1
|
Mirchandani AS, Sanchez-Garcia MA, Walmsley SR. How oxygenation shapes immune responses: emerging roles for physioxia and pathological hypoxia. Nat Rev Immunol 2025; 25:161-177. [PMID: 39349943 DOI: 10.1038/s41577-024-01087-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 03/04/2025]
Abstract
Most eukaryotes require oxygen for their survival and, with increasing multicellular complexity, oxygen availability and delivery rates vary across the tissues of complex organisms. In humans, healthy tissues have markedly different oxygen gradients, ranging from the hypoxic environment of the bone marrow (where our haematopoietic stem cells reside) to the lungs and their alveoli, which are among the most oxygenated areas of the body. Immune cells are therefore required to adapt to varying oxygen availability as they move from the bone marrow to peripheral organs to mediate their effector functions. These changing oxygen gradients are exaggerated during inflammation, where oxygenation is often depleted owing to alterations in tissue perfusion and increased cellular activity. As such, it is important to consider the effects of oxygenation on shaping the immune response during tissue homeostasis and disease conditions. In this Review, we address the relevance of both physiological oxygenation (physioxia) and disease-associated hypoxia (where cellular oxygen demand outstrips supply) for immune cell functions, discussing the relevance of hypoxia for immune responses in the settings of tissue homeostasis, inflammation, infection, cancer and disease immunotherapy.
Collapse
Affiliation(s)
- Ananda Shanti Mirchandani
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| | | | - Sarah Ruth Walmsley
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Nisar A, Khan S, Pan Y, Hu L, Yang P, Gold NM, Zhou Z, Yuan S, Zi M, Mehmood SA, He Y. The Role of Hypoxia in Longevity. Aging Dis 2025:AD.2024.1630. [PMID: 39965249 DOI: 10.14336/ad.2024.1630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/15/2025] [Indexed: 02/20/2025] Open
Abstract
Aging is marked by a progressive decrease in physiological function and reserve capacity, which results in increased susceptibility to diseases. Understanding the mechanisms of driving aging is crucial for extending health span and promoting human longevity. Hypoxia, marked by reduced oxygen availability, has emerged as a promising area of study within aging research. This review explores recent findings on the potential of oxygen restriction to promote healthy aging and extend lifespan. While the role of hypoxia-inducible factor 1 (HIF-1) in cellular responses to hypoxia is well-established, its impact on lifespan remains complex and context-dependent. Investigations in invertebrate models suggest a role for HIF-1 in longevity, while evidence in mammalian models is limited. Hypoxia extends the lifespan independent of dietary restriction (DR), a known intervention underlying longevity. However, both hypoxia and DR converge on common downstream effectors, such as forkhead box O (FOXO) and flavin-containing monooxygenase (FMOs) to modulate the lifespan. Further work is required to elucidate the molecular mechanisms underlying hypoxia-induced longevity and optimize clinical applications. Understanding the crosstalk between HIF-1 and other longevity-associated pathways is crucial for developing interventions to enhance lifespan and healthspan. Future studies may uncover novel therapeutic strategies to promote healthy aging and longevity in human populations.
Collapse
Affiliation(s)
- Ayesha Nisar
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Sawar Khan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410083, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Yongzhang Pan
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Li Hu
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Pengyun Yang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Naheemat Modupeola Gold
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhen Zhou
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Shengjie Yuan
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Meiting Zi
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | | | - Yonghan He
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
3
|
Rogers RS, Mootha VK. Hypoxia as a medicine. Sci Transl Med 2025; 17:eadr4049. [PMID: 39841808 DOI: 10.1126/scitranslmed.adr4049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025]
Abstract
Oxygen is essential for human life, yet a growing body of preclinical research is demonstrating that chronic continuous hypoxia can be beneficial in models of mitochondrial disease, autoimmunity, ischemia, and aging. This research is revealing exciting new and unexpected facets of oxygen biology, but translating these findings to patients poses major challenges, because hypoxia can be dangerous. Overcoming these barriers will require integrating insights from basic science, high-altitude physiology, clinical medicine, and sports technology. Here, we explore the foundations of this nascent field and outline a path to determine how chronic continuous hypoxia can be safely, effectively, and practically delivered to patients.
Collapse
Affiliation(s)
- Robert S Rogers
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute, Cambridge, MA 02142, USA
| | - Vamsi K Mootha
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute, Cambridge, MA 02142, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02114, USA
| |
Collapse
|
4
|
Berra L, Medeiros KJ, Marrazzo F, Patel S, Imber D, Rezoagli E, Yu B, Sonny A, Bittner EA, Fisher D, Chipman D, Sharma R, Shah H, Gray BE, Harris NS, Ichinose F, Mootha VK. Feasibility of Delivering 5-Day Normobaric Hypoxia Breathing in a Hospital Setting. Respir Care 2024; 69:1400-1408. [PMID: 39079724 PMCID: PMC11549621 DOI: 10.4187/respcare.11928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
BACKGROUND Beneficial effects of breathing at [Formula: see text] < 0.21 on disease outcomes have been reported in previous preclinical and clinical studies. However, the safety and intra-hospital feasibility of breathing hypoxic gas for 5 d have not been established. In this study, we examined the physiologic effects of breathing a gas mixture with [Formula: see text] as low as 0.11 in 5 healthy volunteers. METHODS All 5 subjects completed the study, spending 5 consecutive days in a hypoxic tent, where the ambient oxygen level was lowered in a stepwise manner over 5 d, from [Formula: see text] of 0.16 on the first day to [Formula: see text] of 0.11 on the fifth day of the study. All the subjects returned to an environment at room air on the sixth day. The subjects' [Formula: see text], heart rate, and breathing frequency were continuously recorded, along with daily blood sampling, neurologic evaluations, transthoracic echocardiography, and mental status assessments. RESULTS Breathing hypoxia concentration dependently caused profound physiologic changes, including decreased [Formula: see text] and increased heart rate. At [Formula: see text] of 0.14, the mean [Formula: see text] was 92%; at [Formula: see text] of 0.13, the mean [Formula: see text] was 93%; at [Formula: see text] of 0.12, the mean [Formula: see text] was 88%; at [Formula: see text] of 0.11, the mean [Formula: see text] was 85%; and, finally, at an [Formula: see text] of 0.21, the mean [Formula: see text] was 98%. These changes were accompanied by increased erythropoietin levels and reticulocyte counts in blood. All 5 subjects concluded the study with no adverse events. No subjects exhibited signs of mental status changes or pulmonary hypertension. CONCLUSIONS Results of the current physiologic study suggests that, within a hospital setting, delivering [Formula: see text] as low as 0.11 is feasible and safe in healthy subjects, and provides the foundation for future studies in which therapeutic effects of hypoxia breathing are tested.
Collapse
Affiliation(s)
- Lorenzo Berra
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts.
| | - Kyle J Medeiros
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Francesco Marrazzo
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Sarvagna Patel
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - David Imber
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Emanuele Rezoagli
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Binglan Yu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Abraham Sonny
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Edward A Bittner
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Daniel Fisher
- Department of Respiratory Care, Massachusetts General Hospital, Boston, Massachusetts
| | - Daniel Chipman
- Department of Respiratory Care, Massachusetts General Hospital, Boston, Massachusetts
| | - Rohit Sharma
- Harvard Medical School, Boston, Massachusetts. Department of Systems Biology, Massachusetts General Hospital, Boston, Massachusetts. Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Hardik Shah
- Harvard Medical School, Boston, Massachusetts. Department of Systems Biology, Massachusetts General Hospital, Boston, Massachusetts. Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts. Metabolomics Platform, Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois
| | - Brianna E Gray
- Translational and Clinical Research Centers, Massachusetts General Hospital, Boston, Massachusetts
| | - N Stuart Harris
- Harvard Medical School, Boston, Massachusetts. Division of Wilderness Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Fumito Ichinose
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Vamsi K Mootha
- Harvard Medical School, Boston, Massachusetts. Department of Systems Biology, Massachusetts General Hospital, Boston, Massachusetts. Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
5
|
Linnerbauer M, Lößlein L, Vandrey O, Peter A, Han Y, Tsaktanis T, Wogram E, Needhamsen M, Kular L, Nagel L, Zissler J, Andert M, Meszaros L, Hanspach J, Zuber F, Naumann UJ, Diebold M, Wheeler MA, Beyer T, Nirschl L, Cirac A, Laun FB, Günther C, Winkler J, Bäuerle T, Jagodic M, Hemmer B, Prinz M, Quintana FJ, Rothhammer V. The astrocyte-produced growth factor HB-EGF limits autoimmune CNS pathology. Nat Immunol 2024; 25:432-447. [PMID: 38409259 PMCID: PMC10907300 DOI: 10.1038/s41590-024-01756-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/12/2024] [Indexed: 02/28/2024]
Abstract
Central nervous system (CNS)-resident cells such as microglia, oligodendrocytes and astrocytes are gaining increasing attention in respect to their contribution to CNS pathologies including multiple sclerosis (MS). Several studies have demonstrated the involvement of pro-inflammatory glial subsets in the pathogenesis and propagation of inflammatory events in MS and its animal models. However, it has only recently become clear that the underlying heterogeneity of astrocytes and microglia can not only drive inflammation, but also lead to its resolution through direct and indirect mechanisms. Failure of these tissue-protective mechanisms may potentiate disease and increase the risk of conversion to progressive stages of MS, for which currently available therapies are limited. Using proteomic analyses of cerebrospinal fluid specimens from patients with MS in combination with experimental studies, we here identify Heparin-binding EGF-like growth factor (HB-EGF) as a central mediator of tissue-protective and anti-inflammatory effects important for the recovery from acute inflammatory lesions in CNS autoimmunity. Hypoxic conditions drive the rapid upregulation of HB-EGF by astrocytes during early CNS inflammation, while pro-inflammatory conditions suppress trophic HB-EGF signaling through epigenetic modifications. Finally, we demonstrate both anti-inflammatory and tissue-protective effects of HB-EGF in a broad variety of cell types in vitro and use intranasal administration of HB-EGF in acute and post-acute stages of autoimmune neuroinflammation to attenuate disease in a preclinical mouse model of MS. Altogether, we identify astrocyte-derived HB-EGF and its epigenetic regulation as a modulator of autoimmune CNS inflammation and potential therapeutic target in MS.
Collapse
Affiliation(s)
- Mathias Linnerbauer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Lena Lößlein
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Oliver Vandrey
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Anne Peter
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Yanan Han
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Thanos Tsaktanis
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Emile Wogram
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maria Needhamsen
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Lara Kular
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Lisa Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Julia Zissler
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Marie Andert
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Lisa Meszaros
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Jannis Hanspach
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Finnja Zuber
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Ulrike J Naumann
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Martin Diebold
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Tobias Beyer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Lucy Nirschl
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ana Cirac
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Frederik B Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Jürgen Winkler
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Bäuerle
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Maja Jagodic
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany.
| |
Collapse
|
6
|
Tokarska N, Naniong JMA, Johnston JM, Salapa HE, Muir GD, Levin MC, Popescu BF, Verge VMK. Acute intermittent hypoxia alters disease course and promotes CNS repair including resolution of inflammation and remyelination in the experimental autoimmune encephalomyelitis model of MS. Glia 2023; 71:2045-2066. [PMID: 37132422 DOI: 10.1002/glia.24381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 04/09/2023] [Accepted: 04/15/2023] [Indexed: 05/04/2023]
Abstract
Remyelination and neurodegeneration prevention mitigate disability in Multiple Sclerosis (MS). We have shown acute intermittent hypoxia (AIH) is a novel, non-invasive and effective therapy for peripheral nerve repair, including remyelination. Thus, we posited AIH would improve repair following CNS demyelination and address the paucity of MS repair treatments. AIH's capacity to enhance intrinsic repair, functional recovery and alter disease course in the experimental autoimmune encephalomyelitis (EAE) model of MS was assessed. EAE was induced by MOG35-55 immunization in C57BL/6 female mice. EAE mice received either AIH (10 cycles-5 min 11% oxygen alternating with 5 min 21% oxygen) or Normoxia (control; 21% oxygen for same duration) once daily for 7d beginning at near peak EAE disease score of 2.5. Mice were followed post-treatment for an additional 7d before assessing histopathology or 14d to examine maintenance of AIH effects. Alterations in histopathological correlates of multiple repair indices were analyzed quantitatively in focally demyelinated ventral lumbar spinal cord areas to assess AIH impacts. AIH begun at near peak disease significantly improved daily clinical scores/functional recovery and associated histopathology relative to Normoxia controls and the former were maintained for at least 14d post-treatment. AIH enhanced correlates of myelination, axon protection and oligodendrocyte precursor cell recruitment to demyelinated areas. AIH also effected a dramatic reduction in inflammation, while polarizing remaining macrophages/microglia toward a pro-repair state. Collectively, this supports a role for AIH as a novel non-invasive therapy to enhance CNS repair and alter disease course following demyelination and holds promise as a neuroregenerative MS strategy.
Collapse
Affiliation(s)
- Nataliya Tokarska
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Justin M A Naniong
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jayne M Johnston
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hannah E Salapa
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- College of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Gillian D Muir
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Michael C Levin
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- College of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Bogdan F Popescu
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Valerie M K Verge
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
7
|
Rogers RS, Wang H, Durham TJ, Stefely JA, Owiti NA, Markhard AL, Sandler L, To TL, Mootha VK. Hypoxia extends lifespan and neurological function in a mouse model of aging. PLoS Biol 2023; 21:e3002117. [PMID: 37220109 PMCID: PMC10204955 DOI: 10.1371/journal.pbio.3002117] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/07/2023] [Indexed: 05/25/2023] Open
Abstract
There is widespread interest in identifying interventions that extend healthy lifespan. Chronic continuous hypoxia delays the onset of replicative senescence in cultured cells and extends lifespan in yeast, nematodes, and fruit flies. Here, we asked whether chronic continuous hypoxia is beneficial in mammalian aging. We utilized the Ercc1 Δ/- mouse model of accelerated aging given that these mice are born developmentally normal but exhibit anatomic, physiological, and biochemical features of aging across multiple organs. Importantly, they exhibit a shortened lifespan that is extended by dietary restriction, the most potent aging intervention across many organisms. We report that chronic continuous 11% oxygen commenced at 4 weeks of age extends lifespan by 50% and delays the onset of neurological debility in Ercc1 Δ/- mice. Chronic continuous hypoxia did not impact food intake and did not significantly affect markers of DNA damage or senescence, suggesting that hypoxia did not simply alleviate the proximal effects of the Ercc1 mutation, but rather acted downstream via unknown mechanisms. To the best of our knowledge, this is the first study to demonstrate that "oxygen restriction" can extend lifespan in a mammalian model of aging.
Collapse
Affiliation(s)
- Robert S Rogers
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hong Wang
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Timothy J Durham
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan A Stefely
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Norah A Owiti
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Andrew L Markhard
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lev Sandler
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tsz-Leung To
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vamsi K Mootha
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
8
|
Li G, Liu J, Guo M, Gu Y, Guan Y, Shao Q, Ma W, Ji X. Chronic hypoxia leads to cognitive impairment by promoting HIF-2α-mediated ceramide catabolism and alpha-synuclein hyperphosphorylation. Cell Death Dis 2022; 8:473. [PMID: 36450714 PMCID: PMC9712431 DOI: 10.1038/s41420-022-01260-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022]
Abstract
Chronic hypoxia leads to irreversible cognitive impairment, primarily due to hippocampal neurodegeneration, for which the underlying mechanism remains poorly understood. We administered hypoxia (13%) to C57BL mice for 1-14 days in this study. Chronic hypoxia for 7 or 14 d, but not 1 or 3 d, resulted in alpha-synuclein hyperphosphorylation at serine129 (α-Syn p-S129) and protein aggregation, hippocampal neurodegeneration, and cognitive deficits, whereas the latter could be prevented by alpha-synuclein knockdown or an administered short peptide competing at α-Syn S129. These results suggest that α-Syn p-S129 mediates hippocampal degeneration and cognitive impairment following chronic hypoxia. Furthermore, we found that chronic hypoxia enhanced ceramide catabolism by inducing hypoxia-inducible factor (HIF)-2α and HIF-2α-dependent transcriptional activation of alkaline ceramidase 2 (Acer2). Thus, the enzymatic activity of protein phosphatase 2A (PP2A), a specific phosphatase for α-syn, is inhibited, leading to the sustained induction of α-Syn p-S129. Finally, we found that intermittent hypoxic preconditioning protected against subsequent chronic hypoxia-induced hippocampal neurodegeneration and cognitive impairment by preventing α-Syn p-S129. These results proved the critical role of α-syn pathology in chronic hypoxia-afforded cognitive impairment and revealed a novel mechanism underlying α-syn hyperphosphorylation during chronic hypoxia. The findings bear implications in developing novel therapeutic interventions for chronic hypoxia-related brain disorders.
Collapse
Affiliation(s)
- Gaifen Li
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China ,grid.413259.80000 0004 0632 3337Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jia Liu
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Mengyuan Guo
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yakun Gu
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yuying Guan
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China ,grid.413259.80000 0004 0632 3337Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qianqian Shao
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Wei Ma
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xunming Ji
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China ,grid.413259.80000 0004 0632 3337Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Pu X, Lin X, Qi Y, Li Y, Li T, Liu Y, Wei D. Effects of Fdft 1 gene silencing and VD3 intervention on lung injury in hypoxia-stressed rats. Genes Genomics 2022; 44:1201-1213. [PMID: 35947298 DOI: 10.1007/s13258-022-01284-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Hypoxia can induce lung injury such as pulmonary arterial hypertension and pulmonary edema. And in the rat model of hypoxia-induced lung injury, the expression of Farnesyl diphosphate farnesyl transferase 1 (Fdft 1) was highly expressed and the steroid biosynthesis pathway was activated. However, the role of Fdft 1 and steroid biosynthesis pathway in hypoxia-induced lung injury remains unclear. OBJECTIVE The study aimed to further investigate the relationship between Fdft1 and steroid biosynthesis pathway with hypoxia-induced lung injury. METHODS A rat model of lung injury was constructed by hypobaric chamber with hypoxic stress, the adenovirus interference vector was used to silence the expression of Fdft 1, and the exogenous steroid biosynthesis metabolite Vitamin D3 (VD3) was used to treat acute hypoxia-induced lung injury in rats. RESULTS Sh-Fdft 1 and exogenous VD3 significantly inhibited the expression of Fdft 1 and the activation of the steroid pathway in hypoxia-induced lung injury rats, which showed a synergistic effect on the steroid activation pathway. In addition, sh-Fdft 1 promoted the increase of pulmonary artery pressure and lung water content, the decrease of oxygen partial pressure and oxygen saturation, and leaded to the increase of lung cell apoptosis and the aggravation of mitochondrial damage in hypoxia-stressed rats. And VD3 could significantly improve the lung injury induced by hypoxia and sh-Fdft 1 in rats. CONCLUSIONS Fdft 1 gene silencing can promote hypoxic-induced lung injury, and exogenous supplement of VD3 has an antagonistic effect on lung injury induced by Fdft 1 gene silencing and hypoxic in rats, suggesting that VD3 has a preventive and protective effect on the occurrence and development of hypoxia-induced lung injury.
Collapse
Affiliation(s)
- Xiaoyan Pu
- Qinghai University, Xining, Qinghai, 810016, People's Republic of China.,Qinghai Normal University, Xining, Qinghai, 810008, People's Republic of China
| | - Xue Lin
- Qinghai University, Xining, Qinghai, 810016, People's Republic of China.,West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, People's Republic of China
| | - Yinglian Qi
- Qinghai Normal University, Xining, Qinghai, 810008, People's Republic of China
| | - Yinglian Li
- Qinghai University Affiliated Hospital, Xining, Qinghai, 810001, People's Republic of China
| | - Tiantian Li
- Qinghai University, Xining, Qinghai, 810016, People's Republic of China
| | - Yang Liu
- Qinghai University, Xining, Qinghai, 810016, People's Republic of China
| | - Dengbang Wei
- Qinghai University, Xining, Qinghai, 810016, People's Republic of China.
| |
Collapse
|
10
|
Navarrete C, García-Martín A, Correa-Sáez A, Prados ME, Fernández F, Pineda R, Mazzone M, Álvarez-Benito M, Calzado MA, Muñoz E. A cannabidiol aminoquinone derivative activates the PP2A/B55α/HIF pathway and shows protective effects in a murine model of traumatic brain injury. J Neuroinflammation 2022; 19:177. [PMID: 35810304 PMCID: PMC9270745 DOI: 10.1186/s12974-022-02540-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is characterized by a primary mechanical injury and a secondary injury associated with neuroinflammation, blood-brain barrier (BBB) disruption and neurodegeneration. We have developed a novel cannabidiol aminoquinone derivative, VCE-004.8, which is a dual PPARγ/CB2 agonist that also activates the hypoxia inducible factor (HIF) pathway. VCE-004.8 shows potent antifibrotic, anti-inflammatory and neuroprotective activities and it is now in Phase II clinical trials for systemic sclerosis and multiple sclerosis. Herein, we investigated the mechanism of action of VCE-004.8 in the HIF pathway and explored its efficacy in a preclinical model of TBI. METHODS Using a phosphoproteomic approach, we investigated the effects of VCE-004.8 on prolyl hydroxylase domain-containing protein 2 (PHD2) posttranslational modifications. The potential role of PP2A/B55α in HIF activation was analyzed using siRNA for B55α. To evaluate the angiogenic response to the treatment with VCE-004.8 we performed a Matrigel plug in vivo assay. Transendothelial electrical resistance (TEER) as well as vascular cell adhesion molecule 1 (VCAM), and zonula occludens 1 (ZO-1) tight junction protein expression were studied in brain microvascular endothelial cells. The efficacy of VCE-004.8 in vivo was evaluated in a controlled cortical impact (CCI) murine model of TBI. RESULTS Herein we provide evidence that VCE-004.8 inhibits PHD2 Ser125 phosphorylation and activates HIF through a PP2A/B55α pathway. VCE-004.8 induces angiogenesis in vivo increasing the formation of functional vessel (CD31/α-SMA) and prevents in vitro blood-brain barrier (BBB) disruption ameliorating the loss of ZO-1 expression under proinflammatory conditions. In CCI model VCE-004.8 treatment ameliorates early motor deficits after TBI and attenuates cerebral edema preserving BBB integrity. Histopathological analysis revealed that VCE-004.8 treatment induces neovascularization in pericontusional area and prevented immune cell infiltration to the brain parenchyma. In addition, VCE-004.8 attenuates neuroinflammation and reduces neuronal death and apoptosis in the damaged area. CONCLUSIONS This study provides new insight about the mechanism of action of VCE-004.8 regulating the PP2A/B55α/PHD2/HIF pathway. Furthermore, we show the potential efficacy for TBI treatment by preventing BBB disruption, enhancing angiogenesis, and ameliorating neuroinflammation and neurodegeneration after brain injury.
Collapse
Affiliation(s)
| | | | - Alejandro Correa-Sáez
- Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain.,Cellular Biology, Physiology and Immunology Department, University of Cordoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain
| | | | - Francisco Fernández
- FEA Radiodiagnóstico, Sección de Neurorradiología Diagnóstica. Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rafael Pineda
- Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain.,Cellular Biology, Physiology and Immunology Department, University of Cordoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB-KULeuven, 3000, Louvain, Belgium
| | - Marina Álvarez-Benito
- Unidad de Radiodiagnóstico Y Cáncer de Mama, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Marco A Calzado
- Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain.,Cellular Biology, Physiology and Immunology Department, University of Cordoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Eduardo Muñoz
- Emerald Health Pharmaceuticals, San Diego, USA. .,Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain. .,Cellular Biology, Physiology and Immunology Department, University of Cordoba, Córdoba, Spain. .,Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
11
|
Ramos-Vega M, Kjellman P, Todorov MI, Kylkilahti TM, Bäckström BT, Ertürk A, Madsen CD, Lundgaard I. Mapping of neuroinflammation-induced hypoxia in the spinal cord using optoacoustic imaging. Acta Neuropathol Commun 2022; 10:51. [PMID: 35410629 PMCID: PMC8996517 DOI: 10.1186/s40478-022-01337-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
Recent studies suggest that metabolic changes and oxygen deficiency in the central nervous system play an important role in the pathophysiology of multiple sclerosis (MS). In our present study, we investigated the changes in oxygenation and analyzed the vascular perfusion of the spinal cord in a rodent model of MS. We performed multispectral optoacoustic tomography of the lumbar spinal cord before and after an oxygen enhancement challenge in mice with experimental autoimmune encephalomyelitis (EAE), a model for MS. In addition, mice were transcardially perfused with lectin to label the vasculature and their spinal columns were optically cleared, followed by light sheet fluorescence microscopy. To analyze the angioarchitecture of the intact spine, we used VesSAP, a novel deep learning-based framework. In EAE mice, the spinal cord had lower oxygen saturation and hemoglobin concentration compared to healthy mice, indicating compromised perfusion of the spinal cord. Oxygen administration reversed hypoxia in the spinal cord of EAE mice, although the ventral region remained hypoxic. Additionally, despite the increased vascular density, we report a reduction in length and complexity of the perfused vascular network in EAE. Taken together, these findings highlight a new aspect of neuroinflammatory pathology, revealing a significant degree of hypoxia in EAE in vivo that is accompanied by changes in spinal vascular perfusion. The study also introduces optoacoustic imaging as a tractable technique with the potential to further decipher the role of hypoxia in EAE and to monitor it in MS patients.
Collapse
|
12
|
Guan Y, Liu J, Gu Y, Ji X. Effects of Hypoxia on Cerebral Microvascular Angiogenesis: Benefits or Damages? Aging Dis 2022; 14:370-385. [PMID: 37008044 PMCID: PMC10017152 DOI: 10.14336/ad.2022.0902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Cerebrovascular microcirculation is essential for maintaining the physiological functions of the brain. The brain can be protected from stress injury by remodeling the microcirculation network. Angiogenesis is a type of cerebral vascular remodeling. It is an effective approach to improve the blood flow of the cerebral microcirculation, which is necessary for preventing and treating various neurological disorders. Hypoxia is one of the most important regulators of angiogenesis, affecting the sprouting, proliferation, and maturation stages of angiogenesis. Moreover, hypoxia negatively affects cerebral vascular tissue by impairing the structural and functional integrity of the blood-brain barrier and vascular-nerve decoupling. Therefore, hypoxia has a dual effect on blood vessels and is affected by confounding factors including oxygen concentration, hypoxia duration, and hypoxia frequency and extent. Establishing an optimal model that promotes cerebral microvasculogenesis without causing vascular injury is essential. In this review, we first elaborate on the effects of hypoxia on blood vessels from two different perspectives: (1) the promotion of angiogenesis and (2) cerebral microcirculation damage. We further discuss the factors influencing the dual role of hypoxia and emphasize the benefits of moderate hypoxic irritation and its potential application as an easy, safe, and effective treatment for multiple nervous system disorders.
Collapse
Affiliation(s)
- Yuying Guan
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yakun Gu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Correspondence should be addressed to: Dr. Prof. Xunming Ji; Beijing Institute of Brain Disorders, Capital Medical University, 10 Xi Tou Tiao, You Anmen, Beijing 100069, China. E-mail: .
| |
Collapse
|
13
|
Huang J, Li Z, Hu Y, Chen G, Li Z, Xie Y, Huang H, Su W, Chen X, Liang D. Azithromycin modulates Teff/Treg balance in retinal inflammation via the mTOR signaling pathway. Biochem Pharmacol 2021; 193:114793. [PMID: 34600916 DOI: 10.1016/j.bcp.2021.114793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 02/02/2023]
Abstract
Uveitis is one of the most common blindness-causing ocular disorders. Due to its complicated pathogenesis, the treatment of uveitis has been widely recognized as a challenge for ophthalmologists. Recently, the anti-inflammatory properties of the antibiotic Azithromycin (AZM) have been reported. However, the therapeutic effects of Azithromycin in experimental autoimmune uveitis (EAU), a representative model of human AU, have not been elucidated till date. We conducted this study to examine the therapeutic effects and potential mechanisms of Azithromycin in EAU. We observed that Azithromycin significantly attenuated retinal inflammation in EAU mice at day 14 after immunization along with a significantly decreased inflammatory cell infiltration and cytokine production in the retina. Furthermore, we observed that Azithromycin increased the number of regulatory T cells (Treg) and decreased the number of effector T cells (Teff) in both the draining lymph nodes and spleen of EAU mice. Additionally, Azithromycin suppressed the proliferation and activation of CD4 + T cells, and induced the apoptosis of CD4 + CD44 + memory T and CD4 + CXCR3 + Th1 cells. Mechanistically, we proved that Azithromycin could regulate Teff/Treg balance by inhibiting the phosphorylation of S6 ribosomal protein, a downstream target of mammalian target of rapamycin (mTOR). Together, our findings revealed that Azithromycin alleviated EAU by regulating the Teff/Treg balance through the mTOR signaling pathway, suggesting that Azithromycin could be a promising therapeutic candidate for AU.
Collapse
Affiliation(s)
- Jun Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhuang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yunwei Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Guanyu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zuoyi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yanyan Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Haixiang Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiaoqing Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Dan Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
14
|
Liu J, Gu Y, Guo M, Ji X. Neuroprotective effects and mechanisms of ischemic/hypoxic preconditioning on neurological diseases. CNS Neurosci Ther 2021; 27:869-882. [PMID: 34237192 PMCID: PMC8265941 DOI: 10.1111/cns.13642] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/20/2022] Open
Abstract
As the organ with the highest demand for oxygen, the brain has a poor tolerance to ischemia and hypoxia. Despite severe ischemia/hypoxia induces the occurrence and development of various central nervous system (CNS) diseases, sublethal insult may induce strong protection against subsequent fatal injuries by improving tolerance. Searching for potential measures to improve brain ischemic/hypoxic is of great significance for treatment of ischemia/hypoxia related CNS diseases. Ischemic/hypoxic preconditioning (I/HPC) refers to the approach to give the body a short period of mild ischemic/hypoxic stimulus which can significantly improve the body's tolerance to subsequent more severe ischemia/hypoxia event. It has been extensively studied and been considered as an effective therapeutic strategy in CNS diseases. Its protective mechanisms involved multiple processes, such as activation of hypoxia signaling pathways, anti-inflammation, antioxidant stress, and autophagy induction, etc. As a strategy to induce endogenous neuroprotection, I/HPC has attracted extensive attention and become one of the research frontiers and hotspots in the field of neurotherapy. In this review, we discuss the basic and clinical research progress of I/HPC on CNS diseases, and summarize its mechanisms. Furthermore, we highlight the limitations and challenges of their translation from basic research to clinical application.
Collapse
Affiliation(s)
- Jia Liu
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yakun Gu
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Mengyuan Guo
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xunming Ji
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China.,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Liu Y, Garron TM, Chang Q, Su Z, Zhou C, Qiu Y, Gong EC, Zheng J, Yin YW, Ksiazek T, Brasel T, Jin Y, Boor P, Comer JE, Gong B. Cell-Type Apoptosis in Lung during SARS-CoV-2 Infection. Pathogens 2021; 10:pathogens10050509. [PMID: 33922476 PMCID: PMC8145065 DOI: 10.3390/pathogens10050509] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/12/2021] [Accepted: 04/21/2021] [Indexed: 12/23/2022] Open
Abstract
The SARS-CoV-2 pandemic has inspired renewed interest in understanding the fundamental pathology of acute respiratory distress syndrome (ARDS) following infection. However, the pathogenesis of ARDS following SRAS-CoV-2 infection remains largely unknown. In the present study, we examined apoptosis in postmortem lung sections from COVID-19 patients and in lung tissues from a non-human primate model of SARS-CoV-2 infection, in a cell-type manner, including type 1 and 2 alveolar cells and vascular endothelial cells (ECs), macrophages, and T cells. Multiple-target immunofluorescence assays and Western blotting suggest both intrinsic and extrinsic apoptotic pathways are activated during SARS-CoV-2 infection. Furthermore, we observed that SARS-CoV-2 fails to induce apoptosis in human bronchial epithelial cells (i.e., BEAS2B cells) and primary human umbilical vein endothelial cells (HUVECs), which are refractory to SARS-CoV-2 infection. However, infection of co-cultured Vero cells and HUVECs or Vero cells and BEAS2B cells with SARS-CoV-2 induced apoptosis in both Vero cells and HUVECs/BEAS2B cells but did not alter the permissiveness of HUVECs or BEAS2B cells to the virus. Post-exposure treatment of the co-culture of Vero cells and HUVECs with a novel non-cyclic nucleotide small molecule EPAC1-specific activator reduced apoptosis in HUVECs. These findings may help to delineate a novel insight into the pathogenesis of ARDS following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yakun Liu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (Y.L.); (Q.C.); (Z.S.); (C.Z.); (Y.Q.); (E.C.G.); (T.K.)
| | - Tania M. Garron
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.G.); (T.B.)
| | - Qing Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (Y.L.); (Q.C.); (Z.S.); (C.Z.); (Y.Q.); (E.C.G.); (T.K.)
| | - Zhengchen Su
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (Y.L.); (Q.C.); (Z.S.); (C.Z.); (Y.Q.); (E.C.G.); (T.K.)
| | - Changcheng Zhou
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (Y.L.); (Q.C.); (Z.S.); (C.Z.); (Y.Q.); (E.C.G.); (T.K.)
| | - Yuan Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (Y.L.); (Q.C.); (Z.S.); (C.Z.); (Y.Q.); (E.C.G.); (T.K.)
| | - Eric C. Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (Y.L.); (Q.C.); (Z.S.); (C.Z.); (Y.Q.); (E.C.G.); (T.K.)
| | - Junying Zheng
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Y. Whitney Yin
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Thomas Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (Y.L.); (Q.C.); (Z.S.); (C.Z.); (Y.Q.); (E.C.G.); (T.K.)
| | - Trevor Brasel
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.G.); (T.B.)
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA 02118, USA;
| | - Paul Boor
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (Y.L.); (Q.C.); (Z.S.); (C.Z.); (Y.Q.); (E.C.G.); (T.K.)
- Correspondence: (P.B.); (J.E.C.); (B.G.); Tel.: +1-409-772-2813 (P.B.); +1-409-266-6915 (J.E.C.); +1-409-266-6682 (B.G.)
| | - Jason E. Comer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.G.); (T.B.)
- Correspondence: (P.B.); (J.E.C.); (B.G.); Tel.: +1-409-772-2813 (P.B.); +1-409-266-6915 (J.E.C.); +1-409-266-6682 (B.G.)
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (Y.L.); (Q.C.); (Z.S.); (C.Z.); (Y.Q.); (E.C.G.); (T.K.)
- Correspondence: (P.B.); (J.E.C.); (B.G.); Tel.: +1-409-772-2813 (P.B.); +1-409-266-6915 (J.E.C.); +1-409-266-6682 (B.G.)
| |
Collapse
|
16
|
Ivan DC, Walthert S, Berve K, Steudler J, Locatelli G. Dwellers and Trespassers: Mononuclear Phagocytes at the Borders of the Central Nervous System. Front Immunol 2021; 11:609921. [PMID: 33746939 PMCID: PMC7973121 DOI: 10.3389/fimmu.2020.609921] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/29/2020] [Indexed: 01/02/2023] Open
Abstract
The central nervous system (CNS) parenchyma is enclosed and protected by a multilayered system of cellular and acellular barriers, functionally separating glia and neurons from peripheral circulation and blood-borne immune cells. Populating these borders as dynamic observers, CNS-resident macrophages contribute to organ homeostasis. Upon autoimmune, traumatic or neurodegenerative inflammation, these phagocytes start playing additional roles as immune regulators contributing to disease evolution. At the same time, pathological CNS conditions drive the migration and recruitment of blood-borne monocyte-derived cells across distinct local gateways. This invasion process drastically increases border complexity and can lead to parenchymal infiltration of blood-borne phagocytes playing a direct role both in damage and in tissue repair. While recent studies and technical advancements have highlighted the extreme heterogeneity of these resident and CNS-invading cells, both the compartment-specific mechanism of invasion and the functional specification of intruding and resident cells remain unclear. This review illustrates the complexity of mononuclear phagocytes at CNS interfaces, indicating how further studies of CNS border dynamics are crucially needed to shed light on local and systemic regulation of CNS functions and dysfunctions.
Collapse
|
17
|
Halder SK, Milner R. Hypoxia in multiple sclerosis; is it the chicken or the egg? Brain 2021; 144:402-410. [PMID: 33351069 PMCID: PMC8453297 DOI: 10.1093/brain/awaa427] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/03/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
Over the past 50 years, intense research effort has taught us a great deal about multiple sclerosis. We know that it is the most common neurological disease affecting the young-middle aged, that it affects two to three times more females than males, and that it is characterized as an autoimmune disease, in which autoreactive T lymphocytes cross the blood-brain barrier, resulting in demyelinating lesions. But despite all the knowledge gained, a key question still remains; what is the initial event that triggers the inflammatory demyelinating process? While most research effort to date has focused on the immune system, more recently, another potential candidate has emerged: hypoxia. Specifically, a growing number of studies have described the presence of hypoxia (both 'virtual' and real) at an early stage of demyelinating lesions, and several groups, including our own, have begun to investigate how manipulation of inspired oxygen levels impacts disease progression. In this review we summarize the findings of these hypoxia studies, and in particular, address three main questions: (i) is the hypoxia found in demyelinating lesions 'virtual' or real; (ii) what causes this hypoxia; and (iii) how does manipulation of inspired oxygen impact disease progression?
Collapse
Affiliation(s)
- Sebok K Halder
- San Diego Biomedical Research Institute, 10865 Road to the Cure, Suite 100, San Diego, CA 92121, USA
| | - Richard Milner
- San Diego Biomedical Research Institute, 10865 Road to the Cure, Suite 100, San Diego, CA 92121, USA
| |
Collapse
|
18
|
Li X, Redfors B, Sáinz-Jaspeado M, Shi S, Martinsson P, Padhan N, Scharin Täng M, Borén J, Levin M, Claesson-Welsh L. Suppressed Vascular Leakage and Myocardial Edema Improve Outcome From Myocardial Infarction. Front Physiol 2020; 11:763. [PMID: 32733273 PMCID: PMC7363985 DOI: 10.3389/fphys.2020.00763] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
Aim The acute phase of myocardial infarction (MI) is accompanied by edema contributing to tissue damage and disease outcome. Here, we aimed to identify the mechanism whereby vascular endothelial growth factor (VEGF)-A induces myocardial edema in the acute phase of MI to eventually promote development of therapeutics to specifically suppress VEGFA-regulated vascular permeability while preserving collateral vessel formation. Methods and Results VEGFA regulates vascular permeability and edema by activation of VEGF receptor-2 (VEGFR2), leading to induction of several signaling pathways including the cytoplasmic tyrosine kinase c-Src. The activated c-Src in turn phosphorylates vascular endothelial (VE)-cadherin, leading to dissociation of endothelial adherens junctions. A particular tyrosine at position 949 in mouse VEGFR2 has been shown to be required for activation of c-Src. Wild-type mice and mice with phenylalanine replacing tyrosine (Y) 949 in VEGFR2 (Vegfr2 Y949F/Y949F ) were challenged with MI through permanent ligation of the left anterior descending coronary artery. The infarct size was similar in wild-type and mutant mice, but left ventricular wall edema and fibrinogen deposition, indicative of vascular leakage, were reduced in the Vegfr2 Y949F/Y949F strain. When challenged with large infarcts, the Vegfr2 Y949F/Y949F mice survived significantly better than the wild-type strain. Moreover, neutrophil infiltration and levels of myeloperoxidase were low in the infarcted Vegfr2 Y949F/Y949F hearts, correlating with improved survival. In vivo tyrosine phosphorylation of VE-cadherin at Y685, implicated in regulation of vascular permeability, was induced by circulating VEGFA in the wild-type but remained at baseline levels in the Vegfr2 Y949F/Y949F hearts. Conclusion Suppression of VEGFA/VEGFR2-regulated vascular permeability leads to diminished edema without affecting vascular density correlating with improved myocardial parameters and survival after MI.
Collapse
Affiliation(s)
- Xiujuan Li
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Björn Redfors
- Department of Molecular and Clinical Medicine / Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Miguel Sáinz-Jaspeado
- Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Shujing Shi
- Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Pernilla Martinsson
- Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Narendra Padhan
- Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Margareta Scharin Täng
- Department of Molecular and Clinical Medicine / Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine / Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Malin Levin
- Department of Molecular and Clinical Medicine / Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lena Claesson-Welsh
- Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Effects of EHP-101 on inflammation and remyelination in murine models of Multiple sclerosis. Neurobiol Dis 2020; 143:104994. [PMID: 32599064 DOI: 10.1016/j.nbd.2020.104994] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/05/2020] [Accepted: 06/20/2020] [Indexed: 01/26/2023] Open
Abstract
Multiple Sclerosis (MS) is characterized by a combination of inflammatory and neurodegenerative processes in the spinal cord and the brain. Natural and synthetic cannabinoids such as VCE-004.8 have been studied in preclinical models of MS and represent promising candidates for drug development. VCE-004.8 is a multitarget synthetic cannabidiol (CBD) derivative acting as a dual Peroxisome proliferator-activated receptor-gamma/Cannabinoid receptor type 2 (PPARγ/CB2) ligand agonist that also activates the Hypoxia-inducible factor (HIF) pathway. EHP-101 is an oral lipidic formulation of VCE-004.8 that has shown efficacy in several preclinical models of autoimmune, inflammatory, fibrotic, and neurodegenerative diseases. EHP-101 alleviated clinical symptomatology in EAE and transcriptomic analysis demonstrated that EHP-101 prevented the expression of many inflammatory genes closely associated with MS pathophysiology in the spinal cord. EHP-101 normalized the expression of several genes associated with oligodendrocyte function such as Teneurin 4 (Tenm4) and Gap junction gamma-3 (Gjc3) that were downregulated in EAE. EHP-101 treatment prevented microglia activation and demyelination in both the spinal cord and the brain. Moreover, EAE was associated with a loss in the expression of Oligodendrocyte transcription factor 2 (Olig2) in the corpus callosum, a marker for oligodendrocyte differentiation, which was restored by EHP-101 treatment. In addition, EHP-101 enhanced the expression of glutathione S-transferase pi (GSTpi), a marker for mature oligodendrocytes in the brain. We also found that a diet containing 0.2% cuprizone for six weeks induced a clear loss of myelin in the brain measured by Cryomyelin staining and Myelin basic protein (MBP) expression. Moreover, EHP-101 also prevented cuprizone-induced microglial activation, astrogliosis and reduced axonal damage. Our results provide evidence that EHP-101 showed potent anti-inflammatory activity, prevented demyelination, and enhanced remyelination. Therefore, EHP-101 represents a promising drug candidate for the potential treatment of different forms of MS.
Collapse
|