1
|
Fernández Del Campo IS, de la Fuente AJ, Díaz I, Plaza I, Merchán MA. Anodal direct current stimulation of the auditory cortex at the onset of presbycusis delays cortical aging. Brain Struct Funct 2025; 230:56. [PMID: 40278941 PMCID: PMC12031871 DOI: 10.1007/s00429-025-02912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/27/2025] [Indexed: 04/26/2025]
Abstract
Presbycusis or age-related hearing loss (ARHL) affects millions of people worldwide, increasing their risk of cognitive decline and poor quality of life. However, ARHL remains an irreversible condition due to our inability to induce inner-ear hair cell regeneration. Nevertheless, multisession epidural stimulation of the auditory cortex (AC) at the onset of ARHL prevents hearing threshold elevation in naturally aging Wistar rats. Accordingly, we hypothesized that anodal direct current (DC) stimulation of the AC may also compensate for age-related maladaptive, activity-dependent changes. Here, we examined immunocytochemical markers in the AC, including early genes (c-fos and Arc), AMPA receptors (GluR2/3), parvalbumin (PV), and GAD67, along with auditory-evoked potentials (CAEPs) recorded in both auditory and visual (VC) cortices. When comparing 6 and 18.13-month-old rats without AC simulation, we observed loss of c-fos and Arc-positive neurons and decreased GluR2/3 expression, confirming altered AC neuronal network plasticity and activation. In addition, we noted changes in PV and decreased GAD67 immunoreactivity suggesting disrupted inhibition and significantly increased wave amplitudes in CAEPs, altered AC latencies, and decreased VC responses. By contrast, electrically stimulated rats showed no significant variations in early gene markers, GluR2/3, PV, or GAD67 with age, and the amplitudes and latencies of CAEPs recorded in their AC and VC resembled those of young rat. These findings indicate that anodal DC stimulation at the onset of ARHL delays AC aging by minimizing the loss of inhibition and preventing increases in cortical excitability in Wistar rats.
Collapse
Affiliation(s)
- I S Fernández Del Campo
- Lab.4 Auditory Neuroplasticity, Institute for Neuroscience of Castilla y León, University of Salamanca, Salamanca, Spain
| | - A J de la Fuente
- Lab.4 Auditory Neuroplasticity, Institute for Neuroscience of Castilla y León, University of Salamanca, Salamanca, Spain
| | - I Díaz
- Lab.4 Auditory Neuroplasticity, Institute for Neuroscience of Castilla y León, University of Salamanca, Salamanca, Spain
| | - I Plaza
- Lab.4 Auditory Neuroplasticity, Institute for Neuroscience of Castilla y León, University of Salamanca, Salamanca, Spain
| | - M A Merchán
- Lab.4 Auditory Neuroplasticity, Institute for Neuroscience of Castilla y León, University of Salamanca, Salamanca, Spain.
| |
Collapse
|
2
|
Cui Z, Zou J, Zhou Y, Cao Y, Song H, Xu H, Wu J, Jin B, Yang L, Jia Y, Chen Q, Fu Z. Vocalization-induced middle ear muscle reflex and auditory fovea do not contribute to the unimpaired auditory sensitivity after intense noise exposure in the CF-FM bat, Hipposideros pratti. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2025; 211:53-67. [PMID: 39212726 DOI: 10.1007/s00359-024-01714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024]
Abstract
Behaviors and auditory physiological responses of some species of echolocating bats remain unaffected after exposure to intense noise, but information on the underlying mechanisms remains limited. Here, we studied whether the vocalization-induced middle ear muscle (MEM) contractions (MEM reflex) and auditory fovea contributed to the unimpaired auditory sensitivity of constant frequency-frequency modulation (CF-FM) bats after exposure to broad-band intense noise. The vocalizations of the CF-FM bat, Hipposideros pratti, were inhibited through anesthesia to eliminate the vocalization-induced MEM reflex. First, the anesthetized bats were exposed to intense broad-band noise, and the findings showed that the bats could still maintain their auditory sensitivities. However, auditory sensitivities were seriously impaired in CBA/Ca mice exposed to intense noise under anesthesia. This indicated that the unimpaired auditory sensitivity in H. pratti after exposure to intense noise under anesthesia was not due to anesthetization. The bats were further exposed to low-frequency band-limited noise, whose passband did not overlap with echolocation call frequencies. The results showed that the auditory responses to sound frequencies within the noise spectrum and one-half octave higher than the spectrum were also unimpaired. Taken together, the results indicate that both vocalization-induced MEM reflex and auditory fovea do not contribute to the unimpaired auditory sensitivity in H. pratti after exposure to intense noise. The possible mechanisms underlying the unimpaired auditory sensitivity after echolocating bats were exposed to intense noise are discussed.
Collapse
Affiliation(s)
- Zhongdan Cui
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jianwen Zou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yuting Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yuntu Cao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Haonan Song
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Haoyue Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jing Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Baoling Jin
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Lijian Yang
- College of Physical Science and Technology, Central China Normal University, Hubei, 430079, Wuhan, China
| | - Ya Jia
- College of Physical Science and Technology, Central China Normal University, Hubei, 430079, Wuhan, China
| | - Qicai Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ziying Fu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
3
|
Qian M, Yao Z, Wang Q, Zhou Y, Huang Z, Li J. The quantification and mRNA expression levels of cochlear synapses in C57BL/6j mice following repeated exposure to noise. Acta Otolaryngol 2024; 144:558-564. [PMID: 39432246 DOI: 10.1080/00016489.2024.2413385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Noise-induced cochlear synaptopathy has recently emerged as a focus in hearing research. PURPOSE This study aimed to examine the impact of repeated noise exposure on the quantification and mRNA expression levels of cochlear synapses. METHODS Measurements were conducted at baseline, 1 day, and 14 days post-exposure to 88 or 97 dB SPL noise (2 h/day for 7 days, frequency range 2-20 kHz). Auditory brainstem responses (ABRs), immunofluorescence and quantitative real-time PCR (qRT-PCR) were used to examine the results. RESULTS 1. Exposure to 88 dB SPL caused minimal changes in ABRs, ribbon morphology and medial olivocochlear (MOC) efferent synapses; elevation of synaptophysin(SYP) and α9α10 nAchR mRNA levels were observed. 2. Exposure to 97 dB SPL caused threshold shift and synaptopathy of ribbon and MOC; downregulation of α10nAchR, SYP and ctbp2 mRNA levels were observed. CONCLUSION Noise-induced cochlear synaptic degeneration involves both afferent and efferent synaptopathy.
Collapse
Affiliation(s)
- Minfei Qian
- Department of Otolaryngology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuowei Yao
- Department of Otolaryngology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qixuan Wang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaqi Zhou
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhiwu Huang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiping Li
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
4
|
Chen HK, Wang YH, Lei CS, Guo YR, Tang MC, Tsai TF, Chen YF, Wang CH. Loss of Cisd2 Exacerbates the Progression of Age-Related Hearing Loss. Aging Dis 2024:AD.2024.1036. [PMID: 39226169 DOI: 10.14336/ad.2024.1036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024] Open
Abstract
Age-related hearing loss (ARHL) is a disease that impacts human quality of life and contributes to the progression of other neuronal problems. Various stressors induce an increase in free radicals, destroy mitochondria to further contribute to cellular malfunction, and compromise cell viability, ultimately leading to functional decline. Cisd2, a master gene for Marfan syndrome, plays an essential role in maintaining mitochondrial integrity and functions. As shown by our data, specific deletion of Cisd2 in the cochlea exacerbated the hearing impairment of ARHL in C57BL/6 mice. Increased defects in mitochondrial function, potassium homeostasis and synapse activity were observed in the Cisd2-deleted mouse models. These mechanistic phenotypes combined with oxidative stress contribute to cell death in the whole cochlea. Human patients with obviously deteriorated ARHL had low Cisd2 expression; therefore, Cisd2 may be a potential target for designing therapeutic methods to attenuate the disease progression of ARHL.
Collapse
Affiliation(s)
- Hang-Kang Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114201, Taiwan
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114201, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Yen-Hsin Wang
- The Ph.D. Program for Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Cing-Syuan Lei
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Yu-Ru Guo
- The Ph.D. Program for Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ming-Chi Tang
- The Ph.D. Program for Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 11221, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan
- Aging and Health Research Center, National Yang-Ming University, Taipei 11221, Taiwan
- Genome Research Center, National Yang-Ming University, Taipei 11221, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Yi-Fan Chen
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- The Ph.D. Program for Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Hung Wang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114201, Taiwan
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114201, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| |
Collapse
|
5
|
Gallino SL, Agüero L, Boffi JC, Schottlender G, Buonfiglio P, Dalamon V, Marcovich I, Carpaneto A, Craig PO, Plazas PV, Elgoyhen AB. Key role of the TM2-TM3 loop in calcium potentiation of the α9α10 nicotinic acetylcholine receptor. Cell Mol Life Sci 2024; 81:337. [PMID: 39120784 PMCID: PMC11335262 DOI: 10.1007/s00018-024-05381-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
The α9α10 nicotinic cholinergic receptor (nAChR) is a ligand-gated pentameric cation-permeable ion channel that mediates synaptic transmission between descending efferent neurons and mechanosensory inner ear hair cells. When expressed in heterologous systems, α9 and α10 subunits can assemble into functional homomeric α9 and heteromeric α9α10 receptors. One of the differential properties between these nAChRs is the modulation of their ACh-evoked responses by extracellular calcium (Ca2+). While α9 nAChRs responses are blocked by Ca2+, ACh-evoked currents through α9α10 nAChRs are potentiated by Ca2+ in the micromolar range and blocked at millimolar concentrations. Using chimeric and mutant subunits, together with electrophysiological recordings under two-electrode voltage-clamp, we show that the TM2-TM3 loop of the rat α10 subunit contains key structural determinants responsible for the potentiation of the α9α10 nAChR by extracellular Ca2+. Moreover, molecular dynamics simulations reveal that the TM2-TM3 loop of α10 does not contribute to the Ca2+ potentiation phenotype through the formation of novel Ca2+ binding sites not present in the α9 receptor. These results suggest that the TM2-TM3 loop of α10 might act as a control element that facilitates the intramolecular rearrangements that follow ACh-evoked α9α10 nAChRs gating in response to local and transient changes of extracellular Ca2+ concentration. This finding might pave the way for the future rational design of drugs that target α9α10 nAChRs as otoprotectants.
Collapse
Affiliation(s)
- Sofia L Gallino
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lucía Agüero
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan C Boffi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Monterotondo, Italy
| | - Gustavo Schottlender
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paula Buonfiglio
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Viviana Dalamon
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Irina Marcovich
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Regeneron Pharmaceuticals, Inc. Tarrytown, 10591, NY, USA
| | - Agustín Carpaneto
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Patricio O Craig
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Paola V Plazas
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Ana B Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Postolache M, Connelly Graham CJ, Burke K, Lauer AM, Xu-Friedman MA. Effects of Age on Responses of Principal Cells of the Mouse Anteroventral Cochlear Nucleus in Quiet and Noise. eNeuro 2024; 11:ENEURO.0215-24.2024. [PMID: 39134409 PMCID: PMC11320020 DOI: 10.1523/eneuro.0215-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 08/15/2024] Open
Abstract
Older listeners often report difficulties understanding speech in noisy environments. It is important to identify where in the auditory pathway hearing-in-noise deficits arise to develop appropriate therapies. We tested how encoding of sounds is affected by masking noise at early stages of the auditory pathway by recording responses of principal cells in the anteroventral cochlear nucleus (AVCN) of aging CBA/CaJ and C57BL/6J mice in vivo. Previous work indicated that masking noise shifts the dynamic range of single auditory nerve fibers (ANFs), leading to elevated tone thresholds. We hypothesized that such threshold shifts could contribute to increased hearing-in-noise deficits with age if susceptibility to masking increased in AVCN units. We tested this by recording the responses of AVCN principal neurons to tones in the presence and absence of masking noise. Surprisingly, we found that masker-induced threshold shifts decreased with age in primary-like units and did not change in choppers. In addition, spontaneous activity decreased in primary-like and chopper units of old mice, with no change in dynamic range or tuning precision. In C57 mice, which undergo early-onset hearing loss, units showed similar changes in threshold and spontaneous rate at younger ages, suggesting they were related to hearing loss and not simply aging. These findings suggest that sound information carried by AVCN principal cells remains largely unchanged with age. Therefore, hearing-in-noise deficits may result from other changes during aging, such as distorted across-channel input from the cochlea and changes in sound coding at later stages of the auditory pathway.
Collapse
Affiliation(s)
- Maggie Postolache
- Department of Biological Sciences, University at Buffalo, State University of NewYork, Buffalo, New York 14260
| | - Catherine J Connelly Graham
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Kali Burke
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Amanda M Lauer
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Solomon H. Snyder Dept. of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Matthew A Xu-Friedman
- Department of Biological Sciences, University at Buffalo, State University of NewYork, Buffalo, New York 14260
| |
Collapse
|
7
|
Dörje NM, Shvachiy L, Kück F, Outeiro TF, Strenzke N, Beutner D, Setz C. Age-related alterations in efferent medial olivocochlear-outer hair cell and primary auditory ribbon synapses in CBA/J mice. Front Cell Neurosci 2024; 18:1412450. [PMID: 38988659 PMCID: PMC11234844 DOI: 10.3389/fncel.2024.1412450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/23/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Hearing decline stands as the most prevalent single sensory deficit associated with the aging process. Giving compelling evidence suggesting a protective effect associated with the efferent auditory system, the goal of our study was to characterize the age-related changes in the number of efferent medial olivocochlear (MOC) synapses regulating outer hair cell (OHC) activity compared with the number of afferent inner hair cell ribbon synapses in CBA/J mice over their lifespan. Methods Organs of Corti of 3-month-old CBA/J mice were compared with mice aged between 10 and 20 months, grouped at 2-month intervals. For each animal, one ear was used to characterize the synapses between the efferent MOC fibers and the outer hair cells (OHCs), while the contralateral ear was used to analyze the ribbon synapses between inner hair cells (IHCs) and type I afferent nerve fibers of spiral ganglion neurons (SGNs). Each cochlea was separated in apical, middle, and basal turns, respectively. Results The first significant age-related decline in afferent IHC-SGN ribbon synapses was observed in the basal cochlear turn at 14 months, the middle turn at 16 months, and the apical turn at 18 months of age. In contrast, efferent MOC-OHC synapses in CBA/J mice exhibited a less pronounced loss due to aging which only became significant in the basal and middle turns of the cochlea by 20 months of age. Discussion This study illustrates an age-related reduction on efferent MOC innervation of OHCs in CBA/J mice starting at 20 months of age. Our findings indicate that the morphological decline of efferent MOC-OHC synapses due to aging occurs notably later than the decline observed in afferent IHC-SGN ribbon synapses.
Collapse
Affiliation(s)
- Nele Marie Dörje
- University Medical Center Göttingen, Department of Otolaryngology-Head and Neck Surgery, InnerEarLab, Göttingen, Germany
- University Medical Center Göttingen, Institute for Auditory Neuroscience, Göttingen, Germany
| | - Liana Shvachiy
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Cardiovascular Centre, University of Lisbon, Lisbon, Portugal
| | - Fabian Kück
- University Medical Center Göttingen, Department of Medical Statistics, Core Facility Medical Biometry and Statistical Bioinformatics, Göttingen, Germany
| | - Tiago F Outeiro
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nicola Strenzke
- University Medical Center Göttingen, Institute for Auditory Neuroscience, Göttingen, Germany
| | - Dirk Beutner
- University Medical Center Göttingen, Department of Otolaryngology-Head and Neck Surgery, InnerEarLab, Göttingen, Germany
| | - Cristian Setz
- University Medical Center Göttingen, Department of Otolaryngology-Head and Neck Surgery, InnerEarLab, Göttingen, Germany
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| |
Collapse
|
8
|
Steenken F, Pektaş A, Köppl C. Age-related changes in olivocochlear efferent innervation in gerbils. Front Synaptic Neurosci 2024; 16:1422330. [PMID: 38887655 PMCID: PMC11180762 DOI: 10.3389/fnsyn.2024.1422330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Introduction Age-related hearing difficulties have a complex etiology that includes degenerative processes in the sensory cochlea. The cochlea comprises the start of the afferent, ascending auditory pathway, but also receives efferent feedback innervation by two separate populations of brainstem neurons: the medial olivocochlear and lateral olivocochlear pathways, innervating the outer hair cells and auditory-nerve fibers synapsing on inner hair cells, respectively. Efferents are believed to improve hearing under difficult conditions, such as high background noise. Here, we compare olivocochlear efferent innervation density along the tonotopic axis in young-adult and aged gerbils (at ~50% of their maximum lifespan potential), a classic animal model for age-related hearing loss. Methods Efferent synaptic terminals and sensory hair cells were labeled immunohistochemically with anti-synaptotagmin and anti-myosin VIIa, respectively. Numbers of hair cells, numbers of efferent terminals, and the efferent innervation area were quantified at seven tonotopic locations along the organ of Corti. Results The tonotopic distribution of olivocochlear innervation in the gerbil was similar to that previously shown for other species, with a slight apical cochlear bias in presumed lateral olivocochlear innervation (inner-hair-cell region), and a broad mid-cochlear peak for presumed medial olivocochlear innervation (outer-hair-cell region). We found significant, age-related declines in overall efferent innervation to both the inner-hair-cell and the outer-hair-cell region. However, when accounting for the age-related losses in efferent target structures, the innervation density of surviving elements proved unchanged in the inner-hair-cell region. For outer hair cells, a pronounced increase of orphaned outer hair cells, i.e., lacking efferent innervation, was observed. Surviving outer hair cells that were still efferently innervated retained a nearly normal innervation. Discussion A comparison across species suggests a basic aging scenario where outer hair cells, type-I afferents, and the efferents associated with them, steadily die away with advancing age, but leave the surviving cochlear circuitry largely intact until an advanced age, beyond 50% of a species' maximum lifespan potential. In the outer-hair-cell region, MOC degeneration may precede outer-hair-cell death, leaving a putatively transient population of orphaned outer hair cells that are no longer under efferent control.
Collapse
Affiliation(s)
- Friederike Steenken
- Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Cluster of Excellence “Hearing4all”, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Asli Pektaş
- Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Christine Köppl
- Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Cluster of Excellence “Hearing4all”, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Research Centre Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
9
|
Fuentes-Santamaría V, Benítez-Maicán Z, Alvarado JC, Fernández Del Campo IS, Gabaldón-Ull MC, Merchán MA, Juiz JM. Surface electrical stimulation of the auditory cortex preserves efferent medial olivocochlear neurons and reduces cochlear traits of age-related hearing loss. Hear Res 2024; 447:109008. [PMID: 38636186 DOI: 10.1016/j.heares.2024.109008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/19/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
The auditory cortex is the source of descending connections providing contextual feedback for auditory signal processing at almost all levels of the lemniscal auditory pathway. Such feedback is essential for cognitive processing. It is likely that corticofugal pathways are degraded with aging, becoming important players in age-related hearing loss and, by extension, in cognitive decline. We are testing the hypothesis that surface, epidural stimulation of the auditory cortex during aging may regulate the activity of corticofugal pathways, resulting in modulation of central and peripheral traits of auditory aging. Increased auditory thresholds during ongoing age-related hearing loss in the rat are attenuated after two weeks of epidural stimulation with direct current applied to the surface of the auditory cortex for two weeks in alternate days (Fernández del Campo et al., 2024). Here we report that the same cortical electrical stimulation protocol induces structural and cytochemical changes in the aging cochlea and auditory brainstem, which may underlie recovery of age-degraded auditory sensitivity. Specifically, we found that in 18 month-old rats after two weeks of cortical electrical stimulation there is, relative to age-matched non-stimulated rats: a) a larger number of choline acetyltransferase immunoreactive neuronal cell body profiles in the ventral nucleus of the trapezoid body, originating the medial olivocochlear system.; b) a reduction of age-related dystrophic changes in the stria vascularis; c) diminished immunoreactivity for the pro-inflammatory cytokine TNFα in the stria vascularis and spiral ligament. d) diminished immunoreactivity for Iba1 and changes in the morphology of Iba1 immunoreactive cells in the lateral wall, suggesting reduced activation of macrophage/microglia; d) Increased immunoreactivity levels for calretinin in spiral ganglion neurons, suggesting excitability modulation by corticofugal stimulation. Altogether, these findings support that non-invasive neuromodulation of the auditory cortex during aging preserves the cochlear efferent system and ameliorates cochlear aging traits, including stria vascularis dystrophy, dysregulated inflammation and altered excitability in primary auditory neurons.
Collapse
Affiliation(s)
- V Fuentes-Santamaría
- School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008, Albacete, Spain
| | - Z Benítez-Maicán
- School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008, Albacete, Spain
| | - J C Alvarado
- School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008, Albacete, Spain
| | - I S Fernández Del Campo
- Lab. of Auditory Neuroplasticity, Institute for Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
| | - M C Gabaldón-Ull
- School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008, Albacete, Spain
| | - M A Merchán
- Lab. of Auditory Neuroplasticity, Institute for Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
| | - J M Juiz
- School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008, Albacete, Spain; Hannover Medical School, Dept. of Otolaryngology and Cluster of Excellence "H4all" of the German Research Foundation, DFG, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
10
|
Fernández Del Campo IS, Carmona-Barrón VG, Diaz I, Plaza I, Alvarado JC, Merchán MA. Multisession anodal epidural direct current stimulation of the auditory cortex delays the progression of presbycusis in the Wistar rat. Hear Res 2024; 444:108969. [PMID: 38350175 DOI: 10.1016/j.heares.2024.108969] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/15/2024]
Abstract
Presbycusis or age-related hearing loss (ARHL) is one of the most prevalent chronic health problems facing aging populations. Along the auditory pathway, the stations involved in transmission and processing, function as a system of interconnected feedback loops. Regulating hierarchically auditory processing, auditory cortex (AC) neuromodulation can, accordingly, activate both peripheral and central plasticity after hearing loss. However, previous ARHL-prevention interventions have mainly focused on preserving the structural and functional integrity of the inner ear, overlooking the central auditory system. In this study, using an animal model of spontaneous ARHL, we aim at assessing the effects of multisession epidural direct current stimulation of the AC through stereotaxic implantation of a 1-mm silver ball anode in Wistar rats. Consisting of 7 sessions (0.1 mA/10 min), on alternate days, in awake animals, our stimulation protocol was applied at the onset of hearing loss (threshold shift detection at 16 months). Click- and pure-tone auditory brainstem responses (ABRs) were analyzed in two animal groups, namely electrically stimulated (ES) and non-stimulated (NES) sham controls, comparing recordings at 18 months of age. At 18 months, NES animals showed significantly increased threshold shifts, decreased wave amplitudes, and increased wave latencies after click and tonal ABRs, reflecting a significant, spontaneous ARHL evolution. Conversely, in ES animals, no significant differences were detected in any of these parameters when comparing 16 and 18 months ABRs, indicating a delay in ARHL progression. Electrode placement in the auditory cortex was accurate, and the stimulation did not cause significant damage, as shown by the limited presence of superficial reactive microglial cells after IBA1 immunostaining. In conclusion, multisession DC stimulation of the AC has a protective effect on auditory function, delaying the progression of presbycusis.
Collapse
Affiliation(s)
- Inés S Fernández Del Campo
- Lab.4 Auditory Neuroplasticity, Institute for Neuroscience of Castilla y León. University of Salamanca. Salamanca, Spain
| | - Venezia G Carmona-Barrón
- Lab.4 Auditory Neuroplasticity, Institute for Neuroscience of Castilla y León. University of Salamanca. Salamanca, Spain
| | - I Diaz
- Lab.4 Auditory Neuroplasticity, Institute for Neuroscience of Castilla y León. University of Salamanca. Salamanca, Spain
| | - I Plaza
- Lab.4 Auditory Neuroplasticity, Institute for Neuroscience of Castilla y León. University of Salamanca. Salamanca, Spain
| | - J C Alvarado
- Facultad de Medicina, IDINE, Universidad de Castilla la Mancha, Albacete, Spain
| | - M A Merchán
- Lab.4 Auditory Neuroplasticity, Institute for Neuroscience of Castilla y León. University of Salamanca. Salamanca, Spain.
| |
Collapse
|
11
|
Slika E, Fuchs PA. Genetic tools for studying cochlear inhibition. Front Cell Neurosci 2024; 18:1372948. [PMID: 38560293 PMCID: PMC10978695 DOI: 10.3389/fncel.2024.1372948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Efferent feedback to the mammalian cochlea includes cholinergic medial olivocochlear neurons (MOCs) that release ACh to hyperpolarize and shunt the voltage change that drives electromotility of outer hair cells (OHCs). Via brainstem connectivity, MOCs are activated by sound in a frequency- and intensity-dependent manner, thereby reducing the amplification of cochlear vibration provided by OHC electromotility. Among other roles, this efferent feedback protects the cochlea from acoustic trauma. Lesion studies, as well as a variety of genetic mouse models, support the hypothesis of efferent protection from acoustic trauma. Genetic knockout and gain-of-function knockin of the unique α9α10-containing nicotinic acetylcholine receptor (nAChR) in hair cells show that acoustic protection correlates with the efficacy of cholinergic inhibition of OHCs. This protective effect was replicated by viral transduction of the gain-of-function α9L9'T nAChR into α9-knockout mice. Continued progress with "efferent gene therapy" will require a reliable method for visualizing nAChR expression in cochlear hair cells. To that end, mice expressing HA-tagged α9 or α10 nAChRs were generated using CRISPR technology. This progress will facilitate continued study of the hair cell nAChR as a therapeutic target to prevent hearing loss and potentially to ameliorate associated pathologies such as hyperacusis.
Collapse
Affiliation(s)
| | - Paul Albert Fuchs
- The Center for Hearing and Balance, Otolaryngology-Head and Neck Surgery, Johns Hopkins, University School of Medicine Baltimore, Baltimore, MD, United States
| |
Collapse
|
12
|
Tavanai E, Rahimi V, Khalili ME, Falahzadeh S, Motasaddi Zarandy M, Mohammadkhani G. Age-related hearing loss: An updated and comprehensive review of the interventions. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:256-269. [PMID: 38333758 PMCID: PMC10849199 DOI: 10.22038/ijbms.2023.72863.15849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/17/2023] [Indexed: 02/10/2024]
Abstract
Aging causes progressive degenerative changes in many organs, particularly the auditory system. Several attempts have been conducted to investigate preventive and therapeutic strategy/strategies for age-related auditory dysfunction, such as maintaining a healthy lifestyle through good nutrition, lower anxiety levels, and noise exposure, different pharmacological approaches, gene and cell therapy, and other strategies. However, it is not clear which approach is the best to slow down these dysfunctions because several different underlying mechanistic pathways are associated with presbycusis which eventually leads to different types of this disease. A combination of several methods is probably required, whereas the effectiveness for some people needs to be monitored. The effectiveness of treatments will not be the same for all; therefore, we may need to have a unique and personalized approach to the prevention and treatment of ARHL for each person. In addition, each method needs to specify what type of presbycusis can prevent or treat and provide complete information about the extent, duration of treatment, persistency of treatment, side effects, and whether the approach is for treatment or prevention or even both. This paper reviews the updated literature, which targets current interventions for age-related hearing loss.
Collapse
Affiliation(s)
- Elham Tavanai
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Vida Rahimi
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ehsan Khalili
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Falahzadeh
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
- Department of Audiology, School of Rehabilitation, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Motasaddi Zarandy
- Otolaryngology Research Center, Amiralam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghassem Mohammadkhani
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Sodero AO, Castagna VC, Elorza SD, Gonzalez-Rodulfo SM, Paulazo MA, Ballestero JA, Martin MG, Gomez-Casati ME. Phytosterols reverse antiretroviral-induced hearing loss, with potential implications for cochlear aging. PLoS Biol 2023; 21:e3002257. [PMID: 37619212 PMCID: PMC10449472 DOI: 10.1371/journal.pbio.3002257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 07/18/2023] [Indexed: 08/26/2023] Open
Abstract
Cholesterol contributes to neuronal membrane integrity, supports membrane protein clustering and function, and facilitates proper signal transduction. Extensive evidence has shown that cholesterol imbalances in the central nervous system occur in aging and in the development of neurodegenerative diseases. In this work, we characterize cholesterol homeostasis in the inner ear of young and aged mice as a new unexplored possibility for the prevention and treatment of hearing loss. Our results show that cholesterol levels in the inner ear are reduced during aging, an effect that is associated with an increased expression of the cholesterol 24-hydroxylase (CYP46A1), the main enzyme responsible for cholesterol turnover in the brain. In addition, we show that pharmacological activation of CYP46A1 with the antiretroviral drug efavirenz reduces the cholesterol content in outer hair cells (OHCs), leading to a decrease in prestin immunolabeling and resulting in an increase in the distortion product otoacoustic emissions (DPOAEs) thresholds. Moreover, dietary supplementation with phytosterols, plant sterols with structure and function similar to cholesterol, was able to rescue the effect of efavirenz administration on the auditory function. Altogether, our findings point towards the importance of cholesterol homeostasis in the inner ear as an innovative therapeutic strategy in preventing and/or delaying hearing loss.
Collapse
Affiliation(s)
- Alejandro O. Sodero
- Instituto de Investigaciones Biomédicas, Pontificia Universidad Católica Argentina, Consejo Nacional de Investigaciones Científicas y Técnicas (BIOMED, UCA-CONICET), Buenos Aires, Argentina
| | - Valeria C. Castagna
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas (INGEBI-CONICET), Buenos Aires, Argentina
| | - Setiembre D. Elorza
- Laboratorio de Neurobiología, Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET-UNC), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Sara M. Gonzalez-Rodulfo
- Instituto de Investigaciones Biomédicas, Pontificia Universidad Católica Argentina, Consejo Nacional de Investigaciones Científicas y Técnicas (BIOMED, UCA-CONICET), Buenos Aires, Argentina
| | - María A. Paulazo
- Instituto de Investigaciones Biomédicas, Pontificia Universidad Católica Argentina, Consejo Nacional de Investigaciones Científicas y Técnicas (BIOMED, UCA-CONICET), Buenos Aires, Argentina
| | - Jimena A. Ballestero
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mauricio G. Martin
- Laboratorio de Neurobiología, Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET-UNC), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Eugenia Gomez-Casati
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
14
|
Trigila AP, Castagna VC, Berasain L, Montini D, Rubinstein M, Gomez-Casati ME, Franchini LF. Accelerated Evolution Analysis Uncovers PKNOX2 as a Key Transcription Factor in the Mammalian Cochlea. Mol Biol Evol 2023; 40:msad128. [PMID: 37247388 PMCID: PMC10337857 DOI: 10.1093/molbev/msad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
The genetic bases underlying the evolution of morphological and functional innovations of the mammalian inner ear are poorly understood. Gene regulatory regions are thought to play an important role in the evolution of form and function. To uncover crucial hearing genes whose regulatory machinery evolved specifically in mammalian lineages, we mapped accelerated noncoding elements (ANCEs) in inner ear transcription factor (TF) genes and found that PKNOX2 harbors the largest number of ANCEs within its transcriptional unit. Using reporter gene expression assays in transgenic zebrafish, we determined that four PKNOX2-ANCEs drive differential expression patterns when compared with ortholog sequences from close outgroup species. Because the functional role of PKNOX2 in cochlear hair cells has not been previously investigated, we decided to study Pknox2 null mice generated by CRISPR/Cas9 technology. We found that Pknox2-/- mice exhibit reduced distortion product otoacoustic emissions (DPOAEs) and auditory brainstem response (ABR) thresholds at high frequencies together with an increase in peak 1 amplitude, consistent with a higher number of inner hair cells (IHCs)-auditory nerve synapsis observed at the cochlear basal region. A comparative cochlear transcriptomic analysis of Pknox2-/- and Pknox2+/+ mice revealed that key auditory genes are under Pknox2 control. Hence, we report that PKNOX2 plays a critical role in cochlear sensitivity at higher frequencies and that its transcriptional regulation underwent lineage-specific evolution in mammals. Our results provide novel insights about the contribution of PKNOX2 to normal auditory function and to the evolution of high-frequency hearing in mammals.
Collapse
Affiliation(s)
- Anabella P Trigila
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Valeria C Castagna
- Facultad de Medicina, Instituto de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lara Berasain
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Dante Montini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Lucía F Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
15
|
Zhang Y, Hiel H, Vincent PF, Wood MB, Elgoyhen AB, Chien W, Lauer A, Fuchs PA. Engineering olivocochlear inhibition to reduce acoustic trauma. Mol Ther Methods Clin Dev 2023; 29:17-31. [PMID: 36941920 PMCID: PMC10023855 DOI: 10.1016/j.omtm.2023.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Efferent brain-stem neurons release acetylcholine to desensitize cochlear hair cells and can protect the inner ear from acoustic trauma. That protection is absent from knockout mice lacking efferent inhibition and is stronger in mice with a gain-of-function point mutation of the hair cell-specific nicotinic acetylcholine receptor. The present work uses viral transduction of gain-of-function receptors to restore acoustic prophylaxis to the knockout mice. Widespread postsynaptic expression of the transgene was visualized in excised tissue with a fluorophore-conjugated peptide toxin that binds selectively to hair cell acetylcholine receptors. Viral transduction into efferent knockout mice reduced the temporary hearing loss measured 1 day post acoustic trauma. The acoustic evoked-response waveform (auditory brain-stem response) recovered more rapidly in treated mice than in control mice. Thus, both cochlear amplification by outer hair cells (threshold shift) and afferent signaling (evoked-response amplitude) in knockout mice were protected by viral transduction of hair cell acetylcholine receptors. Gene therapy to strengthen efferent cochlear feedback could be complementary to existing and future therapies to prevent hearing loss, including ear coverings, hearing aids, single-gene repair, or small-molecule therapies.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- The Center for Hearing and Balance, Otolaryngology–Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hakim Hiel
- The Center for Hearing and Balance, Otolaryngology–Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Philippe F.Y. Vincent
- The Center for Hearing and Balance, Otolaryngology–Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Megan B. Wood
- The Center for Hearing and Balance, Otolaryngology–Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ana B. Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Héctor N. Torres (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428ADN CABA, Buenos Aires, Argentina
| | - Wade Chien
- The Center for Hearing and Balance, Otolaryngology–Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD 20892, USA
| | - Amanda Lauer
- The Center for Hearing and Balance, Otolaryngology–Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul A. Fuchs
- The Center for Hearing and Balance, Otolaryngology–Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
16
|
Vicencio-Jimenez S, Delano PH, Madrid N, Terreros G, Maass JC, Delgado C, Jorratt P. Maintained Spatial Learning and Memory Functions in Middle-Aged α9 Nicotinic Receptor Subunit Knock-Out Mice. Brain Sci 2023; 13:brainsci13050794. [PMID: 37239266 DOI: 10.3390/brainsci13050794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Age-related hearing loss is linked to cognitive impairment, but the mechanisms that relate to these conditions remain unclear. Evidence shows that the activation of medial olivocochlear (MOC) neurons delays cochlear aging and hearing loss. Consequently, the loss of MOC function may be related to cognitive impairment. The α9/α10 nicotinic receptor is the main target of cholinergic synapses between the MOC neurons and cochlear outer hair cells. Here, we explored spatial learning and memory performance in middle-aged wild-type (WT) and α9-nAChR subunit knock-out (KO) mice using the Barnes maze and measured auditory brainstem response (ABR) thresholds and the number of cochlear hair cells as a proxy of cochlear aging. Our results show non-significant spatial learning differences between WT and KO mice, but KO mice had a trend of increased latency to enter the escape box and freezing time. To test a possible reactivity to the escape box, we evaluated the novelty-induced behavior using an open field and found a tendency towards more freezing time in KO mice. There were no differences in memory, ABR threshold, or the number of cochlear hair cells. We suggest that the lack of α9-nAChR subunit alters novelty-induced behavior, but not spatial learning in middle-aged mice, by a non-cochlear mechanism.
Collapse
Affiliation(s)
- Sergio Vicencio-Jimenez
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago 8320328, Chile
- Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Santiago 8320328, Chile
- Otolaryngology Department, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Paul H Delano
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago 8320328, Chile
- Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Santiago 8320328, Chile
- Department of Otolaryngology, Hospital Clínico Universidad de Chile, Santiago 8320328, Chile
- Centro Avanzado de Ingeniería Eléctrica y Electrónica, AC3E, Universidad Técnica Federico Santa María, Valparaíso 2390136, Chile
| | - Natalia Madrid
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago 8320328, Chile
| | - Gonzalo Terreros
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua 2841935, Chile
| | - Juan C Maass
- Department of Otolaryngology, Hospital Clínico Universidad de Chile, Santiago 8320328, Chile
- Interdisciplinary Program of Physiology and Biophysics, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8320328, Chile
| | - Carolina Delgado
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago 8320328, Chile
| | - Pascal Jorratt
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague, Czech Republic
| |
Collapse
|
17
|
Elgoyhen AB. The α9α10 acetylcholine receptor: a non-neuronal nicotinic receptor. Pharmacol Res 2023; 190:106735. [PMID: 36931539 DOI: 10.1016/j.phrs.2023.106735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Within the superfamily of pentameric ligand-gated ion channels, cholinergic nicotinic receptors (nAChRs) were classically identified to mediate synaptic transmission in the nervous system and the neuromuscular junction. The α9 and α10 nAChR subunits were the last ones to be identified. Surprisingly, they do not fall into the dichotomic neuronal/muscle classification of nAChRs. They assemble into heteropentamers with a well-established function as canonical ion channels in inner ear hair cells, where they mediate central nervous system control of auditory and vestibular sensory processing. The present review includes expression, pharmacological, structure-function, molecular evolution and pathophysiological studies, that define receptors composed from α9 and α10 subunits as distant and distinct members within the nAChR family. Thus, although α9 and α10 were initially included within the neuronal subdivision of nAChR subunits, they form a distinct clade within the phylogeny of nAChRs. Following the classification of nAChR subunits based on their main synaptic site of action, α9 and α10 should receive a name in their own right.
Collapse
Affiliation(s)
- Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina.
| |
Collapse
|
18
|
Chequer Charan D, Hua Y, Wang H, Huang W, Wang F, Elgoyhen AB, Boergens KM, Di Guilmi MN. Volume electron microscopy reveals age-related circuit remodeling in the auditory brainstem. Front Cell Neurosci 2022; 16:1070438. [PMID: 36589288 PMCID: PMC9799098 DOI: 10.3389/fncel.2022.1070438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
The medial nucleus of the trapezoid body (MNTB) is an integral component of the auditory brainstem circuitry involved in sound localization. The giant presynaptic nerve terminal with multiple active zones, the calyx of Held (CH), is a hallmark of this nucleus, which mediates fast and synchronized glutamatergic synaptic transmission. To delineate how these synaptic structures adapt to reduced auditory afferents due to aging, we acquired and reconstructed circuitry-level volumes of mouse MNTB at different ages (3 weeks, 6, 18, and 24 months) using serial block-face electron microscopy. We used C57BL/6J, the most widely inbred mouse strain used for transgenic lines, which displays a type of age-related hearing loss. We found that MNTB neurons reduce in density with age. Surprisingly we observed an average of approximately 10% of poly-innervated MNTB neurons along the mouse lifespan, with prevalence in the low frequency region. Moreover, a tonotopy-dependent heterogeneity in CH morphology was observed in young but not in older mice. In conclusion, our data support the notion that age-related hearing impairments can be in part a direct consequence of several structural alterations and circuit remodeling in the brainstem.
Collapse
Affiliation(s)
- Daniela Chequer Charan
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, INGEBI-CONICET, Buenos Aires, Argentina
| | - Yunfeng Hua
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Wang
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqing Huang
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangfang Wang
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, INGEBI-CONICET, Buenos Aires, Argentina
| | - Kevin M. Boergens
- Department of Physics, The University of Illinois at Chicago, Chicago, IL, United States,*Correspondence: Kevin M. Boergens Mariano N. Di Guilmi
| | - Mariano N. Di Guilmi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, INGEBI-CONICET, Buenos Aires, Argentina,*Correspondence: Kevin M. Boergens Mariano N. Di Guilmi
| |
Collapse
|
19
|
Bramhall NF, Kampel SD, Reavis KM, Martin DK. Contralateral inhibition of distortion product otoacoustic emissions in young noise-exposed Veterans. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:3562. [PMID: 36586855 PMCID: PMC10857792 DOI: 10.1121/10.0016590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Although animal models show a clear link between noise exposure and damage to afferent cochlear synapses, the relationship between noise exposure and efferent function appears to be more complex. Animal studies indicate that high intensity noise exposure reduces efferent medial olivocochlear (MOC) reflex strength, whereas chronic moderate noise exposure is associated with a conditioning effect that enhances the MOC reflex. The MOC reflex is predicted to improve speech-in-noise perception and protects against noise-induced auditory damage by reducing cochlear gain. In humans, MOC reflex strength can be estimated by measuring contralateral inhibition of distortion product otoacoustic emissions (DPOAEs). The objective of this study was to determine the impact of military noise exposure on efferent auditory function by measuring DPOAE contralateral inhibition in young Veterans and non-Veterans with normal audiograms. Compared with non-Veteran controls, Veterans with high levels of reported noise exposure demonstrated a trend of reduced contralateral inhibition across a broad frequency range, suggesting efferent damage. Veterans with moderate noise exposure showed trends of reduced inhibition from 3 to 4 kHz but greater inhibition from 1 to 1.5 kHz, consistent with conditioning. These findings suggest that, in humans, the impact of noise exposure on the MOC reflex differs depending on the noise intensity and duration.
Collapse
Affiliation(s)
- Naomi F. Bramhall
- VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, OR 97239, USA
| | - Sean D. Kampel
- VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, OR 97239, USA
| | - Kelly M. Reavis
- VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, OR 97239, USA
| | - Dawn Konrad Martin
- VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, OR 97239, USA
| |
Collapse
|
20
|
Xia L, Ripley S, Jiang Z, Yin X, Yu Z, Aiken SJ, Wang J. Synaptopathy in Guinea Pigs Induced by Noise Mimicking Human Experience and Associated Changes in Auditory Signal Processing. Front Neurosci 2022; 16:935371. [PMID: 35873820 PMCID: PMC9298651 DOI: 10.3389/fnins.2022.935371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Noise induced synaptopathy (NIS) has been researched extensively since a large amount of synaptic loss without permanent threshold shift (PTS) was found in CBA mice after a brief noise exposure. However, efforts to translate these results to humans have met with little success—and might not be possible since noise exposure used in laboratory animals is generally different from what is experienced by human subjects in real life. An additional problem is a lack of morphological data and reliable functional methods to quantify loss of afferent synapses in humans. Based on evidence for disproportionate synaptic loss for auditory nerve fibers (ANFs) with low spontaneous rates (LSR), coding-in-noise deficits (CIND) have been speculated to be the major difficulty associated with NIS without PTS. However, no robust evidence for this is available in humans or animals. This has led to a re-examination of the role of LSR ANFs in signal coding in high-level noise. The fluctuation profile model has been proposed to support a role for high-SR ANFs in the coding of high-level noise in combination with efferent control of cochlear gain. This study aimed to induce NIS by a low-level, intermittent noise exposure mimicking what is experienced in human life and examined the impact of the NIS on temporal processing under masking. It also evaluated the role of temporal fluctuation in evoking efferent feedback and the effects of NIS on this feedback.
Collapse
Affiliation(s)
- Li Xia
- Department of Otolaryngology-Head and Neck Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Sara Ripley
- School of Communication Sciences and Disorders, Dalhousie University, Halifax, NS, Canada
| | - Zhenhua Jiang
- Department of Otolaryngology-Head and Neck Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Xue Yin
- Department of Otolaryngology-Head and Neck Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Zhiping Yu
- School of Communication Sciences and Disorders, Dalhousie University, Halifax, NS, Canada
| | - Steve J Aiken
- School of Communication Sciences and Disorders, Dalhousie University, Halifax, NS, Canada
| | - Jian Wang
- Department of Otolaryngology-Head and Neck Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China.,School of Communication Sciences and Disorders, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
21
|
Munoz F, Vicencio-Jimenez S, Jorratt P, Delano PH, Terreros G. Corticofugal and Brainstem Functions Associated With Medial Olivocochlear Cholinergic Transmission. Front Neurosci 2022; 16:866161. [PMID: 35573302 PMCID: PMC9094045 DOI: 10.3389/fnins.2022.866161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022] Open
Abstract
Cholinergic transmission is essential for survival and reproduction, as it is involved in several physiological responses. In the auditory system, both ascending and descending auditory pathways are modulated by cholinergic transmission, affecting the perception of sounds. The auditory efferent system is a neuronal network comprised of several feedback loops, including corticofugal and brainstem pathways to the cochlear receptor. The auditory efferent system's -final and mandatory synapses that connect the brain with the cochlear receptor- involve medial olivocochlear neurons and outer hair cells. A unique cholinergic transmission mediates these synapses through α9/α10 nicotinic receptors. To study this receptor, it was generated a strain of mice carrying a null mutation of the Chrna9 gene (α9-KO mice), lacking cholinergic transmission between medial olivocochlear neurons and outer hair cells, providing a unique opportunity to study the role of medial olivocochlear cholinergic transmission in auditory and cognitive functions. In this article, we review behavioral and physiological studies carried out to research auditory efferent function in the context of audition, cognition, and hearing impairments. Auditory studies have shown that hearing thresholds in the α9-KO mice are normal, while more complex auditory functions, such as frequency selectivity and sound localization, are altered. The corticofugal pathways have been studied in α9-KO mice using behavioral tasks, evidencing a reduced capacity to suppress auditory distractors during visual selective attention. Finally, we discuss the evolutionary role of the auditory efferent system detecting vocalizations in noise and its role in auditory disorders, such as the prevention of age-related hearing loss.
Collapse
Affiliation(s)
- Felipe Munoz
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua, Chile
- Universidad de Valparaíso, Valparaíso, Chile
| | - Sergio Vicencio-Jimenez
- Department of Otolaryngology-Head and Neck Surgery, The Center for Hearing and Balance, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Pascal Jorratt
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Paul H. Delano
- Facultad de Medicina, Neuroscience Department, Universidad de Chile, Santiago, Chile
- Department of Otolaryngology, Hospital Clínico de la Universidad de Chile, Santiago, Chile
- Centro Avanzado de Ingeniería Eléctrica y Electrónica, AC3E, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Facultad de Medicina, Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| | - Gonzalo Terreros
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua, Chile
| |
Collapse
|
22
|
Sadeghi SG, Géléoc GSG. Editorial: Commonalities and Differences in Vestibular and Auditory Pathways. Front Neurosci 2022; 16:876798. [PMID: 35401079 PMCID: PMC8984178 DOI: 10.3389/fnins.2022.876798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Soroush G. Sadeghi
- Center for Hearing and Deafness, Department of Communicative Disorders and Science, University at Buffalo, Buffalo, NY, United States
- *Correspondence: Soroush G. Sadeghi
| | - Gwenaëlle S. G. Géléoc
- Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
- Gwenaëlle S. G. Géléoc
| |
Collapse
|
23
|
Cornman RS, Cryan PM. Positively selected genes in the hoary bat ( Lasiurus cinereus) lineage: prominence of thymus expression, immune and metabolic function, and regions of ancient synteny. PeerJ 2022; 10:e13130. [PMID: 35317076 PMCID: PMC8934532 DOI: 10.7717/peerj.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/25/2022] [Indexed: 01/12/2023] Open
Abstract
Background Bats of the genus Lasiurus occur throughout the Americas and have diversified into at least 20 species among three subgenera. The hoary bat (Lasiurus cinereus) is highly migratory and ranges farther across North America than any other wild mammal. Despite the ecological importance of this species as a major insect predator, and the particular susceptibility of lasiurine bats to wind turbine strikes, our understanding of hoary bat ecology, physiology, and behavior remains poor. Methods To better understand adaptive evolution in this lineage, we used whole-genome sequencing to identify protein-coding sequence and explore signatures of positive selection. Gene models were predicted with Maker and compared to seven well-annotated and phylogenetically representative species. Evolutionary rate analysis was performed with PAML. Results Of 9,447 single-copy orthologous groups that met evaluation criteria, 150 genes had a significant excess of nonsynonymous substitutions along the L. cinereus branch (P < 0.001 after manual review of alignments). Selected genes as a group had biased expression, most strongly in thymus tissue. We identified 23 selected genes with reported immune functions as well as a divergent paralog of Steep1 within suborder Yangochiroptera. Seventeen genes had roles in lipid and glucose metabolic pathways, partially overlapping with 15 mitochondrion-associated genes; these adaptations may reflect the metabolic challenges of hibernation, long-distance migration, and seasonal variation in prey abundance. The genomic distribution of positively selected genes differed significantly from background expectation by discrete Kolmogorov-Smirnov test (P < 0.001). Remarkably, the top three physical clusters all coincided with islands of conserved synteny predating Mammalia, the largest of which shares synteny with the human cat-eye critical region (CECR) on 22q11. This observation coupled with the expansion of a novel Tbx1-like gene family may indicate evolutionary innovation during pharyngeal arch development: both the CECR and Tbx1 cause dosage-dependent congenital abnormalities in thymus, heart, and head, and craniodysmorphy is associated with human orthologs of other positively selected genes as well.
Collapse
|
24
|
Elgoyhen AB. The α9α10 nicotinic acetylcholine receptor: a compelling drug target for hearing loss? Expert Opin Ther Targets 2022; 26:291-302. [PMID: 35225139 PMCID: PMC9007918 DOI: 10.1080/14728222.2022.2047931] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hearing loss is a major health problem, impacting education, communication, interpersonal relationships, and mental health. Drugs that prevent or restore hearing are lacking and hence novel drug targets are sought. There is the possibility of targeting the α9α10 nicotinic acetylcholine receptor (nAChR) in the prevention of noise-induced, hidden hearing loss and presbycusis. This receptor mediates synaptic transmission between medial olivocochlear efferent fibers and cochlear outer hair cells. This target is key since enhanced olivocochlear activity prevents noise-induced hearing loss and delays presbycusis. AREAS COVERED The work examines the α9α10 nicotinic acetylcholine receptor (nAChR), its role in noise-induced, hidden hearing loss and presbycusis and the possibility of targeting. Data has been searched in Pubmed, the World Report on Hearing from the World Health Organization and the Global Burden of Disease Study 2019. EXPERT OPINION The design of positive allosteric modulators of α9α10 nAChRs is proposed because of the advantage of reinforcing the medial olivocochlear (MOC)-hair cell endogenous neurotransmission without directly stimulating the target receptors, therefore avoiding receptor desensitization and reduced efficacy. The time is right for the discovery and development of α9α10 nAChRs targeting agents and high throughput screening assays will support this.
Collapse
Affiliation(s)
- Ana Belén Elgoyhen
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
25
|
Mertes IB, Potocki ME. Contralateral noise effects on otoacoustic emissions and electrophysiologic responses in normal-hearing adults. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:2255. [PMID: 35364945 DOI: 10.1121/10.0009910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Contralateral noise inhibits the amplitudes of cochlear and neural responses. These measures may hold potential diagnostic utility. The medial olivocochlear (MOC) reflex underlies the inhibition of cochlear responses but the extent to which it contributes to inhibition of neural responses remains unclear. Mertes and Leek [J. Acoust. Soc. Am. 140, 2027-2038 (2016)] recently examined contralateral inhibition of cochlear responses [transient-evoked otoacoustic emissions (TEOAEs)] and neural responses [auditory steady-state responses (ASSRs)] in humans and found that the two measures were not correlated, but potential confounds of older age and hearing loss were present. The current study controlled for these confounds by examining a group of young, normal-hearing adults. Additionally, measurements of the auditory brainstem response (ABR) were obtained. Responses were elicited using clicks with and without contralateral broadband noise. Changes in TEOAE and ASSR magnitude as well as ABR wave V latency were examined. Results indicated that contralateral inhibition of ASSRs was significantly larger than that of TEOAEs and that the two measures were uncorrelated. Additionally, there was no significant change in wave V latency. Results suggest that further work is needed to understand the mechanism underlying contralateral inhibition of the ASSR.
Collapse
Affiliation(s)
- Ian B Mertes
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, 901 South Sixth Street, Champaign, Illinois 61820, USA
| | - Morgan E Potocki
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, 901 South Sixth Street, Champaign, Illinois 61820, USA
| |
Collapse
|
26
|
Climer LK, Hornak AJ, Murtha K, Yang Y, Cox AM, Simpson PL, Le A, Simmons DD. Deletion of Oncomodulin Gives Rise to Early Progressive Cochlear Dysfunction in C57 and CBA Mice. Front Aging Neurosci 2021; 13:749729. [PMID: 34867279 PMCID: PMC8634891 DOI: 10.3389/fnagi.2021.749729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Ca2+ signaling is a major contributor to sensory hair cell function in the cochlea. Oncomodulin (OCM) is a Ca2+ binding protein (CaBP) preferentially expressed in outer hair cells (OHCs) of the cochlea and few other specialized cell types. Here, we expand on our previous reports and show that OCM delays hearing loss in mice of two different genetic backgrounds: CBA/CaJ and C57Bl/6J. In both backgrounds, genetic disruption of Ocm leads to early progressive hearing loss as measured by auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE). In both strains, loss of Ocm reduced hearing across lifetime (hearing span) by more than 50% relative to wild type (WT). Even though the two WT strains have very different hearing spans, OCM plays a considerable and similar role within their genetic environment to regulate hearing function. The accelerated age-related hearing loss (ARHL) of the Ocm KO illustrates the importance of Ca2+ signaling in maintaining hearing health. Manipulation of OCM and Ca2+ signaling may reveal important clues to the systems of function/dysfunction that lead to ARHL.
Collapse
Affiliation(s)
- Leslie K Climer
- Department of Biology, Baylor University, Waco, TX, United States
| | - Aubrey J Hornak
- Department of Biology, Baylor University, Waco, TX, United States
| | - Kaitlin Murtha
- Department of Biology, Baylor University, Waco, TX, United States
| | - Yang Yang
- Department of Biology, Baylor University, Waco, TX, United States
| | - Andrew M Cox
- Department of Biology, Baylor University, Waco, TX, United States
| | | | - Andy Le
- Department of Biology, Baylor University, Waco, TX, United States
| | - Dwayne D Simmons
- Department of Biology, Baylor University, Waco, TX, United States.,Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| |
Collapse
|
27
|
Plazas PV, Elgoyhen AB. The Cholinergic Lateral Line Efferent Synapse: Structural, Functional and Molecular Similarities With Those of the Cochlea. Front Cell Neurosci 2021; 15:765083. [PMID: 34712122 PMCID: PMC8545859 DOI: 10.3389/fncel.2021.765083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/21/2021] [Indexed: 11/25/2022] Open
Abstract
Vertebrate hair cell (HC) systems are innervated by efferent fibers that modulate their response to external stimuli. In mammals, the best studied efferent-HC synapse, the cholinergic medial olivocochlear (MOC) efferent system, makes direct synaptic contacts with HCs. The net effect of MOC activity is to hyperpolarize HCs through the activation of α9α10 nicotinic cholinergic receptors (nAChRs) and the subsequent activation of Ca2+-dependent SK2 potassium channels. A serious obstacle in research on many mammalian sensory systems in their native context is that their constituent neurons are difficult to access even in newborn animals, hampering circuit observation, mapping, or controlled manipulation. By contrast, fishes and amphibians have a superficial and accessible mechanosensory system, the lateral line (LL), which circumvents many of these problems. LL responsiveness is modulated by efferent neurons which aid to distinguish between external and self-generated stimuli. One component of the LL efferent system is cholinergic and its activation inhibits LL afferent activity, similar to what has been described for MOC efferents. The zebrafish (Danio rerio) has emerged as a powerful model system for studying human hearing and balance disorders, since LL HC are structurally and functionally analogous to cochlear HCs, but are optically and pharmacologically accessible within an intact specimen. Complementing mammalian studies, zebrafish have been used to gain significant insights into many facets of HC biology, including mechanotransduction and synaptic physiology as well as mechanisms of both hereditary and acquired HC dysfunction. With the rise of the zebrafish LL as a model in which to study auditory system function and disease, there has been an increased interest in studying its efferent system and evaluate the similarity between mammalian and piscine efferent synapses. Advances derived from studies in zebrafish include understanding the effect of the LL efferent system on HC and afferent activity, and revealing that an α9-containing nAChR, functionally coupled to SK channels, operates at the LL efferent synapse. In this review, we discuss the tools and findings of these recent investigations into zebrafish efferent-HC synapse, their commonalities with the mammalian counterpart and discuss several emerging areas for future studies.
Collapse
Affiliation(s)
- Paola V Plazas
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
28
|
Hernández-Pérez H, Mikiel-Hunter J, McAlpine D, Dhar S, Boothalingam S, Monaghan JJM, McMahon CM. Understanding degraded speech leads to perceptual gating of a brainstem reflex in human listeners. PLoS Biol 2021; 19:e3001439. [PMID: 34669696 PMCID: PMC8559948 DOI: 10.1371/journal.pbio.3001439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 11/01/2021] [Accepted: 10/07/2021] [Indexed: 11/19/2022] Open
Abstract
The ability to navigate "cocktail party" situations by focusing on sounds of interest over irrelevant, background sounds is often considered in terms of cortical mechanisms. However, subcortical circuits such as the pathway underlying the medial olivocochlear (MOC) reflex modulate the activity of the inner ear itself, supporting the extraction of salient features from auditory scene prior to any cortical processing. To understand the contribution of auditory subcortical nuclei and the cochlea in complex listening tasks, we made physiological recordings along the auditory pathway while listeners engaged in detecting non(sense) words in lists of words. Both naturally spoken and intrinsically noisy, vocoded speech-filtering that mimics processing by a cochlear implant (CI)-significantly activated the MOC reflex, but this was not the case for speech in background noise, which more engaged midbrain and cortical resources. A model of the initial stages of auditory processing reproduced specific effects of each form of speech degradation, providing a rationale for goal-directed gating of the MOC reflex based on enhancing the representation of the energy envelope of the acoustic waveform. Our data reveal the coexistence of 2 strategies in the auditory system that may facilitate speech understanding in situations where the signal is either intrinsically degraded or masked by extrinsic acoustic energy. Whereas intrinsically degraded streams recruit the MOC reflex to improve representation of speech cues peripherally, extrinsically masked streams rely more on higher auditory centres to denoise signals.
Collapse
Affiliation(s)
- Heivet Hernández-Pérez
- Department of Linguistics, The Australian Hearing Hub, Macquarie University, Sydney, Australia
| | - Jason Mikiel-Hunter
- Department of Linguistics, The Australian Hearing Hub, Macquarie University, Sydney, Australia
| | - David McAlpine
- Department of Linguistics, The Australian Hearing Hub, Macquarie University, Sydney, Australia
| | - Sumitrajit Dhar
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
| | - Sriram Boothalingam
- University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jessica J. M. Monaghan
- Department of Linguistics, The Australian Hearing Hub, Macquarie University, Sydney, Australia
- National Acoustic Laboratories, Sydney, Australia
| | - Catherine M. McMahon
- Department of Linguistics, The Australian Hearing Hub, Macquarie University, Sydney, Australia
| |
Collapse
|
29
|
Vicencio-Jimenez S, Weinberg MM, Bucci-Mansilla G, Lauer AM. Olivocochlear Changes Associated With Aging Predominantly Affect the Medial Olivocochlear System. Front Neurosci 2021; 15:704805. [PMID: 34539335 PMCID: PMC8446540 DOI: 10.3389/fnins.2021.704805] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Age-related hearing loss (ARHL) is a public health problem that has been associated with negative health outcomes ranging from increased frailty to an elevated risk of developing dementia. Significant gaps remain in our knowledge of the underlying central neural mechanisms, especially those related to the efferent auditory pathways. Thus, the aim of this study was to quantify and compare age-related alterations in the cholinergic olivocochlear efferent auditory neurons. We assessed, in young-adult and aged CBA mice, the number of cholinergic olivocochlear neurons, auditory brainstem response (ABR) thresholds in silence and in presence of background noise, and the expression of excitatory and inhibitory proteins in the ventral nucleus of the trapezoid body (VNTB) and in the lateral superior olive (LSO). In association with aging, we found a significant decrease in the number of medial olivocochlear (MOC) cholinergic neurons together with changes in the ratio of excitatory and inhibitory proteins in the VNTB. Furthermore, in old mice we identified a correlation between the number of MOC neurons and ABR thresholds in the presence of background noise. In contrast, the alterations observed in the lateral olivocochlear (LOC) system were less significant. The decrease in the number of LOC cells associated with aging was 2.7-fold lower than in MOC and in the absence of changes in the expression of excitatory and inhibitory proteins in the LSO. These differences suggest that aging alters the medial and lateral olivocochlear efferent pathways in a differential manner and that the changes observed may account for some of the symptoms seen in ARHL.
Collapse
Affiliation(s)
- Sergio Vicencio-Jimenez
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Madison M Weinberg
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Giuliana Bucci-Mansilla
- Laboratorio de Neurosistemas, Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Amanda M Lauer
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
30
|
Matta JA, Gu S, Davini WB, Bredt DS. Nicotinic acetylcholine receptor redux: Discovery of accessories opens therapeutic vistas. Science 2021; 373:373/6556/eabg6539. [PMID: 34385370 DOI: 10.1126/science.abg6539] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The neurotransmitter acetylcholine (ACh) acts in part through a family of nicotinic ACh receptors (nAChRs), which mediate diverse physiological processes including muscle contraction, neurotransmission, and sensory transduction. Pharmacologically, nAChRs are responsible for tobacco addiction and are targeted by medicines for hypertension and dementia. Nicotinic AChRs were the first ion channels to be isolated. Recent studies have identified molecules that control nAChR biogenesis, trafficking, and function. These nAChR accessories include protein and chemical chaperones as well as auxiliary subunits. Whereas some factors act on many nAChRs, others are receptor specific. Discovery of these regulatory mechanisms is transforming nAChR research in cells and tissues ranging from central neurons to spinal ganglia to cochlear hair cells. Nicotinic AChR-specific accessories also enable drug discovery on high-confidence targets for psychiatric, neurological, and auditory disorders.
Collapse
Affiliation(s)
| | | | - Weston B Davini
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA 92121, USA
| | - David S Bredt
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA 92121, USA.
| |
Collapse
|
31
|
Farhadi M, Razmara E, Balali M, Hajabbas Farshchi Y, Falah M. How Transmembrane Inner Ear (TMIE) plays role in the auditory system: A mystery to us. J Cell Mol Med 2021; 25:5869-5883. [PMID: 33987950 PMCID: PMC8256367 DOI: 10.1111/jcmm.16610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/26/2021] [Indexed: 01/19/2023] Open
Abstract
Different cellular mechanisms contribute to the hearing sense, so it is obvious that any disruption in such processes leads to hearing impairment that greatly influences the global economy and quality of life of the patients and their relatives. In the past two decades, transmembrane inner ear (TMIE) protein has received a great deal of research interest because its impairments cause hereditary deafness in humans. This evolutionarily conserved membrane protein contributes to a fundamental complex that plays role in the maintenance and function of the sensory hair cells. Although the critical roles of the TMIE in mechanoelectrical transduction or hearing procedures have been discussed, there are little to no review papers summarizing the roles of the TMIE in the auditory system. In order to fill this gap, herein, we discuss the important roles of this protein in the auditory system including its role in mechanotransduction, olivocochlear synapse, morphology and different signalling pathways; we also review the genotype-phenotype correlation that can per se show the possible roles of this protein in the auditory system.
Collapse
Affiliation(s)
- Mohammad Farhadi
- ENT and Head and Neck Research Center and DepartmentThe Five Senses Health InstituteHazrat Rasoul Akram HospitalIran University of Medical SciencesTehranIran
| | - Ehsan Razmara
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVICAustralia
| | - Maryam Balali
- ENT and Head and Neck Research Center and DepartmentThe Five Senses Health InstituteHazrat Rasoul Akram HospitalIran University of Medical SciencesTehranIran
| | - Yeganeh Hajabbas Farshchi
- Department of Cellular and Molecular BiologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Masoumeh Falah
- ENT and Head and Neck Research Center and DepartmentThe Five Senses Health InstituteHazrat Rasoul Akram HospitalIran University of Medical SciencesTehranIran
| |
Collapse
|
32
|
Biswas J, Pijewski RS, Makol R, Miramontes TG, Thompson BL, Kresic LC, Burghard AL, Oliver DL, Martinelli DC. C1ql1 is expressed in adult outer hair cells of the cochlea in a tonotopic gradient. PLoS One 2021; 16:e0251412. [PMID: 33979385 PMCID: PMC8115824 DOI: 10.1371/journal.pone.0251412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/26/2021] [Indexed: 01/08/2023] Open
Abstract
Hearing depends on the transduction of sounds into neural signals by the inner hair cells of the cochlea. Cochleae also have outer hair cells with unique electromotile properties that increase auditory sensitivity, but they are particularly susceptible to damage by intense noise exposure, ototoxic drugs, and aging. Although the outer hair cells have synapses on afferent neurons that project to the brain, the function of this neuronal circuit is unclear. Here, we created a novel mouse allele that inserts a fluorescent reporter at the C1ql1 locus which revealed gene expression in the outer hair cells and allowed creation of outer hair cell-specific C1ql1 knockout mice. We found that C1ql1 expression in outer hair cells corresponds to areas with the most sensitive frequencies of the mouse audiogram, and that it has an unexpected adolescence-onset developmental timing. No expression was observed in the inner hair cells. Since C1QL1 in the brain is made by neurons, transported anterogradely in axons, and functions in the synaptic cleft, C1QL1 may serve a similar function at the outer hair cell afferent synapse. Histological analyses revealed that C1ql1 conditional knockout cochleae may have reduced outer hair cell afferent synapse maintenance. However, auditory behavioral and physiological assays did not reveal a compelling phenotype. Nonetheless, this study identifies a potentially useful gene expressed in the cochlea and opens the door for future studies aimed at elucidating the function of C1QL1 and the function of the outer hair cell and its afferent neurons.
Collapse
Affiliation(s)
- Joyshree Biswas
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, United States of America
| | - Robert S. Pijewski
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, United States of America
| | - Rohit Makol
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, United States of America
- The Connecticut Institute for the Brain and Cognitive Sciences (IBACS), Storrs, CT, United States of America
| | - Tania G. Miramontes
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, United States of America
| | - Brianna L. Thompson
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, United States of America
| | - Lyndsay C. Kresic
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, United States of America
| | - Alice L. Burghard
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, United States of America
| | - Douglas L. Oliver
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, United States of America
| | - David C. Martinelli
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, United States of America
- The Connecticut Institute for the Brain and Cognitive Sciences (IBACS), Storrs, CT, United States of America
- * E-mail:
| |
Collapse
|
33
|
Hidden hearing loss is associated with loss of ribbon synapses of cochlea inner hair cells. Biosci Rep 2021; 41:228102. [PMID: 33734328 PMCID: PMC8035623 DOI: 10.1042/bsr20201637] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/30/2023] Open
Abstract
The present study aimed to observe the changes in the cochlea ribbon synapses after repeated exposure to moderate-to-high intensity noise. Guinea pigs received 95 dB SPL white noise exposure 4 h a day for consecutive 7 days (we regarded it a medium-term and moderate-intensity noise, or MTMI noise). Animals were divided into four groups: Control, 1DPN (1-day post noise), 1WPN (1-week post noise), and 1MPN (1-month post noise). Auditory function analysis by auditory brainstem response (ABR) and compound action potential (CAP) recordings, as well as ribbon synapse morphological analyses by immunohistochemistry (Ctbp2 and PSD95 staining) were performed 1 day, 1 week, and 1 month after noise exposure. After MTMI noise exposure, the amplitudes of ABR I and III waves were suppressed. The CAP threshold was elevated, and CAP amplitude was reduced in the 1DPN group. No apparent changes in hair cell shape, arrangement, or number were observed, but the number of ribbon synapse was reduced. The 1WPN and 1MPN groups showed that part of ABR and CAP changes recovered, as well as the synapse number. The defects in cochlea auditory function and synapse changes were observed mainly in the high-frequency region. Together, repeated exposure in MTMI noise can cause hidden hearing loss (HHL), which is partially reversible after leaving the noise environment; and MTMI noise-induced HHL is associated with inner hair cell ribbon synapses.
Collapse
|
34
|
Sex difference in the efferent inner hair cell synapses of the aging murine cochlea. Hear Res 2021; 404:108215. [PMID: 33677192 DOI: 10.1016/j.heares.2021.108215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 11/20/2022]
Abstract
Efferent innervation of the inner hair cells changes over time. At an early age in mice, inner hair cells receive efferent feedback, which helps fine-tune tonotopic maps in the brainstem. In adulthood, inner hair cell efferent innervation wanes but increases again in older animals. It is not clear, however, whether age-related inner hair cell efferents increase along the entire range of the cochlear frequencies, or if this increase is restricted to a particular frequency-region, and whether this phenomenon occurs in both sexes. Age-related hearing loss, presbycusis, affects men and women differently. In mice, this difference is also strain specific. In aging black six mice, the auditory brainstem response thresholds increase in females earlier than in males. Here, we study age-related increase of the inner hair cell efferent innervation throughout the cochlea before hearing onset, in one month old and in ten months old and older male and female black six mice. We collected confocal images of immunostained inner hair cell efferents and quantified the labeled terminals in the entire cochlea using a machine learning algorithm. The overall number of the inner hair cell efferents in both sexes did not change significantly between age-groups. The distribution of the inner hair cell efferent innervation did not differ across frequencies in the cochlea. However, in females, inner hair cells received on average up to four times more efferent innervation than in males per each of the frequency regions tested. Sex differences were also found in the oldest age-group tested (≥ 10 months) where on average inner hair cells received six times more efferents in females than in males of matching age. Our findings emphasize the importance of including both sexes in sensorineural hearing loss research.
Collapse
|
35
|
Lauer AM, Jimenez SV, Delano PH. Olivocochlear efferent effects on perception and behavior. Hear Res 2021; 419:108207. [PMID: 33674070 DOI: 10.1016/j.heares.2021.108207] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/18/2021] [Accepted: 02/12/2021] [Indexed: 01/13/2023]
Abstract
The role of the mammalian auditory olivocochlear efferent system in hearing has long been the subject of debate. Its ability to protect against damaging noise exposure is clear, but whether or not this is the primary function of a system that evolved in the absence of industrial noise remains controversial. Here we review the behavioral consequences of olivocochlear activation and diminished olivocochlear function. Attempts to demonstrate a role for hearing in noise have yielded conflicting results in both animal and human studies. A role in selective attention to sounds in the presence of distractors, or attention to visual stimuli in the presence of competing auditory stimuli, has been established in animal models, but again behavioral studies in humans remain equivocal. Auditory processing deficits occur in models of congenital olivocochlear dysfunction, but these deficits likely reflect abnormal central auditory development rather than direct effects of olivocochlear feedback. Additional proposed roles in age-related hearing loss, tinnitus, hyperacusis, and binaural or spatial hearing, are intriguing, but require additional study. These behavioral studies almost exclusively focus on medial olivocochlear effects, and many relied on lesioning techniques that can have unspecific effects. The consequences of lateral olivocochlear and of corticofugal pathway activation for perception remain unknown. As new tools for targeted manipulation of olivocochlear neurons emerge, there is potential for a transformation of our understanding of the role of the olivocochlear system in behavior across species.
Collapse
Affiliation(s)
- Amanda M Lauer
- David M. Rubenstein Center for Hearing Research and Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, 515 Traylor Building, 720 Rutland Ave, Baltimore, MD 21205, United States; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, United States.
| | - Sergio Vicencio Jimenez
- David M. Rubenstein Center for Hearing Research and Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, 515 Traylor Building, 720 Rutland Ave, Baltimore, MD 21205, United States; Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paul H Delano
- Departments of Otolaryngology and Neuroscience, Faculty of Medicine, University of Chile, Santiago, Chile; Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Advanced Center for Electrical and Electronic Engineer, AC3E, Universidad Técnica Federico Santa María, Valparaíso, Chile
| |
Collapse
|
36
|
Oishi T, Matsumaru D, Ota N, Kitamura H, Zhang T, Honkura Y, Katori Y, Motohashi H. Activation of the NRF2 pathway in Keap1-knockdown mice attenuates progression of age-related hearing loss. NPJ Aging Mech Dis 2020; 6:14. [PMID: 33318486 PMCID: PMC7736866 DOI: 10.1038/s41514-020-00053-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022] Open
Abstract
Age-related hearing loss (AHL) is a progressive sensorineural hearing loss in elderly people. Although no prevention or treatments have been established for AHL, recent studies have demonstrated that oxidative stress is closely related to pathogenesis of AHL, suggesting that suppression of oxidative stress leads to inhibition of AHL progression. NRF2 is a master transcription factor that regulates various antioxidant proteins and cytoprotection factors. To examine whether NRF2 pathway activation prevents AHL, we used Keap1-knockdown (Keap1FA/FA) mice, in which KEAP1, a negative regulator of NRF2, is decreased, resulting in the elevation of NRF2 activity. We compared 12-month-old Keap1FA/FA mice with age-matched wild-type (WT) mice in the same breeding colony. In the Keap1FA/FA mice, the expression levels of multiple NRF2 target genes were verified to be significantly higher than the expression levels of these genes in the WT mice. Histological analysis showed that cochlear degeneration at the apical and middle turns was ameliorated in the Keap1FA/FA mice. Auditory brainstem response (ABR) thresholds in the Keap1FA/FA mice were significantly lower than those in the WT mice, in particular at low-mid frequencies. Immunohistochemical detection of oxidative stress markers suggested that oxidative stress accumulation was attenuated in the Keap1FA/FA cochlea. Thus, we concluded that NRF2 pathway activation protects the cochlea from oxidative damage during aging, in particular at the apical and middle turns. KEAP1-inhibiting drugs and phytochemicals are expected to be effective in the prevention of AHL.
Collapse
Affiliation(s)
- Tetsuya Oishi
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.,Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Daisuke Matsumaru
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Nao Ota
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Hiroshi Kitamura
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Tianxiang Zhang
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Yohei Honkura
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Yukio Katori
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| |
Collapse
|
37
|
|
38
|
Hair cell α9α10 nicotinic acetylcholine receptor functional expression regulated by ligand binding and deafness gene products. Proc Natl Acad Sci U S A 2020; 117:24534-24544. [PMID: 32929005 DOI: 10.1073/pnas.2013762117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Auditory hair cells receive olivocochlear efferent innervation, which refines tonotopic mapping, improves sound discrimination, and mitigates acoustic trauma. The olivocochlear synapse involves α9α10 nicotinic acetylcholine receptors (nAChRs), which assemble in hair cells only coincident with cholinergic innervation and do not express in recombinant mammalian cell lines. Here, genome-wide screening determined that assembly and surface expression of α9α10 require ligand binding. Ion channel function additionally demands an auxiliary subunit, which can be transmembrane inner ear (TMIE) or TMEM132e. Both of these single-pass transmembrane proteins are enriched in hair cells and underlie nonsyndromic human deafness. Inner hair cells from TMIE mutant mice show altered postsynaptic α9α10 function and retain α9α10-mediated transmission beyond the second postnatal week associated with abnormally persistent cholinergic innervation. Collectively, this study provides a mechanism to link cholinergic input with α9α10 assembly, identifies unexpected functions for human deafness genes TMIE/TMEM132e, and enables drug discovery for this elusive nAChR implicated in prevalent auditory disorders.
Collapse
|