1
|
Cai Y, Lv J, Li R, Huang X, Wang S, Bao Z, Zeng Q. Deqformer: high-definition and scalable deep learning probe design method. Brief Bioinform 2024; 25:bbae007. [PMID: 38305453 PMCID: PMC10835675 DOI: 10.1093/bib/bbae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/22/2023] [Accepted: 01/01/2024] [Indexed: 02/03/2024] Open
Abstract
Target enrichment sequencing techniques are gaining widespread use in the field of genomics, prized for their economic efficiency and swift processing times. However, their success depends on the performance of probes and the evenness of sequencing depth among each probe. To accurately predict probe coverage depth, a model called Deqformer is proposed in this study. Deqformer utilizes the oligonucleotides sequence of each probe, drawing inspiration from Watson-Crick base pairing and incorporating two BERT encoders to capture the underlying information from the forward and reverse probe strands, respectively. The encoded data are combined with a feed-forward network to make precise predictions of sequencing depth. The performance of Deqformer is evaluated on four different datasets: SNP panel with 38 200 probes, lncRNA panel with 2000 probes, synthetic panel with 5899 probes and HD-Marker panel for Yesso scallop with 11 000 probes. The SNP and synthetic panels achieve impressive factor 3 of accuracy (F3acc) of 96.24% and 99.66% in 5-fold cross-validation. F3acc rates of over 87.33% and 72.56% are obtained when training on the SNP panel and evaluating performance on the lncRNA and HD-Marker datasets, respectively. Our analysis reveals that Deqformer effectively captures hybridization patterns, making it robust for accurate predictions in various scenarios. Deqformer leads to a novel perspective for probe design pipeline, aiming to enhance efficiency and effectiveness in probe design tasks.
Collapse
Affiliation(s)
- Yantong Cai
- MOE Key Laboratory of Marine Genetics and Breeding & Fang Zongxi Center for Marine Evo-Devo, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jia Lv
- MOE Key Laboratory of Marine Genetics and Breeding & Fang Zongxi Center for Marine Evo-Devo, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Rui Li
- MOE Key Laboratory of Marine Genetics and Breeding & Fang Zongxi Center for Marine Evo-Devo, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaowen Huang
- MOE Key Laboratory of Marine Genetics and Breeding & Fang Zongxi Center for Marine Evo-Devo, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding & Fang Zongxi Center for Marine Evo-Devo, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
- Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Zhenmin Bao
- Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Qifan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding & Fang Zongxi Center for Marine Evo-Devo, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
- Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| |
Collapse
|
2
|
Martínez Del Río J, López-Carrobles N, Mendieta-Moreno JI, Herrera-Chacón Ó, Sánchez-Ibáñez A, Mendieta J, Menéndez-Arias L. Charge Engineering of the Nucleic Acid Binding Cleft of a Thermostable HIV-1 Reverse Transcriptase Reveals Key Interactions and a Novel Mechanism of RNase H Inactivation. J Mol Biol 2023; 435:168219. [PMID: 37536391 DOI: 10.1016/j.jmb.2023.168219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
Coupled with PCR, reverse transcriptases (RTs) have been widely used for RNA detection and gene expression analysis. Increased thermostability and nucleic acid binding affinity are desirable RT properties to improve yields and sensitivity of these applications. The effects of amino acid substitutions in the RT RNase H domain were tested in an engineered HIV-1 group O RT, containing mutations K358R/A359G/S360A and devoid of RNase H activity due to the presence of E478Q (O3MQ RT). Twenty mutant RTs with Lys or Arg at positions interacting with the template-primer (i.e., at positions 473-477, 499-502 and 505) were obtained and characterized. Most of them produced significant amounts of cDNA at 37, 50 and 65 °C, as determined in RT-PCR reactions. However, a big loss of activity was observed with mutants A477K/R, S499K/R, V502K/R and Y505K/R, particularly at 65 °C. Binding affinity experiments confirmed that residues 477, 502 and 505 were less tolerant to mutations. Amino acid substitutions Q500K and Q500R produced a slight increase of cDNA synthesis efficiency at 50 and 65 °C, without altering the KD for model DNA/DNA and RNA/DNA heteroduplexes. Interestingly, molecular dynamics simulations predicted that those mutations inactivate the RNase H activity by altering the geometry of the catalytic site. Proof of this unexpected effect was obtained after introducing Q500K or Q500R in the wild-type HIV-1BH10 RT and mutant K358R/A359G/S360A RT. Our results reveal a novel mechanism of RNase H inactivation that preserves RT DNA binding and polymerization efficiency without substituting RNase H active site residues.
Collapse
Affiliation(s)
- Javier Martínez Del Río
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, Madrid, Spain
| | - Nerea López-Carrobles
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, Madrid, Spain
| | | | - Óscar Herrera-Chacón
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, Madrid, Spain
| | - Adrián Sánchez-Ibáñez
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, Madrid, Spain
| | - Jesús Mendieta
- Department of Biotechnology, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, Madrid, Spain.
| |
Collapse
|
3
|
Figiel M, Krepl M, Park S, Poznański J, Skowronek K, Gołąb A, Ha T, Šponer J, Nowotny M. Mechanism of polypurine tract primer generation by HIV-1 reverse transcriptase. J Biol Chem 2017; 293:191-202. [PMID: 29122886 PMCID: PMC5766924 DOI: 10.1074/jbc.m117.798256] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/02/2017] [Indexed: 12/27/2022] Open
Abstract
HIV-1 reverse transcriptase (RT) possesses both DNA polymerase activity and RNase H activity that act in concert to convert single-stranded RNA of the viral genome to double-stranded DNA that is then integrated into the DNA of the infected cell. Reverse transcriptase-catalyzed reverse transcription critically relies on the proper generation of a polypurine tract (PPT) primer. However, the mechanism of PPT primer generation and the features of the PPT sequence that are critical for its recognition by HIV-1 RT remain unclear. Here, we used a chemical cross-linking method together with molecular dynamics simulations and single-molecule assays to study the mechanism of PPT primer generation. We found that the PPT was specifically and properly recognized within covalently tethered HIV-1 RT-nucleic acid complexes. These findings indicated that recognition of the PPT occurs within a stable catalytic complex after its formation. We found that this unique recognition is based on two complementary elements that rely on the PPT sequence: RNase H sequence preference and incompatibility of the poly(rA/dT) tract of the PPT with the nucleic acid conformation that is required for RNase H cleavage. The latter results from rigidity of the poly(rA/dT) tract and leads to base-pair slippage of this sequence upon deformation into a catalytically relevant geometry. In summary, our results reveal an unexpected mechanism of PPT primer generation based on specific dynamic properties of the poly(rA/dT) segment and help advance our understanding of the mechanisms in viral RNA reverse transcription.
Collapse
Affiliation(s)
- Małgorzata Figiel
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 771 46 Olomouc, Czech Republic
| | - Sangwoo Park
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Krzysztof Skowronek
- Biophysics Core Facility, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Agnieszka Gołąb
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University, Baltimore, Maryland 21205; Howard Hughes Medical Institute, Baltimore, Maryland 21205; Department of Biophysics, The Johns Hopkins University, Baltimore, Maryland 21205; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Jiří Šponer
- Biophysics Core Facility, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 771 46 Olomouc, Czech Republic
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland.
| |
Collapse
|
4
|
Reverse Transcription in the Saccharomyces cerevisiae Long-Terminal Repeat Retrotransposon Ty3. Viruses 2017; 9:v9030044. [PMID: 28294975 PMCID: PMC5371799 DOI: 10.3390/v9030044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
Converting the single-stranded retroviral RNA into integration-competent double-stranded DNA is achieved through a multi-step process mediated by the virus-coded reverse transcriptase (RT). With the exception that it is restricted to an intracellular life cycle, replication of the Saccharomyces cerevisiae long terminal repeat (LTR)-retrotransposon Ty3 genome is guided by equivalent events that, while generally similar, show many unique and subtle differences relative to the retroviral counterparts. Until only recently, our knowledge of RT structure and function was guided by a vast body of literature on the human immunodeficiency virus (HIV) enzyme. Although the recently-solved structure of Ty3 RT in the presence of an RNA/DNA hybrid adds little in terms of novelty to the mechanistic basis underlying DNA polymerase and ribonuclease H activity, it highlights quite remarkable topological differences between retroviral and LTR-retrotransposon RTs. The theme of overall similarity but distinct differences extends to the priming mechanisms used by Ty3 RT to initiate (−) and (+) strand DNA synthesis. The unique structural organization of the retrotransposon enzyme and interaction with its nucleic acid substrates, with emphasis on polypurine tract (PPT)-primed initiation of (+) strand synthesis, is the subject of this review.
Collapse
|
5
|
Masaoka T, Zhao H, Hirsch DR, D'Erasmo MP, Meck C, Varnado B, Gupta A, Meyers MJ, Baines J, Beutler JA, Murelli RP, Tang L, Le Grice SFJ. Characterization of the C-Terminal Nuclease Domain of Herpes Simplex Virus pUL15 as a Target of Nucleotidyltransferase Inhibitors. Biochemistry 2016; 55:809-19. [PMID: 26829613 DOI: 10.1021/acs.biochem.5b01254] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The natural product α-hydroxytropolones manicol and β-thujaplicinol inhibit replication of herpes simplex viruses 1 and 2 (HSV-1 and HSV-2, respectively) at nontoxic concentrations. Because these were originally developed as divalent metal-sequestering inhibitors of the ribonuclease H activity of HIV-1 reverse transcriptase, α-hydroxytropolones likely target related HSV proteins of the nucleotidyltransferase (NTase) superfamily, which share an "RNase H-like" fold. One potential candidate is pUL15, a component of the viral terminase molecular motor complex, whose C-terminal nuclease domain, pUL15C, has recently been crystallized. Crystallography also provided a working model for DNA occupancy of the nuclease active site, suggesting potential protein-nucleic acid contacts over a region of ∼ 14 bp. In this work, we extend crystallographic analysis by examining pUL15C-mediated hydrolysis of short, closely related DNA duplexes. In addition to defining a minimal substrate length, this strategy facilitated construction of a dual-probe fluorescence assay for rapid kinetic analysis of wild-type and mutant nucleases. On the basis of its proposed role in binding the phosphate backbone, studies with pUL15C variant Lys700Ala showed that this mutation affected neither binding of duplex DNA nor binding of small molecule to the active site but caused a 17-fold reduction in the turnover rate (kcat), possibly by slowing conversion of the enzyme-substrate complex to the enzyme-product complex and/or inhibiting dissociation from the hydrolysis product. Finally, with a view of pUL15-associated nuclease activity as an antiviral target, the dual-probe fluorescence assay, in combination with differential scanning fluorimetry, was used to demonstrate inhibition by several classes of small molecules that target divalent metal at the active site.
Collapse
Affiliation(s)
- Takashi Masaoka
- Basic Research Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | - Haiyan Zhao
- Department of Molecular Biosciences, University of Kansas , Lawrence, Kansas 66045, United States
| | - Danielle R Hirsch
- Department of Chemistry, Brooklyn College, City University of New York , Brooklyn, New York 11210, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York , New York, New York 10016, United States
| | - Michael P D'Erasmo
- Department of Chemistry, Brooklyn College, City University of New York , Brooklyn, New York 11210, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York , New York, New York 10016, United States
| | - Christine Meck
- Department of Chemistry, Brooklyn College, City University of New York , Brooklyn, New York 11210, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York , New York, New York 10016, United States
| | - Brittany Varnado
- Department of Molecular Biosciences, University of Kansas , Lawrence, Kansas 66045, United States
| | - Ankit Gupta
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine , St. Louis, Missouri 63104, United States
| | - Marvin J Meyers
- Department of Chemistry, St. Louis University , St. Louis, Missouri 63103, United States
| | - Joel Baines
- School of Veterinary Medicine, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - John A Beutler
- Molecular Targets Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | - Ryan P Murelli
- Department of Chemistry, Brooklyn College, City University of New York , Brooklyn, New York 11210, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York , New York, New York 10016, United States
| | - Liang Tang
- Department of Molecular Biosciences, University of Kansas , Lawrence, Kansas 66045, United States
| | - Stuart F J Le Grice
- Basic Research Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| |
Collapse
|
6
|
Applying Thymine Isostere 2,4-Difluoro-5-Methylbenzene as a NMR Assignment Tool and Probe of Homopyrimidine/Homopurine Tract Structural Dynamics. Methods Enzymol 2015; 566:89-110. [PMID: 26791977 DOI: 10.1016/bs.mie.2015.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proton assignment of nuclear magnetic resonance (NMR) spectra of homopyrimidine/homopurine tract oligonucleotides becomes extremely challenging with increasing helical length due to severe cross-peak overlap. As an alternative to the more standard practice of (15)N and (13)C labeling of oligonucleotides, here, we describe a method for assignment of highly redundant DNA sequences that uses single-site substitution of the thymine isostere 2,4-difluoro-5-methylbenzene (dF). The impact of this approach in facilitating the assignment of intractable spectra and analyzing oligonucleotide structure and dynamics is demonstrated using A-tract and TATA box DNA and two polypurine tract-containing RNA:DNA hybrids derived from HIV-1 and the Saccharomyces cerevisiae long-terminal repeat-containing retrotransposon Ty3. Only resonances proximal to the site of dF substitution exhibit sizable chemical shift changes, providing spectral dispersion while still allowing chemical shift mapping of resonances from unaffected residues distal to the site of modification directly back to the unmodified sequence. It is further illustrated that dF incorporation can subtly alter the conformation and dynamics of homopyrimidine/homopurine tract oligonucleotides, and how these NMR observations can be correlated, in the cases of the TATA box DNA, with modulation in the TATA box-binding protein interaction using an orthogonal gel assay.
Collapse
|
7
|
Rausch JW, Tian M, Li Y, Angelova L, Bagaya BS, Krebs KC, Qian F, Zhu C, Arts EJ, Le Grice SFJ, Gao Y. SiRNA-induced mutation in HIV-1 polypurine tract region and its influence on viral fitness. PLoS One 2015; 10:e0122953. [PMID: 25860884 PMCID: PMC4393142 DOI: 10.1371/journal.pone.0122953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/16/2015] [Indexed: 02/06/2023] Open
Abstract
Converting single-stranded viral RNA into double stranded DNA for integration is an essential step in HIV-1 replication. Initial polymerization of minus-strand DNA is primed from a host derived tRNA, whereas subsequent plus-strand synthesis requires viral primers derived from the 3' and central polypurine tracts (3' and cPPTs). The 5' and 3' termini of these conserved RNA sequence elements are precisely cleaved by RT-associated RNase H to generate specific primers that are used to initiate plus-strand DNA synthesis. In this study, siRNA wad used to produce a replicative HIV-1 variant contained G(-1)A and T(-16)A substitutions within/adjacent to the 3'PPT sequence. Introducing either or both mutations into the 3'PPT region or only the G(-1)A substitution in the cPPT region of NL4-3 produced infectious virus with decreased fitness relative to the wild-type virus. In contrast, introducing the T(-16)A or both mutations into the cPPT rendered the virus(es) incapable of replication, most likely due to the F185L integrase mutation produced by this nucleotide substitution. Finally, the effects of G(-1)A and T(-16)A mutations on cleavage of the 3'PPT were examined using an in vitro RNase H cleavage assay. Substrate containing both mutations was mis-cleaved to a greater extent than either wild-type substrate or substrate containing the T(-16)A mutation alone, which is consistent with the observed effects of the equivalent nucleotide substitutions on the replication fitness of NL4-3 virus. In conclusion, siRNA targeting of the HIV-1 3'PPT region can substantially suppress virus replication, and this selective pressure can be used to generate infectious virus containing mutations within or near the HIV-1 PPT. Moreover, in-depth analysis of the resistance mutations demonstrates that although virus containing a G(-1)A mutation within the 3'PPT is capable of replication, this nucleotide substitution shifts the 3'-terminal cleavage site in the 3'PPT by one nucleotide (nt) and significantly reduces viral fitness.
Collapse
Affiliation(s)
- Jason W. Rausch
- HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Meijuan Tian
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yuejin Li
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Lora Angelova
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Bernard S. Bagaya
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Kendall C. Krebs
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Feng Qian
- Suzhou Fifth People’s Hospital, Suzhou, Jiangsu, China
| | - Chuanwu Zhu
- Suzhou Fifth People’s Hospital, Suzhou, Jiangsu, China
| | - Eric J. Arts
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Stuart F. J. Le Grice
- HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Yong Gao
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
8
|
Probing Retroviral and Retrotransposon Genome Structures: The "SHAPE" of Things to Come. Mol Biol Int 2012; 2012:530754. [PMID: 22685659 PMCID: PMC3362945 DOI: 10.1155/2012/530754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 03/13/2012] [Indexed: 11/28/2022] Open
Abstract
Understanding the nuances of RNA structure as they pertain to biological function remains a formidable challenge for retrovirus research and development of RNA-based therapeutics, an area of particular importance with respect to combating HIV infection. Although a variety of chemical and enzymatic RNA probing techniques have been successfully employed for more than 30 years, they primarily interrogate small (100–500 nt) RNAs that have been removed from their biological context, potentially eliminating long-range tertiary interactions (such as kissing loops and pseudoknots) that may play a critical regulatory role. Selective 2′ hydroxyl acylation analyzed by primer extension (SHAPE), pioneered recently by Merino and colleagues, represents a facile, user-friendly technology capable of interrogating RNA structure with a single reagent and, combined with automated capillary electrophoresis, can analyze an entire 10,000-nucleotide RNA genome in a matter of weeks. Despite these obvious advantages, SHAPE essentially provides a nucleotide “connectivity map,” conversion of which into a 3-D structure requires a variety of complementary approaches. This paper summarizes contributions from SHAPE towards our understanding of the structure of retroviral genomes, modifications to which technology that have been developed to address some of its limitations, and future challenges.
Collapse
|
9
|
Pramanik S, Nagatoishi S, Saxena S, Bhattacharyya J, Sugimoto N. Conformational flexibility influences degree of hydration of nucleic acid hybrids. J Phys Chem B 2011; 115:13862-72. [PMID: 21992117 DOI: 10.1021/jp207856p] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Four nucleic acid duplexes-DNA/RNA hybrid, RNA/DNA hybrid, RNA duplex, and DNA duplex-were studied under molecular crowding conditions of osmolytes. Destabilization of duplexes (ΔΔG°(25)) indicated that the ΔΔG°(25) values of hybrids were intermediate between those of DNA and RNA duplexes. In the presence of polyethylene glycol 200, the ΔΔG°(25) values were estimated to be +3.0, +3.5, +3.5, and +4.1 kcal mol(-1) for the DNA duplex, DNA/RNA hybrid, RNA/DNA hybrid, and RNA duplex, respectively. Differences in the number of water molecules taken up (-Δn(w)) upon duplex formations between 0 and 37 °C (Δ(-Δn(w))) were estimated to be 44.8 and 59.7 per duplex structure for the DNA/RNA and RNA/DNA hybrids, respectively. While the Δ(-Δn(w)) value for the DNA/RNA hybrid was intermediate between those of the DNA (26.1) and RNA (59.2) duplexes, the value for RNA/DNA hybrid was close to that of RNA duplex. These differences in the thermodynamic parameters and hydration are probably a consequence of the enhanced global flexibility of the RNA/DNA hybrid structure relative to the DNA/RNA hybrid structure observed in molecular dynamics simulations. This molecular crowding study provides information not only on hydration but also on the flexibility of the conformation of nucleic acid duplexes.
Collapse
Affiliation(s)
- Smritimoy Pramanik
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|
10
|
Götte M, Rausch JW, Marchand B, Sarafianos S, Le Grice SF. Reverse transcriptase in motion: conformational dynamics of enzyme-substrate interactions. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1804:1202-12. [PMID: 19665597 PMCID: PMC2930377 DOI: 10.1016/j.bbapap.2009.07.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 07/28/2009] [Indexed: 11/26/2022]
Abstract
Human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) catalyzes synthesis of integration-competent, double-stranded DNA from the single-stranded viral RNA genome, combining both polymerizing and hydrolytic functions to synthesize approximately 20,000 phosphodiester bonds. Despite a wealth of biochemical studies, the manner whereby the enzyme adopts different orientations to coordinate its DNA polymerase and ribonuclease (RNase) H activities has remained elusive. Likewise, the lower processivity of HIV-1 RT raises the issue of polymerization site targeting, should the enzyme re-engage its nucleic acid substrate several hundred nucleotides from the primer terminus. Although X-ray crystallography has clearly contributed to our understanding of RT-containing nucleoprotein complexes, it provides a static picture, revealing few details regarding motion of the enzyme on the substrate. Recent development of site-specific footprinting and the application of single molecule spectroscopy have allowed us to follow individual steps in the reverse transcription process with significantly greater precision. Progress in these areas and the implications for investigational and established inhibitors that interfere with RT motion on nucleic acid is reviewed here.
Collapse
Affiliation(s)
- Matthias Götte
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada, H3A 2B4
| | - Jason W. Rausch
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD, USA
| | - Bruno Marchand
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Stefan Sarafianos
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Stuart F.J. Le Grice
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
11
|
Revisiting plus-strand DNA synthesis in retroviruses and long terminal repeat retrotransposons: dynamics of enzyme: substrate interactions. Viruses 2009; 1:657-77. [PMID: 21994564 PMCID: PMC3185511 DOI: 10.3390/v1030657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 10/28/2009] [Accepted: 11/04/2009] [Indexed: 11/16/2022] Open
Abstract
Although polypurine tract (PPT)-primed initiation of plus-strand DNA synthesis in retroviruses and LTR-containing retrotransposons can be accurately duplicated, the molecular details underlying this concerted series of events remain largely unknown. Importantly, the PPT 3' terminus must be accommodated by ribonuclease H (RNase H) and DNA polymerase catalytic centers situated at either terminus of the cognate reverse transcriptase (RT), and in the case of the HIV-1 enzyme, ∼70Å apart. Communication between RT and the RNA/DNA hybrid therefore appears necessary to promote these events. The crystal structure of the HIV-1 RT/PPT complex, while informative, positions the RNase H active site several bases pairs from the PPT/U3 junction, and thus provides limited information on cleavage specificity. To fill the gap between biochemical and crystallographic approaches, we review a multidisciplinary approach combining chemical probing, mass spectrometry, NMR spectroscopy and single molecule spectroscopy. Our studies also indicate that nonnucleoside RT inhibitors affect enzyme orientation, suggesting initiation of plus-strand DNA synthesis as a potential therapeutic target.
Collapse
|
12
|
Turner KB, Yi-Brunozzi HY, Brinson RG, Marino JP, Fabris D, Le Grice SFJ. SHAMS: combining chemical modification of RNA with mass spectrometry to examine polypurine tract-containing RNA/DNA hybrids. RNA (NEW YORK, N.Y.) 2009; 15:1605-1613. [PMID: 19535461 PMCID: PMC2714758 DOI: 10.1261/rna.1615409] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 04/29/2009] [Indexed: 05/27/2023]
Abstract
Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) has gained popularity as a facile method of examining RNA structure both in vitro and in vivo, exploiting accessibility of the ribose 2'-OH to acylation by N-methylisatoic anhydride (NMIA) in unpaired or flexible configurations. Subsequent primer extension terminates at the site of chemical modification, and these products are fractionated by high-resolution gel electrophoresis. When applying SHAPE to investigate structural features associated with the wild-type and analog-substituted polypurine tract (PPT)-containing RNA/DNA hybrids, their size (20-25 base pairs) rendered primer extension impractical. As an alternative method of detection, we reasoned that chemical modification could be combined with tandem mass spectrometry, relying on the mass increment of RNA fragments containing the NMIA adduct (M(r) = 133 Da). Using this approach, we demonstrate both specific modification of the HIV-1 PPT RNA primer and variations in its acylation pattern induced by replacing template nucleotides with a non-hydrogen-bonding thymine isostere. Our selective 2'-hydroxyl acylation analyzed by mass spectrometry strategy (SHAMS) should find utility when examining the structure of small RNA fragments or RNA/DNA hybrids where primer extension cannot be performed.
Collapse
Affiliation(s)
- Kevin B Turner
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA
| | | | | | | | | | | |
Collapse
|
13
|
Wendeler M, Beilhartz GL, Beutler JA, Götte M, Le Grice SFJ. HIV ribonuclease H: continuing the search for small molecule antagonists. HIV THERAPY 2008; 3:39-53. [PMID: 38961883 PMCID: PMC11221599 DOI: 10.2217/17584310.3.1.39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Members of the ribonuclease H (RNase H) family of enzymes (EC 3.1.26.4), which are found in nearly all organisms, are endoribonucleases that specifically hydrolyze the phosphodiester bond of RNA in a RNA-DNA hybrid. In retroviruses such as HIV-1, the RNase H activity is part of reverse transcriptase, the enzyme that converts the viral ssRNA into dsDNA suitable for integration into the host cell genome. In HIV-1, RNase H plays an essential role in various stages of reverse transcription, and it has been known for 20 years that inhibiting RNase H activity renders HIV noninfectious. However, the development of potent and selective antagonists of HIV RNase H has made surprisingly slow progress, and so far no RNase H inhibitor is in clinical trial, rendering this enzyme an important, but as yet underexplored, drug target. The recently described crystal structure of human RNase H in complex with a RNA-DNA hybrid provides new insight into the mechanism of HIV RNase H activity, with the potential to unveil new niches for therapeutic intervention. The current status of RNase H screening efforts is reviewed here.
Collapse
Affiliation(s)
- Michaela Wendeler
- HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD, USA
| | - Greg L Beilhartz
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - John A Beutler
- Molecular Targets Discovery Program, National Cancer Institute-Frederick, Frederick, MD, USA
| | - Matthias Götte
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Stuart FJ Le Grice
- HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD, USA
| |
Collapse
|
14
|
Yi-Brunozzi HY, Brinson RG, Brabazon DM, Lener D, Le Grice SFJ, Marino JP. High-resolution NMR analysis of the conformations of native and base analog substituted retroviral and LTR-retrotransposon PPT primers. ACTA ACUST UNITED AC 2008; 15:254-62. [PMID: 18355725 DOI: 10.1016/j.chembiol.2008.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 01/24/2008] [Accepted: 01/30/2008] [Indexed: 11/17/2022]
Abstract
A purine-rich region of the plus-strand RNA genome of retroviruses and long terminal repeat (LTR)-containing retrotransposons, known as the polypurine tract (PPT), is resistant to hydrolysis by the RNase H domain of reverse transcriptase (RT) and ultimately serves as a primer for plus-strand DNA synthesis. The mechanisms underlying PPT resistance and selective processing remain largely unknown. Here, two RNA/DNA hybrids derived from the PPTs of HIV-1 and Ty3 were probed using high-resolution NMR for preexisting structural distortions in the absence of RT. The PPTs were selectively modified through base-pair changes or by incorporation of the thymine isostere, 2,4-difluoro-5-methylbenzene (dF), into the DNA strand. Although both wild-type (WT) and mutated hybrids adopted global A-form-like helical geometries, observed structural perturbations in the base-pair and dF-modified hybrids suggested that the PPT hybrids may function as structurally coupled domains.
Collapse
Affiliation(s)
- Hye Young Yi-Brunozzi
- HIV Drug Resistance Program, NCI-Frederick National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
15
|
Turner KB, Brinson RG, Yi-Brunozzi HY, Rausch JW, Miller JT, Le Grice SFJ, Marino JP, Fabris D. Structural probing of the HIV-1 polypurine tract RNA:DNA hybrid using classic nucleic acid ligands. Nucleic Acids Res 2008; 36:2799-810. [PMID: 18400780 PMCID: PMC2377446 DOI: 10.1093/nar/gkn129] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The interactions of archetypical nucleic acid ligands with the HIV-1 polypurine tract (PPT) RNA:DNA hybrid, as well as analogous DNA:DNA, RNA:RNA and swapped hybrid substrates, were used to probe structural features of the PPT that contribute to its specific recognition and processing by reverse transcriptase (RT). Results from intercalative and groove-binding ligands indicate that the wild-type PPT hybrid does not contain any strikingly unique groove geometries and/or stacking arrangements that might contribute to the specificity of its interaction with RT. In contrast, neomycin bound preferentially and selectively to the PPT near the 5′(rA)4:(dT)4 tract and the 3′ PPT-U3 junction. Nuclear magnetic resonance data from a complex between HIV-1 RT and the PPT indicate RT contacts within the same regions highlighted on the PPT by neomycin. These observations, together with the fact that the sites are correctly spaced to allow interaction with residues in the ribonuclease H (RNase H) active site and thumb subdomain of the p66 RT subunit, suggest that despite the long cleft employed by RT to make contact with nucleic acids substrates, these sites provide discrete binding units working in concert to determine not only specific PPT recognition, but also its orientation on the hybrid structure.
Collapse
Affiliation(s)
- Kevin B Turner
- University of Maryland Baltimore County, Baltimore, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Nowotny M, Gaidamakov SA, Ghirlando R, Cerritelli SM, Crouch RJ, Yang W. Structure of human RNase H1 complexed with an RNA/DNA hybrid: insight into HIV reverse transcription. Mol Cell 2008; 28:264-76. [PMID: 17964265 DOI: 10.1016/j.molcel.2007.08.015] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 07/16/2007] [Accepted: 08/13/2007] [Indexed: 10/22/2022]
Abstract
We report here crystal structures of human RNase H1 complexed with an RNA/DNA substrate. Unlike B. halodurans RNase H1, human RNase H1 has a basic protrusion, which forms a DNA-binding channel and together with the conserved phosphate-binding pocket confers specificity for the B form and 2'-deoxy DNA. The RNA strand is recognized by four consecutive 2'-OH groups and cleaved by a two-metal ion mechanism. Although RNase H1 is overall positively charged, the substrate interface is neutral to acidic in character, which likely contributes to the catalytic specificity. Positions of the scissile phosphate and two catalytic metal ions are interdependent and highly coupled. Modeling of HIV reverse transcriptase (RT) with RNA/DNA in its RNase H active site suggests that the substrate cannot simultaneously occupy the polymerase active site and must undergo a conformational change to toggle between the two catalytic centers. The region that accommodates this conformational change offers a target to develop HIV-specific inhibitors.
Collapse
Affiliation(s)
- Marcin Nowotny
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
17
|
Rausch JW, Le Grice SFJ. Purine analog substitution of the HIV-1 polypurine tract primer defines regions controlling initiation of plus-strand DNA synthesis. Nucleic Acids Res 2006; 35:256-68. [PMID: 17164285 PMCID: PMC1802577 DOI: 10.1093/nar/gkl909] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite extensive study, the mechanism by which retroviral reverse transciptases (RTs) specifically utilize polypurine tract (PPT) RNA for initiation of plus-strand DNA synthesis remains unclear. Three sequence motifs within or adjacent to the purine-rich elements are highly conserved, namely, a rU:dA tract region immediately 5′ to the PPT, an rA:dT-rich sequence constituting the upstream portion of the PPT and a downstream rG:dC tract. Using an in vitro HIV-1 model system, we determined that the former two elements define the 5′ terminus of the (+)-strand primer, whereas the rG:dC tract serves as the primary determinant of initiation specificity. Subsequent analysis demonstrated that G→A or A→G substitution at PPT positions −2, −4 and +1 (relative to the scissile phosphate) substantially reduces (+)-strand priming. We explored this observation further using PPT substrates substituted with a variety of nucleoside analogs [inosine (I), purine riboside (PR), 2-aminopurine (2-AP), 2,6-diaminopurine (2,6-DAP), isoguanine (iG)], or one of the naturally occurring bases at these positions. Our results demonstrate that for PPT positions −2 or +1, substituting position 2 of the purine was an important determinant of cleavage specificity. In addition, cleavage specificity was greatly affected by substituting −4G with an analog containing a 6-NH2 moiety.
Collapse
Affiliation(s)
| | - Stuart F. J. Le Grice
- To whom correspondence should be addressed. Tel: +1 301 846 5256; Fax: +1 301 846 6013;
| |
Collapse
|
18
|
Jones FD, Hughes SH. In vitro analysis of the effects of mutations in the G-tract of the human immunodeficiency virus type 1 polypurine tract on RNase H cleavage specificity. Virology 2006; 360:341-9. [PMID: 17123564 DOI: 10.1016/j.virol.2006.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 08/25/2006] [Accepted: 10/03/2006] [Indexed: 11/20/2022]
Abstract
The recognition and precise cleavage of the polypurine tract (PPT) of the human immunodeficiency virus type 1 (HIV-1) is an essential step in HIV-1 reverse transcription. The accurate cleavage, and the subsequent removal, of the PPT by the RNase H activity of HIV-1 RT defines the left end of the double-stranded viral DNA genome, the substrate for integration into the host genome. Previous analyses have shown that mutations in the 3'-end (G-tract) of the PPT cause alterations in RNase H cleavage specificity. In particular, mutations at positions 2 and 5 in the G-tract increased the frequency of retention of PPT sequences in the 2-LTR circle junction. To better understand why these mutations affected PPT cleavage in vivo, we analyzed the cleavage of PPT substrates in vitro that contained altered sequences and unusual base substitutions. Our results, herein, confirm that mutations at positions 2 and 5 of the G-tract do significantly alter the cleavage specificity at the PPT/U3 junction, and further suggest that the miscleavages observed in vivo were due to an improper generation of the PPT primer, as opposed to its improper removal. Finally, our results point to the structure of the PPT, rather than the base-specific contacts between the PPT and HIV-1 RT, as the primary determinants of RNase H cleavage specificity at the PPT/U3 junction.
Collapse
Affiliation(s)
- Fatima D Jones
- HIV Drug Resistance Program, NCI Frederick, PO Box B, Building 539, Room 130A, Frederick, MD 21702-1201, USA
| | | |
Collapse
|
19
|
Yakovleva L, Lai J, Kool ET, Shuman S. Nonpolar nucleobase analogs illuminate requirements for site-specific DNA cleavage by vaccinia topoisomerase. J Biol Chem 2006; 281:35914-21. [PMID: 17005552 DOI: 10.1074/jbc.m608349200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vaccinia DNA topoisomerase forms a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate at a specific target site 5'-C(+5)C(+4)C(+3)T(+2)T(+1)p downward arrow N(-1) in duplex DNA. Here we study the effects of nonpolar pyrimidine isosteres difluorotoluene (F) and monofluorotoluene (D) and the nonpolar purine analog indole at individual positions of the scissile and nonscissile strands on the rate of single-turnover DNA transesterification and the cleavage-religation equilibrium. Comparison of the effects of nonpolar base substitution to the effects of abasic lesions reported previously allowed us to surmise the relative contributions of base-stacking and polar edge interactions to the DNA transesterification reactions. For example, the deleterious effects of eliminating the +2T base on the scissile strand were rectified by introducing the nonpolar F isostere, whereas the requirement for the +1T base was not elided by F substitution. We impute a role for +1T in recruiting the catalytic residue Lys-167 to the active site. Topoisomerase is especially sensitive to suppression of DNA cleavage upon elimination of the +4G and +3G bases of the nonscissile strand. Indole provided little or no gain of function relative to abasic lesions. Inosine substitutions for +4G and +3G had no effect on transesterification rate, implying that the guanine exocyclic amine is not a critical determinant of DNA cleavage. Prior studies of 2-aminopurine and 7-deazaguanine effects had shown that the O6 and N7 of guanine were also not critical. These findings suggest that either the topoisomerase makes functionally redundant contacts with polar atoms (likely via Tyr-136, a residue important for precleavage active site assembly) or that it relies on contacts to N1 or N3 of the purine ring. The cleavage-religation equilibrium is strongly skewed toward trapping of the covalent intermediate by elimination of the +1A base of the nonscissile strand; the reaction equilibrium is restored by +1 indole, signifying that base stacking flanking the nick is critical for the religation step. Our findings highlight base isosteres as valuable tools for the analysis of proteins that act on DNA in a site-specific manner.
Collapse
Affiliation(s)
- Lyudmila Yakovleva
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | | | |
Collapse
|
20
|
Dash C, Fisher TS, Prasad VR, Le Grice SFJ. Examining interactions of HIV-1 reverse transcriptase with single-stranded template nucleotides by nucleoside analog interference. J Biol Chem 2006; 281:27873-81. [PMID: 16867979 DOI: 10.1074/jbc.m603970200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Crystallographic studies have implicated several residues of the p66 fingers subdomain of human immunodeficiency virus type-1 reverse transcriptase in contacting the single-stranded template overhang immediately ahead of the DNA polymerase catalytic center. This interaction presumably assists in inducing the appropriate geometry on the template base for efficient and accurate incorporation of the incoming dNTP. To investigate this, we introduced nucleoside analogs either individually or in tandem into the DNA template ahead of the catalytic center and investigated whether they induce pausing of the replication machinery before serving as the template base. Analogs included abasic tetrahydrofuran linkages, neutralizing methylphosphonate linkages, and conformationally locked nucleosides. In addition, several Phe-61 mutants were included in our analysis, based on previous data indicating that altering this residue affects both strand displacement synthesis and the fidelity of DNA synthesis. We demonstrate here that altering the topology of the template strand two nucleotides ahead of the catalytic center can interrupt DNA synthesis. Mutating Phe-61 to either Ala or Leu accentuates this defect, whereas replacement with an aromatic residue (Trp) allows the mutant enzyme to bypass the template analogs with relative ease.
Collapse
Affiliation(s)
- Chandravanu Dash
- Resistance Mechanisms Laboratory, HIV Drug Resistance Program, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | | | |
Collapse
|
21
|
Dash C, Marino JP, Le Grice SFJ. Examining Ty3 polypurine tract structure and function by nucleoside analog interference. J Biol Chem 2006; 281:2773-83. [PMID: 16306041 DOI: 10.1074/jbc.m510369200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have combined nucleoside analog interference with chemical footprinting, thermal denaturation, NMR spectroscopy, and biochemical studies to understand recognition of the polypurine tract (PPT) primer of the Saccharomyces cerevisiae long terminal repeat-containing retrotransposon Ty3 by its cognate reverse transcriptase. Locked nucleic acid analogs, which constrain sugar ring geometry, were introduced pairwise throughout the PPT (-)-DNA template, whereas abasic tetrahydrofuran linkages, which lack the nucleobase but preserve the sugar phosphate backbone, were introduced throughout the (-)-strand DNA template and (+)-strand RNA primer. Collectively, our data suggest that both the 5'- and 3'-portions of the PPT-containing RNA/DNA hybrid are sensitive to nucleoside analog substitution, whereas the intervening region can be modified without altering cleavage specificity. These two regions most likely correspond to portions of the PPT that make close contact with the Ty3 reverse transcriptase thumb subdomain and RNase H catalytic center, respectively. Achieving a similar phenotype with nucleoside analogs that have different effects on duplex geometry reveals structural features that are important mediators of Ty3 PPT recognition. Finally, the results from introducing tetrahydrofuran lesions around the scissile PPT/unique 3'-sequence junction indicate that template nucleobase -1 is dispensable for catalysis, whereas a primer nucleobase on either side of the junction is necessary.
Collapse
Affiliation(s)
- Chandravanu Dash
- Resistance Mechanisms Laboratory, HIV Drug Resistance Program, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | |
Collapse
|
22
|
Kim TW, Kool ET. A set of nonpolar thymidine nucleoside analogues with gradually increasing size. Org Lett 2005; 6:3949-52. [PMID: 15496071 DOI: 10.1021/ol048487u] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[structure: see text] We describe a series of nonpolar nucleoside analogues having similar shapes and gradually increasing size. The structure of the nucleobase thymine was mimicked with toluene derivatives, replacing O2/O4 with hydrogen, fluorine, chlorine, bromine, and iodine. Glycosidic bonds were formed by reactions of lithiated 2,4-dihalotoluenes with a deoxyribonolactone derivative. Structural analysis by NMR showed similar conformations across the series. The compounds are useful for study of the biological recognition of nucleotides and nucleic acids.
Collapse
Affiliation(s)
- Tae Woo Kim
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | | |
Collapse
|
23
|
Kim TW, Kool ET. A series of nonpolar thymidine analogues of increasing size: DNA base pairing and stacking properties. J Org Chem 2005; 70:2048-53. [PMID: 15760186 DOI: 10.1021/jo048061t] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[reaction: see text] We describe the properties in DNA of a set of five nonpolar nucleoside mimics in which shape is similar but size is increased gradually. The compounds vary in the size of their exocyclic substituents, which range from hydrogen to iodine, and are designed to test the steric effects of nucleosides, nucleotides, and DNA in biological systems in a systematic way. We describe the conversion of toluene, 2,4-difluorotoluene, 2,4-dichlorotoluene, 2,4-dibromotoluene, and 2,4-diiodotoluene deoxyribosides into suitably protected phosphoramidite derivatives and their incorporation into synthetic DNAs. Studies of their behavior in the context of hexamer and dodecamer duplexes were carried out, with comparison to natural thymine. Thermal melting data with compounds in 5' dangling positions showed that all five compounds stack more strongly than thymine, and all the dihalo-substituted cases stack more strongly than the unsubstituted toluene case. Stacking correlated with surface area and hydrophobicity, both of which increase across the series. In base-pairing studies, all five compounds showed destabilized pairing opposite natural bases (relative to thymine-adenine pairing), as expected. Notably, pairing among the nonpolar base analogues was considerably more stable, and some of the pairs involving the largest analogues showed stability equal to that of a natural thymine-adenine pair. The results establish the base pairing properties of a potentially useful new series of biochemical probes for DNA-protein interactions and also identify a set of new, stable hydrophobic base pairs for designed genetic pairing systems.
Collapse
Affiliation(s)
- Tae Woo Kim
- Department of Chemistry, Stanford University, Stanford California 94305-5080, USA
| | | |
Collapse
|
24
|
Yi-Brunozzi HY, Le Grice SFJ. Investigating HIV-1 polypurine tract geometry via targeted insertion of abasic lesions in the (-)-DNA template and (+)-RNA primer. J Biol Chem 2005; 280:20154-62. [PMID: 15778225 DOI: 10.1074/jbc.m411228200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A variety of biochemical and structural studies indicate that two regions of the human immunodeficiency virus type 1 (HIV-1) polypurine tract (PPT)-containing RNA/DNA hybrid deviate from standard Watson-Crick geometry. However, it is unclear whether and how these regions cooperate to ensure PPT primer selection by reverse transcriptase-associated ribonuclease H and subsequent removal from nascent (+)-DNA. To address these issues, we synthesized oligonucleotides containing abasic lesions in either the PPT (+)-RNA primer or (-)-DNA template to locally remove nucleobases, although retaining the sugar-phosphate backbone. KMnO(4) footprinting indicates such lesions locally alter duplex structure, whereas thermal melting studies show significantly reduced stability when lesions are positioned around the scissile bond. Substituting the (-)-DNA template between positions -15 and -13 altered cleavage specificity, whereas equivalent substitutions of the (+)-RNA had almost no effect. The unpaired base of the DNA template observed crystallographically (-11C) could also be removed without significant loss of cleavage specificity. With respect to the scissile -1/+1 phosphodiester bond, template nucleobases could be removed without loss of cleavage specificity, whereas equivalent lesions in the RNA primer were inhibitory. Our data suggest an interaction between the p66 thumb subdomain of HIV-1 reverse transcriptase, and the DNA template in the "unzipped" portion of the RNA/DNA hybrid could aid in positioning the ribonuclease H catalytic center at the PPT/U3 junction and also provides insights into nucleic acid geometry around the scissile bond required for hydrolysis.
Collapse
Affiliation(s)
- Hye Young Yi-Brunozzi
- Reverse Transcriptase Biochemistry Section, Resistance Mechanisms Laboratory, HIV Drug Resistance Program, NCI, National Institutes of Health, Frederick, Maryland 21702, USA
| | | |
Collapse
|
25
|
Dash C, Yi-Brunozzi HY, Le Grice SFJ. Two modes of HIV-1 polypurine tract cleavage are affected by introducing locked nucleic acid analogs into the (-) DNA template. J Biol Chem 2004; 279:37095-102. [PMID: 15220330 DOI: 10.1074/jbc.m403306200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Unusual base-pairing in a co-crystal of reverse transcriptase (RT) and a human immunodeficiency virus type 1 (HIV-1) polypurine tract (PPT)-containing RNA/DNA hybrid suggests local nucleic acid flexibility mediates selection of the plus-strand primer. Structural elements of HIV-1 RT potentially participating in recognition of this duplex include the thumb subdomain and the ribonuclease H (RNase H) primer grip, the latter comprising elements of the connection subdomain and RNase H domain. To investigate how stabilizing HIV-1 PPT structure influences its recognition, we modified the (-) DNA template by inserting overlapping locked nucleic acid (LNA) doublets and triplets. Modified RNA/DNA hybrids were evaluated for cleavage at the PPT/U3 junction. Altered specificity was observed when the homopolymeric dA.rU tract immediately 5' of the PPT was modified, whereas PPT/U3 cleavage was lost after substitutions in the adjacent dT.rA tract. In contrast, the "unzipped" portion of the PPT was moderately insensitive to LNA insertions. Although a portion of the dC.rG and neighboring dT.rA tract were minimally affected by LNA insertion, RNase H activity was highly sensitive to altering the junction between these structural elements. Using 3'-end-labeled PPT RNA primers, we also identified novel cleavage sites ahead (+5/+6) of the PPT/U3 junction. Differential cleavage at the PPT/U3 junction and U3 + 5/+6 site in response to LNA-induced template modification suggests two binding modes for HIV-1 RT, both of which may be controlled by the interaction of its thumb subdomain (potentially via the minor groove binding track) at either site of the unzipped region.
Collapse
Affiliation(s)
- Chandravanu Dash
- Resistance Mechanisms Laboratory, HIV Drug Resistance Program, NCI-Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | | | | |
Collapse
|
26
|
Dash C, Rausch JW, Le Grice SFJ. Using pyrrolo-deoxycytosine to probe RNA/DNA hybrids containing the human immunodeficiency virus type-1 3' polypurine tract. Nucleic Acids Res 2004; 32:1539-47. [PMID: 15004241 PMCID: PMC390295 DOI: 10.1093/nar/gkh307] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent structural analyses indicate that localized regions of abnormal base pairing exist within RNA/DNA hybrids containing the HIV-1 polypurine tract (PPT) and that these distortions may play a role in PPT function. To examine this directly, we have introduced pyrrolo-deoxycytosine (pdC), a fluorescent, environmentally sensitive analog of deoxycytosine (dC), into the DNA strand of PPT-containing hybrids. Steady-state fluorescence analysis of these hybrids reveals that the DNA base 11 nt from the PPT-U3 junction is unpaired even in the absence of reverse transcriptase (RT). Unstable base pairing is also observed within the (rG:dC)6 tract in the downstream portion of the duplex, suggesting that HIV-1 RT may recognize multiple pre-existing distortions during PPT selection. HIV-1 RT hydrolyzes pdC-containing hybrids primarily at the PPT-U3 junction, indicating that the analog does not induce a gross structural deformation of the duplex. However, aberrant cleavage is frequently observed 3 bp from the site of pdC substitution, most likely reflecting a specific interaction between the analog and amino acid residues within the RNase H primer grip. pdC substitution within the template strand of a DNA duplex does not appear to significantly affect RT-catalyzed DNA synthesis. Implications of these findings on the use of pdC to examine nucleic acid structure are discussed.
Collapse
Affiliation(s)
- Chandravanu Dash
- Resistance Mechanisms Laboratory, HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | | | | |
Collapse
|