1
|
Lam O, Shaffer E, Boso G, Kozak CA. Intact, recombinant, and spliced forms of endogenous mouse mammary tumor viruses in inbred and wild mice. J Virol 2025; 99:e0007925. [PMID: 40079583 PMCID: PMC11998498 DOI: 10.1128/jvi.00079-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/11/2025] [Indexed: 03/15/2025] Open
Abstract
Endogenous retroviruses (ERVs) are chromosomally integrated viral copies that represent relics of past infections. Analysis of the sequenced genomes of 17 mouse strains, Mus musculus subspecies, and Mus spretus identified 29 ERVs of mouse mammary tumor viruses (MMTVs), termed Mtvs. The 15 laboratory mouse Mtvs are each present in multiple strains reflecting their common breeding history; most predate the development of inbred strains and were likely acquired by Mus musculus domesticus progenitors but have no orthologs in wild mice, whereas four, including the intact Mtv1, were likely endogenized more recently. One of the 14 Mtvs found in wild mice was distributed over a broad geographic range in southeast Asia. Most Mtvs are full-length, with multiple open reading frames, but Mtvs from many wild mice have an unusual envelope deletion corresponding to an intron of the viral rem accessory gene, suggesting its derivation from spliced MMTV cDNAs. These deleted envs have open reading frames, are found in globally distributed mice, and show subspecies-specific sequence variation consistent with their recurrent generation. The highly variable MMTV sag gene, responsible for resistance to exogenous infection, exhibits evidence of recombination as well as positive selection, consistent with its role in antiviral defense. In contrast, the spread of Mtvs in Mus musculus populations is not marked by an active arms race pitting the MMTV envelope against its cellular receptor. Thus, the acquisition of potentially disease-inducing Mtvs is a recent and ongoing process in Mus accompanied by recombination, positive selection, and a recurrent envelope deletion. IMPORTANCE Endogenous retroviruses (ERVs) are copies of viral genomes inserted into host chromosomes, producing a fossil record of past infections and virus-host co-adaptations. ERVs of mouse mammary tumor viruses (Mtvs) were found in all common laboratory strains, all Mus musculus subspecies, and a sister species, Mus spretus. Most laboratory mouse Mtvs predate inbred strain origins and were acquired by M. musculus domesticus, but although widely shared among strains, none of these were found in wild mice. Among wild mouse Mtvs, only one showed a broad geographic distribution. All M. musculus subspecies carry Mtvs with a large envelope deletion corresponding to the processed mRNA for the viral rem gene; such Mtvs likely derive from spliced viral mRNA. The Mtv sag gene responsible for resistance to exogenous infection is under purifying selection and has been subject to recombination, whereas the Mtv envelope and its cellular receptor show no evidence of genetic conflicts.
Collapse
Affiliation(s)
- Oscar Lam
- Laboratory of Immunoregulation and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Esther Shaffer
- Laboratory of Immunoregulation and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Guney Boso
- Laboratory of Immunoregulation and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christine A. Kozak
- Laboratory of Immunoregulation and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Liao Z, Wang C, Tang X, Yang M, Duan Z, Liu L, Lu S, Ma L, Cheng R, Wang G, Liu H, Yang S, Xu J, Tadese DA, Mwangi J, Kamau PM, Zhang Z, Yang L, Liao G, Zhao X, Peng X, Lai R. Human transferrin receptor can mediate SARS-CoV-2 infection. Proc Natl Acad Sci U S A 2024; 121:e2317026121. [PMID: 38408250 DOI: 10.1073/pnas.2317026121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been detected in almost all organs of coronavirus disease-19 patients, although some organs do not express angiotensin-converting enzyme-2 (ACE2), a known receptor of SARS-CoV-2, implying the presence of alternative receptors and/or co-receptors. Here, we show that the ubiquitously distributed human transferrin receptor (TfR), which binds to diferric transferrin to traffic between membrane and endosome for the iron delivery cycle, can ACE2-independently mediate SARS-CoV-2 infection. Human, not mouse TfR, interacts with Spike protein with a high affinity (KD ~2.95 nM) to mediate SARS-CoV-2 endocytosis. TfR knock-down (TfR-deficiency is lethal) and overexpression inhibit and promote SARS-CoV-2 infection, respectively. Humanized TfR expression enables SARS-CoV-2 infection in baby hamster kidney cells and C57 mice, which are known to be insusceptible to the virus infection. Soluble TfR, Tf, designed peptides blocking TfR-Spike interaction and anti-TfR antibody show significant anti-COVID-19 effects in cell and monkey models. Collectively, this report indicates that TfR is a receptor/co-receptor of SARS-CoV-2 mediating SARS-CoV-2 entry and infectivity by likely using the TfR trafficking pathway.
Collapse
Affiliation(s)
- Zhiyi Liao
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoming Wang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaopeng Tang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Mengli Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Zilei Duan
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
| | - Lei Liu
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuaiyao Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Lei Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Ruomei Cheng
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
| | - Gan Wang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
| | - Hongqi Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Shuo Yang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwen Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Dawit Adisu Tadese
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - James Mwangi
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peter Muiruri Kamau
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiye Zhang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
| | - Lian Yang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - Guoyang Liao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Xudong Zhao
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaozhong Peng
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Ren Lai
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
3
|
Kang H, Kang T, Jackson L, Murphy A, Nitta T. Evidence for Involvement of ADP-Ribosylation Factor 6 in Intracellular Trafficking and Release of Murine Leukemia Virus Gag. Cells 2024; 13:270. [PMID: 38334661 PMCID: PMC10854678 DOI: 10.3390/cells13030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
Murine leukemia viruses (MuLVs) are simple retroviruses that cause several diseases in mice. Retroviruses encode three basic genes: gag, pol, and env. Gag is translated as a polyprotein and moves to assembly sites where viral particles are shaped by cleavage of poly-Gag. Viral release depends on the intracellular trafficking of viral proteins, which is determined by both viral and cellular factors. ADP-ribosylation factor 6 (Arf6) is a small GTPase that regulates vesicular trafficking and recycling of different types of cargo in cells. Arf6 also activates phospholipase D (PLD) and phosphatidylinositol-4-phosphate 5-kinase (PIP5K) and produces phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2). We investigated how Arf6 affected MuLV release with a constitutively active form of Arf6, Arf6Q67L. Expression of Arf6Q67L impaired Gag release by accumulating Gag at PI(4,5)P2-enriched compartments in the cytoplasm. Treatment of the inhibitors for PLD and PIP5K impaired or recovered MuLV Gag release in the cells expressing GFP (control) and Arf6Q67L, implying that regulation of PI(4,5)P2 through PLD and PIP5K affected MuLV release. Interference with the phosphoinositide 3-kinases, mammalian target of rapamycin (mTOR) pathway, and vacuolar-type ATPase activities showed further impairment of Gag release from the cells expressing Arf6Q67L. In contrast, mTOR inhibition increased Gag release in the control cells. The proteasome inhibitors reduced viral release in the cells regardless of Arf6Q67L expression. These data outline the differences in MuLV release under the controlled and overactivated Arf6 conditions and provide new insight into pathways for MuLV release.
Collapse
Affiliation(s)
- Hyokyun Kang
- Department of Biology, Savannah State University, Savannah, GA 31404, USA; (H.K.); (T.K.); (L.J.); (A.M.)
| | - Taekwon Kang
- Department of Biology, Savannah State University, Savannah, GA 31404, USA; (H.K.); (T.K.); (L.J.); (A.M.)
| | - Lauryn Jackson
- Department of Biology, Savannah State University, Savannah, GA 31404, USA; (H.K.); (T.K.); (L.J.); (A.M.)
| | - Amaiya Murphy
- Department of Biology, Savannah State University, Savannah, GA 31404, USA; (H.K.); (T.K.); (L.J.); (A.M.)
| | - Takayuki Nitta
- Department of Biology, Savannah State University, Savannah, GA 31404, USA; (H.K.); (T.K.); (L.J.); (A.M.)
- Department of Molecular Biology and Biochemistry, Cancer Research Institute, University of California, Irvine, CA 92697, USA
| |
Collapse
|
4
|
Ahmad W, Panicker NG, Akhlaq S, Gull B, Baby J, Khader TA, Rizvi TA, Mustafa F. Global Down-regulation of Gene Expression Induced by Mouse Mammary Tumor Virus (MMTV) in Normal Mammary Epithelial Cells. Viruses 2023; 15:v15051110. [PMID: 37243196 DOI: 10.3390/v15051110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Mouse mammary tumor virus (MMTV) is a betaretrovirus that causes breast cancer in mice. The mouse mammary epithelial cells are the most permissive cells for MMTV, expressing the highest levels of virus upon infection and being the ones later transformed by the virus due to repeated rounds of infection/superinfection and integration, leading eventually to mammary tumors. The aim of this study was to identify genes and molecular pathways dysregulated by MMTV expression in mammary epithelial cells. Towards this end, mRNAseq was performed on normal mouse mammary epithelial cells stably expressing MMTV, and expression of host genes was analyzed compared with cells in its absence. The identified differentially expressed genes (DEGs) were grouped on the basis of gene ontology and relevant molecular pathways. Bioinformatics analysis identified 12 hub genes, of which 4 were up-regulated (Angp2, Ccl2, Icam, and Myc) and 8 were down-regulated (Acta2, Cd34, Col1a1, Col1a2, Cxcl12, Eln, Igf1, and Itgam) upon MMTV expression. Further screening of these DEGs showed their involvement in many diseases, especially in breast cancer progression when compared with available data. Gene Set Enrichment Analysis (GSEA) identified 31 molecular pathways dysregulated upon MMTV expression, amongst which the PI3-AKT-mTOR was observed to be the central pathway down-regulated by MMTV. Many of the DEGs and 6 of the 12 hub genes identified in this study showed expression profile similar to that observed in the PyMT mouse model of breast cancer, especially during tumor progression. Interestingly, a global down-regulation of gene expression was observed, where nearly 74% of the DEGs in HC11 cells were repressed by MMTV expression, an observation similar to what was observed in the PyMT mouse model during tumor progression, from hyperplasia to adenoma to early and late carcinomas. Comparison of our results with the Wnt1 mouse model revealed further insights into how MMTV expression could lead to activation of the Wnt1 pathway independent of insertional mutagenesis. Thus, the key pathways, DEGs, and hub genes identified in this study can provide important clues to elucidate the molecular mechanisms involved in MMTV replication, escape from cellular anti-viral response, and potential to cause cell transformation. These data also validate the use of the MMTV-infected HC11 cells as an important model to study early transcriptional changes that could lead to mammary cell transformation.
Collapse
Affiliation(s)
- Waqar Ahmad
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Neena G Panicker
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Shaima Akhlaq
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Bushra Gull
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Jasmin Baby
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Thanumol A Khader
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Tahir A Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), UAE University, Al Ain 15551, United Arab Emirates
- Zayed Center for Health Sciences (ZCHS), UAE University, Al Ain 15551, United Arab Emirates
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, UAE University, Al Ain 15551, United Arab Emirates
| | - Farah Mustafa
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
- Zayed Center for Health Sciences (ZCHS), UAE University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
5
|
Chameettachal A, Mustafa F, Rizvi TA. Understanding Retroviral Life Cycle and its Genomic RNA Packaging. J Mol Biol 2023; 435:167924. [PMID: 36535429 DOI: 10.1016/j.jmb.2022.167924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Members of the family Retroviridae are important animal and human pathogens. Being obligate parasites, their replication involves a series of steps during which the virus hijacks the cellular machinery. Additionally, many of the steps of retrovirus replication are unique among viruses, including reverse transcription, integration, and specific packaging of their genomic RNA (gRNA) as a dimer. Progress in retrovirology has helped identify several molecular mechanisms involved in each of these steps, but many are still unknown or remain controversial. This review summarizes our present understanding of the molecular mechanisms involved in various stages of retrovirus replication. Furthermore, it provides a comprehensive analysis of our current understanding of how different retroviruses package their gRNA into the assembling virions. RNA packaging in retroviruses holds a special interest because of the uniqueness of packaging a dimeric genome. Dimerization and packaging are highly regulated and interlinked events, critical for the virus to decide whether its unspliced RNA will be packaged as a "genome" or translated into proteins. Finally, some of the outstanding areas of exploration in the field of RNA packaging are highlighted, such as the role of epitranscriptomics, heterogeneity of transcript start sites, and the necessity of functional polyA sequences. An in-depth knowledge of mechanisms that interplay between viral and cellular factors during virus replication is critical in understanding not only the virus life cycle, but also its pathogenesis, and development of new antiretroviral compounds, vaccines, as well as retroviral-based vectors for human gene therapy.
Collapse
Affiliation(s)
- Akhil Chameettachal
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates. https://twitter.com/chameettachal
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates; Zayed bin Sultan Center for Health Sciences (ZCHS), United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Tahir A Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates; Zayed bin Sultan Center for Health Sciences (ZCHS), United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
6
|
Stergioti EM, Manolakou T, Boumpas DT, Banos A. Antiviral Innate Immune Responses in Autoimmunity: Receptors, Pathways, and Therapeutic Targeting. Biomedicines 2022; 10:2820. [PMID: 36359340 PMCID: PMC9687478 DOI: 10.3390/biomedicines10112820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 09/28/2023] Open
Abstract
Innate immune receptors sense nucleic acids derived from viral pathogens or self-constituents and initiate an immune response, which involves, among other things, the secretion of cytokines including interferon (IFN) and the activation of IFN-stimulated genes (ISGs). This robust and well-coordinated immune response is mediated by the innate immune cells and is critical to preserving and restoring homeostasis. Like an antiviral response, during an autoimmune disease, aberrations of immune tolerance promote inflammatory responses to self-components, such as nucleic acids and immune complexes (ICs), leading to the secretion of cytokines, inflammation, and tissue damage. The aberrant immune response within the inflammatory milieu of the autoimmune diseases may lead to defective viral responses, predispose to autoimmunity, or precipitate a flare of an existing autoimmune disease. Herein, we review the literature on the crosstalk between innate antiviral immune responses and autoimmune responses and discuss the pitfalls and challenges regarding the therapeutic targeting of the mechanisms involved.
Collapse
Affiliation(s)
- Eirini Maria Stergioti
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Theodora Manolakou
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Dimitrios T. Boumpas
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece
| | - Aggelos Banos
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
| |
Collapse
|
7
|
The Role of a Betaretrovirus in Human Breast Cancer: Enveloping a Conundrum. Viruses 2022; 14:v14112342. [PMID: 36366440 PMCID: PMC9695795 DOI: 10.3390/v14112342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 02/01/2023] Open
Abstract
Most of the evidence that a human betaretrovirus (HBRV/HMTV) highly related to mouse mammary tumour virus (MMTV) has an etiological role in breast cancer has been summarized in a recent comprehensive Special Issue of "Viruses" entitled "Human Betaretrovirus (HBRV) and Related Diseases". Shortly after publication of this special issue, a detailed analysis of aligned env sequences was published and concluded that (i) MMTV and HBRV/HMTV cannot be distinguished on the basis of aligned env sequences and (ii) more sequence data covering the full-length env or HBRV/HMTV genomes from multiple isolates is needed. Although productive infection of human cells by MMTV (and presumably HBRV/HMTV) has been shown, it is imperative that the receptor(s) enabling HBRV/HMTV to infect human cells are defined. Moreover, there is currently no compelling data for common integration sites, in contrast to MMTV induced mammary tumorigenesis in mice, suggesting that other mechanisms of tumorigenesis are associated with HBRV/HMTV infection. These issues need to be resolved before a clear link between MMTV/HBRV/HMTV and human breast cancer can be concluded.
Collapse
|
8
|
Abstract
Virus-induced cell death has long been thought of as a double-edged sword in the inhibition or exacerbation of viral infections. The vital role of iron, an essential element for various enzymes in the maintenance of cellular physiology and efficient viral replication, places it at the crossroads and makes it a micronutrient of competition between the viruses and the host. Viruses can interrupt iron uptake and the antioxidant response system, while others can utilize iron transporter proteins as receptors. Interestingly, the unavailability of iron facilitates certain viral infections and causes cell death characterized by lipid peroxide accumulation and malfunction of the antioxidant system. In this review, we discuss how iron uptake, regulation and metabolism, including the redistribution of iron in the host defense system during viral infection, can induce ferroptosis. Fenton reactions, a central characteristic of ferroptosis, are caused by the increased iron content in the cell. Therefore, viral infections that increase cellular iron content or intestinal iron absorption are likely to cause ferroptosis. In addition, we discuss the hijacking of the iron regulatoy pathway and the antioxidant response, both of which are typical in viral infections. Understanding the potential signaling mechanisms of ferroptosis in viral infections will aid in the development of new therapeutic agents.
Collapse
|
9
|
Bevilacqua G. The Viral Origin of Human Breast Cancer: From the Mouse Mammary Tumor Virus (MMTV) to the Human Betaretrovirus (HBRV). Viruses 2022; 14:1704. [PMID: 36016325 PMCID: PMC9412291 DOI: 10.3390/v14081704] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
A Human Betaretrovirus (HBRV) has been identified in humans, dating as far back as about 4500 years ago, with a high probability of it being acquired by our species around 10,000 years ago, following a species jump from mice to humans. HBRV is the human homolog of the MMTV (mouse mammary tumor virus), which is the etiological agent of murine mammary tumors. The hypothesis of a HMTV (human mammary tumor virus) was proposed about 50 years ago, and has acquired a solid scientific basis during the last 30 years, with the demonstration of a robust link with breast cancer and with PBC, primary biliary cholangitis. This article summarizes most of what is known about MMTV/HMTV/HBRV since the discovery of MMTV at the beginning of last century, to make evident both the quantity and the quality of the research supporting the existence of HBRV and its pathogenic role. Here, it is sufficient to mention that scientific evidence includes that viral sequences have been identified in breast-cancer samples in a worldwide distribution, that the complete proviral genome has been cloned from breast cancer and patients with PBC, and that saliva contains HBRV, as a possible route of inter-human infection. Controversies that have arisen concerning results obtained from human tissues, many of them outdated by new scientific evidence, are critically discussed and confuted.
Collapse
|
10
|
Goubran M, Wang W, Indik S, Faschinger A, Wasilenko ST, Bintner J, Carpenter EJ, Zhang G, Nuin P, Macintyre G, Wong GKS, Mason AL. Isolation of a Human Betaretrovirus from Patients with Primary Biliary Cholangitis. Viruses 2022; 14:v14050886. [PMID: 35632628 PMCID: PMC9146342 DOI: 10.3390/v14050886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
A human betaretrovirus (HBRV) has been linked with the autoimmune liver disease, primary biliary cholangitis (PBC), and various cancers, including breast cancer and lymphoma. HBRV is closely related to the mouse mammary tumor virus, and represents the only exogenous betaretrovirus characterized in humans to date. Evidence of infection in patients with PBC has been demonstrated through the identification of proviral integration sites in lymphoid tissue, the major reservoir of infection, as well as biliary epithelium, which is the site of the disease process. Accordingly, we tested the hypothesis that patients with PBC harbor a transmissible betaretrovirus by co-cultivation of PBC patients’ lymph node homogenates with the HS578T breast cancer line. Because of the low level of HBRV replication, betaretrovirus producing cells were subcloned to optimize viral isolation and production. Evidence of infection was provided by electron microscopy, RT-PCR, in situ hybridization, cloning of the HBRV proviral genome and demonstration of more than 3400 integration sites. Further evidence of viral transmissibility was demonstrated by infection of biliary epithelial cells. While HBRV did not show a preference for integration proximal to specific genomic features, analyses of common insertion sites revealed evidence of integration proximal to cancer associated genes. These studies demonstrate the isolation of HBRV with features similar to mouse mammary tumor virus and confirm that patients with PBC display evidence of a transmissible viral infection.
Collapse
Affiliation(s)
- Mariam Goubran
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
| | - Weiwei Wang
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
| | - Stanislav Indik
- Department of Virology, University of Veterinary Medicine, A-1210 Vienna, Austria; (S.I.); (A.F.)
| | - Alexander Faschinger
- Department of Virology, University of Veterinary Medicine, A-1210 Vienna, Austria; (S.I.); (A.F.)
| | - Shawn T. Wasilenko
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
| | - Jasper Bintner
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
| | - Eric J. Carpenter
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada;
| | - Guangzhi Zhang
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
| | - Paulo Nuin
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Georgina Macintyre
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
| | - Gane K.-S. Wong
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada;
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Andrew L. Mason
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: ; Tel.: +1-(780)-492-8176
| |
Collapse
|
11
|
Das P, Xu WK, Gautam AKS, Lozano MM, Dudley JP. A Retrotranslocation Assay That Predicts Defective VCP/p97-Mediated Trafficking of a Retroviral Signal Peptide. mBio 2022; 13:e0295321. [PMID: 35089078 PMCID: PMC8725593 DOI: 10.1128/mbio.02953-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Studies of viral replication have provided critical insights into host processes, including protein trafficking and turnover. Mouse mammary tumor virus (MMTV) is a betaretrovirus that encodes a functional 98-amino-acid signal peptide (SP). MMTV SP is generated from both Rem and envelope precursor proteins by signal peptidase cleavage in the endoplasmic reticulum (ER) membrane. We previously showed that SP functions as a human immunodeficiency virus type 1 (HIV-1) Rev-like protein that is dependent on the AAA ATPase valosin-containing protein (VCP)/p97 to subvert ER-associated degradation (ERAD). SP contains a nuclear localization sequence (NLS)/nucleolar localization sequence (NoLS) within the N-terminal 45 amino acids. To directly determine the SP regions needed for membrane extraction and trafficking, we developed a quantitative retrotranslocation assay with biotin acceptor peptide (BAP)-tagged SP proteins. Use of alanine substitution mutants of BAP-tagged MMTV SP in retrotranslocation assays revealed that mutation of amino acids 57 and 58 (M57-58) interfered with ER membrane extraction, whereas adjacent mutations did not. The M57-58 mutant also showed reduced interaction with VCP/p97 in coimmunoprecipitation experiments. Using transfection and reporter assays to measure activity of BAP-tagged proteins, both M57-58 and an adjacent mutant (M59-61) were functionally defective compared to wild-type SP. Confocal microscopy revealed defects in SP nuclear trafficking and abnormal localization of both M57-58 and M59-61. Furthermore, purified glutathione S-transferase (GST)-tagged M57-58 and M59-61 demonstrated reduced ability to oligomerize compared to tagged wild-type SP. These experiments suggest that SP amino acids 57 and 58 are critical for VCP/p97 interaction and retrotranslocation, whereas residues 57 to 61 are critical for oligomerization and nuclear trafficking independent of the NLS/NoLS. Our results emphasize the complex host interactions with long signal peptides. IMPORTANCE Endoplasmic reticulum-associated degradation (ERAD) is a form of cellular protein quality control that is manipulated by viruses, including the betaretrovirus, mouse mammary tumor virus (MMTV). MMTV-encoded signal peptide (SP) has been shown to interact with an essential ERAD factor, VCP/p97 ATPase, to mediate its extraction from the ER membrane, also known as retrotranslocation, for RNA binding and nuclear function. In this paper, we developed a quantitative retrotranslocation assay that identified an SP substitution mutant, which is defective for VCP interaction as well as nuclear trafficking, oligomer formation, and function. An adjacent SP mutant was competent for retrotranslocation and VCP interaction but shared the other defects. Our results revealed the requirement for VCP during SP trafficking and the complex cellular pathways used by long signal peptides.
Collapse
Affiliation(s)
- Poulami Das
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, Texas, USA
| | - Wendy Kaichun Xu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, Texas, USA
| | - Amit Kumar Singh Gautam
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, Texas, USA
| | - Mary M. Lozano
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, Texas, USA
| | - Jaquelin P. Dudley
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
12
|
Chen L, Zhang X, Liu G, Chen S, Zheng M, Zhu S, Zhang S. Intestinal Immune System and Amplification of Mouse Mammary Tumor Virus. Front Cell Infect Microbiol 2022; 11:807462. [PMID: 35096654 PMCID: PMC8792748 DOI: 10.3389/fcimb.2021.807462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Mouse mammary tumor virus (MMTV) is a virus that induces breast cancer in mice. During lactation, MMTV can transmit from mother to offspring through milk, and Peyer’s patches (PPs) in mouse intestine are the first and specific target organ. MMTV can be transported into PPs by microfold cells and then activate antigen-presenting cells (APCs) by directly binding with Toll-like receptors (TLRs) whereas infect them through mouse transferrin receptor 1 (mTfR1). After being endocytosed, MMTV is reversely transcribed and the cDNA inserts into the host genome. Superantigen (SAg) expressed by provirus is presented by APCs to cognate CD4+ T cells via MHCII molecules to induce SAg response, which leads to substantial proliferation and recruitment of related immune cells. Both APCs and T cells can be infected by MMTV and these extensively proliferated lymphocytes and recruited dendritic cells act as hotbeds for viral replication and amplification. In this case, intestinal lymphatic tissues can actually become the source of infection for the transmission of MMTV in vivo, which results in mammary gland infection by MMTV and eventually lead to the occurrence of breast cancer.
Collapse
Affiliation(s)
- Lankai Chen
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Guisheng Liu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shuo Chen
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Siwei Zhu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- *Correspondence: Shiwu Zhang, ; Siwei Zhu,
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- *Correspondence: Shiwu Zhang, ; Siwei Zhu,
| |
Collapse
|
13
|
Viral Membrane Fusion Proteins and RNA Sorting Mechanisms for the Molecular Delivery by Exosomes. Cells 2021; 10:cells10113043. [PMID: 34831268 PMCID: PMC8622164 DOI: 10.3390/cells10113043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022] Open
Abstract
The advancement of precision medicine critically depends on the robustness and specificity of the carriers used for the targeted delivery of effector molecules in the human body. Numerous nanocarriers have been explored in vivo, to ensure the precise delivery of molecular cargos via tissue-specific targeting, including the endocrine part of the pancreas, thyroid, and adrenal glands. However, even after reaching the target organ, the cargo-carrying vehicle needs to enter the cell and then escape lysosomal destruction. Most artificial nanocarriers suffer from intrinsic limitations that prevent them from completing the specific delivery of the cargo. In this respect, extracellular vesicles (EVs) seem to be the natural tool for payload delivery due to their versatility and low toxicity. However, EV-mediated delivery is not selective and is usually short-ranged. By inserting the viral membrane fusion proteins into exosomes, it is possible to increase the efficiency of membrane recognition and also ease the process of membrane fusion. This review describes the molecular details of the viral-assisted interaction between the target cell and EVs. We also discuss the question of the usability of viral fusion proteins in developing extracellular vesicle-based nanocarriers with a higher efficacy of payload delivery. Finally, this review specifically highlights the role of Gag and RNA binding proteins in RNA sorting into EVs.
Collapse
|
14
|
Das P, Dudley JP. How Viruses Use the VCP/p97 ATPase Molecular Machine. Viruses 2021; 13:1881. [PMID: 34578461 PMCID: PMC8473244 DOI: 10.3390/v13091881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022] Open
Abstract
Viruses are obligate intracellular parasites that are dependent on host factors for their replication. One such host protein, p97 or the valosin-containing protein (VCP), is a highly conserved AAA ATPase that facilitates replication of diverse RNA- and DNA-containing viruses. The wide range of cellular functions attributed to this ATPase is consistent with its participation in multiple steps of the virus life cycle from entry and uncoating to viral egress. Studies of VCP/p97 interactions with viruses will provide important information about host processes and cell biology, but also viral strategies that take advantage of these host functions. The critical role of p97 in viral replication might be exploited as a target for development of pan-antiviral drugs that exceed the capability of virus-specific vaccines or therapeutics.
Collapse
Affiliation(s)
- Poulami Das
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Jaquelin P. Dudley
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA;
- LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
15
|
Pervasive positive selection on virus receptors driven by host-virus conflicts in mammals. J Virol 2021; 95:e0102921. [PMID: 34319153 DOI: 10.1128/jvi.01029-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses hijack cellular proteins known as viral receptors to initiate their infection. Viral receptors are subject to two conflicting directional forces, namely negative selection to maintain their cellular function and positive selection resulted from everchanging host-virus arms race. Much remains unclear how viral receptors evolved in mammals, and whether viral receptors from different mammal groups experienced different strength of natural selection. Here, we perform evolutionary analyses of 92 viral receptors in five major orders of mammals, including Carnivora, Cetartiodactyla, Chiroptera, Primates, and Rodentia. In all the five mammal orders, signals of positive selection are detected for a high proportion of viral receptors (from 41% in Carnivora to 65% in Rodentia). Many positively selected residues overlap host-virus interaction interface. Compared with control genes, we find viral receptors underwent elevated rate of adaptive evolution in all the five mammal orders, suggesting that host-virus conflicts are the main driver of the adaptive evolution of viral receptors in mammals. Interestingly, the overall strength of natural selection acting on viral receptors driven by host-virus arms race is largely homogenous and correlated among different mammal orders with bats and rodents, zoonosis reservoirs of importance, unexceptional. Taken together, our findings indicate host-virus conflicts have driven the elevated rate of adaptive evolution in viral receptors across mammals, and might have important implications in zoonosis surveillance and prediction. Importance Viral receptors are cellular proteins hijacked by viruses to help their infections. A complete picture on the evolution of viral receptors in mammals is still lacking. Here, we perform a comprehensive evolutionary analysis of the evolution of 92 viral receptors in five mammal orders, including Carnivora, Cetartiodactyla, Chiroptera, Primates, and Rodentia. We find that positive selection pervasively occurred during the evolution of viral receptors, and viral receptors exhibit at an elevated rate of adaptive evolution than control genes in all the five mammal orders, suggesting host-virus conflicts are a major driver of the adaptive evolution of viral receptors. Interestingly, the strength of positive selection acting on viral receptors is similar among the five mammal orders. Our study might have important implications in understanding the evolution of host-virus interaction.
Collapse
|
16
|
Insights into Sensing of Murine Retroviruses. Viruses 2020; 12:v12080836. [PMID: 32751803 PMCID: PMC7472155 DOI: 10.3390/v12080836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Retroviruses are major causes of disease in animals and human. Better understanding of the initial host immune response to these viruses could provide insight into how to limit infection. Mouse retroviruses that are endemic in their hosts provide an important genetic tool to dissect the different arms of the innate immune system that recognize retroviruses as foreign. Here, we review what is known about the major branches of the innate immune system that respond to mouse retrovirus infection, Toll-like receptors and nucleic acid sensors, and discuss the importance of these responses in activating adaptive immunity and controlling infection.
Collapse
|
17
|
Zhang S, Cao Y, Yang Q. Transferrin receptor 1 levels at the cell surface influence the susceptibility of newborn piglets to PEDV infection. PLoS Pathog 2020; 16:e1008682. [PMID: 32730327 PMCID: PMC7419007 DOI: 10.1371/journal.ppat.1008682] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 08/11/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) mainly infects the intestinal epithelial cells of newborn piglets causing acute, severe atrophic enteritis. The underlying mechanisms of PEDV infection and the reasons why newborn piglets are more susceptible than older pigs remain incompletely understood. Iron deficiency is common in newborn piglets. Here we found that high levels of transferrin receptor 1 (TfR1) distributed in the apical tissue of the intestinal villi of newborns, and intracellular iron levels influence the susceptibility of newborn piglets to PEDV. We show that iron deficiency induced by deferoxamine (DFO, an iron chelating agent) promotes PEDV infection while iron accumulation induced by ferric ammonium citrate (FAC, an iron supplement) impairs PEDV infection in vitro and in vivo. Besides, PEDV infection was inhibited by occluding TfR1 with antibodies or decreasing TfR1 expression. Additionally, PEDV infection was increased in PEDV-resistant Caco-2 and HEK 293T cells over-expressed porcine TfR1. Mechanistically, the PEDV S1 protein interacts with the extracellular region of TfR1 during PEDV entry, promotes TfR1 re-localization and clustering, then activates TfR1 tyrosine phosphorylation mediated by Src kinase, and heightens the internalization of TfR1, thereby promoting PEDV entry. Taken together, these data suggest that the higher expression of TfR1 in the apical tissue of the intestinal villi caused by iron deficiency, accounts for newborn piglets being acutely susceptible to PEDV. Newborn piglets are particularly susceptible to infection by PEDV, with 80–100% dying within days of infection. The reasons for newborns’ acute susceptibility to PEDV infection have not been elucidated clearly. The primarily target of PEDV is the porcine intestinal epithelial cells. Here, we show that the high expression of TfR1 in the apical tissue of intestinal villi in newborn piglets with iron deficiency is a reason for their susceptibility to PEDV. Further, we demonstrate that iron supplementation reduces PEDV infection. This study reveals that iron plays an important role in the susceptibility of newborn piglets to PEDV and provides insights into therapies for the prevention and treatment of PEDV infections.
Collapse
Affiliation(s)
- Shuai Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu, PR China
| | - Yanan Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu, PR China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu, PR China
| |
Collapse
|
18
|
Zhang S, Hu W, Yuan L, Yang Q. Transferrin receptor 1 is a supplementary receptor that assists transmissible gastroenteritis virus entry into porcine intestinal epithelium. Cell Commun Signal 2018; 16:69. [PMID: 30342530 PMCID: PMC6196004 DOI: 10.1186/s12964-018-0283-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/11/2018] [Indexed: 12/15/2022] Open
Abstract
Background Transmissible gastroenteritis virus (TGEV), the etiologic agent of transmissible gastroenteritis, infects swine of all ages causing vomiting and diarrhea, in newborn piglets the mortality rate is near 100%. Intestinal epithelial cells are the primary target cells of TGEV. Transferrin receptor 1 (TfR1), which is highly expressed in piglets with anemia, may play a role in TGEV infection. However, the underlying mechanism of TGEV invasion remains largely unknown. Results Our study investigated the possibility that TfR1 can serve as a receptor for TGEV infection and enables the invasion and replication of TGEV. We observed that TGEV infection promoted TfR1 internalization, clustering, and co-localization with TfR1 early in infection, while TfR1 expression was significantly down-regulated as TGEV infection proceeded. TGEV infection and replication were inhibited by occluding TfR1 with antibodies or by decreasing TfR1 expression. TGEV infection increased in TGEV-susceptible ST or IPEC-J2 cell lines and TGEV-resistant Caco-2 cells when porcine TfR1 was over-expressed. Finally, we found that the TGEV S1 protein interacts with the extracellular region of TfR1, and that pre-incubating TGEV with a protein fragment containing the extracellular region of TfR1 blocked viral infection. Conclusions Our results support the hypothesis that TfR1 is an additional receptor for TGEV and assists TGEV invasion and replication. Electronic supplementary material The online version of this article (10.1186/s12964-018-0283-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Weiwei Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Lvfeng Yuan
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Qian Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China.
| |
Collapse
|
19
|
Robinson-McCarthy LR, McCarthy KR, Raaben M, Piccinotti S, Nieuwenhuis J, Stubbs SH, Bakkers MJG, Whelan SPJ. Reconstruction of the cell entry pathway of an extinct virus. PLoS Pathog 2018; 14:e1007123. [PMID: 30080900 PMCID: PMC6095630 DOI: 10.1371/journal.ppat.1007123] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/16/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Endogenous retroviruses (ERVs), remnants of ancient germline infections, comprise 8% of the human genome. The most recently integrated includes human ERV-K (HERV-K) where several envelope (env) sequences remain intact. Viral pseudotypes decorated with one of those Envs are infectious. Using a recombinant vesicular stomatitis virus encoding HERV-K Env as its sole attachment and fusion protein (VSV-HERVK) we conducted a genome-wide haploid genetic screen to interrogate the host requirements for infection. This screen identified 11 genes involved in heparan sulfate biosynthesis. Genetic inhibition or chemical removal of heparan sulfate and addition of excess soluble heparan sulfate inhibit infection. Direct binding of heparin to soluble HERV-K Env and purified VSV-HERVK defines it as critical for viral attachment. Cell surface bound VSV-HERVK particles are triggered to infect on exposure to acidic pH, whereas acid pH pretreatment of virions blocks infection. Testing of additional endogenous HERV-K env sequences reveals they bind heparin and mediate acid pH triggered fusion. This work reconstructs and defines key steps in the infectious entry pathway of an extinct virus.
Collapse
Affiliation(s)
- Lindsey R. Robinson-McCarthy
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kevin R. McCarthy
- Laboratory of Molecular Medicine, Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthijs Raaben
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Silvia Piccinotti
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joppe Nieuwenhuis
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sarah H. Stubbs
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mark J. G. Bakkers
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sean P. J. Whelan
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
20
|
Abstract
The human betaretrovirus and the closely related mouse mammary tumor virus have been linked with the development of cholangitis and mitochondrial antibody production in patients with primary biliary cholangitis (PBC) and mouse models of autoimmune biliary disease, respectively. In vitro, betaretroviruses have been found to stimulate the expression of mitochondrial autoantigens on the cell surface of biliary epithelial cells. In vivo, both mitochondrial autoantigens and viral proteins have been shown to be co-expressed in biliary epithelium and lymphoid tissue. Notably, both mice and humans make poor antibody responses to betaretrovirus infection, whereas proinflammatory responses to viral proteins have been observed in T lymphocyte studies. Furthermore, proviral integration studies have confirmed the presence of human betaretrovirus in biliary epithelium of patients with PBC. Preliminary proof of principal studies using combination antiretroviral therapy have shown that suppression of viral expression is associated with sustained biochemical response. As the previous regimen used was poorly tolerated, further randomized controlled trials are planned to determine whether betaretrovirus infection plays an important role in the development of PBC.
Collapse
Affiliation(s)
- Andrew L Mason
- Department of Medicine, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
21
|
Wessling-Resnick M. Crossing the Iron Gate: Why and How Transferrin Receptors Mediate Viral Entry. Annu Rev Nutr 2018; 38:431-458. [PMID: 29852086 DOI: 10.1146/annurev-nutr-082117-051749] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Because both the host and pathogen require iron, the innate immune response carefully orchestrates control over iron metabolism to limit its availability during times of infection. Nutritional iron deficiency can impair host immunity, while iron overload can cause oxidative stress to propagate harmful viral mutations. An emerging enigma is that many viruses use the primary gatekeeper of iron metabolism, the transferrin receptor, as a means to enter cells. Why and how this iron gate is a viral target for infection are the focus of this review.
Collapse
Affiliation(s)
- Marianne Wessling-Resnick
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA;
| |
Collapse
|
22
|
Gammella E, Buratti P, Cairo G, Recalcati S. The transferrin receptor: the cellular iron gate. Metallomics 2018; 9:1367-1375. [PMID: 28671201 DOI: 10.1039/c7mt00143f] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The transferrin receptor (TfR1), which mediates cellular iron uptake through clathrin-dependent endocytosis of iron-loaded transferrin, plays a key role in iron homeostasis. Since the number of TfR1 molecules at the cell surface is the rate-limiting step for iron entry into cells and is essential to prevent iron overload, TfR1 expression is precisely controlled at multiple levels. In this review, we have discussed the latest advances in the molecular regulation of TfR1 expression and we have considered current understanding of TfR1 function beyond its canonical role in providing iron for erythroid precursors and rapidly proliferating cells.
Collapse
Affiliation(s)
- Elena Gammella
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milano, Italy.
| | | | | | | |
Collapse
|
23
|
Gannon OM, Antonsson A, Bennett IC, Saunders NA. Viral infections and breast cancer - A current perspective. Cancer Lett 2018; 420:182-189. [PMID: 29410005 DOI: 10.1016/j.canlet.2018.01.076] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/08/2018] [Accepted: 01/31/2018] [Indexed: 01/25/2023]
Abstract
Sporadic human breast cancer is the most common cancer to afflict women. Since the discovery, decades ago, of the oncogenic mouse mammary tumour virus, there has been significant interest in the potential aetiologic role of infectious agents in sporadic human breast cancer. To address this, many studies have examined the presence of viruses (e.g. papillomaviruses, herpes viruses and retroviruses), endogenous retroviruses and more recently, microbes, as a means of implicating them in the aetiology of human breast cancer. Such studies have generated conflicting experimental and clinical reports of the role of infection in breast cancer. This review evaluates the current evidence for a productive oncogenic viral infection in human breast cancer, with a focus on the integration of sensitive and specific next generation sequencing technologies with pathogen discovery. Collectively, the majority of the recent literature using the more powerful next generation sequencing technologies fail to support an oncogenic viral infection being involved in disease causality in breast cancer. In balance, the weight of the current experimental evidence supports the conclusion that viral infection is unlikely to play a significant role in the aetiology of breast cancer.
Collapse
Affiliation(s)
- O M Gannon
- University of Queensland Diamantina Institute, The Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - A Antonsson
- Department of Population Health, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland 4006, Australia; School of Medicine, The University of Queensland, Herston Road, Herston, Queensland 4006, Australia
| | - I C Bennett
- School of Medicine, The University of Queensland, Herston Road, Herston, Queensland 4006, Australia; Private Practice, The Wesley and St Andrews Hospital, Auchenflower 4066, Australia
| | - N A Saunders
- University of Queensland Diamantina Institute, The Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
24
|
Wu Y, Xu J, Chen J, Zou M, Rusidanmu A, Yang R. Blocking transferrin receptor inhibits the growth of lung adenocarcinoma cells in vitro. Thorac Cancer 2017; 9:253-261. [PMID: 29286585 PMCID: PMC5792724 DOI: 10.1111/1759-7714.12572] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 12/19/2022] Open
Abstract
Background Transferrin receptor (TfR) is expressed in most lung cancers and is an indicator of poor prognosis in certain groups of patients. In this study, we blocked cell surface TfR to inhibit lung adenocarcinoma (LAC) cell growth in vitro and investigated the associated molecular mechanisms to determine a potential therapeutic target in human LAC. Methods RNA interference and antibody blocking techniques were used to block the function of TfR in LAC cells, and cell proliferation assays were used to detect the results. Affymetrix microarray analysis was conducted using H1299 cells in which TfR was blocked with an antibody to investigate the molecular mechanisms involved. Results The cell proliferation assay demonstrated that H1299 cell proliferation was significantly inhibited after small interfering RNA knockdown or blocking of TfR. Mechanistic studies found that 100 genes were altered more than two‐fold after TfR was blocked and that blocking TfR was accompanied by decreased expression of the oncogene KRAS. Conclusion Our data provide evidence that blocking TfR could significantly inhibit LAC proliferation by targeting the oncogene KRAS; therefore, TfR may be a therapeutic target for LAC. In addition, our results suggest a new method for blocking the signal from the oncogene KRAS by targeting TfR in LAC.
Collapse
Affiliation(s)
- Yihe Wu
- Department of Thoracic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jinming Xu
- Department of Thoracic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jinbo Chen
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Meirong Zou
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Aizemaiti Rusidanmu
- Department of Thoracic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Rong Yang
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Han B, Polonais V, Sugi T, Yakubu R, Takvorian PM, Cali A, Maier K, Long M, Levy M, Tanowitz HB, Pan G, Delbac F, Zhou Z, Weiss LM. The role of microsporidian polar tube protein 4 (PTP4) in host cell infection. PLoS Pathog 2017; 13:e1006341. [PMID: 28426751 PMCID: PMC5413088 DOI: 10.1371/journal.ppat.1006341] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 05/02/2017] [Accepted: 04/08/2017] [Indexed: 12/02/2022] Open
Abstract
Microsporidia have been identified as pathogens that have important effects on our health, food security and economy. A key to the success of these obligate intracellular pathogens is their unique invasion organelle, the polar tube, which delivers the nucleus containing sporoplasm into host cells during invasion. Due to the size of the polar tube, the rapidity of polar tube discharge and sporoplasm passage, and the absence of genetic techniques for the manipulation of microsporidia, study of this organelle has been difficult and there is relatively little known regarding polar tube formation and the function of the proteins making up this structure. Herein, we have characterized polar tube protein 4 (PTP4) from the microsporidium Encephalitozoon hellem and found that a monoclonal antibody to PTP4 labels the tip of the polar tube suggesting that PTP4 might be involved in a direct interaction with host cell proteins during invasion. Further analyses employing indirect immunofluorescence (IFA), enzyme-linked immunosorbent (ELISA) and fluorescence-activated cell sorting (FACS) assays confirmed that PTP4 binds to mammalian cells. The addition of either recombinant PTP4 protein or anti-PTP4 antibody reduced microsporidian infection of its host cells in vitro. Proteomic analysis of PTP4 bound to host cell membranes purified by immunoprecipitation identified transferrin receptor 1 (TfR1) as a potential host cell interacting partner for PTP4. Additional experiments revealed that knocking out TfR1, adding TfR1 recombinant protein into cell culture, or adding anti-TfR1 antibody into cell culture significantly reduced microsporidian infection rates. These results indicate that PTP4 is an important protein competent of the polar tube involved in the mechanism of host cell infection utilized by these pathogens. Microsporidia are obligate intracellular parasites that cause disease in immune suppressed individuals such as those with HIV/AIDS and recipients of organ transplants. The microsporidia are defined by a unique invasion organelle, the polar tube. The formation of this organelle and its role in the mechanism of infection remain unknown. Herein, we have identified a role for Encephalitozoon hellem polar tube protein 4 (PTP4) in infection demonstrating that PTP4 can bind to the host cell surface via the host transferrin receptor 1 (TfR1) protein. Interfering with the interaction of PTP4 and TfR1 causes a significant decrease in microsporidian infection of host cells. These data suggest that PTP4 functions as an important microsporidian protein during host cell infection by this pathogen.
Collapse
Affiliation(s)
- Bing Han
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P. R. China
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, P. R. China
| | - Valérie Polonais
- Université Clermont Auvergne, Laboratoire "Microorganismes: Génome et Environnement, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - Tatsuki Sugi
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Rama Yakubu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Peter M. Takvorian
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, United States of America
| | - Ann Cali
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, United States of America
| | - Keith Maier
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Mengxian Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P. R. China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, P. R. China
| | - Matthew Levy
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Herbert B. Tanowitz
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P. R. China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, P. R. China
| | - Frédéric Delbac
- Université Clermont Auvergne, Laboratoire "Microorganismes: Génome et Environnement, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P. R. China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, P. R. China
- College of Life Sciences, Chongqing Normal University, Chongqing, P. R. China
- * E-mail: (LMW); (ZZ)
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (LMW); (ZZ)
| |
Collapse
|
26
|
Lippitsch A, Chukovetskyi Y, Baal N, Bein G, Hackstein H. Unique high and homogenous surface expression of the transferrin receptor CD71 on murine plasmacytoid dendritic cells in different tissues. Cell Immunol 2017; 316:41-52. [PMID: 28372797 DOI: 10.1016/j.cellimm.2017.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/28/2017] [Accepted: 03/27/2017] [Indexed: 01/03/2023]
Abstract
Plasmacytoid dendritic cells (pDC) are of increasing interest in cancer vaccine development, but many functions of these highly specialized, multifaceted cells are poorly understood. The transferrin receptor CD71 has also been suggested to function as an antigen uptake receptor on professional antigen-presenting cells. In this study, we employed multiparameter flow cytometry to investigate CD71 expression on various leukocyte subsets, including DC subsets, granulocytes, macrophages, T and B lymphocytes, γδ T cells, and natural killer cells. Cells from various lymphoid and non-lymphoid murine tissues were analyzed using fluorochrome-conjugated monoclonal antibodies. High CD71 expression (90-100%) was observed, uniquely on pDC amongst the leukocyte populations examined, in both lymphoid and non-lymphoid tissues, including other DC subsets. In contrast, CD71 expression on non-tissue pDC, in the bone marrow and peripheral blood, was reduced. The cause and function of this high tissue pDC-selective CD71 expression remain to be examined.
Collapse
Affiliation(s)
- Anne Lippitsch
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University Giessen, Biomedical Research Center Seltersberg (BFS), Schubertstrasse 81, D-35392 Giessen, Germany
| | - Yuri Chukovetskyi
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University Giessen, Biomedical Research Center Seltersberg (BFS), Schubertstrasse 81, D-35392 Giessen, Germany
| | - Nelli Baal
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University Giessen, Biomedical Research Center Seltersberg (BFS), Schubertstrasse 81, D-35392 Giessen, Germany
| | - Gregor Bein
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University Giessen, Biomedical Research Center Seltersberg (BFS), Schubertstrasse 81, D-35392 Giessen, Germany
| | - Holger Hackstein
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University Giessen, Biomedical Research Center Seltersberg (BFS), Schubertstrasse 81, D-35392 Giessen, Germany.
| |
Collapse
|
27
|
Dudley JP, Golovkina TV, Ross SR. Lessons Learned from Mouse Mammary Tumor Virus in Animal Models. ILAR J 2017; 57:12-23. [PMID: 27034391 DOI: 10.1093/ilar/ilv044] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mouse mammary tumor virus (MMTV), which was discovered as a milk-transmitted, infectious, cancer-inducing agent in the 1930s, has been used as an animal model for the study of retroviral infection and transmission, antiviral immune responses, and breast cancer and lymphoma biology. The main target cells for MMTV infection in vivo are cells of the immune system and mammary epithelial cells. Although the host mounts an immune response to the virus, MMTV has evolved multiple means of evading this response. MMTV causes mammary tumors when the provirus integrates into the mammary epithelial and lymphoid cell genome during viral replication and thereby activates cellular oncogene expression. Thus, tumor induction is a by-product of the infection cycle. A number of important oncogenes have been discovered by carrying out MMTV integration site analysis, some of which may play a role in human breast cancer.
Collapse
Affiliation(s)
- Jaquelin P Dudley
- Jaquelin P. Dudley, PhD, is a professor in the Department of Molecular Biosciences, Center for Infectious Disease and Institute for Cellular and Molecular Biology at the University of Texas at Austin. Tatyana V. Golovkina, PhD, is a professor in the Department of Microbiology at the University of Chicago in Chicago, Illinois. Susan R. Ross, PhD, is a professor in the Department of Microbiology in the Perelman School of Medicine of the University of Pennsylvania in Philadelphia, Pennsylvania
| | - Tatyana V Golovkina
- Jaquelin P. Dudley, PhD, is a professor in the Department of Molecular Biosciences, Center for Infectious Disease and Institute for Cellular and Molecular Biology at the University of Texas at Austin. Tatyana V. Golovkina, PhD, is a professor in the Department of Microbiology at the University of Chicago in Chicago, Illinois. Susan R. Ross, PhD, is a professor in the Department of Microbiology in the Perelman School of Medicine of the University of Pennsylvania in Philadelphia, Pennsylvania
| | - Susan R Ross
- Jaquelin P. Dudley, PhD, is a professor in the Department of Molecular Biosciences, Center for Infectious Disease and Institute for Cellular and Molecular Biology at the University of Texas at Austin. Tatyana V. Golovkina, PhD, is a professor in the Department of Microbiology at the University of Chicago in Chicago, Illinois. Susan R. Ross, PhD, is a professor in the Department of Microbiology in the Perelman School of Medicine of the University of Pennsylvania in Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Mendoza A, Torrisi DM, Sell S, Cady NC, Lawrence DA. Grating coupled SPR microarray analysis of proteins and cells in blood from mice with breast cancer. Analyst 2017; 141:704-12. [PMID: 26539568 DOI: 10.1039/c5an01749a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Biomarker discovery for early disease diagnosis is highly important. Of late, much effort has been made to analyze complex biological fluids in an effort to develop new markers specific for different cancer types. Recent advancements in label-free technologies such as surface plasmon resonance (SPR)-based biosensors have shown promise as a diagnostic tool since there is no need for labeling or separation of cells. Furthermore, SPR can provide rapid, real-time detection of antigens from biological samples since SPR is highly sensitive to changes in surface-associated molecular and cellular interactions. Herein, we report a lab-on-a-chip microarray biosensor that utilizes grating-coupled surface plasmon resonance (GCSPR) and grating-coupled surface plasmon coupled fluorescence (GCSPCF) imaging to detect circulating tumor cells (CTCs) from a mouse model (FVB-MMTV-PyVT). GCSPR and GCSPCF analysis was accomplished by spotting antibodies to surface cell markers, cytokines and stress proteins on a nanofabricated GCSPR microchip and screening blood samples from FVB control mice or FVB-MMTV-PyVT mice with developing mammary carcinomas. A transgenic MMTV-PyVT mouse derived cancer cell line was also analyzed. The analyses indicated that CD24, CD44, CD326, CD133 and CD49b were expressed in both cell lines and in blood from MMTV-PyVT mice. Furthermore, cytokines such as IL-6, IL-10 and TNF-α, along with heat shock proteins HSP60, HSP27, HSc70(HSP73), HSP90 total, HSP70/HSc70, HSP90, HSP70, HSP90 alpha, phosphotyrosine and HSF-1 were overexpressed in MMTV-PyVT mice.
Collapse
Affiliation(s)
- A Mendoza
- Wadsworth Center, New York State Department of Health, 150 New Scotland Avenue, Albany, NY 12208, USA
| | - D M Torrisi
- Wadsworth Center, New York State Department of Health, 150 New Scotland Avenue, Albany, NY 12208, USA
| | - S Sell
- Wadsworth Center, New York State Department of Health, 150 New Scotland Avenue, Albany, NY 12208, USA
| | - N C Cady
- SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA.
| | - D A Lawrence
- Wadsworth Center, New York State Department of Health, 150 New Scotland Avenue, Albany, NY 12208, USA
| |
Collapse
|
29
|
Infectious Entry Pathway Mediated by the Human Endogenous Retrovirus K Envelope Protein. J Virol 2016; 90:3640-9. [PMID: 26792739 DOI: 10.1128/jvi.03136-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/12/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Endogenous retroviruses (ERVs), the majority of which exist as degraded remnants of ancient viruses, comprise approximately 8% of the human genome. The youngest human ERVs (HERVs) belong to the HERV-K(HML-2) subgroup and were endogenized within the past 1 million years. The viral envelope protein (ENV) facilitates the earliest events of endogenization (cellular attachment and entry), and here, we characterize the requirements for HERV-K ENV to mediate infectious cell entry. Cell-cell fusion assays indicate that a minimum of two events are required for fusion, proteolytic processing by furin-like proteases and exposure to acidic pH. We generated an infectious autonomously replicating recombinant vesicular stomatitis virus (VSV) in which the glycoprotein was replaced by HERV-K ENV. HERV-K ENV imparts an endocytic entry pathway that requires dynamin-mediated membrane scission and endosomal acidification but is distinct from clathrin-dependent or macropinocytic uptake pathways. The lack of impediments to the replication of the VSV core in eukaryotic cells allowed us to broadly survey the HERV-K ENV-dictated tropism. Unlike extant betaretroviral envelopes, which impart a narrow species tropism, we found that HERV-K ENV mediates broad tropism encompassing cells from multiple mammalian and nonmammalian species. We conclude that HERV-K ENV dictates an evolutionarily conserved entry pathway and that the restriction of HERV-K to primate genomes reflects downstream stages of the viral replication cycle. IMPORTANCE Approximately 8% of the human genome is of retroviral origin. While many of those viral genomes have become inactivated, some copies of the most recently endogenized human retrovirus, HERV-K, can encode individual functional proteins. Here, we characterize the envelope protein (ENV) of the virus to define how it mediates infection of cells. We demonstrate that HERV-K ENV undergoes a proteolytic processing step and triggers membrane fusion in response to acidic pH--a strategy common to many viral fusogens. Our data suggest that the infectious entry pathway mediated by this ENV requires endosomal acidification and the GTPase dynamin but does not require clathrin-dependent uptake. In marked contrast to other betaretroviruses, HERV-K ENV imparts broad species tropism in cultured cells. This work provides new insights into the entry pathway of an extinct human virus and provides a powerful tool to further probe the endocytic route by which HERV-K infects cells.
Collapse
|
30
|
Ng M, Ndungo E, Kaczmarek ME, Herbert AS, Binger T, Kuehne AI, Jangra RK, Hawkins JA, Gifford RJ, Biswas R, Demogines A, James RM, Yu M, Brummelkamp TR, Drosten C, Wang LF, Kuhn JH, Müller MA, Dye JM, Sawyer SL, Chandran K. Filovirus receptor NPC1 contributes to species-specific patterns of ebolavirus susceptibility in bats. eLife 2015; 4. [PMID: 26698106 PMCID: PMC4709267 DOI: 10.7554/elife.11785] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/19/2015] [Indexed: 12/13/2022] Open
Abstract
Biological factors that influence the host range and spillover of Ebola virus (EBOV) and other filoviruses remain enigmatic. While filoviruses infect diverse mammalian cell lines, we report that cells from African straw-colored fruit bats (Eidolon helvum) are refractory to EBOV infection. This could be explained by a single amino acid change in the filovirus receptor, NPC1, which greatly reduces the affinity of EBOV-NPC1 interaction. We found signatures of positive selection in bat NPC1 concentrated at the virus-receptor interface, with the strongest signal at the same residue that controls EBOV infection in Eidolon helvum cells. Our work identifies NPC1 as a genetic determinant of filovirus susceptibility in bats, and suggests that some NPC1 variations reflect host adaptations to reduce filovirus replication and virulence. A single viral mutation afforded escape from receptor control, revealing a pathway for compensatory viral evolution and a potential avenue for expansion of filovirus host range in nature. DOI:http://dx.doi.org/10.7554/eLife.11785.001 Ebola virus and other filoviruses can cause devastating diseases in humans and other apes. Numerous small outbreaks of Ebola virus disease have occurred in Africa over the past 40 years. However, in 2013–2015, the largest outbreak on record took place in three Western African nations with no previous history of the disease. Human outbreaks of Ebola virus disease likely begin when a person encounters an infected wild animal. Though it remains unclear precisely which animals harbor Ebola virus between outbreaks, and how they transmit the virus to humans or other primates, recent work showed that some filoviruses do infect specific types of bats in nature. Ng, Ndungo, Kaczmarek et al. sought to identify the genes that influence whether or not a type of bat is susceptible to infection by Ebola virus and other filoviruses. Several filoviruses, including Ebola virus, were tested to see if they could infect cells that had been collected from four types of African fruit bats. These bats are all found in areas where outbreaks have occurred in the past. The tests revealed that a small change in the sequence of the NPC1 gene in some bat cells greatly reduced their susceptibility to Ebola virus. NPC1 encodes a protein that mammals need in order to move cholesterol within their cells. In humans, the loss of the protein encoded by NPC1 causes a rare but very severe disease called Niemann-Pick type C disease. This protein also turns out to be a receptor that the filoviruses must bind to before they can infect the cells. Further analysis then revealed that NPC1 has evolved rapidly in bats, with changes concentrated in the parts of the receptor that interact with Ebola virus. Ng, Ndungo, Kaczmarek et al. went on to discover some changes in the genome sequence of Ebola virus that could compensate for the changes in the bat’s NPC1 gene. These findings hint at one way that a filovirus could evolve to better infect a host with receptors that were less than optimal. Following on from this work, the next challenges will be to expand the investigation to include additional types of bats, other types of mammals, and other host genes that could influence filovirus infection and disease. Further studies could also examine the other side of the arms race – that is, the evolution of viral genes in bats. However, such studies would be complicated by the lack of viral sequences that have been collected from bats, because to date most have been isolated from humans and other primates instead. DOI:http://dx.doi.org/10.7554/eLife.11785.002
Collapse
Affiliation(s)
- Melinda Ng
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, United States
| | - Esther Ndungo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, United States
| | - Maria E Kaczmarek
- Department of Integrative Biology, University of Texas at Austin, Austin, United States
| | - Andrew S Herbert
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, United States
| | - Tabea Binger
- Institute of Virology, University of Bonn Medical Center, Bonn, Germany
| | - Ana I Kuehne
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, United States
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, United States
| | - John A Hawkins
- Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, United States
| | - Robert J Gifford
- University of Glasgow MRC Virology Unit, Glasgow, United Kingdom
| | - Rohan Biswas
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, United States
| | - Ann Demogines
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Rebekah M James
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, United States
| | - Meng Yu
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, , Singapore
| | | | - Christian Drosten
- Institute of Virology, University of Bonn Medical Center, Bonn, Germany.,German Centre for Infectious Diseases Research, Bonn, Germany
| | - Lin-Fa Wang
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, , Singapore
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, United States
| | - Marcel A Müller
- Institute of Virology, University of Bonn Medical Center, Bonn, Germany
| | - John M Dye
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, United States
| | - Sara L Sawyer
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States.,BioFrontiers Institute, University of Colorado Boulder, Boulder, United States.,Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, United States
| |
Collapse
|
31
|
Mizutani T, Ishizaka A, Nihei CI. Transferrin Receptor 1 Facilitates Poliovirus Permeation of Mouse Brain Capillary Endothelial Cells. J Biol Chem 2015; 291:2829-36. [PMID: 26637351 DOI: 10.1074/jbc.m115.690941] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Indexed: 11/06/2022] Open
Abstract
As a possible route for invasion of the CNS, circulating poliovirus (PV) in the blood is believed to traverse the blood-brain barrier (BBB), resulting in paralytic poliomyelitis. However, the underlying mechanism is poorly understood. In this study, we demonstrated that mouse transferrin receptor 1 (mTfR1) is responsible for PV attachment to the cell surface, allowing invasion into the CNS via the BBB. PV interacts with the apical domain of mTfR1 on mouse brain capillary endothelial cells (MBEC4) in a dose-dependent manner via its capsid protein (VP1). We found that F-G, G-H, and H-I loops in VP1 are important for this binding. However, C-D, D-E, and E-F loops in VP1-fused Venus proteins efficiently penetrate MBEC4 cells. These results imply that the VP1 functional domain responsible for cell attachment is different from that involved in viral permeation of the brain capillary endothelium. We observed that co-treatment of MBEC4 cells with excess PV particles but not dextran resulted in blockage of transferrin transport into cells. Using the Transwell in vitro BBB model, transferrin co-treatment inhibited permeation of PV into MBEC4 cells and delayed further viral permeation via mTfR1 knockdown. With mTfR1 as a positive mediator of PV-host cell attachment and PV permeation of MBEC4 cells, our results indicate a novel role of TfR1 as a cellular receptor for human PV receptor/CD155-independent PV invasion of the CNS.
Collapse
Affiliation(s)
- Taketoshi Mizutani
- From the Institute of Microbial Chemistry, Microbial Chemistry Research Foundation (BIKAKEN), Tokyo, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Aya Ishizaka
- From the Institute of Microbial Chemistry, Microbial Chemistry Research Foundation (BIKAKEN), Tokyo, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Coh-Ichi Nihei
- From the Institute of Microbial Chemistry, Microbial Chemistry Research Foundation (BIKAKEN), Tokyo, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| |
Collapse
|
32
|
Kramer P, Lausch V, Volkwein A, Hanke K, Hohn O, Bannert N. The human endogenous retrovirus K(HML-2) has a broad envelope-mediated cellular tropism and is prone to inhibition at a post-entry, pre-integration step. Virology 2015; 487:121-8. [PMID: 26517399 DOI: 10.1016/j.virol.2015.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/09/2015] [Accepted: 10/14/2015] [Indexed: 11/28/2022]
Abstract
The HERV-K(HML-2) family is the most recent addition to the collection of human endogenous retroviruses. It comprises proviruses that encode functional proteins that can assemble into replication defective particles carrying the envelope protein. Using a reconstituted HERV-K113 envelope sequence, we have analyzed its ability to mediate entry into a set of 33 cell lines from 10 species. Of these, 30 were permissive, demonstrating an amphotropism consistent with a broad expression of receptor protein(s). In an initial effort to identify a receptor for HERV-K(HML-2) we investigated whether transferrin receptor 1 and hyaluronidase 2, known cellular receptors of the closely related betaretroviruses mouse mammary tumor virus (MMTV) and Jaagsiekte sheep retrovirus (JSRV), could facilitate HERV-K(HML-2) entry. However, neither of these proteins could serve as a receptor for HERV-K(HML-2). Moreover, during attempts to further characterize the tropism of HERV-K(HML-2), we identified a cellular activity that inhibits infection at a post-entry, pre-integration step.
Collapse
Affiliation(s)
- Philipp Kramer
- Robert Koch Institute, Division for HIV and Other Retroviruses, Nordufer 20, 13353 Berlin, Germany
| | - Veronika Lausch
- Robert Koch Institute, Division for HIV and Other Retroviruses, Nordufer 20, 13353 Berlin, Germany
| | - Alexander Volkwein
- Robert Koch Institute, Division for HIV and Other Retroviruses, Nordufer 20, 13353 Berlin, Germany
| | - Kirsten Hanke
- Robert Koch Institute, Division for HIV and Other Retroviruses, Nordufer 20, 13353 Berlin, Germany
| | - Oliver Hohn
- Robert Koch Institute, Division for HIV and Other Retroviruses, Nordufer 20, 13353 Berlin, Germany
| | - Norbert Bannert
- Robert Koch Institute, Division for HIV and Other Retroviruses, Nordufer 20, 13353 Berlin, Germany.
| |
Collapse
|
33
|
Computational and Functional Analysis of the Virus-Receptor Interface Reveals Host Range Trade-Offs in New World Arenaviruses. J Virol 2015; 89:11643-53. [PMID: 26355089 DOI: 10.1128/jvi.01408-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/02/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Animal viruses frequently cause zoonotic disease in humans. As these viruses are highly diverse, evaluating the threat that they pose remains a major challenge, and efficient approaches are needed to rapidly predict virus-host compatibility. Here, we develop a combined computational and experimental approach to assess the compatibility of New World arenaviruses, endemic in rodents, with the host TfR1 entry receptors of different potential new host species. Using signatures of positive selection, we identify a small motif on rodent TfR1 that conveys species specificity to the entry of viruses into cells. However, we show that mutations in this region affect the entry of each arenavirus differently. For example, a human single nucleotide polymorphism (SNP) in this region, L212V, makes human TfR1 a weaker receptor for one arenavirus, Machupo virus, but a stronger receptor for two other arenaviruses, Junin and Sabia viruses. Collectively, these findings set the stage for potential evolutionary trade-offs, where natural selection for resistance to one virus may make humans or rodents susceptible to other arenavirus species. Given the complexity of this host-virus interplay, we propose a computational method to predict these interactions, based on homology modeling and computational docking of the virus-receptor protein-protein interaction. We demonstrate the utility of this model for Machupo virus, for which a suitable cocrystal structural template exists. Our model effectively predicts whether the TfR1 receptors of different species will be functional receptors for Machupo virus entry. Approaches such at this could provide a first step toward computationally predicting the "host jumping" potential of a virus into a new host species. IMPORTANCE We demonstrate how evolutionary trade-offs may exist in the dynamic evolutionary interplay between viruses and their hosts, where natural selection for resistance to one virus could make humans or rodents susceptible to other virus species. We present an algorithm that predicts which species have cell surface receptors that make them susceptible to Machupo virus, based on computational docking of protein structures. Few molecular models exist for predicting the risk of spillover of a particular animal virus into humans or new animal populations. Our results suggest that a combination of evolutionary analysis, structural modeling, and experimental verification may provide an efficient approach for screening and assessing the potential spillover risks of viruses circulating in animal populations.
Collapse
|
34
|
Genetic screening reveals a link between Wnt signaling and antitubulin drugs. THE PHARMACOGENOMICS JOURNAL 2015; 16:164-72. [PMID: 26149735 PMCID: PMC4705004 DOI: 10.1038/tpj.2015.50] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/22/2015] [Accepted: 06/03/2015] [Indexed: 01/03/2023]
Abstract
The antitubulin drugs, paclitaxel (PX) and colchicine (COL), inhibit cell growth and are therapeutically valuable. PX stabilizes microtubules, while COL promotes their depolymerization. But, the drug concentrations that alter tubulin polymerization are hundreds of times higher than their clinically useful levels. To map genetic targets for drug action at single-gene resolution, we used a human radiation hybrid panel. We identified loci that affected cell survival in the presence of five compounds of medical relevance. For PX and COL, the zinc and ring finger 3 (ZNRF3) gene dominated the genetic landscape at therapeutic concentrations. ZNRF3 encodes an R-spondin regulated receptor that inhibits Wingless/Int (Wnt) signaling. Overexpression of the ZNRF3 gene shielded cells from antitubulin drug action, while small interfering RNA knockdowns resulted in sensitization. Further a potent pharmacological inhibitor of Wnt signaling, Wnt-C59, protected cells from PX and COL. Our results suggest that the antitubulin drugs perturb microtubule dynamics, thereby influencing Wnt signaling.
Collapse
|
35
|
Human hemorrhagic Fever causing arenaviruses: molecular mechanisms contributing to virus virulence and disease pathogenesis. Pathogens 2015; 4:283-306. [PMID: 26011826 PMCID: PMC4493475 DOI: 10.3390/pathogens4020283] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 12/22/2022] Open
Abstract
Arenaviruses include multiple human pathogens ranging from the low-risk lymphocytic choriomeningitis virus (LCMV) to highly virulent hemorrhagic fever (HF) causing viruses such as Lassa (LASV), Junin (JUNV), Machupo (MACV), Lujo (LUJV), Sabia (SABV), Guanarito (GTOV), and Chapare (CHPV), for which there are limited preventative and therapeutic measures. Why some arenaviruses can cause virulent human infections while others cannot, even though they are isolated from the same rodent hosts, is an enigma. Recent studies have revealed several potential pathogenic mechanisms of arenaviruses, including factors that increase viral replication capacity and suppress host innate immunity, which leads to high viremia and generalized immune suppression as the hallmarks of severe and lethal arenaviral HF diseases. This review summarizes current knowledge of the roles of each of the four viral proteins and some known cellular factors in the pathogenesis of arenaviral HF as well as of some human primary cell-culture and animal models that lend themselves to studying arenavirus-induced HF disease pathogenesis. Knowledge gained from these studies can be applied towards the development of novel therapeutics and vaccines against these deadly human pathogens.
Collapse
|
36
|
Konstantoulas CJ, Lamp B, Rumenapf TH, Indik S. Single amino acid substitution (G42E) in the receptor binding domain of mouse mammary tumour virus envelope protein facilitates infection of non-murine cells in a transferrin receptor 1-independent manner. Retrovirology 2015; 12:43. [PMID: 25980759 PMCID: PMC4445801 DOI: 10.1186/s12977-015-0168-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/20/2015] [Indexed: 12/11/2022] Open
Abstract
Background Mouse mammary tumour virus (MMTV) is a betaretrovirus that infects rodent cells and uses mouse tranferrin receptor 1 (TfR1) for cell entry. Several MMTV strains have been shown to productively infect, in addition to murine cells, various heterologous cell lines including those of human origin, albeit less efficiently than murine cells. Furthermore, there have been reports that the continued passage of MMTV in heterologous cell lines gives rise to novel variants that are able to infect naive non-murine cells with higher efficiency than the parental virus. Results We show that MMTV(C3H), like other MMTV strains, that had undergone a number of replication cycles in non-murine cells displayed an increased replication kinetic, as compared to parental virus, when applied on naive human cells. Sequence analysis of several replication kinetic variants and the parental virus, together with calculation of the ratio of non-synonymous to synonymous mutations at individual codons, revealed that several regions within the viral genome were under strong positive selection pressure during viral replication in human cells. The mutation responsible, at least in part, for the phenotypic change was subsequently mapped to the segment of env encoding the receptor binding site (F40HGFR44). Introduction of the identified mutation, leading to single amino acid substitution (G42E), into egfp-containing recombinant MMTV virions enhanced their ability to bind to and infect human cells. Interestingly, neither the replication kinetic mutant nor the parental virus required human TfR1 for infection. Knock-out of TFR1 gene from the human genome did not decrease the susceptibility of Hs578T cells to virus infection. Furthermore, the expression of human TfR1, in contrast to mouse TfR1, did not enhance the susceptibility of MMTV-resistant Chinese hamster ovary cells. Thus, human TfR1 is dispensable for infection and another cell surface molecule mediates the MMTV entry into human cells. Conclusion Taken together, our data explain the mechanism enabling MMTV to form ‘host-range variants’ in non-murine cells that has been known for a long time, the basis of which remained obscure. Our findings may expand our understanding of how viruses gain capability to cross species-specific barriers to infect new hosts. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0168-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Benjamin Lamp
- Institute of Virology, University of Veterinary Medicine, Veterinaerplatz 1, 1210, Vienna, Austria.
| | - Tillman Hans Rumenapf
- Institute of Virology, University of Veterinary Medicine, Veterinaerplatz 1, 1210, Vienna, Austria.
| | - Stanislav Indik
- Institute of Virology, University of Veterinary Medicine, Veterinaerplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
37
|
Stavrou S, Blouch K, Kotla S, Bass A, Ross SR. Nucleic acid recognition orchestrates the anti-viral response to retroviruses. Cell Host Microbe 2015; 17:478-88. [PMID: 25816774 DOI: 10.1016/j.chom.2015.02.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/06/2015] [Accepted: 02/05/2015] [Indexed: 12/21/2022]
Abstract
Intrinsic restriction factors and viral nucleic acid sensors are important for the anti-viral response. Here, we show how upstream sensing of retroviral reverse transcripts integrates with the downstream effector APOBEC3, an IFN-induced cytidine deaminase that introduces lethal mutations during retroviral reverse transcription. Using a murine leukemia virus (MLV) variant with an unstable capsid that induces a strong IFNβ antiviral response, we identify three sensors, IFI203, DDX41, and cGAS, required for MLV nucleic acid recognition. These sensors then signal using the adaptor STING, leading to increased production of IFNβ and other targets downstream of the transcription factor IRF3. Using knockout and mutant mice, we show that APOBEC3 limits the levels of reverse transcripts that trigger cytosolic sensing, and that nucleic acid sensing in vivo increases expression of IFN-regulated restriction factors like APOBEC3 that in turn reduce viral load. These studies underscore the importance of the multiple layers of protection afforded by host factors.
Collapse
Affiliation(s)
- Spyridon Stavrou
- Department of Microbiology, Institute for Immunology and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristin Blouch
- Department of Microbiology, Institute for Immunology and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Swathi Kotla
- Department of Microbiology, Institute for Immunology and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Antonia Bass
- Department of Microbiology, Institute for Immunology and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Susan R Ross
- Department of Microbiology, Institute for Immunology and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
38
|
Role of novel retroviruses in chronic liver disease: assessing the link of human betaretrovirus with primary biliary cirrhosis. Curr Infect Dis Rep 2015; 17:460. [PMID: 25754451 PMCID: PMC4353873 DOI: 10.1007/s11908-014-0460-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A human betaretrovirus resembling mouse mammary tumor virus has been characterized in patients with primary biliary cirrhosis. The agent triggers a disease-specific phenotype in vitro with aberrant cell-surface expression of mitochondrial antigens. The presentation of a usually sequestered self-protein is thought to lead to the loss of tolerance and the production of anti-mitochondrial antibodies associated with the disease. Similar observations have been made in mouse models, where mouse mammary tumor virus infection has been linked with the development of cholangitis and production of anti-mitochondrial antibodies. The use of combination antiretroviral therapy has been shown to impact on histological and biochemical disease in mouse models of autoimmune biliary disease and in clinical trials of patients with primary biliary cirrhosis. However, the HIV protease inhibitors are not well tolerated in patients with primary biliary cirrhosis, and more efficacious regimens will be required to clearly link reduction of viral load with improvement of cholangitis.
Collapse
|
39
|
Konstantoulas CJ, Indik S. C3H strain of mouse mammary tumour virus, like GR strain, infects human mammary epithelial cells, albeit less efficiently than murine mammary epithelial cells. J Gen Virol 2015; 96:650-662. [DOI: 10.1099/jgv.0.000006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
| | - Stanislav Indik
- Institute of Virology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
40
|
Wang W, Indik S, Wasilenko ST, Faschinger A, Carpenter EJ, Tian Z, Zhang Y, Wong GKS, Mason AL. Frequent proviral integration of the human betaretrovirus in biliary epithelium of patients with autoimmune and idiopathic liver disease. Aliment Pharmacol Ther 2015; 41:393-405. [PMID: 25521721 PMCID: PMC4312917 DOI: 10.1111/apt.13054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 11/17/2014] [Accepted: 11/26/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND A human betaretrovirus (HBRV) has been linked with primary biliary cirrhosis (PBC) following the detection of viral particles in biliary epithelium by electron microscopy and cloning of the betaretrovirus genome from biliary epithelium and peri-hepatic lymph nodes. Evidence for viral infection was found in the majority of PBC patients' peri-hepatic lymph node samples. However, less than a third of the liver samples had detectable HBRV, whereas others were unable to detect betaretrovirus infection or noted the presence of virus in the liver of patients with other diagnoses. AIMS To address the hypothesis that the betaretrovirus may be below the limits of detection in the liver, biliary epithelial cells (BEC) were investigated for the evidence of infection. METHODS Ligation-mediated PCR and next generation sequencing were used to detect proviral integrations in liver, lymph nodes and BEC isolated from liver transplant recipients. Hybridisation-based assays were used to detect betaretroviral RNA in BEC. RESULTS Unique HBRV integrations and betaretrovirus RNA were detected in the majority of biliary epithelia derived from patients with PBC, autoimmune hepatitis and cryptogenic liver disease but rarely in other liver transplant recipients with primary sclerosing cholangitis and other hepatic disorders. HBRV integrations were commonly found in PBC patients' lymph nodes but rarely in whole liver samples. CONCLUSIONS Human betaretrovirus infection is frequently observed at the site of disease in patients with primary biliary cirrhosis and also in biliary epithelium of patients with autoimmune hepatitis and cryptogenic liver disease.
Collapse
Affiliation(s)
- W Wang
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of AlbertaEdmonton, AB, Canada
| | - S Indik
- Department of Virology, University of Veterinary MedicineVienna, Austria
| | - S T Wasilenko
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of AlbertaEdmonton, AB, Canada
| | - A Faschinger
- Department of Virology, University of Veterinary MedicineVienna, Austria
| | - E J Carpenter
- Department of Biological Sciences, University of AlbertaEdmonton, AB, Canada
| | - Z Tian
- BGI-Shenzhen, Bei Shan Industrial ZoneShenzhen, China
| | - Y Zhang
- BGI-Shenzhen, Bei Shan Industrial ZoneShenzhen, China
| | - G K-S Wong
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of AlbertaEdmonton, AB, Canada,Department of Biological Sciences, University of AlbertaEdmonton, AB, Canada,BGI-Shenzhen, Bei Shan Industrial ZoneShenzhen, China,Li Ka Shing Institute of Virology, University of AlbertaEdmonton, AB, Canada,Prof. G. K.-S. Wong,, Department of Biological Sciences, University of Alberta, Edmonton AB, T6G 2E9, Canada.,
| | - A L Mason
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of AlbertaEdmonton, AB, Canada,Li Ka Shing Institute of Virology, University of AlbertaEdmonton, AB, Canada,Correspondence to:, Dr A. L. Mason, Division of Gastroenterology and Hepatology, 7-142 KGR, University of Alberta, Edmonton, AB, Canada T6G 2E1., E-mail:
| |
Collapse
|
41
|
Lavanya M, Cuevas CD, Thomas M, Cherry S, Ross SR. siRNA screen for genes that affect Junín virus entry uncovers voltage-gated calcium channels as a therapeutic target. Sci Transl Med 2014; 5:204ra131. [PMID: 24068738 DOI: 10.1126/scitranslmed.3006827] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
New World hemorrhagic fever arenavirus infection results in 15 to 30% mortality in humans. We performed a high-throughput small interfering RNA screen with Junín virus glycoprotein-pseudotyped viruses to find potential host therapeutic targets. Voltage-gated calcium channel (VGCC) subunits, for which there are Food and Drug Administration (FDA)-approved drugs, were identified in the screen. Knockdown of VGCC subunits or treatment with channel blockers diminished Junín virus-cell fusion and entry into cells and thereby decreased infection. Gabapentin, an FDA-approved drug used to treat neuropathic pain that targets the α₂δ₂ subunit, inhibited infection of mice by the Candid 1 vaccine strain of the virus. These findings demonstrate that VGCCs play a role in virus infection and have the potential to lead to therapeutic intervention of New World arenavirus infection.
Collapse
Affiliation(s)
- Madakasira Lavanya
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
42
|
Guo D, Zhu Q, Zhang H, Sun D. Proteomic analysis of membrane proteins of vero cells: exploration of potential proteins responsible for virus entry. DNA Cell Biol 2013; 33:20-8. [PMID: 24286161 DOI: 10.1089/dna.2013.2193] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vero cells are highly susceptible to many viruses in humans and animals, and its membrane proteins (MPs) are responsible for virus entry. In our study, the MP proteome of the Vero cells was investigated using a shotgun LC-MS/MS approach. Six hundred twenty-seven proteins, including a total of 1839 peptides, were identified in MP samples of the Vero cells. In 627 proteins, 307 proteins (48.96%) were annotated in terms of biological process of gene ontology (GO) categories; 356 proteins (56.78%) were annotated in terms of molecular function of GO categories; 414 proteins (66.03%) were annotated in terms of cellular components of GO categories. Of 627 identified proteins, seventeen proteins had been revealed to be virus receptor proteins. The resulting protein lists and highlighted proteins may provide valuable information to increase understanding of virus infection of Vero cells.
Collapse
Affiliation(s)
- Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University , Daqing, People's Republic of China
| | | | | | | |
Collapse
|
43
|
Demogines A, Abraham J, Choe H, Farzan M, Sawyer SL. Dual host-virus arms races shape an essential housekeeping protein. PLoS Biol 2013; 11:e1001571. [PMID: 23723737 PMCID: PMC3665890 DOI: 10.1371/journal.pbio.1001571] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/17/2013] [Indexed: 02/07/2023] Open
Abstract
Relentless selective pressures exerted by viruses trigger arms race dynamics that shape the evolution of even critical host genes like those involved in iron homeostasis. Transferrin Receptor (TfR1) is the cell-surface receptor that regulates iron uptake into cells, a process that is fundamental to life. However, TfR1 also facilitates the cellular entry of multiple mammalian viruses. We use evolutionary and functional analyses of TfR1 in the rodent clade, where two families of viruses bind this receptor, to mechanistically dissect how essential housekeeping genes like TFR1 successfully balance the opposing selective pressures exerted by host and virus. We find that while the sequence of rodent TfR1 is generally conserved, a small set of TfR1 residue positions has evolved rapidly over the speciation of rodents. Remarkably, all of these residues correspond to the two virus binding surfaces of TfR1. We show that naturally occurring mutations at these positions block virus entry while simultaneously preserving iron-uptake functionalities, both in rodent and human TfR1. Thus, by constantly replacing the amino acids encoded at just a few residue positions, TFR1 divorces adaptation to ever-changing viruses from preservation of key cellular functions. These dynamics have driven genetic divergence at the TFR1 locus that now enforces species-specific barriers to virus transmission, limiting both the cross-species and zoonotic transmission of these viruses. Genetic differences between mammalian species dictate the patterns of viral infection observed in nature. They also define how viruses must evolve in order to infect new mammalian hosts, giving rise to new and sometimes pandemic diseases. Because viruses must enter cells before they can replicate, new diseases often emerge when existing viruses evolve the ability to bind to the cell-surface receptor of a new species. At the same time, host cell receptors also evolve to counteract virus attacks. This back-and-forth evolution between virus and host can lead to an arms race that shapes the sequences of the proteins involved. In wild rodent populations, the retrovirus MMTV and New World arenaviruses both exploit Transferrin Receptor 1 (TfR1) to enter the cells of their hosts. Here we show that the physical interactions between these viruses and TfR1 have triggered evolutionary arms race dynamics that have directly modified the sequence of TfR1 and at least one of the viruses involved. Computational evolutionary analysis allowed us to identify specific residues in TfR1 that define patterns of viral infection in nature. The approach presented here can theoretically be applied to the study of any virus, through analysis of host genes known to be key to controlling viral infection. As such, this approach can expand our understanding of how viruses emerge from wildlife reservoirs, and how they drive the evolution of host genes.
Collapse
Affiliation(s)
- Ann Demogines
- Department of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Jonathan Abraham
- Department of Medicine, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hyeryun Choe
- Department of Medicine, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael Farzan
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sara L. Sawyer
- Department of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
44
|
Salmons B, Gunzburg WH. Revisiting a role for a mammary tumor retrovirus in human breast cancer. Int J Cancer 2013; 133:1530-5. [DOI: 10.1002/ijc.28210] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 04/09/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Brian Salmons
- SG Austria; 20 Biopolis Way #05-518 Centros; Singapore; Singapore
| | - Walter H. Gunzburg
- Institute of Virology; Department of Pathobiology; University of Veterinary Medicine; Vienna; Austria
| |
Collapse
|
45
|
Characteristics of the cellular receptor influence the intracellular fate and efficiency of virus infection. J Virol 2013; 87:5916-25. [PMID: 23514894 DOI: 10.1128/jvi.00398-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The intracellular fate of internalized virus-receptor complexes is suspected of influencing the efficiency of virus infection. However, direct evidence of a link between infection and the fate of internalized virus has been difficult to obtain. To directly address this question, we generated human 293 cell lines stably expressing comparable cell surface levels of three different members of the somatostatin receptor family (SSTR) which have natural differences in intracellular trafficking. Utilizing a glycoprotein that recognizes SSTR, we found that distinctive receptor subtype-specific destinations correlated with observable differences in the level of infection. Infection via SSTR-2 and -3 is restricted at a point after receptor binding and endocytosis but prior to penetration into the host cytoplasm. In contrast, entry via SSTR-5 featured a slower internalization with greater dependence on cholesterol. Quantitative real-time PCR showed that virus bound to SSTR-5 was directed to an intracellular environment that allowed near-wild-type (WT) levels of penetration, possibly due to a more favorable complement of host cell proteases, whereas SSTR-2 and -3 directed virions to a degradative compartment in which cytosol penetration was less efficient. Taken together, the results support that the superior receptor capacity of SSTR-5 results from its internalization into a cellular compartment that is more favorable to the cytoplasmic penetration of viral cores and reverse transcription. They suggest that the intracellular destination of internalized complexes is an important characteristic of a virus receptor and may have exerted a selective pressure on the choice of an entry receptor during evolution of viral glycoproteins.
Collapse
|
46
|
Retrovirus entry by endocytosis and cathepsin proteases. Adv Virol 2012; 2012:640894. [PMID: 23304142 PMCID: PMC3523128 DOI: 10.1155/2012/640894] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/14/2012] [Accepted: 11/06/2012] [Indexed: 12/04/2022] Open
Abstract
Retroviruses include infectious agents inducing severe diseases in humans and animals. In addition, retroviruses are widely used as tools to transfer genes of interest to target cells. Understanding the entry mechanism of retroviruses contributes to developments of novel therapeutic approaches against retrovirus-induced diseases and efficient exploitation of retroviral vectors. Entry of enveloped viruses into host cell cytoplasm is achieved by fusion between the viral envelope and host cell membranes at either the cell surface or intracellular vesicles. Many animal retroviruses enter host cells through endosomes and require endosome acidification. Ecotropic murine leukemia virus entry requires cathepsin proteases activated by the endosome acidification. CD4-dependent human immunodeficiency virus (HIV) infection is thought to occur via endosomes, but endosome acidification is not necessary for the entry whereas entry of CD4-independent HIVs, which are thought to be prototypes of CD4-dependent viruses, is low pH dependent. There are several controversial results on the retroviral entry pathways. Because endocytosis and endosome acidification are complicatedly controlled by cellular mechanisms, the retrovirus entry pathways may be different in different cell lines.
Collapse
|
47
|
Evolutionary reconstructions of the transferrin receptor of Caniforms supports canine parvovirus being a re-emerged and not a novel pathogen in dogs. PLoS Pathog 2012; 8:e1002666. [PMID: 22570610 PMCID: PMC3342950 DOI: 10.1371/journal.ppat.1002666] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 03/09/2012] [Indexed: 12/12/2022] Open
Abstract
Parvoviruses exploit transferrin receptor type-1 (TfR) for cellular entry in carnivores, and specific interactions are key to control of host range. We show that several key mutations acquired by TfR during the evolution of Caniforms (dogs and related species) modified the interactions with parvovirus capsids by reducing the level of binding. These data, along with signatures of positive selection in the TFRC gene, are consistent with an evolutionary arms race between the TfR of the Caniform clade and parvoviruses. As well as the modifications of amino acid sequence which modify binding, we found that a glycosylation site mutation in the TfR of dogs which provided resistance to the carnivore parvoviruses which were in circulation prior to about 1975 predates the speciation of coyotes and dogs. Because the closely-related black-backed jackal has a TfR similar to their common ancestor and lacks the glycosylation site, reconstructing this mutation into the jackal TfR shows the potency of that site in blocking binding and infection and explains the resistance of dogs until recent times. This alters our understanding of this well-known example of viral emergence by indicating that canine parvovirus emergence likely resulted from the re-adaptation of a parvovirus to the resistant receptor of a former host. Parvoviruses in cats and dogs have been studied as a model system to understand how viruses gain the ability to infect new host species. By studying the evolution of the transferrin receptor, which the virus uses to enter a cell, we discovered that the ancestors of dogs were likely infected by a parvovirus millions of years ago until they evolved and became resistant; this was caused by their transferrin receptor changing so it no longer bound the virus. When a variant virus that infects dogs emerged in the 1970s, it had adapted to overcome this block. This story suggests that diseases which were once eliminated from a species can evolve and regain the infectivity for that host, therefore having high potential to be emerging diseases. We identified features of the receptor that were important to the evolution of this host-virus interaction and confirmed their role in regulating virus binding in cell culture.
Collapse
|
48
|
Membrane fusion and cell entry of XMRV are pH-independent and modulated by the envelope glycoprotein's cytoplasmic tail. PLoS One 2012; 7:e33734. [PMID: 22479434 PMCID: PMC3313918 DOI: 10.1371/journal.pone.0033734] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 02/16/2012] [Indexed: 11/19/2022] Open
Abstract
Xenotropic murine leukemia virus-related virus (XMRV) is a gammaretrovirus that was originally identified from human prostate cancer patients and subsequently linked to chronic fatigue syndrome. Recent studies showed that XMRV is a recombinant mouse retrovirus; hence, its association with human diseases has become questionable. Here, we demonstrated that XMRV envelope (Env)-mediated pseudoviral infection is not blocked by lysosomotropic agents and cellular protease inhibitors, suggesting that XMRV entry is not pH-dependent. The full length XMRV Env was unable to induce syncytia formation and cell-cell fusion, even in cells overexpressing the viral receptor, XPR1. However, truncation of the C-terminal 21 or 33 amino acid residues in the cytoplasmic tail (CT) of XMRV Env induced substantial membrane fusion, not only in the permissive 293 cells but also in the nonpermissive CHO cells that lack a functional XPR1 receptor. The increased fusion activities of these truncations correlated with their enhanced SU shedding into culture media, suggesting conformational changes in the ectodomain of XMRV Env. Noticeably, further truncation of the CT of XMRV Env proximal to the membrane-spanning domain severely impaired the Env fusogenicity, as well as dramatically decreased the Env incorporations into MoMLV oncoretroviral and HIV-1 lentiviral vectors resulting in greatly reduced viral transductions. Collectively, our studies reveal that XMRV entry does not require a low pH or low pH-dependent host proteases, and that the cytoplasmic tail of XMRV Env critically modulates membrane fusion and cell entry. Our data also imply that additional cellular factors besides XPR1 are likely to be involved in XMRV entry.
Collapse
|
49
|
Côté M, Zheng YM, Li K, Xiang SH, Albritton LM, Liu SL. Critical role of leucine-valine change in distinct low pH requirements for membrane fusion between two related retrovirus envelopes. J Biol Chem 2012; 287:7640-51. [PMID: 22235118 PMCID: PMC3293530 DOI: 10.1074/jbc.m111.334722] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/10/2012] [Indexed: 01/03/2023] Open
Abstract
Many viruses use a pH-dependent pathway for fusion with host cell membrane, the mechanism of which is still poorly understood. Here we report that a subtle leucine (Leu)-valine (Val) change at position 501 in the envelope glycoproteins (Envs) of two related retroviruses, jaagsiekte sheep retrovirus (JSRV) and enzootic nasal tumor virus (ENTV), is responsible for their distinct low pH requirements for membrane fusion and infection. The Leu and Val residues are predicted to reside within the C-terminal heptad repeat (HR2) region of JSRV and ENTV Envs, particularly proximal to the hairpin turn of the putative six-helix bundle (6HB). Substitution of the JSRV Leu with a Val blocked the Env-mediated membrane fusion at pH 5.0, whereas replacement of the ENTV Val with a Leu rendered the ENTV Env capable of fusing at pH 5.0. A Leu-Val change has no apparent effect on the stability of native Env, but appears to stabilize an intermediate induced by receptor binding. These results are consistent with the existence of at least two metastable conformations of these viral glycoproteins, the native prefusion conformation and a receptor-induced metastable intermediate. Collectively, this work represents an interesting perhaps unique example whereby a simple Leu-Val change has critical impact on pH-dependent virus fusion and entry.
Collapse
Affiliation(s)
- Marceline Côté
- the Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Yi-Min Zheng
- From the Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Kun Li
- From the Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Shi-Hua Xiang
- the Nebraska Center for Virology, School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68583, and
| | - Lorraine M. Albritton
- the Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Shan-Lu Liu
- From the Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
- the Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
50
|
Limited transferrin receptor clustering allows rapid diffusion of canine parvovirus into clathrin endocytic structures. J Virol 2012; 86:5330-40. [PMID: 22357278 DOI: 10.1128/jvi.07194-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral pathogens usurp cell surface receptors to access clathrin endocytic structures, yet the mechanisms of virus incorporation into these structures remain incompletely understood. Here we used fluorescence microscopy to directly visualize the association of single canine parvovirus (CPV) capsids with cellular transferrin receptors (TfR) on the surfaces of live feline cells and to monitor how these CPV-TfR complexes access endocytic structures. We found that most capsids associated with fewer than five TfRs and that ∼25% of TfR-bound capsids laterally diffused into assembling clathrin-coated pits less than 30 s after attachment. Capsids that did not encounter a coated pit dissociated from the cell surface with a half-life of ∼30 s. Together, our results show how CPV exploits the natural mechanism of TfR endocytosis to engage the clathrin endocytic pathway and reveal that the low affinity of capsids for feline TfRs limits the residence time of capsids on the cell surface and thus the efficiency of virus internalization.
Collapse
|