1
|
Heling LWHJ, Sheikhhassani V, Ng J, van Vliet M, Jiménez‐Panizo A, Alegre‐Martí A, Woodard J, van Roon‐Mom W, McEwan IJ, Estébanez‐Perpiñá E, Mashaghi A. Polyglutamine expansion induced dynamic misfolding of androgen receptor. Protein Sci 2025; 34:e70154. [PMID: 40371721 PMCID: PMC12079482 DOI: 10.1002/pro.70154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/01/2025] [Accepted: 04/15/2025] [Indexed: 05/16/2025]
Abstract
Spinal bulbar muscular atrophy (SBMA) is caused by a polyglutamine expansion (pQe) in the N-terminal transactivation domain of the human androgen receptor (AR-NTD), resulting in a combination of toxic gain- and loss-of-function mechanisms. The structural basis of these processes has not been resolved due to the disordered nature of the NTD, which hinders experimental analyses of its detailed conformations. Here, using extensive computational modeling, we show that AR-NTD forms dynamic compact regions, which upon pQe re-organize dynamically, mediated partly by direct pQ interaction with the Androgen N-Terminal Signature (ANTS) motif. The altered dynamics of the NTD result in a perturbation of interdomain interactions, with potential implications for the binding of the receptor protein to its response element. Oligomeric aggregation of the dynamic misfolded NTD exposes pQe, but blocks tau-5 and the FQNLF motif, which could lead to aberrant receptor transcriptional activity. These observations suggest a structural mechanism for AR dysfunction in SBMA.
Collapse
Affiliation(s)
- Laurens W. H. J. Heling
- Medical Systems Biophysics and Bioengineering, Division of Systems Pharmacology and PharmacyLeiden Academic Centre for Drug Research, Leiden UniversityLeidenThe Netherlands
- Laboratory for Interdisciplinary Medical InnovationsCentre for Interdisciplinary Genome Research, Leiden UniversityLeidenThe Netherlands
| | - Vahid Sheikhhassani
- Medical Systems Biophysics and Bioengineering, Division of Systems Pharmacology and PharmacyLeiden Academic Centre for Drug Research, Leiden UniversityLeidenThe Netherlands
- Laboratory for Interdisciplinary Medical InnovationsCentre for Interdisciplinary Genome Research, Leiden UniversityLeidenThe Netherlands
| | - Julian Ng
- Medical Systems Biophysics and Bioengineering, Division of Systems Pharmacology and PharmacyLeiden Academic Centre for Drug Research, Leiden UniversityLeidenThe Netherlands
- Laboratory for Interdisciplinary Medical InnovationsCentre for Interdisciplinary Genome Research, Leiden UniversityLeidenThe Netherlands
| | - Morris van Vliet
- Medical Systems Biophysics and Bioengineering, Division of Systems Pharmacology and PharmacyLeiden Academic Centre for Drug Research, Leiden UniversityLeidenThe Netherlands
| | - Alba Jiménez‐Panizo
- Department of Biochemistry and Molecular BiomedicineInstitute of Biomedicine (IBUB) of the University of Barcelona (UB)BarcelonaSpain
| | - Andrea Alegre‐Martí
- Department of Biochemistry and Molecular BiomedicineInstitute of Biomedicine (IBUB) of the University of Barcelona (UB)BarcelonaSpain
| | - Jaie Woodard
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Willeke van Roon‐Mom
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Iain J. McEwan
- Institute of Medical Sciences, School of Medicine, Medical Sciences and NutritionUniversity of AberdeenAberdeenScotland
| | - Eva Estébanez‐Perpiñá
- Department of Biochemistry and Molecular BiomedicineInstitute of Biomedicine (IBUB) of the University of Barcelona (UB)BarcelonaSpain
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering, Division of Systems Pharmacology and PharmacyLeiden Academic Centre for Drug Research, Leiden UniversityLeidenThe Netherlands
- Laboratory for Interdisciplinary Medical InnovationsCentre for Interdisciplinary Genome Research, Leiden UniversityLeidenThe Netherlands
| |
Collapse
|
2
|
Abdolahpour S, Abdolahi N, Aghaei M, Azadeh H, Farazmandfar T. The Effect of Estradiol and Testosterone Levels Alone or in Combination with Their Receptors in Predicting the Severity of Systemic Lupus Erythematosus: A Cohort Study. IRANIAN JOURNAL OF MEDICAL SCIENCES 2025; 50:69-76. [PMID: 40026298 PMCID: PMC11870857 DOI: 10.30476/ijms.2024.101457.3414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 03/05/2025]
Abstract
Background Developing a practical method to predict active systemic lupus erythematosus (SLE) in patients with inactive/mild status at the onset of the disease could lead to appropriate treatment that ultimately prevents future relapses. The development of SLE is influenced by steroid hormones and probably the receptors of these hormones. Therefore, we aimed to investigate the predictive effect of the levels of estradiol and testosterone hormones and their receptors on the severity of SLE disease. Methods Serum samples were taken from 59 female patients with inactive SLE in Golestan province in northern Iran. The concentration of estradiol (E2) and testosterone (T) hormones and their receptors, estrogen receptors (ER) and androgen receptors (AR), was measured at the beginning of the study after sampling. After a one-year follow-up (2021 to 2022), the patients were divided into active and inactive SLE groups based on the clinical criteria of the SLE activity index. T test and Mann-Whitney U-test were used to analyze the difference of variables. The correlation was analyzed using Pearson and Spearman tests. Discriminative power was measured, and a cut-off point was suggested. Results There was a significant difference in the average E2+ER/T+AR ratio between active and inactive SLE groups (P<0.001). It was also found that this ratio has a significant correlation with the severity of the disease (r=0.546, P<0.001). Conclusion Despite the normal concentration of each steroid hormone and its receptors, the E2+ER/T+AR ratio may be a good indicator of the development of active SLE.
Collapse
Affiliation(s)
- Samaneh Abdolahpour
- Golestan Rheumatology Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nafiseh Abdolahi
- Golestan Rheumatology Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrdad Aghaei
- Golestan Rheumatology Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hossein Azadeh
- Department of Internal Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Touraj Farazmandfar
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
3
|
Rastinejad F. Allosteric communications between domains of nuclear receptors. Steroids 2025; 214:109551. [PMID: 39653158 DOI: 10.1016/j.steroids.2024.109551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
Nuclear receptors (NRs) regulate gene expression in response to hormonal signals, influencing diverse physiological processes and diseases. Structural and dynamics investigations based on X-ray crystallography, cryo-electron microscopy (cryo-EM), hydrogen-deuterium exchange mass spectrometry, and molecular dynamics simulations, have significantly deepened our understanding of the conformational states, dynamics, and interdomain interactions of multi-domain NRs. Structural studies have examined heterodimeric complexes such as peroxisome proliferator-activated receptor gamma (PPAR-γ) with retinoid X receptor alpha (RXRα), liver X receptor beta (LXRβ) with RXRα, and retinoic acid receptor beta (RARβ) with RXRα, as well as homodimers like hepatic nuclear factor 4 alpha (HNF-4α), androgen receptor (AR), and glucocorticoid receptor (GR). These investigations highlight critical allosteric communication between ligand-binding domains (LBDs) and DNA-binding domains (DBDs), emphasizing the roles of flexible hinge regions and N-terminal segments in adapting to diverse DNA configurations. Both non-steroid receptor heterodimers and homodimers exhibit robust interdomain connections that mediate allosteric signaling. For instance, AR demonstrates three distinct conformational states that underscore its dynamic behavior, while GR exhibits unique ligand-dependent domain interactions shaping receptor signaling. The collective findings so far suggest a conserved mechanism of cross-domain communication across the NR family. Supported by complementary biophysical, spectroscopic, mutagenesis, and computational studies, this body of research has elucidated the nature of domain-domain interfaces and their pivotal roles in regulating the transcriptional activity of steroid and non-steroid receptors.
Collapse
Affiliation(s)
- Fraydoon Rastinejad
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| |
Collapse
|
4
|
Johnson MJ, Wasmuth EV. Structural perspectives on the androgen receptor, the elusive shape-shifter. Steroids 2024; 211:109501. [PMID: 39208923 DOI: 10.1016/j.steroids.2024.109501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The androgen receptor (AR) is a type I nuclear receptor and master transcription factor responsible for development and maintenance of male secondary sex characteristics. Aberrant AR activity is associated with numerous diseases, including prostate cancer, androgen insensitivity syndrome, spinal and bulbar muscular atrophy, and androgenic alopecia. Recent studies have shown that AR adopts numerous conformations that can modulate its ability to bind and transcribe its target DNA substrates, a feature that can be hijacked in the context of cancer. Here, we summarize a series of structural observations describing how this elusive shape-shifter binds to multiple partners, including self-interactions, DNA, and steroid and non-steroidal ligands. We present evidence that AR's pervasive structural plasticity confers an ability to broadly bind and transcribe numerous ligands in the normal and disease state, and explain the structural basis for adaptive resistance mutations to antiandrogen treatment. These evolutionary features are integral to receptor function, and are commonly lost in androgen insensitivity syndrome, or reinforced in cancer.
Collapse
Affiliation(s)
- Madisyn J Johnson
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Elizabeth V Wasmuth
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
5
|
Hiltunen J, Helminen L, Paakinaho V. Glucocorticoid receptor action in prostate cancer: the role of transcription factor crosstalk. Front Endocrinol (Lausanne) 2024; 15:1437179. [PMID: 39027480 PMCID: PMC11254642 DOI: 10.3389/fendo.2024.1437179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Prostate cancer is one of the most prevalent malignancies and is primarily driven by aberrant androgen receptor (AR) signaling. While AR-targeted therapies form the cornerstone of prostate cancer treatment, they often inadvertently activate compensatory pathways, leading to therapy resistance. This resistance is frequently mediated through changes in transcription factor (TF) crosstalk, reshaping gene regulatory programs and ultimately weakening treatment efficacy. Consequently, investigating TF interactions has become crucial for understanding the mechanisms driving therapy-resistant cancers. Recent evidence has highlighted the crosstalk between the glucocorticoid receptor (GR) and AR, demonstrating that GR can induce prostate cancer therapy resistance by replacing the inactivated AR, thereby becoming a driver of the disease. In addition to this oncogenic role, GR has also been shown to act as a tumor suppressor in prostate cancer. Owing to this dual role and the widespread use of glucocorticoids as adjuvant therapy, it is essential to understand GR's actions across different stages of prostate cancer development. In this review, we explore the current knowledge of GR in prostate cancer, with a specific focus on its crosstalk with other TFs. GR can directly and indirectly interact with a variety of TFs, and these interactions vary significantly depending on the type of prostate cancer cells. By highlighting these crosstalk interactions, we aim to provide insights that can guide the research and development of new GR-targeted therapies to mitigate its harmful effects in prostate cancer.
Collapse
Affiliation(s)
| | | | - Ville Paakinaho
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
6
|
Lee YHA, Chan JSK, Hui JMH, Tang P, Liu K, Dee EC, Ng K, Tse G, Ng CF. Statin use and mortality risk in Asian patients with prostate cancer receiving androgen deprivation therapy: A population-based cohort study. Cancer Med 2024; 13:e6826. [PMID: 38140773 PMCID: PMC10807587 DOI: 10.1002/cam4.6826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/31/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND This study aimed to examine the associations between the use of statins concurrent with androgen deprivation therapy (ADT) and the risks of mortality in Asian patients diagnosed with prostate cancer (PCa). METHODS Adult patients (≥18 years old) diagnosed with PCa who were receiving any form of ADT and were being treated at public hospitals in Hong Kong from December 1999 to March 2021 were retrospectively identified, with follow-up conducted until September 2021. Patients who had received medical castration for <180 days without subsequent bilateral orchidectomy, those who had used statins concurrently with ADT for <180 days, and those with missing baseline total cholesterol levels were excluded. Statin users were defined as individuals who had used statins for ≥180 days concurrent with ADT, while non-users were those who had not used any statins. PCa-related mortality was the primary outcome, while all-cause mortality served as the secondary outcome. Inverse probability treatment weighting was employed to balance the covariates. RESULTS A total of 4920 patients were included, consisting of 2578 statin users and 2342 non-users (mean age 76.1 ± 8.2 years). Over a mean follow-up period of 4.2 ± 3.3 years, it was observed that statin users had significantly lower risks of both PCa-related mortality (weighted hazard ratio [wHR] 0.56 [95% confidence interval (CI) 0.48, 0.65], p < 0.001) and all-cause mortality (wHR 0.57 [95% CI 0.51, 0.63], p < 0.001), regardless of the type of ADT used. Notably, these associations were more pronounced among patients with less advanced PCa, as indicated by the absence of androgen receptor antagonist or chemotherapy usage (p value for interaction <0.001 for both outcomes). CONCLUSION(S) The use of statins concurrent with ADT was associated with reduced mortality risks among Asian patients with PCa. These findings suggest the need for additional research to explore the potential role of statins in the treatment of PCa patients.
Collapse
Affiliation(s)
- Yan Hiu Athena Lee
- Division of Urology, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Cardio-Oncology Research Unit, Cardiovascular Analytics Group, PowerHealth Limited, Hong Kong, China
| | - Jeffrey Shi Kai Chan
- Cardio-Oncology Research Unit, Cardiovascular Analytics Group, PowerHealth Limited, Hong Kong, China
- Quest Genomics Limited, London, United Kingdom
| | - Jeremy Man Ho Hui
- Cardio-Oncology Research Unit, Cardiovascular Analytics Group, PowerHealth Limited, Hong Kong, China
- Quest Genomics Limited, London, United Kingdom
| | - Pias Tang
- Cardio-Oncology Research Unit, Cardiovascular Analytics Group, PowerHealth Limited, Hong Kong, China
- Quest Genomics Limited, London, United Kingdom
| | - Kang Liu
- Division of Urology, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Edward Christopher Dee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kenrick Ng
- Department of Medical Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Gary Tse
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
- Kent and Medway Medical School, Canterbury, United Kingdom
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China
| | - Chi Fai Ng
- Division of Urology, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- SH Ho Urology Centre, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
7
|
Greulich BM, Rajendran S, Downing NF, Nicholas TR, Hollenhorst PC. A complex with poly(A)-binding protein and EWS facilitates the transcriptional function of oncogenic ETS transcription factors in prostate cells. J Biol Chem 2023; 299:105453. [PMID: 37956771 PMCID: PMC10704431 DOI: 10.1016/j.jbc.2023.105453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The ETS transcription factor ERG is aberrantly expressed in approximately 50% of prostate tumors due to chromosomal rearrangements such as TMPRSS2/ERG. The ability of ERG to drive oncogenesis in prostate epithelial cells requires interaction with distinct coactivators, such as the RNA-binding protein EWS. Here, we find that ERG has both direct and indirect interactions with EWS, and the indirect interaction is mediated by the poly-A RNA-binding protein PABPC1. PABPC1 directly bound both ERG and EWS. ERG expression in prostate cells promoted PABPC1 localization to the nucleus and recruited PABPC1 to ERG/EWS-binding sites in the genome. Knockdown of PABPC1 in prostate cells abrogated ERG-mediated phenotypes and decreased the ability of ERG to activate transcription. These findings define a complex including ERG and the RNA-binding proteins EWS and PABPC1 that represents a potential therapeutic target for ERG-positive prostate cancer and identify a novel nuclear role for PABPC1.
Collapse
Affiliation(s)
| | - Saranya Rajendran
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Nicholas F Downing
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Taylor R Nicholas
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Peter C Hollenhorst
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana, USA.
| |
Collapse
|
8
|
Van-Duyne G, Blair IA, Sprenger C, Moiseenkova-Bell V, Plymate S, Penning TM. The androgen receptor. VITAMINS AND HORMONES 2023; 123:439-481. [PMID: 37717994 DOI: 10.1016/bs.vh.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The Androgen Receptor (AR) is a ligand (androgen) activated transcription factor and a member of the nuclear receptor (NR) superfamily. It is required for male sex hormone function. AR-FL (full-length) has the domain structure of NRs, an N-terminal domain (NTD) required for transactivation, a DNA-binding domain (DBD), a nuclear localization signal (NLS) and a ligand-binding domain (LBD). Paradoxes exist in that endogenous ligands testosterone (T) and 5α-dihydrotestosterone (DHT) have differential effects on male sexual development while binding to the same receptor and transcriptional specificity is achieved even though the androgen response elements (AREs) are identical to those seen for the progesterone, glucocorticoid and mineralocorticoid receptors. A high resolution 3-dimensional structure of AR-FL by either cryo-EM or X-ray crystallography has remained elusive largely due to the intrinsic disorder of the NTD. AR function is regulated by post-translational modification leading to a large number of proteoforms. The interaction of these proteoforms in multiprotein complexes with co-activators and co-repressors driven by interdomain coupling mediates the AR transcriptional output. The AR is a drug target for selective androgen receptor modulators (SARMS) that either have anabolic or androgenic effects. Protstate cancer is treated with androgen deprivation therapy or by the use of AR antagonists that bind to the LBD. Drug resistance occurs due to adaptive AR upregulation and the appearance of splice variants that lack the LBD and become constitutively active. Bipolar T treatment and NTD-antagonists could surmount these resistance mechanisms, respectively. These recent advances in AR signaling are described.
Collapse
Affiliation(s)
- Greg Van-Duyne
- Department of Biophysics & Biochemistry, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - Ian A Blair
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - Cynthia Sprenger
- Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Washington and GRECC, Seattle, WA, United States
| | - Vera Moiseenkova-Bell
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - Stephen Plymate
- Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Washington and GRECC, Seattle, WA, United States
| | - Trevor M Penning
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
9
|
Beinsteiner B, Billas IML, Moras D. Structural insights into the HNF4 biology. Front Endocrinol (Lausanne) 2023; 14:1197063. [PMID: 37404310 PMCID: PMC10315846 DOI: 10.3389/fendo.2023.1197063] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Hepatocyte Nuclear Factor 4 (HNF4) is a transcription factor (TF) belonging to the nuclear receptor (NR) family that is expressed in liver, kidney, intestine and pancreas. It is a master regulator of liver-specific gene expression, in particular those genes involved in lipid transport and glucose metabolism and is crucial for the cellular differentiation during development. Dysregulation of HNF4 is linked to human diseases, such as type I diabetes (MODY1) and hemophilia. Here, we review the structures of the isolated HNF4 DNA binding domain (DBD) and ligand binding domain (LBD) and that of the multidomain receptor and compare them with the structures of other NRs. We will further discuss the biology of the HNF4α receptors from a structural perspective, in particular the effect of pathological mutations and of functionally critical post-translational modifications on the structure-function of the receptor.
Collapse
Affiliation(s)
- Brice Beinsteiner
- Laboratory IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Isabelle M. L. Billas
- Laboratory IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Dino Moras
- Laboratory IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| |
Collapse
|
10
|
Li D, Zhan Y, Wang N, Tang F, Lee CJ, Bayshtok G, Moore AR, Wong EW, Pachai MR, Xie Y, Sher J, Zhao JL, Khudoynazarova M, Gopalan A, Chan J, Khurana E, Shepherd P, Navone NM, Chi P, Chen Y. ETV4 mediates dosage-dependent prostate tumor initiation and cooperates with p53 loss to generate prostate cancer. SCIENCE ADVANCES 2023; 9:eadc9446. [PMID: 37018402 PMCID: PMC10075989 DOI: 10.1126/sciadv.adc9446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/07/2023] [Indexed: 05/20/2023]
Abstract
The mechanisms underlying ETS-driven prostate cancer initiation and progression remain poorly understood due to a lack of model systems that recapitulate this phenotype. We generated a genetically engineered mouse with prostate-specific expression of the ETS factor, ETV4, at lower and higher protein dosage through mutation of its degron. Lower-level expression of ETV4 caused mild luminal cell expansion without histologic abnormalities, and higher-level expression of stabilized ETV4 caused prostatic intraepithelial neoplasia (mPIN) with 100% penetrance within 1 week. Tumor progression was limited by p53-mediated senescence and Trp53 deletion cooperated with stabilized ETV4. The neoplastic cells expressed differentiation markers such as Nkx3.1 recapitulating luminal gene expression features of untreated human prostate cancer. Single-cell and bulk RNA sequencing showed that stabilized ETV4 induced a previously unidentified luminal-derived expression cluster with signatures of cell cycle, senescence, and epithelial-to-mesenchymal transition. These data suggest that ETS overexpression alone, at sufficient dosage, can initiate prostate neoplasia.
Collapse
Affiliation(s)
- Dan Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yu Zhan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Naitao Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fanying Tang
- Sandra and Edward Meyer Cancer Center and Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Cindy J. Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabriella Bayshtok
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Amanda R. Moore
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elissa W. P. Wong
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mohini R. Pachai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yuanyuan Xie
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jessica Sher
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jimmy L. Zhao
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Makhzuna Khudoynazarova
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anuradha Gopalan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joseph Chan
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ekta Khurana
- Sandra and Edward Meyer Cancer Center and Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10021, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Peter Shepherd
- Genitourinary Medical Oncology, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Nora M. Navone
- Genitourinary Medical Oncology, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
11
|
Wang Y, Huang Z, Sun M, Huang W, Xia L. ETS transcription factors: Multifaceted players from cancer progression to tumor immunity. Biochim Biophys Acta Rev Cancer 2023; 1878:188872. [PMID: 36841365 DOI: 10.1016/j.bbcan.2023.188872] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 02/26/2023]
Abstract
The E26 transformation specific (ETS) family comprises 28 transcription factors, the majority of which are involved in tumor initiation and development. Serving as a group of functionally heterogeneous gene regulators, ETS factors possess a structurally conserved DNA-binding domain. As one of the most prominent families of transcription factors that control diverse cellular functions, ETS activation is modulated by multiple intracellular signaling pathways and post-translational modifications. Disturbances in ETS activity often lead to abnormal changes in oncogenicity, including cancer cell survival, growth, proliferation, metastasis, genetic instability, cell metabolism, and tumor immunity. This review systematically addresses the basics and advances in studying ETS factors, from their tumor relevance to clinical translational utility, with a particular focus on elucidating the role of ETS family in tumor immunity, aiming to decipher the vital role and clinical potential of regulation of ETS factors in the cancer field.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhao Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
12
|
Manzar N, Ganguly P, Khan UK, Ateeq B. Transcription networks rewire gene repertoire to coordinate cellular reprograming in prostate cancer. Semin Cancer Biol 2023; 89:76-91. [PMID: 36702449 DOI: 10.1016/j.semcancer.2023.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
Transcription factors (TFs) represent the most commonly deregulated DNA-binding class of proteins associated with multiple human cancers. They can act as transcriptional activators or repressors that rewire the cistrome, resulting in cellular reprogramming during cancer progression. Deregulation of TFs is associated with the onset and maintenance of various cancer types including prostate cancer. An emerging subset of TFs has been implicated in the regulation of multiple cancer hallmarks during tumorigenesis. Here, we discuss the role of key TFs which modulate transcriptional cicuitries involved in the development and progression of prostate cancer. We further highlight the role of TFs associated with key cancer hallmarks, including, chromatin remodeling, genome instability, DNA repair, invasion, and metastasis. We also discuss the pluripotent function of TFs in conferring lineage plasticity, that aids in disease progression to neuroendocrine prostate cancer. At the end, we summarize the current understanding and approaches employed for the therapeutic targeting of TFs and their cofactors in the clinical setups to prevent disease progression.
Collapse
Affiliation(s)
- Nishat Manzar
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Promit Ganguly
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Umar Khalid Khan
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Bushra Ateeq
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
13
|
Stopsack KH, Su XA, Vaselkiv JB, Graff RE, Ebot EM, Pettersson A, Lis RT, Fiorentino M, Loda M, Penney KL, Lotan TL, Mucci LA. Transcriptomes of Prostate Cancer with TMPRSS2:ERG and Other ETS Fusions. Mol Cancer Res 2023; 21:14-23. [PMID: 36125519 PMCID: PMC9812892 DOI: 10.1158/1541-7786.mcr-22-0446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/30/2022] [Accepted: 09/15/2022] [Indexed: 02/03/2023]
Abstract
The most common somatic event in primary prostate cancer is a fusion between the androgen-related TMPRSS2 gene and the ERG oncogene. Tumors with these fusions, which occur early in carcinogenesis, have a distinctive etiology. A smaller subset of other tumors harbor fusions between TMPRSS2 and members of the ETS transcription factor family other than ERG. To assess the genomic similarity of tumors with non-ERG ETS fusions and those with fusions involving ERG, this study derived a transcriptomic signature of non-ERG ETS fusions and assessed this signature and ERG-related gene expression in 1,050 men with primary prostate cancer from three independent population-based and hospital-based studies. Although non-ERG ETS fusions involving ETV1, ETV4, ETV5, or FLI1 were individually rare, they jointly accounted for one in seven prostate tumors. Genes differentially regulated between non-ERG ETS tumors and tumors without ETS fusions showed similar differential expression when ERG tumors and tumors without ETS fusions were compared (differences explained: R2 = 69-77%), including ETS-related androgen receptor (AR) target genes. Differences appeared to result from similarities among ETS tumors rather than similarities among non-ETS tumors. Gene sets associated with ERG fusions were consistent with gene sets associated with non-ERG ETS fusions, including fatty acid and amino acid metabolism, an observation that was robust across cohorts. IMPLICATIONS Considering ETS fusions jointly may be useful for etiologic studies on prostate cancer, given that the transcriptome is profoundly impacted by ERG and non-ERG ETS fusions in a largely similar fashion, most notably genes regulating metabolic pathways.
Collapse
Affiliation(s)
- Konrad H. Stopsack
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Xiaofeng A. Su
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
| | - J. Bailey Vaselkiv
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Rebecca E. Graff
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA., Division of Research, Kaiser Permanente Northern California, Oakland, CA, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Ericka M. Ebot
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Andreas Pettersson
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Rosina T. Lis
- Department of Pathology and Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
| | - Michelangelo Fiorentino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, Pathology Unit, Addarii Institute, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Massimo Loda
- Department of Pathology, Weill Cornell Medical College, New York, NY
| | - Kathryn L. Penney
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Tamara L. Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lorelei A. Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
14
|
Lee YHA, Hui JMH, Chan JSK, Liu K, Dee EC, Ng K, Tang P, Tse G, Ng CF. Metformin use and mortality in Asian, diabetic patients with prostate cancer on androgen deprivation therapy: A population-based study. Prostate 2023; 83:119-127. [PMID: 36178848 PMCID: PMC9742285 DOI: 10.1002/pros.24443] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/24/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND This study aims to examine the associations between metformin use concurrent with androgen deprivation therapy (ADT) and mortality risks in Asian, diabetic patients with prostate cancer (PCa). METHODS This study identified diabetic adults with PCa receiving any ADT attending public hospitals in Hong Kong between December 1999 and March 2021 retrospectively, with follow-up until September 2021. Patients with <6 months of medical castration without subsequent bilateral orchidectomy, <6 months of concurrent metformin use and ADT, or missing baseline HbA1c were excluded. Metformin users had ≥180 days of concurrent metformin use and ADT, while non-users had no concurrent metformin use and ADT or never used metformin. The primary outcome was PCa-related mortality. The secondary outcome was all-cause mortality. The study used inverse probability treatment weighting to balance covariates. RESULTS The analyzed cohort consisted of 1971 patients (1284 metformin users and 687 non-users; mean age 76.2 ± 7.8 years). Over a mean follow-up of 4.1 ± 3.2 years, metformin users had significantly lower risks of PCa-related mortality (weighted hazard ratio [wHR]: 0.49 [95% confidence interval, CI: 0.39-0.61], p < 0.001) and all-cause mortality (wHR 0.53 [0.46-0.61], p < 0.001), independent of diabetic control or status of chronic kidney disease. Such effects appeared stronger in patients with less advanced PCa, which is reflected by the absence of androgen receptor antagonist or chemotherapy use (p value for interaction: 0.017 for PCa-related mortality; 0.048 for all-cause mortality). CONCLUSIONS Metformin use concurrent with ADT was associated with lower risks of mortality in Asian, diabetic patients with PCa.
Collapse
Affiliation(s)
- Yan Hiu Athena Lee
- Diabetes Research Unit, Cardiovascular Analytics Group, Hong Kong, China‐UK CollaborationHong KongChina
- Department of Surgery, Division of Urology, Faculty of MedicineThe Chinese University of Hong KongHong KongChina
| | - Jeremy Man Ho Hui
- Diabetes Research Unit, Cardiovascular Analytics Group, Hong Kong, China‐UK CollaborationHong KongChina
| | - Jeffrey Shi Kai Chan
- Diabetes Research Unit, Cardiovascular Analytics Group, Hong Kong, China‐UK CollaborationHong KongChina
| | - Kang Liu
- Department of Surgery, Division of Urology, Faculty of MedicineThe Chinese University of Hong KongHong KongChina
| | - Edward C. Dee
- Department of Radiation OncologyMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Kenrick Ng
- Department of Medical OncologyUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Pias Tang
- Diabetes Research Unit, Cardiovascular Analytics Group, Hong Kong, China‐UK CollaborationHong KongChina
| | - Gary Tse
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
- Kent and Medway Medical School, CanterburyKentUK
| | - Chi Fai Ng
- Department of Surgery, Division of Urology, Faculty of MedicineThe Chinese University of Hong KongHong KongChina
- SH Ho Urology CentreThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
15
|
Gamallat Y, Bakker A, Khosh Kish E, Choudhry M, Walker S, Aldakheel S, Seyedi S, Huang KC, Ghosh S, Gotto G, Bismar TA. The Association between Cyclin Dependent Kinase 2 Associated Protein 1 (CDK2AP1) and Molecular Subtypes of Lethal Prostate Cancer. Int J Mol Sci 2022; 23:ijms232113326. [PMID: 36362115 PMCID: PMC9658869 DOI: 10.3390/ijms232113326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed types of malignancy and is the second leading cause of cancer-related death in men in developed countries. Cyclin dependent kinase 2 associate protein 1(CDK2AP1) is an epigenetic and cell cycle regulator gene which has been downregulated in several malignancies, but its involvement in PCa has not yet been investigated in a clinical setting. We assessed the prognostic value of CDK2AP1 expression in a cohort of men diagnosed with PCa (n = 275) treated non-surgically by transurethral resection of the prostate (TURP) and studied the relationship between CDK2AP1 expression to various PCa molecular subtypes (ERG, PTEN, p53 and AR) and evaluated the association with clinical outcome. Further, we used bioinformatic tools to analyze the available TCGA PRAD transcriptomic data to explore the underlying mechanism. Our data confirmed increased expression of CDK2AP1 with higher Gleason Grade Group (GG) and metastatic PCa (p <0.0001). High CDK2AP1 expression was associated with worse overall survival (OS) (HR: 1.62, CI: 1.19−2.21, p = 0.002) and cause-specific survival (CSS) (HR: 2.012, CI 1.29−3.13, p = 0.002) using univariate analysis. When compared to each sub-molecular type. High CDK2AP1/PTEN-loss, abnormal AR or p53 expression showed even worse association to poorer OS and CCS and remained significant when adjusted for GG. Our data indicates that CDK2AP1 directly binds to p53 using the Co-Immunoprecipitation (Co-IP) technique, which was validated using molecular docking tools. This suggests that these two proteins have a significant association through several binding features and correlates with our observed clinical data. In conclusion, our results indicated that the CDK2AP1 overexpression is associate with worse OS and CSS when combined with certain PCa molecular subtypes; interaction between p53 stands out as the most prominent candidate which directly interacts with CDK2AP1.
Collapse
Affiliation(s)
- Yaser Gamallat
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute and Tom Baker Cancer Center, Calgary, AB T2N 4N1, Canada
| | - Andrea Bakker
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ealia Khosh Kish
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| | - Muhammad Choudhry
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| | - Simon Walker
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Saood Aldakheel
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sima Seyedi
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| | - Kuo-Cheng Huang
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sunita Ghosh
- Departments of Mathematical and Statistical Sciences and Medical Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | | | - Tarek A. Bismar
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute and Tom Baker Cancer Center, Calgary, AB T2N 4N1, Canada
- Correspondence: ; Tel.: +1-403-943-8430; Fax: +1-403-943-3333
| |
Collapse
|
16
|
Rastinejad F. Retinoic acid receptor structures: the journey from single domains to full-length complex. J Mol Endocrinol 2022; 69:T25-T36. [PMID: 36069789 PMCID: PMC11376212 DOI: 10.1530/jme-22-0113] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/07/2022] [Indexed: 11/08/2022]
Abstract
The retinoic acid receptors (RARα, β, and γ) are multi-domain polypeptides that heterodimerize with retinoid X receptors (RXRα, β, and γ) to form functional transcription factors. Understanding the three-dimensional molecular organization of these nuclear receptors (NRs) began with RAR and RXR DNA-binding domains (DBDs), and were followed with studies on isolated ligand-binding domains (LBDs). The more complete picture emerged in 2017 with the multi-domain crystal structure of RXRα-RARβ on its response element with retinoic acid molecules and coactivator segments on both proteins. The analysis of that structure and its complementary studies have clarified the direct communication pathways within RXR-RAR polypeptides, through which DNA binding, protein-ligand, and protein-protein interactions are integrated for overall functional responses. Understanding the molecular connections in the RXR-RAR complex has benefited from direct observations of the multi-domain structures of RXRα-PPARγ, RXRα-LXRβ, HNF-4α homodimer, and androgen receptor homodimer, each bound to its response element. These comprehensive NR structures show unique quaternary architectures, yet all have DBD-DBD, LBD-LBD, and DBD-LBD domain-domain contacts within them. These convergence zones allow signals from discrete domains of their polypeptides to be propagated and integrated across their entire complex, shaping their overall responses in an allosteric fashion.
Collapse
Affiliation(s)
- Fraydoon Rastinejad
- Nuffield Department of Medicine, University of Oxford, Target Discovery Institute (NDM RB), Oxford, UK
| |
Collapse
|
17
|
Eickhoff N, Bergman AM, Zwart W. Homing in on a Moving Target: Androgen Receptor Cistromic Plasticity in Prostate Cancer. Endocrinology 2022; 163:6705578. [PMID: 36125208 DOI: 10.1210/endocr/bqac153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 11/19/2022]
Abstract
The androgen receptor (AR) is the critical driver in prostate cancer and exerts its function mainly through transcriptional control. Recent advances in clinical studies and cell line models have illustrated that AR chromatin binding features are not static; rather they are highly variable yet reproducibly altered between clinical stages. Extensive genomic analyses of AR chromatin binding features in different disease stages have revealed a high degree of plasticity of AR chromatin interactions in clinical samples. Mechanistically, AR chromatin binding patterns are associated with specific somatic mutations on AR and other permutations, including mutations of AR-interacting proteins. Here we summarize the most recent studies on how the AR cistrome is dynamically altered in prostate cancer models and patient samples, and what implications this has for the identification of therapeutic targets to avoid the emergence of treatment resistance.
Collapse
Affiliation(s)
- Nils Eickhoff
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Andries M Bergman
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
18
|
Shen X, Zhou C, Feng H, Li J, Xia T, Cheng X, Zhao R, Zou D. ETV1 Positively Correlated With Immune Infiltration and Poor Clinical Prognosis in Colorectal Cancer. Front Immunol 2022; 13:939806. [PMID: 35860243 PMCID: PMC9291282 DOI: 10.3389/fimmu.2022.939806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveNumerous studies recently suggested that the immune microenvironment could influence the development of colorectal cancer (CRC). These findings implied that the infiltration of immune cells could be a promising prognostic biomarker for CRC.MethodsFurthermore, the Oncomine database and R2 platform analysis were applied in our research to validate CRC clinical prognosis via expression levels of polyoma enhancer activator 3 (PEA3) members. We explored the correlation of ETV1, ETV4, and ETV5 with tumor-infiltrating immune cells (TIICs) in CRC tumor microenvironments via the Tumor Immune Estimation Resource (TIMER) and Gene Expression Profiling Interactive Analysis (GEPIA). Immunohistochemistry (IHC) was used to validate our CRC clinical data.ResultsOur findings indicated that the upregulation of PEA3 members including ETV1 and ETV5 was positively associated with poor prognosis in CRC patients. Meanwhile, ETV1 and ETV5 may play significant roles in the development progress of CRC. Furthermore, ETV1 tends to be associated with immune infiltration of CRC, especially with cancer-associated fibroblasts and M2 macrophages.ConclusionThese findings revealed that ETV1 and ETV5 played significant roles in the development of CRC. Moreover, ETV1 was significantly associated with the infiltration of cancer-associated fibroblasts and M2 macrophages in CRC. Targeting ETV1 can be a potential auspicious approach for CRC treatment.
Collapse
Affiliation(s)
- Xiaonan Shen
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunhua Zhou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoran Feng
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialu Li
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianxue Xia
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xi Cheng
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xi Cheng, ; Ren Zhao, ; Duowu Zou,
| | - Ren Zhao
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xi Cheng, ; Ren Zhao, ; Duowu Zou,
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xi Cheng, ; Ren Zhao, ; Duowu Zou,
| |
Collapse
|
19
|
Nevedomskaya E, Haendler B. From Omics to Multi-Omics Approaches for In-Depth Analysis of the Molecular Mechanisms of Prostate Cancer. Int J Mol Sci 2022; 23:6281. [PMID: 35682963 PMCID: PMC9181488 DOI: 10.3390/ijms23116281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer arises following alterations at different cellular levels, including genetic and epigenetic modifications, transcription and translation dysregulation, as well as metabolic variations. High-throughput omics technologies that allow one to identify and quantify processes involved in these changes are now available and have been instrumental in generating a wealth of steadily increasing data from patient tumors, liquid biopsies, and from tumor models. Extensive investigation and integration of these data have led to new biological insights into the origin and development of multiple cancer types and helped to unravel the molecular networks underlying this complex pathology. The comprehensive and quantitative analysis of a molecule class in a biological sample is named omics and large-scale omics studies addressing different prostate cancer stages have been performed in recent years. Prostate tumors represent the second leading cancer type and a prevalent cause of cancer death in men worldwide. It is a very heterogenous disease so that evaluating inter- and intra-tumor differences will be essential for a precise insight into disease development and plasticity, but also for the development of personalized therapies. There is ample evidence for the key role of the androgen receptor, a steroid hormone-activated transcription factor, in driving early and late stages of the disease, and this led to the development and approval of drugs addressing diverse targets along this pathway. Early genomic and transcriptomic studies have allowed one to determine the genes involved in prostate cancer and regulated by androgen signaling or other tumor-relevant signaling pathways. More recently, they have been supplemented by epigenomic, cistromic, proteomic and metabolomic analyses, thus, increasing our knowledge on the intricate mechanisms involved, the various levels of regulation and their interplay. The comprehensive investigation of these omics approaches and their integration into multi-omics analyses have led to a much deeper understanding of the molecular pathways involved in prostate cancer progression, and in response and resistance to therapies. This brings the hope that novel vulnerabilities will be identified, that existing therapies will be more beneficial by targeting the patient population likely to respond best, and that bespoke treatments with increased efficacy will be available soon.
Collapse
Affiliation(s)
| | - Bernard Haendler
- Research and Early Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany;
| |
Collapse
|
20
|
Wasmuth EV, Broeck AV, LaClair JR, Hoover EA, Lawrence KE, Paknejad N, Pappas K, Matthies D, Wang B, Feng W, Watson PA, Zinder JC, Karthaus WR, de la Cruz MJ, Hite RK, Manova-Todorova K, Yu Z, Weintraub ST, Klinge S, Sawyers CL. Allosteric interactions prime androgen receptor dimerization and activation. Mol Cell 2022; 82:2021-2031.e5. [PMID: 35447082 PMCID: PMC9177810 DOI: 10.1016/j.molcel.2022.03.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/15/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022]
Abstract
The androgen receptor (AR) is a nuclear receptor that governs gene expression programs required for prostate development and male phenotype maintenance. Advanced prostate cancers display AR hyperactivation and transcriptome expansion, in part, through AR amplification and interaction with oncoprotein cofactors. Despite its biological importance, how AR domains and cofactors cooperate to bind DNA has remained elusive. Using single-particle cryo-electron microscopy, we isolated three conformations of AR bound to DNA, showing that AR forms a non-obligate dimer, with the buried dimer interface utilized by ancestral steroid receptors repurposed to facilitate cooperative DNA binding. We identify novel allosteric surfaces which are compromised in androgen insensitivity syndrome and reinforced by AR's oncoprotein cofactor, ERG, and by DNA-binding motifs. Finally, we present evidence that this plastic dimer interface may have been adopted for transactivation at the expense of DNA binding. Our work highlights how fine-tuning AR's cooperative interactions translate to consequences in development and disease.
Collapse
Affiliation(s)
- Elizabeth V Wasmuth
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY 10065, USA.
| | - Arnaud Vanden Broeck
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Justin R LaClair
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elizabeth A Hoover
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kayla E Lawrence
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Navid Paknejad
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kyrie Pappas
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Doreen Matthies
- Cryo-Electron Microscopy Facility, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Biran Wang
- Molecular Cytology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Weiran Feng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Philip A Watson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John C Zinder
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Wouter R Karthaus
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - M Jason de la Cruz
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Zhiheng Yu
- Cryo-Electron Microscopy Facility, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Sebastian Klinge
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
21
|
Sheikhhassani V, Scalvini B, Ng J, Heling LWHJ, Ayache Y, Evers TMJ, Estébanez‐Perpiñá E, McEwan IJ, Mashaghi A. Topological dynamics of an intrinsically disordered N‐terminal domain of the human androgen receptor. Protein Sci 2022; 31:e4334. [PMID: 35634773 PMCID: PMC9134807 DOI: 10.1002/pro.4334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 12/28/2022]
Abstract
Human androgen receptor contains a large N‐terminal domain (AR‐NTD) that is highly dynamic and this poses a major challenge for experimental and computational analysis to decipher its conformation. Misfolding of the AR‐NTD is implicated in prostate cancer and Kennedy's disease, yet our knowledge of its structure is limited to primary sequence information of the chain and a few functionally important secondary structure motifs. Here, we employed an innovative combination of molecular dynamics simulations and circuit topology (CT) analysis to identify the tertiary structure of AR‐NTD. We found that the AR‐NTD adopts highly dynamic loopy conformations with two identifiable regions with distinct topological make‐up and dynamics. This consists of a N‐terminal region (NR, residues 1–224) and a C‐terminal region (CR, residues 225–538), which carries a dense core. Topological mapping of the dynamics reveals a traceable time‐scale dependent topological evolution. NR adopts different positioning with respect to the CR and forms a cleft that can partly enclose the hormone‐bound ligand‐binding domain (LBD) of the androgen receptor. Furthermore, our data suggest a model in which dynamic NR and CR compete for binding to the DNA‐binding domain of the receptor, thereby regulating the accessibility of its DNA‐binding site. Our approach allowed for the identification of a previously unknown regulatory binding site within the CR core, revealing the structural mechanisms of action of AR inhibitor EPI‐001, and paving the way for other drug discovery applications.
Collapse
Affiliation(s)
- Vahid Sheikhhassani
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science Leiden University Leiden The Netherlands
- Centre for Interdisciplinary Genome Research, Faculty of Science Leiden University Leiden The Netherlands
| | - Barbara Scalvini
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science Leiden University Leiden The Netherlands
- Centre for Interdisciplinary Genome Research, Faculty of Science Leiden University Leiden The Netherlands
| | - Julian Ng
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science Leiden University Leiden The Netherlands
- Centre for Interdisciplinary Genome Research, Faculty of Science Leiden University Leiden The Netherlands
| | - Laurens W. H. J. Heling
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science Leiden University Leiden The Netherlands
- Centre for Interdisciplinary Genome Research, Faculty of Science Leiden University Leiden The Netherlands
| | - Yosri Ayache
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science Leiden University Leiden The Netherlands
- Centre for Interdisciplinary Genome Research, Faculty of Science Leiden University Leiden The Netherlands
| | - Tom M. J. Evers
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science Leiden University Leiden The Netherlands
- Centre for Interdisciplinary Genome Research, Faculty of Science Leiden University Leiden The Netherlands
| | - Eva Estébanez‐Perpiñá
- Department of Biochemistry and Molecular Biomedicine Institute of Biomedicine (IBUB) of the University of Barcelona (UB) Barcelona Spain
| | - Iain J. McEwan
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen Scotland UK
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science Leiden University Leiden The Netherlands
- Centre for Interdisciplinary Genome Research, Faculty of Science Leiden University Leiden The Netherlands
| |
Collapse
|
22
|
Khosh Kish E, Choudhry M, Gamallat Y, Buharideen SM, D D, Bismar TA. The Expression of Proto-Oncogene ETS-Related Gene ( ERG) Plays a Central Role in the Oncogenic Mechanism Involved in the Development and Progression of Prostate Cancer. Int J Mol Sci 2022; 23:ijms23094772. [PMID: 35563163 PMCID: PMC9105369 DOI: 10.3390/ijms23094772] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
The ETS-related gene (ERG) is proto-oncogene that is classified as a member of the ETS transcription factor family, which has been found to be consistently overexpressed in about half of the patients with clinically significant prostate cancer (PCa). The overexpression of ERG can mostly be attributed to the fusion of the ERG and transmembrane serine protease 2 (TMPRSS2) genes, and this fusion is estimated to represent about 85% of all gene fusions observed in prostate cancer. Clinically, individuals with ERG gene fusion are mostly documented to have advanced tumor stages, increased mortality, and higher rates of metastasis in non-surgical cohorts. In the current review, we elucidate ERG’s molecular interaction with downstream genes and the pathways associated with PCa. Studies have documented that ERG plays a central role in PCa progression due to its ability to enhance tumor growth by promoting inflammatory and angiogenic responses. ERG has also been implicated in the epithelial–mesenchymal transition (EMT) in PCa cells, which increases the ability of cancer cells to metastasize. In vivo, research has demonstrated that higher levels of ERG expression are involved with nuclear pleomorphism that prompts hyperplasia and the loss of cell polarity.
Collapse
Affiliation(s)
- Ealia Khosh Kish
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
| | - Muhammad Choudhry
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
| | - Yaser Gamallat
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Sabrina Marsha Buharideen
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Dhananjaya D
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Tarek A. Bismar
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Calgary, AB T2V 1P9, Canada
- Tom Baker Cancer Center, Arnie Charbonneau Cancer Institute, Calgary, AB T2V 1P9, Canada
- Correspondence: ; Tel.: +1-403-943-8430; Fax: +1-403-943-3333
| |
Collapse
|
23
|
Hu W, Jiang C, Kim M, Xiao Y, Richter HJ, Guan D, Zhu K, Krusen BM, Roberts AN, Miller J, Steger DJ, Lazar MA. Isoform-specific functions of PPARγ in gene regulation and metabolism. Genes Dev 2022; 36:300-312. [PMID: 35273075 PMCID: PMC8973844 DOI: 10.1101/gad.349232.121] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022]
Abstract
In this study, Hu et al. investigated the specific functions of the two main PPARγ isoforms by generating mouse lines in which endogenous PPARγ1 and PPARγ2 were epitope-tagged to interrogate isoform-specific genomic binding, and mice deficient in either PPARγ1 or PPARγ2 to assess isoform-specific gene regulation. They show that PPARγ isoforms have specific and separable metabolic functions that may be targeted to improve therapy for insulin resistance and diabetes. Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor that is a vital regulator of adipogenesis, insulin sensitivity, and lipid metabolism. Activation of PPARγ by antidiabetic thiazolidinediones (TZD) reverses insulin resistance but also leads to weight gain that limits the use of these drugs. There are two main PPARγ isoforms, but the specific functions of each are not established. Here we generated mouse lines in which endogenous PPARγ1 and PPARγ2 were epitope-tagged to interrogate isoform-specific genomic binding, and mice deficient in either PPARγ1 or PPARγ2 to assess isoform-specific gene regulation. Strikingly, although PPARγ1 and PPARγ2 contain identical DNA binding domains, we uncovered isoform-specific genomic binding sites in addition to shared sites. Moreover, PPARγ1 and PPARγ2 regulated a different set of genes in adipose tissue depots, suggesting distinct roles in adipocyte biology. Indeed, mice with selective deficiency of PPARγ1 maintained body temperature better than wild-type or PPARγ2-deficient mice. Most remarkably, although TZD treatment improved glucose tolerance in mice lacking either PPARγ1 or PPARγ2, the PPARγ1-deficient mice were protected from TZD-induced body weight gain compared with PPARγ2-deficient mice. Thus, PPARγ isoforms have specific and separable metabolic functions that may be targeted to improve therapy for insulin resistance and diabetes.
Collapse
Affiliation(s)
- Wenxiang Hu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Chunjie Jiang
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mindy Kim
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yang Xiao
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hannah J Richter
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Dongyin Guan
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Kun Zhu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Brianna M Krusen
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Arielle N Roberts
- Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania 19131, USA
| | - Jessica Miller
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - David J Steger
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
24
|
Lorenzin F, Demichelis F. Past, Current, and Future Strategies to Target ERG Fusion-Positive Prostate Cancer. Cancers (Basel) 2022; 14:cancers14051118. [PMID: 35267426 PMCID: PMC8909394 DOI: 10.3390/cancers14051118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/27/2022] Open
Abstract
Simple Summary In addition to its role in development and in the vascular and hematopoietic systems, ERG plays a central role in prostate cancer. Approximately 40–50% of prostate cancer cases are characterized by ERG gene fusions, which lead to ERG overexpression. Importantly, inhibition of ERG activity in prostate cancer cells decreases their viability. Therefore, inhibiting ERG might represent an important step to improve treatment efficacy for patients with ERG-positive prostate tumors. Here, we summarize the attempts made over the past years to repress ERG activity, the current use of ERG fusion detection and the strategies that might be utilized in the future to treat ERG fusion-positive tumors. Abstract The ETS family member ERG is a transcription factor with physiological roles during development and in the vascular and hematopoietic systems. ERG oncogenic activity characterizes several malignancies, including Ewing’s sarcoma, leukemia and prostate cancer (PCa). In PCa, ERG rearrangements with androgen-regulated genes—mostly TMPRSS2—characterize a large subset of patients across disease progression and result in androgen receptor (AR)-mediated overexpression of ERG in the prostate cells. Importantly, PCa cells overexpressing ERG are dependent on ERG activity for survival, further highlighting its therapeutic potential. Here, we review the current understanding of the role of ERG and its partners in PCa. We discuss the strategies developed in recent years to inhibit ERG activity, the current therapeutic utility of ERG fusion detection in PCa patients, and the possible future approaches to target ERG fusion-positive tumors.
Collapse
Affiliation(s)
- Francesca Lorenzin
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy
- Correspondence: (F.L.); (F.D.)
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Correspondence: (F.L.); (F.D.)
| |
Collapse
|
25
|
Miyahira AK, Zarif JC, Coombs CC, Flavell RR, Russo JW, Zaidi S, Zhao D, Zhao SG, Pienta KJ, Soule HR. Prostate cancer research in the 21st century; report from the 2021 Coffey-Holden prostate cancer academy meeting. Prostate 2022; 82:169-181. [PMID: 34734426 PMCID: PMC8688282 DOI: 10.1002/pros.24262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 02/03/2023]
Abstract
INTRODUCTION The 2021 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, "Prostate Cancer Research in the 21st Century," was held virtually, from June 24-25, 2021. METHODS The CHPCA Meeting is organized by the Prostate Cancer Foundation as a unique discussion-oriented meeting focusing on critical topics in prostate cancer research envisioned to bridge the next major advances in prostate cancer biology and treatment. The 2021 CHPCA Meeting was virtually attended by 89 investigators and included 31 talks over nine sessions. RESULTS Major topic areas discussed at the meeting included: cancer genomics and sequencing, functional genomic approaches to studying mediators of plasticity, emerging signaling pathways in metastatic castration resistant prostate cancer, Wnt signaling biology and the challenges of targeted therapy, clonal hematopoiesis, neuroendocrine cell plasticity and antitumor immunity, cancer immunotherapy and its synergizers, and imaging the tumor microenvironment and metabolism. DISCUSSION This meeting report summarizes the research presented at the 2021 CHPCA Meeting. We hope that publication of this knowledge will accelerate new understandings and the development of new biomarkers and treatments for prostate cancer.
Collapse
Affiliation(s)
| | - Jelani C. Zarif
- Department of Oncology, Johns Hopkins University School of Medicine and The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Catherine C. Coombs
- Department of Medicine, Division of Hematology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Robert R. Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
| | - Joshua W. Russo
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Samir Zaidi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Di Zhao
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, Houston, TX
| | - Shuang G. Zhao
- Department of Human Oncology, Carbone Cancer Center, University of Wisconsin, Madison, WI
| | - Kenneth J. Pienta
- The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, MD
| | | |
Collapse
|
26
|
Zhang C, Wu J, Chen Q, Tan H, Huang F, Guo J, Zhang X, Yu H, Shi W. Allosteric binding on nuclear receptors: Insights on screening of non-competitive endocrine-disrupting chemicals. ENVIRONMENT INTERNATIONAL 2022; 159:107009. [PMID: 34883459 DOI: 10.1016/j.envint.2021.107009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) can compete with endogenous hormones and bind to the orthosteric site of nuclear receptors (NRs), affecting normal endocrine system function and causing severe symptoms. Recently, a series of pharmaceuticals and personal care products (PPCPs) have been discovered to bind to the allosteric sites of NRs and induce similar effects. However, it remains unclear how diverse EDCs work in this new way. Therefore, we have systematically summarized the allosteric sites and underlying mechanisms based on existing studies, mainly regarding drugs belonging to the PPCP class. Advanced methods, classified as structural biology, biochemistry and computational simulation, together with their advantages and hurdles for allosteric site recognition and mechanism insight have also been described. Furthermore, we have highlighted two available strategies for virtual screening of numerous EDCs, relying on the structural features of allosteric sites and lead compounds, respectively. We aim to provide reliable theoretical and technical support for a broader view of various allosteric interactions between EDCs and NRs, and to drive high-throughput and accurate screening of potential EDCs with non-competitive effects.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Jinqiu Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Qinchang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Haoyue Tan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Fuyan Huang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Jing Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
27
|
Kneppers J, Bergman AM, Zwart W. Prostate Cancer Epigenetic Plasticity and Enhancer Heterogeneity: Molecular Causes, Consequences and Clinical Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:255-275. [DOI: 10.1007/978-3-031-11836-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
|
28
|
A Transcription Factor-Based Risk Model for Predicting the Prognosis of Prostate Cancer and Potential Therapeutic Drugs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6894278. [PMID: 34853602 PMCID: PMC8629613 DOI: 10.1155/2021/6894278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022]
Abstract
Background Prostate cancer (PC) is one of the most critical cancers affecting men's health worldwide. The development of many cancers involves dysregulation or mutations in key transcription factors. This study established a transcription factor-based risk model to predict the prognosis of PC and potential therapeutic drugs. Materials and Methods In this study, RNA-sequencing data were downloaded and analyzed using The Cancer Genome Atlas dataset. A total of 145 genes related to the overall survival rate of PC patients were screened using the univariate Cox analysis. The Kdmist clustering method was used to classify prostate adenocarcinoma (PRAD), thereby determining the cluster related to the transcription factors. The support vector machine-recursive feature elimination method was used to identify genes related to the types of transcription factors and the key genes specifically upregulated or downregulated were screened. These genes were further analyzed using Lasso to establish a model. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used for the functional analysis. The TIMER algorithm was used to quantify the abundance of immune cells in PRAD samples. The chemotherapy response of each GBM patient was predicted based on the public pharmacogenomic database, Genomics of Drug Sensitivity in Cancer (GDSC, http://www.cancerrxgene.org). The R package "pRRophetic" was applied to drug sensitivity (IC50) value prediction. Results We screened 10 genes related to prognosis, including eight low-risk genes and two high-risk genes. The receiver operating characteristic (ROC) curve was 0.946. Patients in the high-risk score group had a poorer prognosis than those in the low-risk score group. The average area under the curve value of the model at different times was higher than 0.8. The risk score was an independent prognostic factor. Compared with the low-risk score group, early growth response-1 (EGR1), CACNA2D1, AC005831.1, SLC52A3, TMEM79, IL20RA, CRACR2A, and FAM189A2 expressions in the high-risk score group were decreased, while AC012181.1 and TRAPPC8 expressions were increased. GO and KEGG analyses showed that prognosis was related to various cancer signaling pathways. The proportion of B_cell, T_cell_CD4, and macrophages in the high-risk score group was significantly higher than that in the low-risk score group. A total of 25 classic immune checkpoint genes were screened out to express abnormally high-risk scores, and there were significant differences. Thirty mutant genes were identified; in the high- and low-risk score groups, SPOP, TP53, and TTN had the highest mutation frequency, and their mutations were mainly missense mutations. A total of 36 potential drug candidates for the treatment of PC were screened and identified. Conclusions Ten genes of both high-and low-risk scores were associated with the prognosis of PC. PC prognosis may be related to immune disorders. SPOP, TP53, and TTN may be potential targets for the prognosis of PC.
Collapse
|
29
|
Forooshani MK, Scarpitta R, Fanelli GN, Miccoli M, Naccarato AG, Scatena C. Is it time to consider the Androgen receptor as a therapeutic target in breast cancer? Anticancer Agents Med Chem 2021; 22:775-786. [PMID: 34852747 DOI: 10.2174/1871520621666211201150818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/15/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022]
Abstract
Breast cancer (BC) is a heterogeneous disease and the most prevalent malignant tumor in women worldwide. The majority of BC cases are positive for estrogen receptor (ER) and progesterone receptor (PgR), both known to be involved in cancer pathogenesis, progression, and invasion. In line with this, hormonal deprivation therapy appears to be a useful tool and an effective treatment for these BC subtypes. Unfortunately, prognosis among patients with hormone-negative tumors or therapy-refractory and metastatic patients remains poor. Novel biomarkers are urgently needed in order to predict the course of the disease, make better therapy decisions and improve the overall survival of patients. In this respect, the androgen receptor (AR), a member of the hormonal nuclear receptor superfamily and ER and PgR, emerges as an interesting feature widely expressed in human BCs. Despite the advances, the precise tumorigenic mechanism of AR and the role of its endogenous ligands are yet not well-understood. In this review, we aim to elaborate on the prognostic impact of AR expression and current AR-targeting approaches based on previous studies investigating AR's role in different BC subtypes.
Collapse
Affiliation(s)
- Melika Kooshki Forooshani
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa. Italy
| | - Rosa Scarpitta
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa. Italy
| | - Giuseppe Nicolò Fanelli
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa. Italy
| | - Mario Miccoli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa. Italy
| | - Antonio Giuseppe Naccarato
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa. Italy
| | - Cristian Scatena
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa. Italy
| |
Collapse
|
30
|
Kumar R. Role of conformational dynamics and flexibilities in the steroid receptor-coregulator protein complex formation. Gen Comp Endocrinol 2021; 309:113780. [PMID: 33882296 DOI: 10.1016/j.ygcen.2021.113780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/21/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Understanding of the mechanisms of actions of the steroid hormone receptor (SHR)-coregulator (CoR) protein complexes in the gene regulations has revolutionized the field of molecular endocrinology and endocrine-related oncology. The discovery and characterization of steroid receptor coactivators (SRCs) and their ability to bind various transcription factors including SHRs to coordinate the regulation of multiple target genes highlights their importance as key coregulators in various cellular signaling crosstalks as well as therapeutic target for various endocrine-related disorders specifically endocrine cancers. The dynamic nature of the SHR-CoR multi-protein complexes indicate the critical role of conformational flexibilities within specific protein(s). In recent years, the importance of conformational dynamics of the SHRs in the intramolecular and intermolecular allosteric regulations mediated via their intrinsically disordered (ID) surfaces has been highlighted. In this review article, we have discussed the importance of ID conformations within the SRCs that may also be playing an important role in the formation/deformation of multi protein complexes involving SHRs and CoRs and subsequent target gene regulation.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Biomedical Sciences, University of Houston - College of Medicine, Houston, TX, United States.
| |
Collapse
|
31
|
Strittmatter BG, Jerde TJ, Hollenhorst PC. Ras/ERK and PI3K/AKT signaling differentially regulate oncogenic ERG mediated transcription in prostate cells. PLoS Genet 2021; 17:e1009708. [PMID: 34314419 PMCID: PMC8345871 DOI: 10.1371/journal.pgen.1009708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/06/2021] [Accepted: 07/10/2021] [Indexed: 11/19/2022] Open
Abstract
The TMPRSS2/ERG gene rearrangement occurs in 50% of prostate tumors and results in expression of the transcription factor ERG, which is normally silent in prostate cells. ERG expression promotes prostate tumor formation and luminal epithelial cell fates when combined with PI3K/AKT pathway activation, however the mechanism of synergy is not known. In contrast to luminal fates, expression of ERG alone in immortalized normal prostate epithelial cells promotes cell migration and epithelial to mesenchymal transition (EMT). Migration requires ERG serine 96 phosphorylation via endogenous Ras/ERK signaling. We found that a phosphomimetic mutant, S96E ERG, drove tumor formation and clonogenic survival without activated AKT. S96 was only phosphorylated on nuclear ERG, and differential recruitment of ERK to a subset of ERG-bound chromatin associated with ERG-activated, but not ERG-repressed genes. S96E did not alter ERG genomic binding, but caused a loss of ERG-mediated repression, EZH2 binding and H3K27 methylation. In contrast, AKT activation altered the ERG cistrome and promoted expression of luminal cell fate genes. These data suggest that, depending on AKT status, ERG can promote either luminal or EMT transcription programs, but ERG can promote tumorigenesis independent of these cell fates and tumorigenesis requires only the transcriptional activation function. ERG is the most common oncogene in prostate cancer. The ERG protein can bind DNA and can activate some genes and repress others. Previous studies indicated that ERG cannot promote cancer by itself, but that ERG works together with mutations that activate the protein AKT. In this study we found that activation of AKT changes the genes that ERG regulates, leading to luminal epithelial differentiation, which is a hallmark of most prostate tumors. However, we also found that a mutant version of ERG that can activate, but cannot repress genes, can drive prostate tumorigenesis without activation of AKT, but this mutant ERG cannot promote luminal differentiation. Our findings suggest that ERG mediated tumorigenesis only requires ERG’s activation function and can occur independent of luminal cell differentiation.
Collapse
Affiliation(s)
- Brady G. Strittmatter
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Travis J. Jerde
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Peter C. Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
32
|
Fu Z, Rais Y, Bismar TA, Hyndman ME, Le XC, Drabovich AP. Mapping Isoform Abundance and Interactome of the Endogenous TMPRSS2-ERG Fusion Protein by Orthogonal Immunoprecipitation-Mass Spectrometry Assays. Mol Cell Proteomics 2021; 20:100075. [PMID: 33771697 PMCID: PMC8102805 DOI: 10.1016/j.mcpro.2021.100075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/21/2021] [Indexed: 01/02/2023] Open
Abstract
TMPRSS2-ERG gene fusion, a molecular alteration found in nearly half of primary prostate cancer cases, has been intensively characterized at the transcript level. However limited studies have explored the molecular identity and function of the endogenous fusion at the protein level. Here, we developed immunoprecipitation-mass spectrometry assays for the measurement of a low-abundance T1E4 TMPRSS2-ERG fusion protein, its isoforms, and its interactome in VCaP prostate cancer cells. Our assays quantified total ERG (∼27,000 copies/cell) and its four unique isoforms and revealed that the T1E4-ERG isoform accounted for 52 ± 3% of the total ERG protein in VCaP cells, and 50 ± 11% in formalin-fixed paraffin-embedded prostate cancer tissues. For the first time, the N-terminal peptide (methionine-truncated and N-acetylated TASSSSDYGQTSK) unique for the T1/E4 fusion was identified. ERG interactome profiling with the C-terminal, but not the N-terminal, antibodies identified 29 proteins, including mutually exclusive BRG1- and BRM-associated canonical SWI/SNF chromatin remodeling complexes. Our sensitive and selective IP-SRM assays present alternative tools to quantify ERG and its isoforms in clinical samples, thus paving the way for development of more accurate diagnostics of prostate cancer.
Collapse
Affiliation(s)
- Zhiqiang Fu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Yasmine Rais
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Tarek A Bismar
- Department of Pathology and Laboratory Medicine, University of Calgary Cumming School of Medicine, and Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - M Eric Hyndman
- Division of Urology, Department of Surgery, Southern Alberta Institute of Urology, University of Calgary, Alberta, Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Andrei P Drabovich
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
33
|
Mondal D, Narwani D, Notta S, Ghaffar D, Mardhekar N, Quadri SSA. Oxidative stress and redox signaling in CRPC progression: therapeutic potential of clinically-tested Nrf2-activators. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:96-124. [PMID: 35582006 PMCID: PMC9019181 DOI: 10.20517/cdr.2020.71] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022]
Abstract
Androgen deprivation therapy (ADT) is the mainstay regimen in patients with androgen-dependent prostate cancer (PCa). However, the selection of androgen-independent cancer cells leads to castrate resistant prostate cancer (CRPC). The aggressive phenotype of CRPC cells underscores the need to elucidate mechanisms and therapeutic strategies to suppress CRPC outgrowth. Despite ADT, the activation of androgen receptor (AR) transcription factor continues via crosstalk with parallel signaling pathways. Understanding of how these signaling cascades are initiated and amplified post-ADT is lacking. Hormone deprivation can increase oxidative stress and the resultant reactive oxygen species (ROS) may activate both AR and non-AR signaling. Moreover, ROS-induced inflammatory cytokines may further amplify these redox signaling pathways to augment AR function. However, clinical trials using ROS quenching small molecule antioxidants have not suppressed CRPC progression, suggesting that more potent and persistent suppression of redox signaling in CRPC cells will be needed. The transcription factor Nrf2 increases the expression of numerous antioxidant enzymes and downregulates the function of inflammatory transcription factors, e.g., nuclear factor kappa B. We documented that Nrf2 overexpression can suppress AR-mediated transcription in CRPC cell lines. Furthermore, two Nrf2 activating agents, sulforaphane (a phytochemical) and bardoxolone-methyl (a drug in clinical trial) suppress AR levels and sensitize CRPC cells to anti-androgens. These observations implicate the benefits of potent Nrf2-activators to suppress the lethal signaling cascades that lead to CRPC outgrowth. This review article will address the redox signaling networks that augment AR signaling during PCa progression to CRPC, and the possible utility of Nrf2-activating agents as an adjunct to ADT.
Collapse
Affiliation(s)
- Debasis Mondal
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Devin Narwani
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Shahnawaz Notta
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Dawood Ghaffar
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Nikhil Mardhekar
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Syed S A Quadri
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| |
Collapse
|
34
|
Li F, Yuan Q, Di W, Xia X, Liu Z, Mao N, Li L, Li C, He J, Li Y, Guo W, Zhang X, Zhu Y, Aji R, Wang S, Tong X, Ji H, Chi P, Carver B, Wang Y, Chen Y, Gao D. ERG orchestrates chromatin interactions to drive prostate cell fate reprogramming. J Clin Invest 2021; 130:5924-5941. [PMID: 32701507 DOI: 10.1172/jci137967] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022] Open
Abstract
Although cancer is commonly perceived as a disease of dedifferentiation, the hallmark of early-stage prostate cancer is paradoxically the loss of more plastic basal cells and the abnormal proliferation of more differentiated secretory luminal cells. However, the mechanism of prostate cancer proluminal differentiation is largely unknown. Through integrating analysis of the transcription factors (TFs) from 806 human prostate cancers, we found that ERG was highly correlated with prostate cancer luminal subtyping. ERG overexpression in luminal epithelial cells inhibited those cells' normal plasticity to transdifferentiate into a basal lineage, and ERG superseded PTEN loss, which favored basal differentiation. ERG KO disrupted prostate cell luminal differentiation, whereas AR KO had no such effects. Trp63 is a known master regulator of the prostate basal lineage. Through analysis of 3D chromatin architecture, we found that ERG bound and inhibited the enhancer activity and chromatin looping of a Trp63 distal enhancer, thereby silencing its gene expression. Specific deletion of the distal ERG binding site resulted in the loss of ERG-mediated inhibition of basal differentiation. Thus, ERG, in its fundamental role in lineage differentiation in prostate cancer initiation, orchestrated chromatin interactions and regulated prostate cell lineage toward a proluminal program.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiuyue Yuan
- Center for Excellence in Mathematical Sciences (CEMS), National Center for Mathematics and Interdisciplinary Sciences (NCMIS), Key Laboratory of Management, Decision and Information Systems (MDIS)., Academy of Mathematics and Systems Science, National Center for Mathematics and Interdisciplinary Sciences, and.,School of Mathematical Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Wei Di
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xinyi Xia
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhuang Liu
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ninghui Mao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lin Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chunfeng Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Juan He
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yunguang Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wangxin Guo
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yiqin Zhu
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rebiguli Aji
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shangqian Wang
- Department of Urology, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xinyuan Tong
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine and.,Department of Cell and Developmental Biology, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, New York, USA
| | - Brett Carver
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Division of Urology, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yong Wang
- Center for Excellence in Mathematical Sciences (CEMS), National Center for Mathematics and Interdisciplinary Sciences (NCMIS), Key Laboratory of Management, Decision and Information Systems (MDIS)., Academy of Mathematics and Systems Science, National Center for Mathematics and Interdisciplinary Sciences, and.,School of Mathematical Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine and.,Department of Cell and Developmental Biology, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, New York, USA
| | - Dong Gao
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Shah N, Kesten N, Font-Tello A, Chang MEK, Vadhi R, Lim K, Flory MR, Cejas P, Mohammed H, Long HW, Brown M. ERG-Mediated Coregulator Complex Formation Maintains Androgen Receptor Signaling in Prostate Cancer. Cancer Res 2020; 80:4612-4619. [PMID: 32934023 DOI: 10.1158/0008-5472.can-20-2044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/11/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022]
Abstract
The TMPRSS2-ERG fusion is the most common genomic rearrangement in human prostate cancer. However, in established adenocarcinoma, it is unknown how the ERG oncogene promotes a cancerous phenotype and maintains downstream androgen receptor (AR) signaling pathways. In this study, we utilized a murine prostate organoid system to explore the effects of ERG on tumorigenesis and determined the mechanism underlying prostate cancer dependence on ERG. Prostate organoids lacking PTEN and overexpressing ERG (Pten-/- R26-ERG) faithfully recapitulated distinct stages of prostate cancer disease progression. In this model, deletion of ERG significantly dampened AR-dependent gene expression. While ERG was able to reprogram the AR cistrome in the process of prostate carcinogenesis, ERG knockout in established prostate cancer organoids did not drastically alter AR binding, H3K27ac enhancer, or open chromatin profiles at these reprogrammed sites. Proteomic analysis of DNA-bound AR complexes demonstrated that ERG deletion causes a loss of recruitment of critical AR coregulators and basal transcriptional machinery, including NCOA3 and RNA polymerase II, but does not alter AR binding itself. Together, these data reveal a novel mechanism of ERG oncogene addiction in prostate cancer, whereby ERG facilitates AR signaling by maintaining coregulator complexes at AR bound sites across the genome. SIGNIFICANCE: These findings exploit murine organoid models to uncover the mechanism of ERG-mediated tumorigenesis and subsequent oncogenic dependencies in prostate cancer.
Collapse
Affiliation(s)
- Neel Shah
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nikolas Kesten
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Alba Font-Tello
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Matthew E K Chang
- Knight Cancer Institute, Oregon Health & Science University Hospital, Portland, Oregon
| | - Raga Vadhi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Klothilda Lim
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mark R Flory
- Knight Cancer Institute, Oregon Health & Science University Hospital, Portland, Oregon
| | - Paloma Cejas
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Hisham Mohammed
- Knight Cancer Institute, Oregon Health & Science University Hospital, Portland, Oregon.,Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts. .,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
36
|
Venkadakrishnan VB, Ben-Salem S, Heemers HV. AR-dependent phosphorylation and phospho-proteome targets in prostate cancer. Endocr Relat Cancer 2020; 27:R193-R210. [PMID: 32276264 PMCID: PMC7583603 DOI: 10.1530/erc-20-0048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
Abstract
Prostate cancer (CaP) is the second leading cause of cancer-related deaths in Western men. Because androgens drive CaP by activating the androgen receptor (AR), blocking AR's ligand activation, known as androgen deprivation therapy (ADT), is the default treatment for metastatic CaP. Despite an initial remission, CaP eventually develops resistance to ADT and progresses to castration-recurrent CaP (CRPC). CRPC continues to rely on aberrantly activated AR that is no longer inhibited effectively by available therapeutics. Interference with signaling pathways downstream of activated AR that mediate aggressive CRPC behavior may lead to alternative CaP treatments. Developing such therapeutic strategies requires a thorough mechanistic understanding of the most clinically relevant and druggable AR-dependent signaling events. Recent proteomics analyses of CRPC clinical specimens indicate a shift in the phosphoproteome during CaP progression. Kinases and phosphatases represent druggable entities, for which clinically tested inhibitors are available, some of which are incorporated already in treatment plans for other human malignancies. Here, we reviewed the AR-associated transcriptome and translational regulon, and AR interactome involved in CaP phosphorylation events. Novel and for the most part mutually exclusive AR-dependent transcriptional and post-transcriptional control over kinase and phosphatase expression was found, with yet other phospho-regulators interacting with AR. The multiple mechanisms by which AR can shape and fine-tune the CaP phosphoproteome were reflected in diverse aspects of CaP biology such as cell cycle progression and cell migration. Furthermore, we examined the potential, limitations and challenges of interfering with AR-mediated phosphorylation events as alternative strategy to block AR function during CaP progression.
Collapse
Affiliation(s)
- Varadha Balaji Venkadakrishnan
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio, USA
| | - Salma Ben-Salem
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
| | | |
Collapse
|