1
|
Ingle DJ, Walsh CJ, Samuel GR, Wick RR, Davidovich N, Fiocchi E, Judd LM, Elliman J, Owens L, Stinear TP, Basso A, Pretto T, Newton HJ. The complete genome sequence of the crayfish pathogen Candidatus Paracoxiella cheracis n.g. n.sp. provides insight into pathogenesis and the phylogeny of the Coxiellaceae family. mSphere 2025; 10:e0100224. [PMID: 40062866 PMCID: PMC12039232 DOI: 10.1128/msphere.01002-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/05/2025] [Indexed: 04/30/2025] Open
Abstract
The Coxiellaceae bacterial family, within the order Legionellales, is defined by a collection of poorly characterized obligate intracellular bacteria. The zoonotic pathogen and causative agent of human Q fever, Coxiella burnetii, represents the best-characterized member of this family. Coxiellaceae establish replicative niches within diverse host cells and rely on their host for survival, making them challenging to isolate and cultivate within a laboratory setting. Here, we describe a new genus within the Coxiellaceae family that has been previously shown to infect economically significant freshwater crayfish. Using culture-independent long-read metagenomics, we reconstructed the complete genome of this novel organism and demonstrate that the species previously referred to as Candidatus Coxiella cheraxi represents a novel genus within this family, herein denoted Candidatus Paracoxiella cheracis. Interestingly, we demonstrate that Candidatus P. cheracis encodes a complete, putatively functional Dot/Icm type 4 secretion system that likely mediates the intracellular success of this pathogen. In silico analysis defined a unique repertoire of Dot/Icm effector proteins and highlighted homologs of several important C. burnetii effectors, including a homolog of CpeB that was demonstrated to be a Dot/Icm substrate in C. burnetii.IMPORTANCEUsing long-read sequencing technology, we have uncovered the full genome sequence of Candidatus Paracoxiella cheracis, a pathogen of economic importance in aquaculture. Analysis of this sequence has revealed new insights into this novel member of the Coxiellaceae family, demonstrating that it represents a new genus within this poorly characterized family of intracellular organisms. Importantly, the genome sequence reveals invaluable information that will support diagnostics and potentially both preventative and treatment strategies within crayfish breeding facilities. Candidatus P. cheracis also represents a new member of Dot/Icm pathogens that rely on this system to establish an intracellular niche. Candidatus P. cheracis possesses a unique cohort of putative Dot/Icm substrates that constitute a collection of new eukaryotic cell biology-manipulating effector proteins.
Collapse
Affiliation(s)
- Danielle J. Ingle
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Calum J. Walsh
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, University of Melbourne, Parkville, Victoria, Australia
| | - Genevieve R. Samuel
- Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Ryan R. Wick
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, University of Melbourne, Parkville, Victoria, Australia
| | | | - Eleonora Fiocchi
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Louise M. Judd
- Centre for Pathogen Genomics, University of Melbourne, Parkville, Victoria, Australia
| | - Jennifer Elliman
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Leigh Owens
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, University of Melbourne, Parkville, Victoria, Australia
| | - Andrea Basso
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Tobia Pretto
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Hayley J. Newton
- Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
2
|
Bird LE, Xu B, Hobbs AD, Ziegler AR, Scott NE, Newton P, Thomas DR, Edgington-Mitchell LE, Newton HJ. Coxiella burnetii manipulates the lysosomal protease cathepsin B to facilitate intracellular success. Nat Commun 2025; 16:3844. [PMID: 40274809 PMCID: PMC12022341 DOI: 10.1038/s41467-025-59283-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 04/15/2025] [Indexed: 04/26/2025] Open
Abstract
The obligate intracellular bacterium Coxiella burnetii establishes an intracellular replicative niche termed the Coxiella-containing vacuole (CCV), which has been characterised as a bacterially modified phagolysosome. How C. burnetii withstands the acidic and degradative properties of this compartment is not well understood. We demonstrate that the key lysosomal protease cathepsin B is actively and selectively removed from C. burnetii-infected cells through a mechanism involving the Dot/Icm type IV-B secretion system effector CvpB. Overexpression of cathepsin B leads to defects in CCV biogenesis and bacterial replication, indicating that removal of this protein represents a strategy to reduce the hostility of the intracellular niche. In addition, we show that C. burnetii infection of mammalian cells induces the secretion of a wider cohort of lysosomal proteins, including cathepsin B, to the extracellular milieu via a mechanism dependent on retrograde traffic. This study reveals that C. burnetii is actively modulating the hydrolase cohort of its replicative niche to promote intracellular success and demonstrates that infection incites the secretory pathway to maintain lysosomal homoeostasis.
Collapse
Affiliation(s)
- Lauren E Bird
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Bangyan Xu
- Department of Biochemistry and Pharmacology at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew D Hobbs
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Alexander R Ziegler
- Department of Biochemistry and Pharmacology at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Patrice Newton
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - David R Thomas
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Laura E Edgington-Mitchell
- Department of Biochemistry and Pharmacology at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.
| | - Hayley J Newton
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
3
|
Steiner S, Roy CR. CRISPR-Cas9-based approaches for genetic analysis and epistatic interaction studies in Coxiella burnetii. mSphere 2024; 9:e0052324. [PMID: 39560384 DOI: 10.1128/msphere.00523-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024] Open
Abstract
Coxiella burnetii is an obligate intracellular bacterial pathogen that replicates to high numbers in an acidified lysosome-derived vacuole. Intracellular replication requires the Dot/Icm type IVB secretion system, which translocates over 100 different effector proteins into the host cell. Screens employing random transposon mutagenesis have identified several C. burnetii effectors that play an important role in intracellular replication; however, the difficulty in conducting directed mutagenesis has been a barrier to the systematic analysis of effector mutants and to the construction of double mutants to assess epistatic interactions between effectors. Here, two CRISPR-Cas9 technology-based approaches were developed to study C. burnetii phenotypes resulting from targeted gene disruptions. CRISPRi was used to silence gene expression and demonstrated that silencing of effectors or Dot/Icm system components resulted in phenotypes similar to those of transposon insertion mutants. A CRISPR-Cas9-mediated cytosine base editing protocol was developed to generate targeted loss-of-function mutants through the introduction of premature stop codons into C. burnetii genes. Cytosine base editing successfully generated double mutants in a single step. A double mutant deficient in both cig57 and cig2 had a robust and additive intracellular replication defect when compared to either single mutant, which is consistent with Cig57 and Cig2 functioning in independent pathways that both contribute to a vacuole that supports C. burnetii replication. Thus, CRISPR-Cas9-based technologies expand the genetic toolbox for C. burnetii and will facilitate genetic studies aimed at investigating the mechanisms this pathogen uses to replicate inside host cells. IMPORTANCE Understanding the genetic mechanisms that enable C. burnetii to replicate in mammalian host cells has been hampered by the difficulty in making directed mutations. Here, a reliable and efficient system for generating targeted loss-of-function mutations in C. burnetii using a CRISPR-Cas9-assisted base editing approach is described. This technology was applied to make double mutants in C. burnetii that enabled the genetic analysis of two genes that play independent roles in promoting the formation of vacuoles that support intracellular replication. This advance will accelerate the discovery of mechanisms important for C. burnetii host infection and disease.
Collapse
Affiliation(s)
- Samuel Steiner
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Craig R Roy
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Xu ZY, Wang FN, Jian R, Xue J, Guo YC, Guo WP. Multiple spacer sequence typing of Coxiella burnetii carried by ticks in Gansu, China. Front Vet Sci 2024; 11:1470242. [PMID: 39664899 PMCID: PMC11632110 DOI: 10.3389/fvets.2024.1470242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/01/2024] [Indexed: 12/13/2024] Open
Abstract
Background Coxiella burnetii is a zoonotic pathogen that causes Q fever and is found worldwide. Ticks serve as the primary reservoir, playing an important role in maintaining the natural cycle of C. burnetii. C. burnetii is transmitted to animals when ticks feed on their blood. However, information on C. burnetii infection in ticks remains limited, despite the widespread prevalence of the infection in humans and animals across China. Methods In this study, 192 engorged ticks were collected from Baiyin City of Gansu Province, China. The presence of Coxiella burnetii in ticks was specifically identified by detecting the IS1111 gene using nested polymerase chain reaction (nPCR). In addition, the 16S rRNA gene of C. burnetii was molecularly characterized using nPCR. A total of 10 spacer sequences (Cox 2, 5, 18, 20, 22, 37, 51, 56, 57, and 61) were amplified using PCR against positive specimens for MST analysis. Results All collected ticks were identified as Hyalomma marginatum, and 90 of them tested positive for C. burnetii, with a positive rate of 46.9% (90/192). The 16S rRNA gene analysis showed that the novel C. burnetii variants detected in this study were closely related to other C. burnetii strains in the world. The allele codes found in the present study for loci Cox2-Cox5-Cox18-Cox20-Cox22-Cox37-Cox51-Cox56-Cox57-Cox61 were 8-4-9-5-7-5-2-3-11-6. This represents a novel combination of allele values, similar to MST28, currently designated as MST85 in the Multi Spacers Typing (MST) database. Conclusion Our results revealed the circulation of a novel MST genotype of C. burnetii in Baiyin City, Gansu Province, China. The detection of C. burnetii in ticks suggests a potential public health risk to the local human population.
Collapse
Affiliation(s)
| | | | | | | | - Ya-Chun Guo
- College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Wen-Ping Guo
- College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
5
|
Thomas DR, Garnish SE, Khoo CA, Padmanabhan B, Scott NE, Newton HJ. Coxiella burnetii protein CBU2016 supports CCV expansion. Pathog Dis 2024; 82:ftae018. [PMID: 39138067 PMCID: PMC11352601 DOI: 10.1093/femspd/ftae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/28/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024] Open
Abstract
Coxiella burnetii is a globally distributed obligate intracellular pathogen. Although often asymptomatic, infections can cause acute Q fever with influenza-like symptoms and/or severe chronic Q fever. Coxiella burnetii develops a unique replicative niche within host cells called the Coxiella-containing vacuole (CCV), facilitated by the Dot/Icm type IV secretion system translocating a cohort of bacterial effector proteins into the host. The role of some effectors has been elucidated; however, the actions of the majority remain enigmatic and the list of true effectors is disputable. This study examined CBU2016, a unique C. burnetii protein previously designated as an effector with a role in infection. We were unable to validate CBU2016 as a translocated effector protein. Employing targeted knock-out and complemented strains, we found that the loss of CBU2016 did not cause a replication defect within Hela, THP-1, J774, or iBMDM cells or in axenic media, nor did it affect the pathogenicity of C. burnetii in the Galleria mellonella infection model. The absence of CBU2016 did, however, result in a consistent decrease in the size of CCVs in HeLa cells. These results suggest that although CBU2016 may not be a Dot/Icm effector, it is still able to influence the host environment during infection.
Collapse
Affiliation(s)
- David R Thomas
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Sarah E Garnish
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Chen Ai Khoo
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Bhavna Padmanabhan
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Hayley J Newton
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
6
|
Curran CS, Cui X, Li Y, Jeakle M, Sun J, Demirkale CY, Minkove S, Hoffmann V, Dhamapurkar R, Chumbris S, Bolyard C, Iheanacho A, Eichacker PQ, Torabi-Parizi P. Anti-PD-L1 therapy altered inflammation but not survival in a lethal murine hepatitis virus-1 pneumonia model. Front Immunol 2024; 14:1308358. [PMID: 38259435 PMCID: PMC10801642 DOI: 10.3389/fimmu.2023.1308358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Because prior immune checkpoint inhibitor (ICI) therapy in cancer patients presenting with COVID-19 may affect outcomes, we investigated the beta-coronavirus, murine hepatitis virus (MHV)-1, in a lethal pneumonia model in the absence (Study 1) or presence of prior programmed cell death ligand-1 (PD-L1) antibody (PD-L1mAb) treatment (Study 2). Methods In Study 1, animals were inoculated intratracheally with MHV-1 or vehicle and evaluated at day 2, 5, and 10 after infection. In Study 2, uninfected or MHV-1-infected animals were pretreated intraperitoneally with control or PD-L1-blocking antibodies (PD-L1mAb) and evaluated at day 2 and 5 after infection. Each study examined survival, physiologic and histologic parameters, viral titers, lung immunophenotypes, and mediator production. Results Study 1 results recapitulated the pathogenesis of COVID-19 and revealed increased cell surface expression of checkpoint molecules (PD-L1, PD-1), higher expression of the immune activation marker angiotensin converting enzyme (ACE), but reduced detection of the MHV-1 receptor CD66a on immune cells in the lung, liver, and spleen. In addition to reduced detection of PD-L1 on all immune cells assayed, PD-L1 blockade was associated with increased cell surface expression of PD-1 and ACE, decreased cell surface detection of CD66a, and improved oxygen saturation despite reduced blood glucose levels and increased signs of tissue hypoxia. In the lung, PD-L1mAb promoted S100A9 but inhibited ACE2 production concomitantly with pAKT activation and reduced FOXO1 levels. PD-L1mAb promoted interferon-γ but inhibited IL-5 and granulocyte-macrophage colony-stimulating factor (GM-CSF) production, contributing to reduced bronchoalveolar lavage levels of eosinophils and neutrophils. In the liver, PD-L1mAb increased viral clearance in association with increased macrophage and lymphocyte recruitment and liver injury. PD-L1mAb increased the production of virally induced mediators of injury, angiogenesis, and neuronal activity that may play role in COVID-19 and ICI-related neurotoxicity. PD-L1mAb did not affect survival in this murine model. Discussion In Study 1 and Study 2, ACE was upregulated and CD66a and ACE2 were downregulated by either MHV-1 or PD-L1mAb. CD66a is not only the MHV-1 receptor but also an identified immune checkpoint and a negative regulator of ACE. Crosstalk between CD66a and PD-L1 or ACE/ACE2 may provide insight into ICI therapies. These networks may also play role in the increased production of S100A9 and neurological mediators in response to MHV-1 and/or PD-L1mAb, which warrant further study. Overall, these findings support observational data suggesting that prior ICI treatment does not alter survival in patients presenting with COVID-19.
Collapse
Affiliation(s)
- Colleen S. Curran
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Xizhong Cui
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Mark Jeakle
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Cumhur Y. Demirkale
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Samuel Minkove
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Victoria Hoffmann
- Division of Veterinary Resources, National Institutes of Health, Bethesda, MD, United States
| | - Rhea Dhamapurkar
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Symya Chumbris
- Texcell North-America, Inc., Frederick, MD, United States
| | | | | | - Peter Q. Eichacker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Parizad Torabi-Parizi
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Wang T, Wang C, Li C, Song L. The intricate dance: host autophagy and Coxiella burnetii infection. Front Microbiol 2023; 14:1281303. [PMID: 37808314 PMCID: PMC10556474 DOI: 10.3389/fmicb.2023.1281303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Q fever is a zoonotic disease caused by Coxiella burnetii, an obligatory intracellular bacterial pathogen. Like other intracellular pathogens, C. burnetii is able to survive and reproduce within host cells by manipulating host cellular processes. In particular, the relationship between C. burnetii infection and host autophagy, a cellular process involved in degradation and recycling, is of great interest due to its intricate nature. Studies have shown that autophagy can recognize and target intracellular pathogens such as Legionella and Salmonella for degradation, limiting their replication and promoting bacterial clearance. However, C. burnetii can actively manipulate the autophagic pathway to create an intracellular niche, known as the Coxiella-containing vacuole (CCV), where it can multiply and evade host immune responses. C. burnetii promotes the fusion of CCVs with lysosomes through mechanisms involving virulence factors such as Cig57 and CvpF. This review summarizes the latest findings on the dynamic interaction between host autophagy and C. burnetii infection, highlighting the complex strategies employed by both the bacterium and the host. A better understanding of these mechanisms could provide important insights into the development of novel therapeutic interventions and vaccine strategies against C. burnetii infections.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Infectious Diseases, First Hospital of Zibo City, Zibo, China
| | - Chao Wang
- Department of Traditional Chinese Medicine, First Hospital of Zibo City, Zibo, China
| | - Chang Li
- Department of VIP Unit, China-Japan Union Hospital, Changchun, China
| | - Lei Song
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Clemente TM, Angara RK, Gilk SD. Establishing the intracellular niche of obligate intracellular vacuolar pathogens. Front Cell Infect Microbiol 2023; 13:1206037. [PMID: 37645379 PMCID: PMC10461009 DOI: 10.3389/fcimb.2023.1206037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Obligate intracellular pathogens occupy one of two niches - free in the host cell cytoplasm or confined in a membrane-bound vacuole. Pathogens occupying membrane-bound vacuoles are sequestered from the innate immune system and have an extra layer of protection from antimicrobial drugs. However, this lifestyle presents several challenges. First, the bacteria must obtain membrane or membrane components to support vacuole expansion and provide space for the increasing bacteria numbers during the log phase of replication. Second, the vacuole microenvironment must be suitable for the unique metabolic needs of the pathogen. Third, as most obligate intracellular bacterial pathogens have undergone genomic reduction and are not capable of full metabolic independence, the bacteria must have mechanisms to obtain essential nutrients and resources from the host cell. Finally, because they are separated from the host cell by the vacuole membrane, the bacteria must possess mechanisms to manipulate the host cell, typically through a specialized secretion system which crosses the vacuole membrane. While there are common themes, each bacterial pathogen utilizes unique approach to establishing and maintaining their intracellular niches. In this review, we focus on the vacuole-bound intracellular niches of Anaplasma phagocytophilum, Ehrlichia chaffeensis, Chlamydia trachomatis, and Coxiella burnetii.
Collapse
Affiliation(s)
| | | | - Stacey D. Gilk
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
9
|
Shepherd DC, Kaplan M, Vankadari N, Kim KW, Larson CL, Dutka P, Beare PA, Krzymowski E, Heinzen RA, Jensen GJ, Ghosal D. Morphological remodeling of Coxiella burnetii during its biphasic developmental cycle revealed by cryo-electron tomography. iScience 2023; 26:107210. [PMID: 37485371 PMCID: PMC10362272 DOI: 10.1016/j.isci.2023.107210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/05/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Coxiella burnetii is an obligate zoonotic bacterium that targets macrophages causing a disease called Q fever. It has a biphasic developmental life cycle where the extracellular and metabolically inactive small cell variant (SCV) transforms inside the host into the vegetative large cell variant (LCV). However, details about the morphological and structural changes of this transition are still lacking. Here, we used cryo-electron tomography to image both SCV and LCV variants grown either under axenic conditions or purified directly from host cells. We show that SCVs are characterized by equidistant stacks of inner membrane that presumably facilitate the transition to LCV, a transition coupled with the expression of the Dot/Icm type IVB secretion system (T4BSS). A class of T4BSS particles were associated with extracellular densities possibly involved in host infection. Also, SCVs contained spherical multilayered membrane structures of different sizes and locations suggesting no connection to sporulation as once assumed.
Collapse
Affiliation(s)
- Doulin C. Shepherd
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Mohammed Kaplan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Naveen Vankadari
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Ki Woo Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- School of Ecology and Environmental System, Kyungpook National University, Sangju, Korea
| | - Charles L. Larson
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Przemysław Dutka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Division od Chemistry and Chemical Engineering, California Institute of Technology, 1200 California Boulevard, Pasadena, CA 91125, USA
| | - Paul A. Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Edward Krzymowski
- Department of Physics and Astronomy, Brigham Young University, Provo, UT 84604, USA
| | - Robert A. Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Grant J. Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84604, USA
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
10
|
Debowski AW, Bzdyl NM, Thomas DR, Scott NE, Jenkins CH, Iwasaki J, Kibble EA, Khoo CA, Scheuplein NJ, Seibel PM, Lohr T, Metters G, Bond CS, Norville IH, Stubbs KA, Harmer NJ, Holzgrabe U, Newton HJ, Sarkar-Tyson M. Macrophage infectivity potentiator protein, a peptidyl prolyl cis-trans isomerase, essential for Coxiella burnetii growth and pathogenesis. PLoS Pathog 2023; 19:e1011491. [PMID: 37399210 DOI: 10.1371/journal.ppat.1011491] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
Coxiella burnetii is a Gram-negative intracellular pathogen that causes the debilitating disease Q fever, which affects both animals and humans. The only available human vaccine, Q-Vax, is effective but has a high risk of severe adverse reactions, limiting its use as a countermeasure to contain outbreaks. Therefore, it is essential to identify new drug targets to treat this infection. Macrophage infectivity potentiator (Mip) proteins catalyse the folding of proline-containing proteins through their peptidyl prolyl cis-trans isomerase (PPIase) activity and have been shown to play an important role in the virulence of several pathogenic bacteria. To date the role of the Mip protein in C. burnetii pathogenesis has not been investigated. This study demonstrates that CbMip is likely to be an essential protein in C. burnetii. The pipecolic acid derived compounds, SF235 and AN296, which have shown utility in targeting other Mip proteins from pathogenic bacteria, demonstrate inhibitory activities against CbMip. These compounds were found to significantly inhibit intracellular replication of C. burnetii in both HeLa and THP-1 cells. Furthermore, SF235 and AN296 were also found to exhibit antibiotic properties against both the virulent (Phase I) and avirulent (Phase II) forms of C. burnetii Nine Mile Strain in axenic culture. Comparative proteomics, in the presence of AN296, revealed alterations in stress responses with H2O2 sensitivity assays validating that Mip inhibition increases the sensitivity of C. burnetii to oxidative stress. In addition, SF235 and AN296 were effective in vivo and significantly improved the survival of Galleria mellonella infected with C. burnetii. These results suggest that unlike in other bacteria, Mip in C. burnetii is required for replication and that the development of more potent inhibitors against CbMip is warranted and offer potential as novel therapeutics against this pathogen.
Collapse
Affiliation(s)
- Aleksandra W Debowski
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Nicole M Bzdyl
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - David R Thomas
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | | | - Jua Iwasaki
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
- Centre for Child Health Research, University of Western Australia, Perth, Western Australia, Australia
| | - Emily A Kibble
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
- DMTC Limited, Level 1, Kew, Australia
| | - Chen Ai Khoo
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Nicolas J Scheuplein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Pamela M Seibel
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Theresa Lohr
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Georgie Metters
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, United Kingdom
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Isobel H Norville
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, United Kingdom
| | - Keith A Stubbs
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Nicholas J Harmer
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, United Kingdom
- Living Systems Institute, Stocker Road Exeter, United Kingdom
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Hayley J Newton
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
11
|
Fisher DJ, Beare PA. Recent advances in genetic systems in obligate intracellular human-pathogenic bacteria. Front Cell Infect Microbiol 2023; 13:1202245. [PMID: 37404720 PMCID: PMC10315504 DOI: 10.3389/fcimb.2023.1202245] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/22/2023] [Indexed: 07/06/2023] Open
Abstract
The ability to genetically manipulate a pathogen is fundamental to discovering factors governing host-pathogen interactions at the molecular level and is critical for devising treatment and prevention strategies. While the genetic "toolbox" for many important bacterial pathogens is extensive, approaches for modifying obligate intracellular bacterial pathogens were classically limited due in part to the uniqueness of their obligatory lifestyles. Many researchers have confronted these challenges over the past two and a half decades leading to the development of multiple approaches to construct plasmid-bearing recombinant strains and chromosomal gene inactivation and deletion mutants, along with gene-silencing methods enabling the study of essential genes. This review will highlight seminal genetic achievements and recent developments (past 5 years) for Anaplasma spp., Rickettsia spp., Chlamydia spp., and Coxiella burnetii including progress being made for the still intractable Orientia tsutsugamushi. Alongside commentary of the strengths and weaknesses of the various approaches, future research directions will be discussed to include methods for C. burnetii that should have utility in the other obligate intracellular bacteria. Collectively, the future appears bright for unraveling the molecular pathogenic mechanisms of these significant pathogens.
Collapse
Affiliation(s)
- Derek J. Fisher
- School of Biological Sciences, Southern Illinois University, Carbondale, IL, United States
| | - Paul A. Beare
- Rocky Mountain Laboratory, National Institute of Health, Hamilton, MT, United States
| |
Collapse
|
12
|
Kodori M, Amani J, Meshkat Z, Ahmadi A. Coxiella burnetii Pathogenesis: Emphasizing the Role of the Autophagic Pathway. ARCHIVES OF RAZI INSTITUTE 2023; 78:785-796. [PMID: 38028822 PMCID: PMC10657931 DOI: 10.22092/ari.2023.361161.2636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/04/2023] [Indexed: 12/01/2023]
Abstract
Coxiella burnetii (C. burnetii), the etiological agent of the Q fever disease, ranks among the most sporadic and persistent global public health concerns. Ruminants are the principal source of human infections and diseases present in both acute and chronic forms. This bacterium is an intracellular pathogen that can survive and reproduce under acidic (pH 4 to 5) and harsh circumstances that contain Coxiella-containing vacuoles. By undermining the autophagy defense system of the host cell, C. burnetii is able to take advantage of the autophagy pathway, which allows it to improve the movement of nutrients and the membrane, thereby extending the vacuole of the reproducing bacteria. For this method to work, it requires the participation of many bacterial effector proteins. In addition, the precise and prompt identification of the causative agent of an acute disease has the potential to delay the onset of its chronic form. Moreover, to make accurate and rapid diagnoses, it is necessary to create diagnostic devices. This review summarizes the most recent research on the epidemiology, pathogenesis, and diagnosis approaches of C. burnetii. This study also explored the complicated relationships between C. burnetii and the autophagic pathway, which are essential for intracellular reproduction and survival in host cells for the infection to be effective.
Collapse
Affiliation(s)
- M Kodori
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University, of Medical Sciences, Tehran, Iran
- Non Communicable Diseases Research Center, Bam University of Medical Sciences, Bam, the Islamic Republic of Iran
| | - J Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University, of Medical Sciences, Tehran, Iran
| | - Z Meshkat
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University, of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Wei ZY, Wang ZX, Li JH, Wen YS, Gao D, Xia SY, Li YN, Pan XB, Liu YS, Jin YY, Chen JH. Host A-to-I RNA editing signatures in intracellular bacterial and single-strand RNA viral infections. Front Immunol 2023; 14:1121096. [PMID: 37081881 PMCID: PMC10112020 DOI: 10.3389/fimmu.2023.1121096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
BackgroundMicrobial infection is accompanied by remodeling of the host transcriptome. Involvement of A-to-I RNA editing has been reported during viral infection but remains to be elucidated during intracellular bacterial infections.ResultsHerein we analyzed A-to-I RNA editing during intracellular bacterial infections based on 18 RNA-Seq datasets of 210 mouse samples involving 7 tissue types and 8 intracellular bacterial pathogens (IBPs), and identified a consensus signature of RNA editing for IBP infections, mainly involving neutrophil-mediated innate immunity and lipid metabolism. Further comparison of host RNA editing patterns revealed remarkable similarities between pneumonia caused by IBPs and single-strand RNA (ssRNA) viruses, such as altered editing enzyme expression, editing site numbers, and levels. In addition, functional enrichment analysis of genes with RNA editing highlighted that the Rab GTPase family played a common and vital role in the host immune response to IBP and ssRNA viral infections, which was indicated by the consistent up-regulated RNA editing of Ras-related protein Rab27a. Nevertheless, dramatic differences between IBP and viral infections were also observed, and clearly distinguished the two types of intracellular infections.ConclusionOur study showed transcriptome-wide host A-to-I RNA editing alteration during IBP and ssRNA viral infections. By identifying and comparing consensus signatures of host A-to-I RNA editing, our analysis implicates the importance of host A-to-I RNA editing during these infections and provides new insights into the diagnosis and treatment of infectious diseases.
Collapse
Affiliation(s)
- Zhi-Yuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Zhi-Xin Wang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Jia-Huan Li
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Yan-Shuo Wen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Di Gao
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Shou-Yue Xia
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Yu-Ning Li
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Xu-Bin Pan
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Yan-Shan Liu
- Department of Pediatric Laboratory, Wuxi Children’s Hospital, Wuxi, Jiangsu, China
| | - Yun-Yun Jin
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
- *Correspondence: Jian-Huan Chen, ; Yun-Yun Jin,
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
- *Correspondence: Jian-Huan Chen, ; Yun-Yun Jin,
| |
Collapse
|
14
|
Wachter S, Larson CL, Virtaneva K, Kanakabandi K, Darwitz B, Crews B, Storrud K, Heinzen RA, Beare PA. A Survey of Two-Component Systems in Coxiella burnetii Reveals Redundant Regulatory Schemes and a Requirement for an Atypical PhoBR System in Mammalian Cell Infection. J Bacteriol 2023; 205:e0041622. [PMID: 36847507 PMCID: PMC10029714 DOI: 10.1128/jb.00416-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/20/2022] [Indexed: 03/01/2023] Open
Abstract
Coxiella burnetii is an obligate intracellular bacterium and the etiological agent of Q fever in humans. C. burnetii transitions between a replicative, metabolically active large-cell variant (LCV) and a spore-like, quiescent small-cell variant (SCV) as a likely mechanism to ensure survival between host cells and mammalian hosts. C. burnetii encodes three canonical two-component systems, four orphan hybrid histidine kinases, five orphan response regulators, and a histidine phosphotransfer protein, which have been speculated to play roles in the signaling required for C. burnetii morphogenesis and virulence. However, very few of these systems have been characterized. By employing a CRISPR interference system for genetic manipulation of C. burnetii, we created single- and multigene transcriptional knockdown strains targeting most of these signaling genes. Through this, we revealed a role for the C. burnetii PhoBR canonical two-component system in virulence, regulation of [Pi] maintenance, and Pi transport. We also outline a novel mechanism by which PhoBR function may be regulated by an atypical PhoU-like protein. We also determined that the GacA.2/GacA.3/GacA.4/GacS orphan response regulators coordinately and disparately regulate expression of SCV-associated genes in C. burnetii LCVs. These foundational results will inform future studies on the role of C. burnetii two-component systems in virulence and morphogenesis. IMPORTANCE C. burnetii is an obligate intracellular bacterium with a spore-like stability allowing it to survive long periods of time in the environment. This stability is likely due to its biphasic developmental cycle, whereby it can transition from an environmentally stable small-cell variant (SCV) to a metabolically active large-cell variant (LCV). Here, we define the role of two-component phosphorelay systems (TCS) in C. burnetii's ability to survive within the harsh environment contained in the phagolysosome of host cells. We show that the canonical PhoBR TCS has an important role in C. burnetii virulence and phosphate sensing. Further examination of the regulons controlled by orphan regulators indicated a role in modulating gene expression of SCV-associated genes, including genes essential for cell wall remodeling.
Collapse
Affiliation(s)
- Shaun Wachter
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
- Vaccine and Infectious Disease Organization, Saskatoon, Saskatchewan, Canada
| | - Charles L. Larson
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Kimmo Virtaneva
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - Kishore Kanakabandi
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - Benjamin Darwitz
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ben Crews
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - Keelee Storrud
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - Robert A. Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Paul A. Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| |
Collapse
|
15
|
Thomas DR, Newton HJ. Complex Signaling Networks Control Coxiella burnetii. J Bacteriol 2023; 205:e0001323. [PMID: 36847508 PMCID: PMC10029709 DOI: 10.1128/jb.00013-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
A recent study by S. Wachter, C. L. Larson, K. Virtaneva, K. Kanakabandi, et al. (J Bacteriol 205:e00416-22, 2023, https://doi.org/10.1128/JB.00416-22) utilizes new technologies to examine the role of two-component systems in Coxiella burnetii. This research demonstrates that the zoonotic pathogen C. burnetii mediates complex transcriptional control, throughout different bacterial phases and environmental conditions, with relatively few regulatory elements.
Collapse
Affiliation(s)
- David R. Thomas
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Hayley J. Newton
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
16
|
Nissa MU, Pinto N, Ghosh B, Singh U, Goswami M, Srivastava S. Proteomic analysis of liver tissue reveals Aeromonas hydrophila infection mediated modulation of host metabolic pathways in Labeo rohita. J Proteomics 2023; 279:104870. [PMID: 36906258 DOI: 10.1016/j.jprot.2023.104870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Aeromonas hydrophila (Ah) is a Gram-negative bacterium and a serious global pathogen causing Motile Aeromonas Septicaemia (MAS) in fish leading to global loss in aquaculture. Investigation of the molecular alterations of host tissues such as liver could be a powerful approach to identify mechanistic and diagnostic immune signatures of disease pathogenesis. We performed a proteomic analysis of Labeo rohita liver tissue to examine the protein dynamics in the host cells during Ah infection. The proteomic data was acquired using two strategies; discovery and targeted proteomics. Label-free quantification was performed between Control and challenged group (AH) to identify the differentially expressed proteins (DEPs). A total of 2525 proteins were identified and 157 were DEPs. DEPs include metabolic enzymes (CS, SUCLG2), antioxidative proteins, cytoskeletal proteins and immune related proteins (TLR3, CLEC4E). Pathways like lysosome pathway, apoptosis, metabolism of xenobiotics by cytochrome P450 were enriched by downregulated proteins. However, upregulated proteins majorly mapped to innate immune system, signaling of B cell receptor, proteosome pathway, ribosome, carbon metabolism and protein processing in ER. Our study would help in exploring the role of Toll-like receptors, C-type lectins and, metabolic intermediates like citrate and succinate in Ah pathogenesis to understand the Ah infection in fish. SIGNIFICANCE: Bacterial diseases such as motile aeromonas septicaemia (MAS) are among the most serious problems in aquaculture industry. Small molecules that target the metabolism of the host have recently emerged as potential treatment possibilities in infectious diseases. However, the ability to develop new therapies is hampered due to lack of knowledge about pathogenesis mechanisms and host-pathogen interactions. We examined alterations in the host proteome during MAS caused by Aeromonas hydrophila (Ah) infection, in Labeo rohita liver tissue to find cellular proteins and processes affected by Ah infection. Upregulated proteins belong to innate immune system, signaling of B cell receptor, proteosome pathway, ribosome, carbon metabolism and protein processing. Our work is an important step towards leveraging host metabolism in targeting the disease by providing a bigger picture on proteome pathology correlation during Ah infection.
Collapse
Affiliation(s)
- Mehar Un Nissa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Nevil Pinto
- Central Institute of Fisheries Education, Indian Council of Agricultural Research, Versova, Mumbai, Maharashtra 400061, India
| | - Biplab Ghosh
- Regional Centre for Biotechnology, Faridabad 121001, India
| | - Urvi Singh
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, 110034, India
| | - Mukunda Goswami
- Central Institute of Fisheries Education, Indian Council of Agricultural Research, Versova, Mumbai, Maharashtra 400061, India.
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
17
|
Metters G, Hemsley C, Norville I, Titball R. Identification of essential genes in Coxiella burnetii. Microb Genom 2023; 9:mgen000944. [PMID: 36723494 PMCID: PMC9997736 DOI: 10.1099/mgen.0.000944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Coxiella burnetii is an intracellular pathogen responsible for causing Q fever in humans, a disease with varied presentations ranging from a mild flu-like sickness to a debilitating illness that can result in endocarditis. The intracellular lifestyle of C. burnetii is unique, residing in an acidic phagolysosome-like compartment within host cells. An understanding of the core molecular biology of C. burnetii will greatly increase our understanding of C. burnetii growth, survival and pathogenesis. We used transposon-directed insertion site sequencing (TraDIS) to reveal C. burnetii Nine Mile Phase II genes fundamental for growth and in vitro survival. Screening a transposon library containing >10 000 unique transposon mutants revealed 512 predicted essential genes. Essential routes of synthesis were identified for the mevalonate pathway, as well as peptidoglycan and biotin synthesis. Some essential genes identified (e.g. predicted type IV secretion system effector genes) are typically considered to be associated with C. burnetii virulence, a caveat concerning the axenic media used in the study. Investigation into the conservation of the essential genes identified revealed that 78 % are conserved across all C. burnetii strains sequenced to date, which probably play critical functions. This is the first report of a whole genome transposon screen in C. burnetii that has been undertaken for the identification of essential genes.
Collapse
Affiliation(s)
- Georgie Metters
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.,Defence Science and Technology Laboratories, CBR Division, Porton Down, Salisbury SP4 0JQ, UK
| | - Claudia Hemsley
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.,Present address: Molecular Microbiology Division, School of Life Sciences, University of Dundee, Dundee, DD1 5AA, UK
| | - Isobel Norville
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.,Defence Science and Technology Laboratories, CBR Division, Porton Down, Salisbury SP4 0JQ, UK
| | - Richard Titball
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
18
|
MicroRNAs Contribute to Host Response to Coxiella burnetii. Infect Immun 2023; 91:e0019922. [PMID: 36537791 PMCID: PMC9872603 DOI: 10.1128/iai.00199-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs), a class of small noncoding RNAs, are critical to gene regulation in eukaryotes. They are involved in modulating a variety of physiological processes, including the host response to intracellular infections. Little is known about miRNA functions during infection by Coxiella burnetii, the causative agent of human Q fever. This bacterial pathogen establishes a large replicative vacuole within macrophages by manipulating host processes such as apoptosis and autophagy. We investigated miRNA expression in C. burnetii-infected macrophages and identified several miRNAs that were down- or upregulated during infection. We further explored the functions of miR-143-3p, an miRNA whose expression is downregulated in macrophages infected with C. burnetii, and show that increasing the abundance of this miRNA in human cells results in increased apoptosis and reduced autophagy-conditions that are unfavorable to C. burnetii intracellular growth. In sum, this study demonstrates that C. burnetii infection elicits a robust miRNA-based host response, and because miR-143-3p promotes apoptosis and inhibits autophagy, downregulation of miR-143-3p expression during C. burnetii infection likely benefits the pathogen.
Collapse
|
19
|
Blasey N, Rehrmann D, Riebisch AK, Mühlen S. Targeting bacterial pathogenesis by inhibiting virulence-associated Type III and Type IV secretion systems. Front Cell Infect Microbiol 2023; 12:1065561. [PMID: 36704108 PMCID: PMC9872159 DOI: 10.3389/fcimb.2022.1065561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Infections caused by Gram-negative pathogens pose a major health burden. Both respiratory and gastrointestinal infections are commonly associated with these pathogens. With the increase in antimicrobial resistance (AMR) over the last decades, bacterial infections may soon become the threat they have been before the discovery of antibiotics. Many Gram-negative pathogens encode virulence-associated Type III and Type IV secretion systems, which they use to inject bacterial effector proteins across bacterial and host cell membranes into the host cell cytosol, where they subvert host cell functions in favor of bacterial replication and survival. These secretion systems are essential for the pathogens to cause disease, and secretion system mutants are commonly avirulent in infection models. Hence, these structures present attractive targets for anti-virulence therapies. Here, we review previously and recently identified inhibitors of virulence-associated bacterial secretions systems and discuss their potential as therapeutics.
Collapse
|
20
|
Yek KQ, Stojanovski D, Newton HJ. Interaction between host cell mitochondria and Coxiella burnetii. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023. [DOI: 10.1016/bs.ircmb.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Developmental Transitions Coordinate Assembly of the Coxiella burnetii Dot/Icm Type IV Secretion System. Infect Immun 2022; 90:e0041022. [PMID: 36190257 PMCID: PMC9584302 DOI: 10.1128/iai.00410-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Coxiella burnetii is an obligate intracellular bacterial pathogen that has evolved a unique biphasic developmental cycle. The infectious form of C. burnetii is the dormant small cell variant (SCV), which transitions to a metabolically active large cell variant (LCV) that replicates inside the lysosome-derived host vacuole. A Dot/Icm type IV secretion system (T4SS), which can deliver over 100 effector proteins to host cells, is essential for the biogenesis of the vacuole and intracellular replication. How the distinct C. burnetii life cycle impacts the assembly and function of the Dot/Icm T4SS has remained unknown. Here, we combine advanced cryo-focused ion beam (cryo-FIB) milling and cryo-electron tomography (cryo-ET) imaging to visualize all developmental transitions and the assembly of the Dot/Icm T4SS in situ. Importantly, assembled Dot/Icm machines were not present in the infectious SCV. The appearance of the assembled Dot/Icm machine correlated with the transition of the SCV to the LCV intracellularly. Furthermore, temporal characterization of C. burnetii morphological changes revealed regions of the inner membrane that invaginate to form tightly packed stacks during the LCV-to-SCV transition at late stages of infection, which may enable the SCV-to-LCV transition that occurs upon infection of a new host cell. Overall, these data establish how C. burnetii developmental transitions control critical bacterial processes to promote intracellular replication and transmission.
Collapse
|
22
|
Gutierrez MG, Enninga J. Intracellular niche switching as host subversion strategy of bacterial pathogens. Curr Opin Cell Biol 2022; 76:102081. [PMID: 35487154 DOI: 10.1016/j.ceb.2022.102081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 11/03/2022]
Abstract
Numerous bacterial pathogens "confine" themselves within host cells with an intracellular localization as main or exclusive niche. Many of them switch dynamically between a membrane-bound or cytosolic lifestyle. This requires either membrane damage and/or repair of the bacterial-containing compartment. Niche switching has profound consequences on how the host cell recognizes the pathogens in time and space for elimination. Moreover, niche switching impacts how bacteria communicate with host cells to obtain nutrients, and it affects the accessibility to antibiotics. Understanding the local environments and cellular phenotypes that lead to niche switching is critical for developing new host-targeted antimicrobial strategies, and has the potential to shed light into fundamental cellular processes.
Collapse
Affiliation(s)
- Maximiliano G Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| | - Jost Enninga
- Dynamics of Host-Pathogen Interactions Unit and UMR3691 CNRS, Institut Pasteur, Paris, France; Université de Paris, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
23
|
Lau N, Thomas DR, Lee YW, Knodler LA, Newton HJ. Perturbation of ATG16L1 function impairs the biogenesis of Salmonella and Coxiella replication vacuoles. Mol Microbiol 2022; 117:235-251. [PMID: 34874584 PMCID: PMC8844213 DOI: 10.1111/mmi.14858] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 02/03/2023]
Abstract
Anti-bacterial autophagy, known as xenophagy, is a host innate immune response that targets invading pathogens for degradation. Some intracellular bacteria, such as the enteric pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), utilize effector proteins to interfere with autophagy. One such S. Typhimurium effector, SopF, inhibits recruitment of ATG16L1 to damaged Salmonella-containing vacuoles (SCVs), thereby inhibiting the host xenophagic response. SopF is also required to maintain the integrity of the SCV during the early stages of infection. Here we show disruption of the SopF-ATG16L1 interaction leads to an increased proportion of cytosolic S. Typhimurium. Furthermore, SopF was utilized as a molecular tool to examine the requirement for ATG16L1 in the intracellular lifestyle of Coxiella burnetii, a bacterium that requires a functional autophagy pathway to replicate efficiently and form a single, spacious vacuole called the Coxiella-containing vacuole (CCV). ATG16L1 is required for CCV expansion and fusion but does not influence C. burnetii replication. In contrast, SopF did not affect CCV formation or replication, demonstrating that the contribution of ATG16L1 to CCV biogenesis is via its role in autophagy, not xenophagy. This study highlights the diverse capabilities of bacterial effector proteins to dissect the molecular details of host-pathogen interactions.
Collapse
Affiliation(s)
- Nicole Lau
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - David R Thomas
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Yi Wei Lee
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Leigh A Knodler
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.,Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Hayley J Newton
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Petit TJ, Lebreton A. Adaptations of intracellular bacteria to vacuolar or cytosolic niches. Trends Microbiol 2022; 30:736-748. [DOI: 10.1016/j.tim.2022.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/28/2022]
|
25
|
Vaughn B, Abu Kwaik Y. Idiosyncratic Biogenesis of Intracellular Pathogens-Containing Vacuoles. Front Cell Infect Microbiol 2021; 11:722433. [PMID: 34858868 PMCID: PMC8632064 DOI: 10.3389/fcimb.2021.722433] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
While most bacterial species taken up by macrophages are degraded through processing of the bacteria-containing vacuole through the endosomal-lysosomal degradation pathway, intravacuolar pathogens have evolved to evade degradation through the endosomal-lysosomal pathway. All intra-vacuolar pathogens possess specialized secretion systems (T3SS-T7SS) that inject effector proteins into the host cell cytosol to modulate myriad of host cell processes and remodel their vacuoles into proliferative niches. Although intravacuolar pathogens utilize similar secretion systems to interfere with their vacuole biogenesis, each pathogen has evolved a unique toolbox of protein effectors injected into the host cell to interact with, and modulate, distinct host cell targets. Thus, intravacuolar pathogens have evolved clear idiosyncrasies in their interference with their vacuole biogenesis to generate a unique intravacuolar niche suitable for their own proliferation. While there has been a quantum leap in our knowledge of modulation of phagosome biogenesis by intravacuolar pathogens, the detailed biochemical and cellular processes affected remain to be deciphered. Here we discuss how the intravacuolar bacterial pathogens Salmonella, Chlamydia, Mycobacteria, Legionella, Brucella, Coxiella, and Anaplasma utilize their unique set of effectors injected into the host cell to interfere with endocytic, exocytic, and ER-to-Golgi vesicle traffic. However, Coxiella is the main exception for a bacterial pathogen that proliferates within the hydrolytic lysosomal compartment, but its T4SS is essential for adaptation and proliferation within the lysosomal-like vacuole.
Collapse
Affiliation(s)
- Bethany Vaughn
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States.,Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, KY, United States
| |
Collapse
|
26
|
Loterio RK, Zamboni DS, Newton HJ. Keeping the host alive - lessons from obligate intracellular bacterial pathogens. Pathog Dis 2021; 79:6424899. [PMID: 34755855 DOI: 10.1093/femspd/ftab052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/04/2021] [Indexed: 01/20/2023] Open
Abstract
Mammals have evolved sophisticated host cell death signaling pathways as an important immune mechanism to recognize and eliminate cell intruders before they establish their replicative niche. However, intracellular bacterial pathogens that have co-evolved with their host have developed a multitude of tactics to counteract this defense strategy to facilitate their survival and replication. This requires manipulation of pro-death and pro-survival host signaling pathways during infection. Obligate intracellular bacterial pathogens are organisms that absolutely require an eukaryotic host to survive and replicate, and therefore they have developed virulence factors to prevent diverse forms of host cell death and conserve their replicative niche. This review encapsulates our current understanding of these host-pathogen interactions by exploring the most relevant findings of Anaplasma spp., Chlamydia spp., Rickettsia spp. and Coxiella burnetii modulating host cell death pathways. A detailed comprehension of the molecular mechanisms through which these obligate intracellular pathogens manipulate regulated host cell death will not only increase the current understanding of these difficult-to-study pathogens but also provide insights into new tools to study regulated cell death and the development of new therapeutic approaches to control infection.
Collapse
Affiliation(s)
- Robson Kriiger Loterio
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Medical School, FMRP/USP. Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil.,Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, 3000, Victoria, Australia
| | - Dario S Zamboni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Medical School, FMRP/USP. Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Hayley J Newton
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, 3000, Victoria, Australia
| |
Collapse
|
27
|
Sireci G, Badami GD, Di Liberto D, Blanda V, Grippi F, Di Paola L, Guercio A, de la Fuente J, Torina A. Recent Advances on the Innate Immune Response to Coxiella burnetii. Front Cell Infect Microbiol 2021; 11:754455. [PMID: 34796128 PMCID: PMC8593175 DOI: 10.3389/fcimb.2021.754455] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
Coxiella burnetii is an obligate intracellular Gram-negative bacterium and the causative agent of a worldwide zoonosis known as Q fever. The pathogen invades monocytes and macrophages, replicating within acidic phagolysosomes and evading host defenses through different immune evasion strategies that are mainly associated with the structure of its lipopolysaccharide. The main transmission routes are aerosols and ingestion of fomites from infected animals. The innate immune system provides the first host defense against the microorganism, and it is crucial to direct the infection towards a self-limiting respiratory disease or the chronic form. This review reports the advances in understanding the mechanisms of innate immunity acting during C. burnetii infection and the strategies that pathogen put in place to infect the host cells and to modify the expression of specific host cell genes in order to subvert cellular processes. The mechanisms through which different cell types with different genetic backgrounds are differently susceptible to C. burnetii intracellular growth are discussed. The subsets of cytokines induced following C. burnetii infection as well as the pathogen influence on an inflammasome-mediated response are also described. Finally, we discuss the use of animal experimental systems for studying the innate immune response against C. burnetii and discovering novel methods for prevention and treatment of disease in humans and livestock.
Collapse
Affiliation(s)
- Guido Sireci
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University Hospital "Paolo Giaccone", Università degli studi di Palermo, Palermo, Italy
| | - Giusto Davide Badami
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University Hospital "Paolo Giaccone", Università degli studi di Palermo, Palermo, Italy
| | - Diana Di Liberto
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University Hospital "Paolo Giaccone", Università degli studi di Palermo, Palermo, Italy
| | - Valeria Blanda
- Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Francesca Grippi
- Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Laura Di Paola
- Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Annalisa Guercio
- Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - José de la Fuente
- SaBio Health and Biotechnology, Instituto de Investigación en Recursos Cinegéticos, IREC -Spanish National Research Council CSIC - University of Castilla-La Mancha UCLM - Regional Government of Castilla-La Mancha JCCM, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | | |
Collapse
|
28
|
Identification of Translocation Inhibitors Targeting the Type III Secretion System of Enteropathogenic Escherichia coli. Antimicrob Agents Chemother 2021; 65:e0095821. [PMID: 34543097 DOI: 10.1128/aac.00958-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infections with enteropathogenic Escherichia coli (EPEC) cause severe diarrhea in children. The noninvasive bacteria adhere to enterocytes of the small intestine and use a type III secretion system (T3SS) to inject effector proteins into host cells to modify and exploit cellular processes in favor of bacterial survival and replication. Several studies have shown that the T3SSs of bacterial pathogens are essential for virulence. Furthermore, the loss of T3SS-mediated effector translocation results in increased immune recognition and clearance of the bacteria. The T3SS is, therefore, considered a promising target for antivirulence strategies and novel therapeutics development. Here, we report the results of a high-throughput screening assay based on the translocation of the EPEC effector protein Tir (translocated intimin receptor). Using this assay, we screened more than 13,000 small molecular compounds of six different compound libraries and identified three substances which showed a significant dose-dependent effect on translocation without adverse effects on bacterial or eukaryotic cell viability. In addition, these substances reduced bacterial binding to host cells, effector-dependent cell detachment, and abolished attaching and effacing lesion formation without affecting the expression of components of the T3SS or associated effector proteins. Moreover, no effects of the inhibitors on bacterial motility or Shiga-toxin expression were observed. In summary, we have identified three new compounds that strongly inhibit T3SS-mediated translocation of effectors into mammalian cells, which could be valuable as lead substances for treating EPEC and enterohemorrhagic E. coli infections.
Collapse
|
29
|
Undercover Agents of Infection: The Stealth Strategies of T4SS-Equipped Bacterial Pathogens. Toxins (Basel) 2021; 13:toxins13100713. [PMID: 34679006 PMCID: PMC8539587 DOI: 10.3390/toxins13100713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Intracellular bacterial pathogens establish their replicative niches within membrane-encompassed compartments, called vacuoles. A subset of these bacteria uses a nanochannel called the type 4 secretion system (T4SS) to inject effector proteins that subvert the host cell machinery and drive the biogenesis of these compartments. These bacteria have also developed sophisticated ways of altering the innate immune sensing and response of their host cells, which allow them to cause long-lasting infections and chronic diseases. This review covers the mechanisms employed by intravacuolar pathogens to escape innate immune sensing and how Type 4-secreted bacterial effectors manipulate host cell mechanisms to allow the persistence of bacteria.
Collapse
|
30
|
Ong SY, Schuelein R, Wibawa RR, Thomas DW, Handoko Y, Freytag S, Bahlo M, Simpson KJ, Hartland EL. Genome-wide genetic screen identifies host ubiquitination as important for Legionella pneumophila Dot/Icm effector translocation. Cell Microbiol 2021; 23:e13368. [PMID: 34041837 DOI: 10.1111/cmi.13368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 11/30/2022]
Abstract
The Dot/Icm system of Legionella pneumophila is essential for virulence and delivers a large repertoire of effectors into infected host cells to create the Legionella containing vacuole. Since the secretion of effectors via the Dot/Icm system does not occur in the absence of host cells, we hypothesised that host factors actively participate in Dot/Icm effector translocation. Here we employed a high-throughput, genome-wide siRNA screen to systematically test the effect of silencing 18,120 human genes on translocation of the Dot/Icm effector, RalF, into HeLa cells. For the primary screen, we found that silencing of 119 genes led to increased translocation of RalF, while silencing of 321 genes resulted in decreased translocation. Following secondary screening, 70 genes were successfully validated as 'high confidence' targets. Gene set enrichment analysis of siRNAs leading to decreased RalF translocation, showed that ubiquitination was the most highly overrepresented category in the pathway analysis. We further showed that two host factors, the E2 ubiquitin-conjugating enzyme, UBE2E1, and the E3 ubiquitin ligase, CUL7, were important for supporting Dot/Icm translocation and L. pneumophila intracellular replication. In summary, we identified host ubiquitin pathways as important for the efficiency of Dot/Icm effector translocation by L. pneumophila, suggesting that host-derived ubiquitin-conjugating enzymes and ubiquitin ligases participate in the translocation of Legionella effector proteins and influence intracellular persistence and survival.
Collapse
Affiliation(s)
- Sze Ying Ong
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Ralf Schuelein
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Rachelia R Wibawa
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Daniel W Thomas
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Yanny Handoko
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Saskia Freytag
- Division of Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Melanie Bahlo
- Division of Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Kaylene J Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Elizabeth L Hartland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
31
|
Steiner S, Meir A, Roy CR. Coxiella burnetii encodes an LvgA-related protein important for intracellular replication. Cell Microbiol 2021; 23:e13331. [PMID: 33774901 DOI: 10.1111/cmi.13331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 12/29/2022]
Abstract
Coxiella burnetii is a bacterial pathogen that replicates in a specialised lysosome-derived organelle called the Coxiella-containing vacuole (CCV). Establishment of the CCV requires the Dot/Icm type IVB secretion system. A previous transposon mutagenesis screen identified the gene cbu1754 as being important for the intracellular replication of C. burnetii. To understand the function of the protein encoded by cbu1754, CCV maturation and intracellular replication phenotypes of a cbu1754 mutant were analysed. In contrast to vacuoles containing wild-type C. burnetii Nine Mile phase II, vacuoles containing the isogenic cbu1754 mutant were smaller and did not display detectible amounts of the autophagy protein LC3, which indicated a CCV biogenesis defect. The Cbu1754 protein was not efficiently delivered into the host cell cytosol during infection, which indicated this protein is not a Dot/Icm-translocated effector protein. Secondary structure predictions suggested that Cbu1754 could be similar to the Legionella pneumophila LvgA protein, which is a component of the Dot/Icm apparatus. Consistent with this hypothesis, production of Cbu1754 in an L. pneumophila ∆lvgA mutant restored LvgA-dependent activities. The L. pneumophila proteins LvgA, IcmS and IcmW are interacting partners that comprise a subassembly of the coupling protein complex that mediates Dot/Icm-dependent effector translocation. Similarly, the Cbu1754 protein was found to be a component of the chaperone complex containing the C. burnetii proteins IcmS and IcmW. Thus, the Cbu1754 protein is an LvgA-related protein important for Dot/Icm function and intracellular replication of C. burnetii.
Collapse
Affiliation(s)
- Samuel Steiner
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Amit Meir
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Craig R Roy
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
32
|
Jaboulay C, Godeux AS, Doublet P, Vianney A. Regulatory Networks of the T4SS Control: From Host Cell Sensing to the Biogenesis and the Activity during the Infection. J Mol Biol 2021; 433:166892. [PMID: 33636165 DOI: 10.1016/j.jmb.2021.166892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 02/03/2023]
Abstract
Delivery of effectors, DNA or proteins, that hijack host cell processes to the benefit of bacteria is a mechanism widely used by bacterial pathogens. It is achieved by complex effector injection devices, the secretion systems, among which Type 4 Secretion Systems (T4SSs) play a key role in bacterial virulence of numerous animal and plant pathogens. Considerable progress has recently been made in the structure-function analyses of T4SSs. Nevertheless, the signals and processes that trigger machine assembly and activity during infection, as well as those involved in substrate recognition and transfer, are complex and still poorly understood. In this review, we aim at summarizing the last updates of the knowledge on signaling pathways that regulate the biogenesis and the activity of T4SSs in important bacterial pathogens.
Collapse
Affiliation(s)
- C Jaboulay
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France.
| | - A S Godeux
- CIRI, Centre International de Recherche en Infectiologie, (Team: Horigene), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - P Doublet
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - A Vianney
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| |
Collapse
|
33
|
Szulc-Dąbrowska L, Bossowska-Nowicka M, Struzik J, Toka FN. Cathepsins in Bacteria-Macrophage Interaction: Defenders or Victims of Circumstance? Front Cell Infect Microbiol 2020; 10:601072. [PMID: 33344265 PMCID: PMC7746538 DOI: 10.3389/fcimb.2020.601072] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages are the first encounters of invading bacteria and are responsible for engulfing and digesting pathogens through phagocytosis leading to initiation of the innate inflammatory response. Intracellular digestion occurs through a close relationship between phagocytic/endocytic and lysosomal pathways, in which proteolytic enzymes, such as cathepsins, are involved. The presence of cathepsins in the endo-lysosomal compartment permits direct interaction with and killing of bacteria, and may contribute to processing of bacterial antigens for presentation, an event necessary for the induction of antibacterial adaptive immune response. Therefore, it is not surprising that bacteria can control the expression and proteolytic activity of cathepsins, including their inhibitors – cystatins, to favor their own intracellular survival in macrophages. In this review, we summarize recent developments in defining the role of cathepsins in bacteria-macrophage interaction and describe important strategies engaged by bacteria to manipulate cathepsin expression and activity in macrophages. Particularly, we focus on specific bacterial species due to their clinical relevance to humans and animal health, i.e., Mycobacterium, Mycoplasma, Staphylococcus, Streptococcus, Salmonella, Shigella, Francisella, Chlamydia, Listeria, Brucella, Helicobacter, Neisseria, and other genera.
Collapse
Affiliation(s)
- Lidia Szulc-Dąbrowska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland
| | - Magdalena Bossowska-Nowicka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland
| | - Justyna Struzik
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland
| | - Felix N Toka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland.,Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
34
|
Pechstein J, Schulze-Luehrmann J, Bisle S, Cantet F, Beare PA, Ölke M, Bonazzi M, Berens C, Lührmann A. The Coxiella burnetii T4SS Effector AnkF Is Important for Intracellular Replication. Front Cell Infect Microbiol 2020; 10:559915. [PMID: 33282747 PMCID: PMC7691251 DOI: 10.3389/fcimb.2020.559915] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022] Open
Abstract
Coxiella burnetii is an obligate intracellular pathogen and the causative agent of the zoonotic disease Q fever. Following uptake by alveolar macrophages, the pathogen replicates in an acidic phagolysosomal vacuole, the C. burnetii-containing vacuole (CCV). Effector proteins translocated into the host cell by the type IV secretion system (T4SS) are important for the establishment of the CCV. Here we focus on the effector protein AnkF and its role in establishing the CCV. The C. burnetii AnkF knock out mutant invades host cells as efficiently as wild-type C. burnetii, but this mutant is hampered in its ability to replicate intracellularly, indicating that AnkF might be involved in the development of a replicative CCV. To unravel the underlying reason(s), we searched for AnkF interactors in host cells and identified vimentin through a yeast two-hybrid approach. While AnkF does not alter vimentin expression at the mRNA or protein levels, the presence of AnkF results in structural reorganization and vesicular co-localization with recombinant vimentin. Ectopically expressed AnkF partially accumulates around the established CCV and endogenous vimentin is recruited to the CCV in a time-dependent manner, suggesting that AnkF might attract vimentin to the CCV. However, knocking-down endogenous vimentin does not affect intracellular replication of C. burnetii. Other cytoskeletal components are recruited to the CCV and might compensate for the lack of vimentin. Taken together, AnkF is essential for the establishment of the replicative CCV, however, its mode of action is still elusive.
Collapse
Affiliation(s)
- Julian Pechstein
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Schulze-Luehrmann
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stephanie Bisle
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franck Cantet
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Montpellier, France
| | - Paul A Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Martha Ölke
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matteo Bonazzi
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Montpellier, France
| | - Christian Berens
- Friedrich-Loeffler-Institut, Institut für Molekulare Pathogenese, Jena, Germany
| | - Anja Lührmann
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
35
|
Thomas DR, Newton P, Lau N, Newton HJ. Interfering with Autophagy: The Opposing Strategies Deployed by Legionella pneumophila and Coxiella burnetii Effector Proteins. Front Cell Infect Microbiol 2020; 10:599762. [PMID: 33251162 PMCID: PMC7676224 DOI: 10.3389/fcimb.2020.599762] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a fundamental and highly conserved eukaryotic process, responsible for maintaining cellular homeostasis and releasing nutrients during times of starvation. An increasingly important function of autophagy is its role in the cell autonomous immune response; a process known as xenophagy. Intracellular pathogens are engulfed by autophagosomes and targeted to lysosomes to eliminate the threat to the host cell. To counteract this, many intracellular bacterial pathogens have developed unique approaches to overcome, evade, or co-opt host autophagy to facilitate a successful infection. The intracellular bacteria Legionella pneumophila and Coxiella burnetii are able to avoid destruction by the cell, causing Legionnaires' disease and Q fever, respectively. Despite being related and employing homologous Dot/Icm type 4 secretion systems (T4SS) to translocate effector proteins into the host cell, these pathogens have developed their own unique intracellular niches. L. pneumophila evades the host endocytic pathway and instead forms an ER-derived vacuole, while C. burnetii requires delivery to mature, acidified endosomes which it remodels into a large, replicative vacuole. Throughout infection, L. pneumophila effectors act at multiple points to inhibit recognition by xenophagy receptors and disrupt host autophagy, ensuring it avoids fusion with destructive lysosomes. In contrast, C. burnetii employs its effector cohort to control autophagy, hypothesized to facilitate the delivery of nutrients and membrane to support the growing vacuole and replicating bacteria. In this review we explore the effector proteins that these two organisms utilize to modulate the host autophagy pathway in order to survive and replicate. By better understanding how these pathogens manipulate this highly conserved pathway, we can not only develop better treatments for these important human diseases, but also better understand and control autophagy in the context of human health and disease.
Collapse
Affiliation(s)
| | | | | | - Hayley J. Newton
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|