1
|
Wei YH, Lin F. Barcodes based on nucleic acid sequences: Applications and challenges (Review). Mol Med Rep 2025; 32:187. [PMID: 40314098 PMCID: PMC12076290 DOI: 10.3892/mmr.2025.13552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/04/2025] [Indexed: 05/03/2025] Open
Abstract
Cells are the fundamental structural and functional units of living organisms and the study of these entities has remained a central focus throughout the history of biological sciences. Traditional cell research techniques, including fluorescent protein tagging and microscopy, have provided preliminary insights into the lineage history and clonal relationships between progenitor and descendant cells. However, these techniques exhibit inherent limitations in tracking the full developmental trajectory of cells and elucidating their heterogeneity, including sensitivity, stability and barcode drift. In developmental biology, nucleic acid barcode technology has introduced an innovative approach to cell lineage tracing. By assigning unique barcodes to individual cells, researchers can accurately identify and trace the origin and differentiation pathways of cells at various developmental stages, thereby illuminating the dynamic processes underlying tissue development and organogenesis. In cancer research, nucleic acid barcoding has played a pivotal role in analyzing the clonal architecture of tumor cells, exploring their heterogeneity and resistance mechanisms and enhancing our understanding of cancer evolution and inter‑clonal interactions. Furthermore, nucleic acid barcodes play a crucial role in stem cell research, enabling the tracking of stem cells from diverse origins and their derived progeny. This has offered novel perspectives on the mechanisms of stem cell self‑renewal and differentiation. The present review presented a comprehensive examination of the principles, applications and challenges associated with nucleic acid barcode technology.
Collapse
Affiliation(s)
- Ying Hong Wei
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Faquan Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
2
|
Zhang X, Huang Y, Yang Y, Wang QE, Li L. Advancements in prospective single-cell lineage barcoding and their applications in research. Genome Res 2024; 34:2147-2162. [PMID: 39572229 PMCID: PMC11694748 DOI: 10.1101/gr.278944.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/03/2024] [Indexed: 12/25/2024]
Abstract
Single-cell lineage tracing (scLT) has emerged as a powerful tool, providing unparalleled resolution to investigate cellular dynamics, fate determination, and the underlying molecular mechanisms. This review thoroughly examines the latest prospective lineage DNA barcode tracing technologies. It further highlights pivotal studies that leverage single-cell lentiviral integration barcoding technology to unravel the dynamic nature of cell lineages in both developmental biology and cancer research. Additionally, the review navigates through critical considerations for successful experimental design in lineage tracing and addresses challenges inherent in this field, including technical limitations, complexities in data analysis, and the imperative for standardization. It also outlines current gaps in knowledge and suggests future research directions, contributing to the ongoing advancement of scLT studies.
Collapse
Affiliation(s)
- Xiaoli Zhang
- College of Nursing, University of South Florida, Tampa, Florida 33620, USA;
| | - Yirui Huang
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
| | - Yajing Yang
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Qi-En Wang
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
3
|
Lange M, Piran Z, Klein M, Spanjaard B, Klein D, Junker JP, Theis FJ, Nitzan M. Mapping lineage-traced cells across time points with moslin. Genome Biol 2024; 25:277. [PMID: 39434128 PMCID: PMC11492637 DOI: 10.1186/s13059-024-03422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024] Open
Abstract
Simultaneous profiling of single-cell gene expression and lineage history holds enormous potential for studying cellular decision-making. Recent computational approaches combine both modalities into cellular trajectories; however, they cannot make use of all available lineage information in destructive time-series experiments. Here, we present moslin, a Gromov-Wasserstein-based model to couple cellular profiles across time points based on lineage and gene expression information. We validate our approach in simulations and demonstrate on Caenorhabditis elegans embryonic development how moslin predicts fate probabilities and putative decision driver genes. Finally, we use moslin to delineate lineage relationships among transiently activated fibroblast states during zebrafish heart regeneration.
Collapse
Affiliation(s)
- Marius Lange
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Department of Mathematics, Technical University of Munich, Munich, Germany
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Zoe Piran
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Bastiaan Spanjaard
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Department of Paediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dominik Klein
- Department of Mathematics, Technical University of Munich, Munich, Germany
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Jan Philipp Junker
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Fabian J Theis
- Department of Mathematics, Technical University of Munich, Munich, Germany.
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.
| | - Mor Nitzan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
4
|
Abadie K, Clark EC, Valanparambil RM, Ukogu O, Yang W, Daza RM, Ng KKH, Fathima J, Wang AL, Lee J, Nasti TH, Bhandoola A, Nourmohammad A, Ahmed R, Shendure J, Cao J, Kueh HY. Reversible, tunable epigenetic silencing of TCF1 generates flexibility in the T cell memory decision. Immunity 2024; 57:271-286.e13. [PMID: 38301652 PMCID: PMC10922671 DOI: 10.1016/j.immuni.2023.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/09/2023] [Accepted: 12/07/2023] [Indexed: 02/03/2024]
Abstract
The immune system encodes information about the severity of a pathogenic threat in the quantity and type of memory cells it forms. This encoding emerges from lymphocyte decisions to maintain or lose self-renewal and memory potential during a challenge. By tracking CD8+ T cells at the single-cell and clonal lineage level using time-resolved transcriptomics, quantitative live imaging, and an acute infection model, we find that T cells will maintain or lose memory potential early after antigen recognition. However, following pathogen clearance, T cells may regain memory potential if initially lost. Mechanistically, this flexibility is implemented by a stochastic cis-epigenetic switch that tunably and reversibly silences the memory regulator, TCF1, in response to stimulation. Mathematical modeling shows how this flexibility allows memory T cell numbers to scale robustly with pathogen virulence and immune response magnitudes. We propose that flexibility and stochasticity in cellular decisions ensure optimal immune responses against diverse threats.
Collapse
Affiliation(s)
- Kathleen Abadie
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Elisa C Clark
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Rajesh M Valanparambil
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Obinna Ukogu
- Department of Applied Mathematics, University of Washington, Seattle, WA 98105, USA
| | - Wei Yang
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Riza M Daza
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Kenneth K H Ng
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jumana Fathima
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Allan L Wang
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Judong Lee
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tahseen H Nasti
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Avinash Bhandoola
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Armita Nourmohammad
- Department of Applied Mathematics, University of Washington, Seattle, WA 98105, USA; Department of Physics, University of Washington, Seattle, WA 98105, USA; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| | - Junyue Cao
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Laboratory of Single-Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY 10065, USA.
| | - Hao Yuan Kueh
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
5
|
Li Z, Yang W, Wu P, Shan Y, Zhang X, Chen F, Yang J, Yang JR. Reconstructing cell lineage trees with genomic barcoding: approaches and applications. J Genet Genomics 2024; 51:35-47. [PMID: 37269980 DOI: 10.1016/j.jgg.2023.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023]
Abstract
In multicellular organisms, developmental history of cell divisions and functional annotation of terminal cells can be organized into a cell lineage tree (CLT). The reconstruction of the CLT has long been a major goal in developmental biology and other related fields. Recent technological advancements, especially those in editable genomic barcodes and single-cell high-throughput sequencing, have sparked a new wave of experimental methods for reconstructing CLTs. Here we review the existing experimental approaches to the reconstruction of CLT, which are broadly categorized as either image-based or DNA barcode-based methods. In addition, we present a summary of the related literature based on the biological insight provided by the obtained CLTs. Moreover, we discuss the challenges that will arise as more and better CLT data become available in the near future. Genomic barcoding-based CLT reconstructions and analyses, due to their wide applicability and high scalability, offer the potential for novel biological discoveries, especially those related to general and systemic properties of the developmental process.
Collapse
Affiliation(s)
- Zizhang Li
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wenjing Yang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Peng Wu
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yuyan Shan
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiaoyu Zhang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Feng Chen
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Junnan Yang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jian-Rong Yang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
6
|
Prusokiene A, Prusokas A, Retkute R. Machine learning based lineage tree reconstruction improved with knowledge of higher level relationships between cells and genomic barcodes. NAR Genom Bioinform 2023; 5:lqad077. [PMID: 37608801 PMCID: PMC10440785 DOI: 10.1093/nargab/lqad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/26/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
Tracking cells as they divide and progress through differentiation is a fundamental step in understanding many biological processes, such as the development of organisms and progression of diseases. In this study, we investigate a machine learning approach to reconstruct lineage trees in experimental systems based on mutating synthetic genomic barcodes. We refine previously proposed methodology by embedding information of higher level relationships between cells and single-cell barcode values into a feature space. We test performance of the algorithm on shallow trees (up to 100 cells) and deep trees (up to 10 000 cells). Our proposed algorithm can improve tree reconstruction accuracy in comparison to reconstructions based on a maximum parsimony method, but this comes at a higher computational time requirement.
Collapse
Affiliation(s)
- Alisa Prusokiene
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | | - Renata Retkute
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
7
|
Pillai M, Hojel E, Jolly MK, Goyal Y. Unraveling non-genetic heterogeneity in cancer with dynamical models and computational tools. NATURE COMPUTATIONAL SCIENCE 2023; 3:301-313. [PMID: 38177938 DOI: 10.1038/s43588-023-00427-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 03/03/2023] [Indexed: 01/06/2024]
Abstract
Individual cells within an otherwise genetically homogenous population constantly undergo fluctuations in their molecular state, giving rise to non-genetic heterogeneity. Such diversity is being increasingly implicated in cancer therapy resistance and metastasis. Identifying the origins of non-genetic heterogeneity is therefore crucial for making clinical breakthroughs. We discuss with examples how dynamical models and computational tools have provided critical multiscale insights into the nature and consequences of non-genetic heterogeneity in cancer. We demonstrate how mechanistic modeling has been pivotal in establishing key concepts underlying non-genetic diversity at various biological scales, from population dynamics to gene regulatory networks. We discuss advances in single-cell longitudinal profiling techniques to reveal patterns of non-genetic heterogeneity, highlighting the ongoing efforts and challenges in statistical frameworks to robustly interpret such multimodal datasets. Moving forward, we stress the need for data-driven statistical and mechanistically motivated dynamical frameworks to come together to develop predictive cancer models and inform therapeutic strategies.
Collapse
Affiliation(s)
- Maalavika Pillai
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Emilia Hojel
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Evanston, IL, USA
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India.
| | - Yogesh Goyal
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Evanston, IL, USA.
| |
Collapse
|
8
|
Richman LP, Goyal Y, Jiang CL, Raj A. ClonoCluster: A method for using clonal origin to inform transcriptome clustering. CELL GENOMICS 2023; 3:100247. [PMID: 36819662 PMCID: PMC9932990 DOI: 10.1016/j.xgen.2022.100247] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/22/2022] [Accepted: 12/16/2022] [Indexed: 01/13/2023]
Abstract
Clustering cells based on their high-dimensional profiles is an important data reduction process by which researchers infer distinct cellular states. The advent of cellular barcoding, however, provides an alternative means by which to group cells: by their clonal origin. We developed ClonoCluster, a computational method that combines both clone and transcriptome information to create hybrid clusters that weight both kinds of data with a tunable parameter. We generated hybrid clusters across six independent datasets and found that ClonoCluster generated qualitatively different clusters in all cases. The markers of these hybrid clusters were different but had equivalent fidelity to transcriptome-only clusters. The genes most strongly associated with the rearrangements in hybrid clusters were ribosomal function and extracellular matrix genes. We also developed the complementary tool Warp Factor that incorporates clone information in popular 2D visualization techniques like UMAP. Integrating ClonoCluster and Warp Factor revealed biologically relevant markers of cell identity.
Collapse
Affiliation(s)
- Lee P. Richman
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yogesh Goyal
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA
| | - Connie L. Jiang
- Genetics and Epigenetics, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arjun Raj
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Chen C, Liao Y, Peng G. Connecting past and present: single-cell lineage tracing. Protein Cell 2022; 13:790-807. [PMID: 35441356 PMCID: PMC9237189 DOI: 10.1007/s13238-022-00913-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/06/2022] [Indexed: 01/16/2023] Open
Abstract
Central to the core principle of cell theory, depicting cells' history, state and fate is a fundamental goal in modern biology. By leveraging clonal analysis and single-cell RNA-seq technologies, single-cell lineage tracing provides new opportunities to interrogate both cell states and lineage histories. During the past few years, many strategies to achieve lineage tracing at single-cell resolution have been developed, and three of them (integration barcodes, polylox barcodes, and CRISPR barcodes) are noteworthy as they are amenable in experimentally tractable systems. Although the above strategies have been demonstrated in animal development and stem cell research, much care and effort are still required to implement these methods. Here we review the development of single-cell lineage tracing, major characteristics of the cell barcoding strategies, applications, as well as technical considerations and limitations, providing a guide to choose or improve the single-cell barcoding lineage tracing.
Collapse
Affiliation(s)
- Cheng Chen
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yuanxin Liao
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangdun Peng
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
10
|
Kim W, Park E, Yoo HS, Park J, Jung YM, Park JH. Recent Advances in Monitoring Stem Cell Status and Differentiation Using Nano-Biosensing Technologies. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2934. [PMID: 36079970 PMCID: PMC9457759 DOI: 10.3390/nano12172934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/14/2023]
Abstract
In regenerative medicine, cell therapies using various stem cells have received attention as an alternative to overcome the limitations of existing therapeutic methods. Clinical applications of stem cells require the identification of characteristics at the single-cell level and continuous monitoring during expansion and differentiation. In this review, we recapitulate the application of various stem cells used in regenerative medicine and the latest technological advances in monitoring the differentiation process of stem cells. Single-cell RNA sequencing capable of profiling the expression of many genes at the single-cell level provides a new opportunity to analyze stem cell heterogeneity and to specify molecular markers related to the branching of differentiation lineages. However, this method is destructive and distorted. In addition, the differentiation process of a particular cell cannot be continuously tracked. Therefore, several spectroscopic methods have been developed to overcome these limitations. In particular, the application of Raman spectroscopy to measure the intrinsic vibration spectrum of molecules has been proposed as a powerful method that enables continuous monitoring of biochemical changes in the process of the differentiation of stem cells. This review provides a comprehensive overview of current analytical methods employed for stem cell engineering and future perspectives of nano-biosensing technologies as a platform for the in situ monitoring of stem cell status and differentiation.
Collapse
Affiliation(s)
- Wijin Kim
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| | - Eungyeong Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| | - Young Mee Jung
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| | - Ju Hyun Park
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| |
Collapse
|
11
|
Doyle JJ. Cell types as species: Exploring a metaphor. FRONTIERS IN PLANT SCIENCE 2022; 13:868565. [PMID: 36072310 PMCID: PMC9444152 DOI: 10.3389/fpls.2022.868565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/29/2022] [Indexed: 06/05/2023]
Abstract
The concept of "cell type," though fundamental to cell biology, is controversial. Cells have historically been classified into types based on morphology, physiology, or location. More recently, single cell transcriptomic studies have revealed fine-scale differences among cells with similar gross phenotypes. Transcriptomic snapshots of cells at various stages of differentiation, and of cells under different physiological conditions, have shown that in many cases variation is more continuous than discrete, raising questions about the relationship between cell type and cell state. Some researchers have rejected the notion of fixed types altogether. Throughout the history of discussions on cell type, cell biologists have compared the problem of defining cell type with the interminable and often contentious debate over the definition of arguably the most important concept in systematics and evolutionary biology, "species." In the last decades, systematics, like cell biology, has been transformed by the increasing availability of molecular data, and the fine-grained resolution of genetic relationships have generated new ideas about how that variation should be classified. There are numerous parallels between the two fields that make exploration of the "cell types as species" metaphor timely. These parallels begin with philosophy, with discussion of both cell types and species as being either individuals, groups, or something in between (e.g., homeostatic property clusters). In each field there are various different types of lineages that form trees or networks that can (and in some cases do) provide criteria for grouping. Developing and refining models for evolutionary divergence of species and for cell type differentiation are parallel goals of the two fields. The goal of this essay is to highlight such parallels with the hope of inspiring biologists in both fields to look for new solutions to similar problems outside of their own field.
Collapse
Affiliation(s)
- Jeff J. Doyle
- Section of Plant Biology and Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
12
|
Tavakolian N, Frazão JG, Bendixsen D, Stelkens R, Li CB. Shepherd: Accurate Clustering for Correcting DNA Barcode Errors. Bioinformatics 2022; 38:3710-3716. [PMID: 35708611 PMCID: PMC9344852 DOI: 10.1093/bioinformatics/btac395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/26/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Motivation DNA barcodes are short, random nucleotide sequences introduced into cell populations to track the relative counts of hundreds of thousands of individual lineages over time. Lineage tracking is widely applied, e.g. to understand evolutionary dynamics in microbial populations and the progression of breast cancer in humans. Barcode sequences are unknown upon insertion and must be identified using next-generation sequencing technology, which is error prone. In this study, we frame the barcode error correction task as a clustering problem with the aim to identify true barcode sequences from noisy sequencing data. We present Shepherd, a novel clustering method that is based on an indexing system of barcode sequences using k-mers, and a Bayesian statistical test incorporating a substitution error rate to distinguish true from error sequences. Results When benchmarking with synthetic data, Shepherd provides barcode count estimates that are significantly more accurate than state-of-the-art methods, producing 10–150 times fewer spurious lineages. For empirical data, Shepherd produces results that are consistent with the improvements seen on synthetic data. These improvements enable higher resolution lineage tracking and more accurate estimates of biologically relevant quantities, e.g. the detection of small effect mutations. Availability and implementation A Python implementation of Shepherd is freely available at: https://www.github.com/Nik-Tavakolian/Shepherd. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Nik Tavakolian
- Department of Mathematics, Stockholm University, Stockholm, 10691, Sweden
| | | | - Devin Bendixsen
- Department of Zoology, Stockholm University, Stockholm, 10691, Sweden
| | - Rike Stelkens
- Department of Zoology, Stockholm University, Stockholm, 10691, Sweden
| | - Chun-Biu Li
- Department of Mathematics, Stockholm University, Stockholm, 10691, Sweden
| |
Collapse
|
13
|
Yao M, Ren T, Pan Y, Xue X, Li R, Zhang L, Li Y, Huang K. A New Generation of Lineage Tracing Dynamically Records Cell Fate Choices. Int J Mol Sci 2022; 23:ijms23095021. [PMID: 35563412 PMCID: PMC9105840 DOI: 10.3390/ijms23095021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Reconstructing the development of lineage relationships and cell fate mapping has been a fundamental problem in biology. Using advanced molecular biology and single-cell RNA sequencing, we have profiled transcriptomes at the single-cell level and mapped cell fates during development. Recently, CRISPR/Cas9 barcode editing for large-scale lineage tracing has been used to reconstruct the pseudotime trajectory of cells and improve lineage tracing accuracy. This review presents the progress of the latest CbLT (CRISPR-based Lineage Tracing) and discusses the current limitations and potential technical pitfalls in their application and other emerging concepts.
Collapse
|
14
|
Mircea M, Semrau S. How a cell decides its own fate: a single-cell view of molecular mechanisms and dynamics of cell-type specification. Biochem Soc Trans 2021; 49:2509-2525. [PMID: 34854897 PMCID: PMC8786291 DOI: 10.1042/bst20210135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
On its path from a fertilized egg to one of the many cell types in a multicellular organism, a cell turns the blank canvas of its early embryonic state into a molecular profile fine-tuned to achieve a vital organismal function. This remarkable transformation emerges from the interplay between dynamically changing external signals, the cell's internal, variable state, and tremendously complex molecular machinery; we are only beginning to understand. Recently developed single-cell omics techniques have started to provide an unprecedented, comprehensive view of the molecular changes during cell-type specification and promise to reveal the underlying gene regulatory mechanism. The exponentially increasing amount of quantitative molecular data being created at the moment is slated to inform predictive, mathematical models. Such models can suggest novel ways to manipulate cell types experimentally, which has important biomedical applications. This review is meant to give the reader a starting point to participate in this exciting phase of molecular developmental biology. We first introduce some of the principal molecular players involved in cell-type specification and discuss the important organizing ability of biomolecular condensates, which has been discovered recently. We then review some of the most important single-cell omics methods and relevant findings they produced. We devote special attention to the dynamics of the molecular changes and discuss methods to measure them, most importantly lineage tracing. Finally, we introduce a conceptual framework that connects all molecular agents in a mathematical model and helps us make sense of the experimental data.
Collapse
Affiliation(s)
- Maria Mircea
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Stefan Semrau
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| |
Collapse
|
15
|
Forrow A, Schiebinger G. LineageOT is a unified framework for lineage tracing and trajectory inference. Nat Commun 2021; 12:4940. [PMID: 34400634 PMCID: PMC8367995 DOI: 10.1038/s41467-021-25133-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 07/08/2021] [Indexed: 12/20/2022] Open
Abstract
Understanding the genetic and epigenetic programs that control differentiation during development is a fundamental challenge, with broad impacts across biology and medicine. Measurement technologies like single-cell RNA-sequencing and CRISPR-based lineage tracing have opened new windows on these processes, through computational trajectory inference and lineage reconstruction. While these two mathematical problems are deeply related, methods for trajectory inference are not typically designed to leverage information from lineage tracing and vice versa. Here, we present LineageOT, a unified framework for lineage tracing and trajectory inference. Specifically, we leverage mathematical tools from graphical models and optimal transport to reconstruct developmental trajectories from time courses with snapshots of both cell states and lineages. We find that lineage data helps disentangle complex state transitions with increased accuracy using fewer measured time points. Moreover, integrating lineage tracing with trajectory inference in this way could enable accurate reconstruction of developmental pathways that are impossible to recover with state-based methods alone.
Collapse
Affiliation(s)
- Aden Forrow
- Mathematical Institute, University of Oxford, Oxford, UK.
| | - Geoffrey Schiebinger
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
16
|
Wang L, Zhang Q, Qin Q, Trasanidis N, Vinyard M, Chen H, Pinello L. Current progress and potential opportunities to infer single-cell developmental trajectory and cell fate. CURRENT OPINION IN SYSTEMS BIOLOGY 2021; 26:1-11. [PMID: 33997529 PMCID: PMC8117397 DOI: 10.1016/j.coisb.2021.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rapid technological advances in transcriptomics and lineage tracing technologies provide new opportunities to understand organismal development at the single-cell level. Building on these advances, various computational methods have been proposed to infer developmental trajectories and to predict cell fate. These methods have unveiled previously uncharacterized transitional cell types and differentiation processes. Importantly, the ability to recover cell states and trajectories has been evolving hand-in-hand with new technologies and diverse experimental designs; more recent methods can capture complex trajectory topologies and infer short- and long-term cell fate dynamics. Here, we summarize and categorize the most recent and popular computational approaches for trajectory inference based on the information they leverage and describe future challenges and opportunities for the development of new methods for reconstructing differentiation trajectories and inferring cell fates.
Collapse
Affiliation(s)
- Lingfei Wang
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital Research Institute, Charlestown, USA
- Department of Pathology, Harvard Medical School, Boston, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Qian Zhang
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital Research Institute, Charlestown, USA
- Department of Pathology, Harvard Medical School, Boston, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Qian Qin
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital Research Institute, Charlestown, USA
- Department of Pathology, Harvard Medical School, Boston, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Nikolaos Trasanidis
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital Research Institute, Charlestown, USA
- Department of Pathology, Harvard Medical School, Boston, USA
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, UK
| | - Michael Vinyard
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital Research Institute, Charlestown, USA
- Department of Pathology, Harvard Medical School, Boston, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Huidong Chen
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital Research Institute, Charlestown, USA
- Department of Pathology, Harvard Medical School, Boston, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Luca Pinello
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital Research Institute, Charlestown, USA
- Department of Pathology, Harvard Medical School, Boston, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
17
|
Cahan P, Cacchiarelli D, Dunn SJ, Hemberg M, de Sousa Lopes SMC, Morris SA, Rackham OJL, Del Sol A, Wells CA. Computational Stem Cell Biology: Open Questions and Guiding Principles. Cell Stem Cell 2021; 28:20-32. [PMID: 33417869 PMCID: PMC7799393 DOI: 10.1016/j.stem.2020.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Computational biology is enabling an explosive growth in our understanding of stem cells and our ability to use them for disease modeling, regenerative medicine, and drug discovery. We discuss four topics that exemplify applications of computation to stem cell biology: cell typing, lineage tracing, trajectory inference, and regulatory networks. We use these examples to articulate principles that have guided computational biology broadly and call for renewed attention to these principles as computation becomes increasingly important in stem cell biology. We also discuss important challenges for this field with the hope that it will inspire more to join this exciting area.
Collapse
Affiliation(s)
- Patrick Cahan
- Institute for Cell Engineering, Department of Biomedical Engineering, Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy d Department of Translational Medicine, University of Naples "Federico II," Naples, Italy
| | - Sara-Jane Dunn
- DeepMind, 14-18 Handyside Street, London N1C 4DN, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Martin Hemberg
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | | | - Samantha A Morris
- Department of Developmental Biology, Department of Genetics, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Owen J L Rackham
- Centre for Computational Biology and The Program for Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, Belvaux 4366, Luxembourg; CIC bioGUNE, Bizkaia Technology Park, 801 Building, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - Christine A Wells
- Centre for Stem Cell Systems, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
18
|
Next-Generation Lineage Tracing and Fate Mapping to Interrogate Development. Dev Cell 2020; 56:7-21. [PMID: 33217333 DOI: 10.1016/j.devcel.2020.10.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/15/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022]
Abstract
Lineage tracing and fate mapping, overlapping yet distinct disciplines to follow cells and their progeny, have evolved rapidly over the last century. Lineage tracing aims to identify all progeny arising from an individual cell, placing them within a lineage hierarchy. The recent emergence of genomic technologies, such as single-cell and spatial transcriptomics, has fostered sophisticated new methods to reconstruct lineage relationships at high resolution. In contrast, fate maps, schematics showing which parts of the embryo will develop into which tissue, have remained relatively static since the 1970s. However, fate maps provide spatial information, often lost in lineage reconstruction, that can offer fundamental mechanistic insight into development. Here, we broadly review the origins of fate mapping and lineage tracing approaches. We focus on the most recent developments in lineage tracing, permitted by advances in single-cell genomics. Finally, we explore the current potential to leverage these new technologies to synthesize high-resolution fate maps and discuss their potential for interrogating development at new depths.
Collapse
|