more detailed Drosophila lateral-directional flight dynamics simulations, and generalize to recent retinal motion studies. Together, these results suggest that the optic flow enrichment provided by head or pseudopupil rotation could be used in an insect's neural processing circuit to enable position regulation.
Collapse
Affiliation(s)
- Mehdi Yadipour
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Md Arif Billah
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Imraan A Faruque
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
13
|
Fenk LM, Avritzer SC, Weisman JL, Nair A, Randt LD, Mohren TL, Siwanowicz I, Maimon G. Muscles that move the retina augment compound eye vision in Drosophila. Nature 2022; 612:116-122. [PMID: 36289333 PMCID: PMC10103069 DOI: 10.1038/s41586-022-05317-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/02/2022] [Indexed: 12/15/2022]
Abstract
Most animals have compound eyes, with tens to thousands of lenses attached rigidly to the exoskeleton. A natural assumption is that all of these species must resort to moving either their head or their body to actively change their visual input. However, classic anatomy has revealed that flies have muscles poised to move their retinas under the stable lenses of each compound eye1-3. Here we show that Drosophila use their retinal muscles to smoothly track visual motion, which helps to stabilize the retinal image, and also to perform small saccades when viewing a stationary scene. We show that when the retina moves, visual receptive fields shift accordingly, and that even the smallest retinal saccades activate visual neurons. Using a head-fixed behavioural paradigm, we find that Drosophila perform binocular, vergence movements of their retinas-which could enhance depth perception-when crossing gaps, and impairing the physiology of retinal motor neurons alters gap-crossing trajectories during free behaviour. That flies evolved an ability to actuate their retinas suggests that moving the eye independently of the head is broadly paramount for animals. The similarities of smooth and saccadic movements of the Drosophila retina and the vertebrate eye highlight a notable example of convergent evolution.
Collapse
Affiliation(s)
- Lisa M Fenk
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
- Active Sensing, Max Planck Institute for Biological Intelligence (in foundation), Martinsried, Germany.
| | - Sofia C Avritzer
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Jazz L Weisman
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Aditya Nair
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lucas D Randt
- Active Sensing, Max Planck Institute for Biological Intelligence (in foundation), Martinsried, Germany
| | - Thomas L Mohren
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Igor Siwanowicz
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Gaby Maimon
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
14
|
Salem W, Cellini B, Kabutz H, Hari Prasad HK, Cheng B, Jayaram K, Mongeau JM. Flies trade off stability and performance via adaptive compensation to wing damage. SCIENCE ADVANCES 2022; 8:eabo0719. [PMID: 36399568 PMCID: PMC9674276 DOI: 10.1126/sciadv.abo0719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Physical injury often impairs mobility, which can have dire consequences for survival in animals. Revealing mechanisms of robust biological intelligence to prevent system failure can provide critical insights into how complex brains generate adaptive movement and inspiration to design fault-tolerant robots. For flying animals, physical injury to a wing can have severe consequences, as flight is inherently unstable. Using a virtual reality flight arena, we studied how flying fruit flies compensate for damage to one wing. By combining experimental and mathematical methods, we show that flies compensate for wing damage by corrective wing movement modulated by closed-loop sensing and robust mechanics. Injured flies actively increase damping and, in doing so, modestly decrease flight performance but fly as stably as uninjured flies. Quantifying responses to injury can uncover the flexibility and robustness of biological systems while informing the development of bio-inspired fault-tolerant strategies.
Collapse
Affiliation(s)
- Wael Salem
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Benjamin Cellini
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Heiko Kabutz
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | | | - Bo Cheng
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kaushik Jayaram
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Jean-Michel Mongeau
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
15
|
Impact of walking speed and motion adaptation on optokinetic nystagmus-like head movements in the blowfly Calliphora. Sci Rep 2022; 12:11540. [PMID: 35799051 PMCID: PMC9262929 DOI: 10.1038/s41598-022-15740-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
The optokinetic nystagmus is a gaze-stabilizing mechanism reducing motion blur by rapid eye rotations against the direction of visual motion, followed by slower syndirectional eye movements minimizing retinal slip speed. Flies control their gaze through head turns controlled by neck motor neurons receiving input directly, or via descending neurons, from well-characterized directional-selective interneurons sensitive to visual wide-field motion. Locomotion increases the gain and speed sensitivity of these interneurons, while visual motion adaptation in walking animals has the opposite effects. To find out whether flies perform an optokinetic nystagmus, and how it may be affected by locomotion and visual motion adaptation, we recorded head movements of blowflies on a trackball stimulated by progressive and rotational visual motion. Flies flexibly responded to rotational stimuli with optokinetic nystagmus-like head movements, independent of their locomotor state. The temporal frequency tuning of these movements, though matching that of the upstream directional-selective interneurons, was only mildly modulated by walking speed or visual motion adaptation. Our results suggest flies flexibly control their gaze to compensate for rotational wide-field motion by a mechanism similar to an optokinetic nystagmus. Surprisingly, the mechanism is less state-dependent than the response properties of directional-selective interneurons providing input to the neck motor system.
Collapse
|
16
|
Chatterjee P, Prusty AD, Mohan U, Sane SP. Integration of visual and antennal mechanosensory feedback during head stabilization in hawkmoths. eLife 2022; 11:e78410. [PMID: 35758646 PMCID: PMC9259029 DOI: 10.7554/elife.78410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022] Open
Abstract
During flight maneuvers, insects exhibit compensatory head movements which are essential for stabilizing the visual field on their retina, reducing motion blur, and supporting visual self-motion estimation. In Diptera, such head movements are mediated via visual feedback from their compound eyes that detect retinal slip, as well as rapid mechanosensory feedback from their halteres - the modified hindwings that sense the angular rates of body rotations. Because non-Dipteran insects lack halteres, it is not known if mechanosensory feedback about body rotations plays any role in their head stabilization response. Diverse non-Dipteran insects are known to rely on visual and antennal mechanosensory feedback for flight control. In hawkmoths, for instance, reduction of antennal mechanosensory feedback severely compromises their ability to control flight. Similarly, when the head movements of freely flying moths are restricted, their flight ability is also severely impaired. The role of compensatory head movements as well as multimodal feedback in insect flight raises an interesting question: in insects that lack halteres, what sensory cues are required for head stabilization? Here, we show that in the nocturnal hawkmoth Daphnis nerii, compensatory head movements are mediated by combined visual and antennal mechanosensory feedback. We subjected tethered moths to open-loop body roll rotations under different lighting conditions, and measured their ability to maintain head angle in the presence or absence of antennal mechanosensory feedback. Our study suggests that head stabilization in moths is mediated primarily by visual feedback during roll movements at lower frequencies, whereas antennal mechanosensory feedback is required when roll occurs at higher frequency. These findings are consistent with the hypothesis that control of head angle results from a multimodal feedback loop that integrates both visual and antennal mechanosensory feedback, albeit at different latencies. At adequate light levels, visual feedback is sufficient for head stabilization primarily at low frequencies of body roll. However, under dark conditions, antennal mechanosensory feedback is essential for the control of head movements at high frequencies of body roll.
Collapse
Affiliation(s)
- Payel Chatterjee
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| | - Agnish Dev Prusty
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| | - Umesh Mohan
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| | - Sanjay P Sane
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| |
Collapse
|
17
|
Abstract
In visually active animals, eye, head, and body movements are coordinated to direct gaze. Given their distinct mechanics, how does the nervous system weight their contribution? By combining experiments in flying flies with control theory, we show that flies implement an elegant solution to this problem: the lower inertia head is recruited for higher-frequency visual tasks and is sensitive to motion acceleration, whereas the higher inertia body is recruited for lower-frequency visual tasks and is sensitive to motion velocity. This complementary division of labor within the nervous system exhibits two hallmarks of optimality: an increase in task performance accompanied with a decrease in mechanical energy expenditure. Our model recapitulates classic primate head-eye coordination responses, suggesting convergent mechanisms across phyla. Visually active animals coordinate vision and movement to achieve spectacular tasks. An essential prerequisite to guide agile locomotion is to keep gaze level and stable. Since the eyes, head and body can move independently to control gaze, how does the brain effectively coordinate these distinct motor outputs? Furthermore, since the eyes, head, and body have distinct mechanical constraints (e.g., inertia), how does the nervous system adapt its control to these constraints? To address these questions, we studied gaze control in flying fruit flies (Drosophila) using a paradigm which permitted direct measurement of head and body movements. By combining experiments with mathematical modeling, we show that body movements are sensitive to the speed of visual motion whereas head movements are sensitive to its acceleration. This complementary tuning of the head and body permitted flies to stabilize a broader range of visual motion frequencies. We discovered that flies implement proportional-derivative (PD) control, but unlike classical engineering control systems, relay the proportional and derivative signals in parallel to two distinct motor outputs. This scheme, although derived from flies, recapitulated classic primate vision responses thus suggesting convergent mechanisms across phyla. By applying scaling laws, we quantify that animals as diverse as flies, mice, and humans as well as bio-inspired robots can benefit energetically by having a high ratio between head, body, and eye inertias. Our results provide insights into the mechanical constraints that may have shaped the evolution of active vision and present testable neural control hypotheses for visually guided behavior across phyla.
Collapse
|
18
|
Ravi S, Siesenop T, Bertrand OJ, Li L, Doussot C, Fisher A, Warren WH, Egelhaaf M. Bumblebees display characteristics of active vision during robust obstacle avoidance flight. J Exp Biol 2022; 225:274096. [PMID: 35067721 PMCID: PMC8920035 DOI: 10.1242/jeb.243021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022]
Abstract
Insects are remarkable flyers and capable of navigating through highly cluttered environments. We tracked the head and thorax of bumblebees freely flying in a tunnel containing vertically oriented obstacles to uncover the sensorimotor strategies used for obstacle detection and collision avoidance. Bumblebees presented all the characteristics of active vision during flight by stabilizing their head relative to the external environment and maintained close alignment between their gaze and flightpath. Head stabilization increased motion contrast of nearby features against the background to enable obstacle detection. As bees approached obstacles, they appeared to modulate avoidance responses based on the relative retinal expansion velocity (RREV) of obstacles and their maximum evasion acceleration was linearly related to RREVmax. Finally, bees prevented collisions through rapid roll manoeuvres implemented by their thorax. Overall, the combination of visuo-motor strategies of bumblebees highlights elegant solutions developed by insects for visually guided flight through cluttered environments.
Collapse
Affiliation(s)
- Sridhar Ravi
- Department of Neurobiology and Center of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33619 Bielefeld, Germany,School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2600, Australia,Author for correspondence ()
| | - Tim Siesenop
- Department of Neurobiology and Center of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33619 Bielefeld, Germany
| | - Olivier J. Bertrand
- Department of Neurobiology and Center of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33619 Bielefeld, Germany
| | - Liang Li
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, University of Konstanz, 78464 Konstanz, Germany,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany,Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Charlotte Doussot
- Department of Neurobiology and Center of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33619 Bielefeld, Germany
| | - Alex Fisher
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - William H. Warren
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, RI 02912, USA
| | - Martin Egelhaaf
- Department of Neurobiology and Center of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33619 Bielefeld, Germany
| |
Collapse
|
19
|
Fenk LM, Kim AJ, Maimon G. Suppression of motion vision during course-changing, but not course-stabilizing, navigational turns. Curr Biol 2021; 31:4608-4619.e3. [PMID: 34644548 DOI: 10.1016/j.cub.2021.09.068] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 11/20/2022]
Abstract
From mammals to insects, locomotion has been shown to strongly modulate visual-system physiology. Does the manner in which a locomotor act is initiated change the modulation observed? We performed patch-clamp recordings from motion-sensitive visual neurons in tethered, flying Drosophila. We observed motor-related signals in flies performing flight turns in rapid response to looming discs and also during spontaneous turns, but motor-related signals were weak or non-existent in the context of turns made in response to brief pulses of unidirectional visual motion (i.e., optomotor responses). Thus, the act of a locomotor turn is variably associated with modulation of visual processing. These results can be understood via the following principle: suppress visual responses during course-changing, but not course-stabilizing, navigational turns. This principle is likely to apply broadly-even to mammals-whenever visual cells whose activity helps to stabilize a locomotor trajectory or the visual gaze angle are targeted for motor modulation.
Collapse
Affiliation(s)
- Lisa M Fenk
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA; Active Sensing, Max Plank Institute of Neurobiology, Martinsried, Germany.
| | - Anmo J Kim
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA; Department of Biomedical Engineering, Hanyang University, Seoul, South Korea; Department of Electronic Engineering, Hanyang University, Seoul, South Korea.
| | - Gaby Maimon
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
20
|
Cellini B, Salem W, Mongeau JM. Mechanisms of punctuated vision in fly flight. Curr Biol 2021; 31:4009-4024.e3. [PMID: 34329590 DOI: 10.1016/j.cub.2021.06.080] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/02/2021] [Accepted: 06/25/2021] [Indexed: 11/26/2022]
Abstract
To guide locomotion, animals control gaze via movements of their eyes, head, and/or body, but how the nervous system controls gaze during complex motor tasks remains elusive. In many animals, shifts in gaze consist of periods of smooth movement punctuated by rapid eye saccades. Notably, eye movements are constrained by anatomical limits, which requires resetting eye position. By studying tethered, flying fruit flies (Drosophila), we show that flies perform stereotyped head saccades to reset gaze, analogous to optokinetic nystagmus in primates. Head-reset saccades interrupted head smooth movement for as little as 50 ms-representing less than 5% of the total flight time-thereby enabling punctuated gaze stabilization. By revealing the passive mechanics of the neck joint, we show that head-reset saccades leverage the neck's natural elastic recoil, enabling mechanically assisted redirection of gaze. The consistent head orientation at saccade initiation, the influence of the head's angular position on saccade rate, the decrease in wing saccade frequency in head-fixed flies, and the decrease in head-reset saccade rate in flies with their head range of motion restricted together implicate proprioception as the primary trigger of head-reset saccades. Wing-reset saccades were influenced by head orientation, establishing a causal link between neck sensory signals and the execution of body saccades. Head-reset saccades were abolished when flies switched to a landing state, demonstrating that head movements are gated by behavioral state. We propose a control architecture for active vision systems with limits in sensor range of motion. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Benjamin Cellini
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Wael Salem
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jean-Michel Mongeau
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
21
|
Facilitation of neural responses to targets moving against optic flow. Proc Natl Acad Sci U S A 2021; 118:2024966118. [PMID: 34531320 PMCID: PMC8463850 DOI: 10.1073/pnas.2024966118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 01/08/2023] Open
Abstract
Target detection in visual clutter is a difficult computational task that insects, with their poor spatial resolution compound eyes and small brains, do successfully and with extremely short behavioral delays. We here show that the responses of target selective descending neurons are attenuated by background motion in the same direction as target motion but facilitated by background motion in the opposite direction. This finding is important for understanding how target pursuit can occur in tandem with gaze stabilization. Indeed, the neural facilitation would come into effect if the hoverfly is subjected to background motion in one direction but the target it is pursuing moves in the opposite direction and could therefore be used to override gaze stabilizing corrective turns. For the human observer, it can be difficult to follow the motion of small objects, especially when they move against background clutter. In contrast, insects efficiently do this, as evidenced by their ability to capture prey, pursue conspecifics, or defend territories, even in highly textured surrounds. We here recorded from target selective descending neurons (TSDNs), which likely subserve these impressive behaviors. To simulate the type of optic flow that would be generated by the pursuer’s own movements through the world, we used the motion of a perspective corrected sparse dot field. We show that hoverfly TSDN responses to target motion are suppressed when such optic flow moves syn-directional to the target. Indeed, neural responses are strongly suppressed when targets move over either translational sideslip or rotational yaw. More strikingly, we show that TSDNs are facilitated by optic flow moving counterdirectional to the target, if the target moves horizontally. Furthermore, we show that a small, frontal spatial window of optic flow is enough to fully facilitate or suppress TSDN responses to target motion. We argue that such TSDN response facilitation could be beneficial in modulating corrective turns during target pursuit.
Collapse
|
22
|
Lingenfelter B, Nag A, van Breugel F. Insect inspired vision-based velocity estimation through spatial pooling of optic flow during linear motion. BIOINSPIRATION & BIOMIMETICS 2021; 16:10.1088/1748-3190/ac1f7b. [PMID: 34412040 PMCID: PMC10561965 DOI: 10.1088/1748-3190/ac1f7b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Insects rely on the perception of image motion, or optic flow, to estimate their velocity relative to nearby objects. This information provides important sensory input for avoiding obstacles. However, certain behaviors, such as estimating the absolute distance to a landing target, accurately measuring absolute distance traveled, and estimating the ambient wind speed require decoupling optic flow into its component parts: absolute ground velocity and distance to nearby objects. Behavioral experiments suggest that insects perform these calculations, but their mechanism for doing so remains unknown. Here we present a novel algorithm that combines the geometry of dynamic forward motion with known features of insect visual processing to provide a hypothesis for how insects mightdirectlyestimate absolute ground velocity from a combination of optic flow and acceleration information. Our robotics-inspired-biology approach reveals three critical requirements. First, absolute ground velocity can only be directly estimated from optic flow during times of active acceleration and deceleration. Second, spatial pooling of optic flow across a receptive field helps to alleviate the effects of noise and/or low resolution visual systems. Third, averaging velocity estimates from multiple receptive fields further helps to reject noise. Our algorithm provides a hypothesis for how insects might estimate absolute velocity from vision during active maneuvers, and also provides a theoretical framework for designing fast analog circuitry for efficient state estimation that can be applied to insect-sized robots.
Collapse
Affiliation(s)
- Bryson Lingenfelter
- Department of Computer Science and Engineering, University of Nevada, Reno, United States of America
| | - Arunava Nag
- Department of Mechanical Engineering, University of Nevada, Reno, United States of America
| | - Floris van Breugel
- Department of Mechanical Engineering, University of Nevada, Reno, United States of America
| |
Collapse
|
23
|
Mongeau JM, Schweikert LE, Davis AL, Reichert MS, Kanwal JK. Multimodal integration across spatiotemporal scales to guide invertebrate locomotion. Integr Comp Biol 2021; 61:842-853. [PMID: 34009312 DOI: 10.1093/icb/icab041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Locomotion is a hallmark of organisms that has enabled adaptive radiation to an extraordinarily diverse class of ecological niches, and allows animals to move across vast distances. Sampling from multiple sensory modalities enables animals to acquire rich information to guide locomotion. Locomotion without sensory feedback is haphazard, therefore sensory and motor systems have evolved complex interactions to generate adaptive behavior. Notably, sensory-guided locomotion acts over broad spatial and temporal scales to permit goal-seeking behavior, whether to localize food by tracking an attractive odor plume or to search for a potential mate. How does the brain integrate multimodal stimuli over different temporal and spatial scales to effectively control behavior? In this review, we classify locomotion into three ordinally ranked hierarchical layers that act over distinct spatiotemporal scales: stabilization, motor primitives, and higher-order tasks, respectively. We discuss how these layers present unique challenges and opportunities for sensorimotor integration. We focus on recent advances in invertebrate locomotion due to their accessible neural and mechanical signals from the whole brain, limbs and sensors. Throughout, we emphasize neural-level description of computations for multimodal integration in genetic model systems, including the fruit fly, Drosophila melanogaster, and the yellow fever mosquito, Aedes aegypti. We identify that summation (e.g. gating) and weighting-which are inherent computations of spiking neurons-underlie multimodal integration across spatial and temporal scales, therefore suggesting collective strategies to guide locomotion.
Collapse
Affiliation(s)
- Jean-Michel Mongeau
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lorian E Schweikert
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181. University of North Carolina Wilmington, Department of Biology and Marine Biology, Wilmington, NC, U.S.A
| | | | - Michael S Reichert
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jessleen K Kanwal
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
24
|
Rauscher MJ, Fox JL. Haltere and visual inputs sum linearly to predict wing (but not gaze) motor output in tethered flying Drosophila. Proc Biol Sci 2021; 288:20202374. [PMID: 33499788 DOI: 10.1098/rspb.2020.2374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In the true flies (Diptera), the hind wings have evolved into specialized mechanosensory organs known as halteres, which are sensitive to gyroscopic and other inertial forces. Together with the fly's visual system, the halteres direct head and wing movements through a suite of equilibrium reflexes that are crucial to the fly's ability to maintain stable flight. As in other animals (including humans), this presents challenges to the nervous system as equilibrium reflexes driven by the inertial sensory system must be integrated with those driven by the visual system in order to control an overlapping pool of motor outputs shared between the two of them. Here, we introduce an experimental paradigm for reproducibly altering haltere stroke kinematics and use it to quantify multisensory integration of wing and gaze equilibrium reflexes. We show that multisensory wing-steering responses reflect a linear superposition of haltere-driven and visually driven responses, but that multisensory gaze responses are not well predicted by this framework. These models, based on populations, extend also to the responses of individual flies.
Collapse
Affiliation(s)
- Michael J Rauscher
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106-7080, USA
| | - Jessica L Fox
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106-7080, USA
| |
Collapse
|
25
|
Cellini B, Mongeau JM. Hybrid visual control in fly flight: insights into gaze shift via saccades. CURRENT OPINION IN INSECT SCIENCE 2020; 42:23-31. [PMID: 32896628 DOI: 10.1016/j.cois.2020.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Flies fly by alternating between periods of fixation and body saccades, analogous to how our own eyes move. Gaze fixation via smooth movement in fly flight has been studied extensively, but comparatively less is known about the mechanism by which flies trigger and control body saccades to shift their gaze. Why do flies implement a hybrid fixate-and-saccade locomotion strategy? Here we review recent developments that provide new insights into this question. We focus on the interplay between smooth movement and saccades, the trigger classes of saccades, and the timeline of saccade execution. We emphasize recent mechanistic advances in Drosophila, where genetic tools have enabled cellular circuit analysis at an unprecedented level in a flying insect. In addition, we review trade-offs in behavioral paradigms used to study saccades. Throughout we highlight exciting avenues for future research in the control of fly flight.
Collapse
Affiliation(s)
- Benjamin Cellini
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, 16801, USA
| | - Jean-Michel Mongeau
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, 16801, USA.
| |
Collapse
|