1
|
Elorriaga V, Bouloudi B, Delberghe E, Saillour Y, Morel JS, Azzam P, Moreau MX, Stottmann R, Bahi-Buisson N, Pierani A, Spassky N, Causeret F. Differential contribution of P73+ Cajal-Retzius cells and Reelin to cortical morphogenesis. Development 2025; 152:dev204451. [PMID: 40207459 DOI: 10.1242/dev.204451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
Cajal-Retzius cells (CRs) are peculiar neurons in the developing mammalian cerebral cortex. They robustly secrete Reln, a glycoprotein essential for the establishment of cortical layers through the control of radial migration. We previously identified Gmnc as a crucial fate determinant for P73+ CR subtypes. In Gmnc-/- mutants, P73+ CRs are initially produced and cover the telencephalic vesicle but undergo massive apoptosis resulting in their complete depletion at mid-corticogenesis. Here, we investigated the consequences of such a CR depletion on dorsal cortex lamination and hippocampal morphogenesis. We found that preplate splitting normally occurs in Gmnc-/- mutants but is followed by defective radial migration arrest in the dorsal cortex, an altered cellular organization in the lateral cortex, aberrant hippocampal CA1 folding and lack of vasculature development in the hippocampal fissure. We then performed conditional Reln deletion in P73+ CRs to evaluate its relative contribution and found that only radial migration defects were recapitulated. We concluded that at mid-corticogenesis, CR-derived Reln is required for radial migration arrest and additionally identified Reln-independent functions for CRs in the control of hippocampal fissure formation and CA1 folding.
Collapse
Affiliation(s)
- Vicente Elorriaga
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France
| | - Benoît Bouloudi
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Elodie Delberghe
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France
| | - Yoann Saillour
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France
| | - Juliette S Morel
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France
| | - Patrick Azzam
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France
| | - Matthieu X Moreau
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France
| | - Rolf Stottmann
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Nadia Bahi-Buisson
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France
| | - Alessandra Pierani
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Frédéric Causeret
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France
| |
Collapse
|
2
|
Buckley NA, Craxton A, Sun XM, Panatta E, Pinon LG, Beier S, Kalmar L, Llodrá J, Morone N, Amelio I, Melino G, Martins LM, MacFarlane M. TAp73 regulates mitochondrial dynamics and multiciliated cell homeostasis through an OPA1 axis. Cell Death Dis 2024; 15:807. [PMID: 39516459 PMCID: PMC11549358 DOI: 10.1038/s41419-024-07130-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/19/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Dysregulated mitochondrial fusion and fission has been implicated in the pathogenesis of numerous diseases. We have identified a novel function of the p53 family protein TAp73 in regulating mitochondrial dynamics. TAp73 regulates the expression of Optic Atrophy 1 (OPA1), a protein responsible for controlling mitochondrial fusion, cristae biogenesis and electron transport chain function. Disruption of this axis results in a fragmented mitochondrial network and an impaired capacity for energy production via oxidative phosphorylation. Owing to the role of OPA1 in modulating cytochrome c release, TAp73-/- cells display an increased sensitivity to apoptotic cell death, e.g., via BH3-mimetics. We additionally show that the TAp73/OPA1 axis has functional relevance in the upper airway, where TAp73 expression is essential for multiciliated cell differentiation and function. Consistently, ciliated epithelial cells of Trp73-/- (global p73 knock-out) mice display decreased expression of OPA1 and perturbations of the mitochondrial network, which may drive multiciliated cell loss. In support of this, Trp73 and OPA1 gene expression is decreased in chronic obstructive pulmonary disease (COPD) patients, a disease characterised by alterations in mitochondrial dynamics. We therefore highlight a potential mechanism involving the loss of p73 in COPD pathogenesis. Our findings also add to the growing body of evidence for growth-promoting roles of TAp73 isoforms.
Collapse
Affiliation(s)
- Niall A Buckley
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
- Safety Sciences, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Andrew Craxton
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Xiao-Ming Sun
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Emanuele Panatta
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Sina Beier
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Lajos Kalmar
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Jaime Llodrá
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Ivano Amelio
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
- Division for Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Gerry Melino
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | | |
Collapse
|
3
|
Li D, Kok CYL, Wang C, Ray D, Osterburg S, Dötsch V, Ghosh S, Sabapathy K. Dichotomous transactivation domains contribute to growth inhibitory and promotion functions of TAp73. Proc Natl Acad Sci U S A 2024; 121:e2318591121. [PMID: 38739802 PMCID: PMC11127001 DOI: 10.1073/pnas.2318591121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/22/2024] [Indexed: 05/16/2024] Open
Abstract
The transcription factor p73, a member of the p53 tumor-suppressor family, regulates cell death and also supports tumorigenesis, although the mechanistic basis for the dichotomous functions is poorly understood. We report here the identification of an alternate transactivation domain (TAD) located at the extreme carboxyl (C) terminus of TAp73β, a commonly expressed p73 isoform. Mutational disruption of this TAD significantly reduced TAp73β's transactivation activity, to a level observed when the amino (N)-TAD that is similar to p53's TAD, is mutated. Mutation of both TADs almost completely abolished TAp73β's transactivation activity. Expression profiling highlighted a unique set of targets involved in extracellular matrix-receptor interaction and focal adhesion regulated by the C-TAD, resulting in FAK phosphorylation, distinct from the N-TAD targets that are common to p53 and are involved in growth inhibition. Interestingly, the C-TAD targets are also regulated by the oncogenic, amino-terminal-deficient DNp73β isoform. Consistently, mutation of C-TAD reduces cellular migration and proliferation. Mechanistically, selective binding of TAp73β to DNAJA1 is required for the transactivation of C-TAD target genes, and silencing DNAJA1 expression abrogated all C-TAD-mediated effects. Taken together, our results provide a mechanistic basis for the dichotomous functions of TAp73 in the regulation of cellular growth through its distinct TADs.
Collapse
Affiliation(s)
- Dan Li
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore168583, Singapore
| | - Catherine Yen Li Kok
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore168583, Singapore
| | - Chao Wang
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore168583, Singapore
| | - Debleena Ray
- Programme in Cancer and Stem Cell Biology, Duke-National University of Singapore (NUS) Medical School, Singapore169857, Singapore
| | - Susanne Osterburg
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), Goethe University, Frankfurt am Main60438, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), Goethe University, Frankfurt am Main60438, Germany
| | - Sujoy Ghosh
- Centre for Computational Biology & Programme in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore (NUS) Medical School, Singapore169857, Singapore
| | - Kanaga Sabapathy
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore168583, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore637551, Singapore
| |
Collapse
|
4
|
van Bruggen R, Patel ZH, Wang M, Suk TR, Rousseaux MWC, Tan Q. A Versatile Strategy for Genetic Manipulation of Cajal-Retzius Cells in the Adult Mouse Hippocampus. eNeuro 2023; 10:ENEURO.0054-23.2023. [PMID: 37775311 PMCID: PMC10585607 DOI: 10.1523/eneuro.0054-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023] Open
Abstract
Cajal-Retzius (CR) cells are transient neurons with long-lasting effects on the architecture and circuitry of the neocortex and hippocampus. Contrary to the prevailing assumption that CR cells completely disappear in rodents shortly after birth, a substantial portion of these cells persist in the hippocampus throughout adulthood. The role of these surviving CR cells in the adult hippocampus is largely unknown, partly because of the paucity of suitable tools to dissect their functions in the adult versus the embryonic brain. Here, we show that genetic crosses of the ΔNp73-Cre mouse line, widely used to target CR cells, to reporter mice induce reporter expression not only in CR cells, but also progressively in postnatal dentate gyrus granule neurons. Such a lack of specificity may confound studies of CR cell function in the adult hippocampus. To overcome this, we devise a method that not only leverages the temporary CR cell-targeting specificity of the ΔNp73-Cre mice before the first postnatal week, but also capitalizes on the simplicity and effectiveness of freehand neonatal intracerebroventricular injection of adeno-associated virus. We achieve robust Cre-mediated recombination that remains largely restricted to hippocampal CR cells from early postnatal age to adulthood. We further demonstrate the utility of this method to manipulate neuronal activity of CR cells in the adult hippocampus. This versatile and scalable strategy will facilitate experiments of CR cell-specific gene knockdown and/or overexpression, lineage tracing, and neural activity modulation in the postnatal and adult brain.
Collapse
Affiliation(s)
- Rebekah van Bruggen
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Zain H Patel
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Mi Wang
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Terry R Suk
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Eric Poulin Center for Neuromuscular Diseases, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Maxime W C Rousseaux
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Eric Poulin Center for Neuromuscular Diseases, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Qiumin Tan
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta T6G 1C9, Canada
| |
Collapse
|
5
|
Moreau MX, Saillour Y, Elorriaga V, Bouloudi B, Delberghe E, Deutsch Guerrero T, Ochandorena-Saa A, Maeso-Alonso L, Marques MM, Marin MC, Spassky N, Pierani A, Causeret F. Repurposing of the multiciliation gene regulatory network in fate specification of Cajal-Retzius neurons. Dev Cell 2023; 58:1365-1382.e6. [PMID: 37321213 DOI: 10.1016/j.devcel.2023.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/06/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Cajal-Retzius cells (CRs) are key players in cerebral cortex development, and they display a unique transcriptomic identity. Here, we use scRNA-seq to reconstruct the differentiation trajectory of mouse hem-derived CRs, and we unravel the transient expression of a complete gene module previously known to control multiciliogenesis. However, CRs do not undergo centriole amplification or multiciliation. Upon deletion of Gmnc, the master regulator of multiciliogenesis, CRs are initially produced but fail to reach their normal identity resulting in their massive apoptosis. We further dissect the contribution of multiciliation effector genes and identify Trp73 as a key determinant. Finally, we use in utero electroporation to demonstrate that the intrinsic competence of hem progenitors as well as the heterochronic expression of Gmnc prevent centriole amplification in the CR lineage. Our work exemplifies how the co-option of a complete gene module, repurposed to control a distinct process, may contribute to the emergence of novel cell identities.
Collapse
Affiliation(s)
- Matthieu X Moreau
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Yoann Saillour
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Vicente Elorriaga
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Benoît Bouloudi
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Elodie Delberghe
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Tanya Deutsch Guerrero
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Amaia Ochandorena-Saa
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Laura Maeso-Alonso
- Instituto de Biomedicina, y Departamento de Biología Molecular, Universidad de León, 24071 Leon, Spain
| | - Margarita M Marques
- Instituto de Desarrollo Ganadero y Sanidad Animal, y Departamento de Producción Animal, Universidad de León, 24071 Leon, Spain
| | - Maria C Marin
- Instituto de Biomedicina, y Departamento de Biología Molecular, Universidad de León, 24071 Leon, Spain
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Alessandra Pierani
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Frédéric Causeret
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France.
| |
Collapse
|
6
|
Elorriaga V, Pierani A, Causeret F. Cajal-retzius cells: Recent advances in identity and function. Curr Opin Neurobiol 2023; 79:102686. [PMID: 36774666 DOI: 10.1016/j.conb.2023.102686] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/29/2022] [Accepted: 01/08/2023] [Indexed: 02/12/2023]
Abstract
Cajal-Retzius cells (CRs) are a transient neuronal type of the developing cerebral cortex. Over the years, they have been shown or proposed to play important functions in neocortical and hippocampal morphogenesis, circuit formation, brain evolution and human pathology. Because of their short lifespan, CRs have been pictured as a purely developmental cell type, whose production and active elimination are both required for correct brain development. In this review, we present some of the findings that allow us to better appreciate the identity and diversity of this very special cell type, and propose a unified definition of what should be considered a Cajal-Retzius cell, especially when working with non-mammalian species or organoids. In addition, we highlight a flurry of recent studies pointing to the importance of CRs in the assembly of functional and dysfunctional cortical networks.
Collapse
Affiliation(s)
- Vicente Elorriaga
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, F-75014 Paris, France
| | - Alessandra Pierani
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, F-75014 Paris, France; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France.
| | - Frédéric Causeret
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, F-75014 Paris, France.
| |
Collapse
|
7
|
Zhang J, Sun W, Yan W, Kong X, Shen T, Laubach K, Chen M, Chen X. TP73 Isoform-specific disruption reveals a critical role of TAp73beta in growth suppression and inflammatory response. Cell Death Dis 2023; 14:14. [PMID: 36631448 PMCID: PMC9834251 DOI: 10.1038/s41419-022-05529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
Abstract
TP73 is expressed as multiple N- and C-terminal isoforms through two separate promoters or alternative splicing. While N-terminal p73 isoforms have been well studied, very little is known about p73 C-terminal isoforms. Thus, CRISPR was used to delete TP73 Exon13 (E13-KO) to induce p73α to p73β isoform switch. We showed that E13-KO led to decreased cell proliferation and migration and sensitized cells to ferroptosis, which can be reverted by knockdown of TAp73β in E13-KO cells. To understand the biological function of p73β in vivo, we generated a mouse model in that the Trp73 E13 was deleted by CRISPR. We showed that p73α to p73β isoform switch led to increased cellular senescence in mouse embryonic fibroblasts. We also showed that E13-deficient mice exhibited shorter life span and were prone to spontaneous tumors, chronic inflammation and liver steatosis as compared to WT mice. Additionally, we found that the incidence of chronic inflammation and liver steatosis was higher in E13-deficient mice than that in Trp73-deficient mice, suggesting that p73β is a strong inducer of inflammatory response. Mechanistically, we showed that TAp73β was able to induce cysteine dioxygenase 1 (CDO-1), leading to cysteine depletion and subsequently, enhanced ferroptosis and growth suppression. Conversely, knockdown of CDO-1 was able to alleviate the growth suppression and ferroptosis in E13-KO cells. Together, our data suggest that at a physiologically relevant level, TAp73β is a strong inducer of growth suppression but insufficient to compensate for loss of TAp73α in tumor suppression due to aberrant induction of inflammatory response and liver steatosis.
Collapse
Affiliation(s)
- Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, UC Davis, California, Davis, USA.
| | - Wenqiang Sun
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, UC Davis, California, Davis, USA
- Department of Animal Science and Technology, Sichuan Agricultural University, Ya'an, China
| | - Wensheng Yan
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, UC Davis, California, Davis, USA
- Berkeley Regional Lab, Pathology/Lab-Histology Department, The Permanente Medical group, Berkeley, CA, 94085, USA
| | - Xiangmudong Kong
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, UC Davis, California, Davis, USA
| | - Tong Shen
- West Coast Metabolomics Center, UC Davis, Califronia, Davis, USA
| | - Kyra Laubach
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, UC Davis, California, Davis, USA
| | - Mingyi Chen
- Department of Pathology, Southwestern Medical Center, University of Texas, Dallas, USA
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, UC Davis, California, Davis, USA.
| |
Collapse
|
8
|
Logotheti S, Pavlopoulou A, Marquardt S, Takan I, Georgakilas AG, Stiewe T. p73 isoforms meet evolution of metastasis. Cancer Metastasis Rev 2022; 41:853-869. [PMID: 35948758 DOI: 10.1007/s10555-022-10057-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/30/2022] [Indexed: 01/25/2023]
Abstract
Cancer largely adheres to Darwinian selection. Evolutionary forces are prominent during metastasis, the final and incurable disease stage, where cells acquire combinations of advantageous phenotypic features and interact with a dynamically changing microenvironment, in order to overcome the metastatic bottlenecks, while therapy exerts additional selective pressures. As a strategy to increase their fitness, tumors often co-opt developmental and tissue-homeostasis programs. Herein, 25 years after its discovery, we review TP73, a sibling of the cardinal tumor-suppressor TP53, through the lens of cancer evolution. The TP73 gene regulates a wide range of processes in embryonic development, tissue homeostasis and cancer via an overwhelming number of functionally divergent isoforms. We suggest that TP73 neither merely mimics TP53 via its p53-like tumor-suppressive functions, nor has black-or-white-type effects, as inferred by the antagonism between several of its isoforms in processes like apoptosis and DNA damage response. Rather, under dynamic conditions of selective pressure, the various p73 isoforms which are often co-expressed within the same cancer cells may work towards a common goal by simultaneously activating isoform-specific transcriptional and non-transcriptional programs. Combinatorial co-option of these programs offers selective advantages that overall increase the likelihood for successfully surpassing the barriers of the metastatic cascade. The p73 functional pleiotropy-based capabilities might be present in subclonal populations and expressed dynamically under changing microenvironmental conditions, thereby supporting clonal expansion and propelling evolution of metastasis. Deciphering the critical p73 isoform patterns along the spatiotemporal axes of tumor evolution could identify strategies to target TP73 for prevention and therapy of cancer metastasis.
Collapse
Affiliation(s)
- Stella Logotheti
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), 15780, Zografou, Greece.
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), 35340, Balcova, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340, Balcova, Izmir, Turkey
| | - Stephan Marquardt
- Institute of Translational Medicine for Health Care Systems, Medical School Berlin, Hochschule Für Gesundheit Und Medizin, 14197, Berlin, Germany
| | - Işıl Takan
- Izmir Biomedicine and Genome Center (IBG), 35340, Balcova, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340, Balcova, Izmir, Turkey
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), 15780, Zografou, Greece
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University, Marburg, Germany.,Institute of Lung Health, Giessen, Germany.,German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| |
Collapse
|
9
|
p73α1, a p73 C-terminal isoform, regulates tumor suppression and the inflammatory response via Notch1. Proc Natl Acad Sci U S A 2022; 119:e2123202119. [PMID: 35617425 DOI: 10.1073/pnas.2123202119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Significance p73 is expressed as multiple C-terminal isoforms, but their expression and activity are largely unknown. Here, we identified p73α1 as a p73 C-terminal isoform that results from exon 12 (E12) exclusion. We showed that E12 deficiency in mice leads to systemic inflammation but not spontaneous tumors. We also showed that Notch1 is regulated by p73α1 and plays a critical role in p73-dependent tumor suppression and systemic inflammation.
Collapse
|
10
|
Anstötz M, Lee SK, Maccaferri G. Glutamate released by Cajal-Retzius cells impacts specific hippocampal circuits and behaviors. Cell Rep 2022; 39:110822. [PMID: 35584670 PMCID: PMC9190441 DOI: 10.1016/j.celrep.2022.110822] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/23/2022] [Accepted: 04/23/2022] [Indexed: 12/31/2022] Open
Abstract
The impact of Cajal-Retzius cells on the regulation of hippocampal circuits and related behaviors is unresolved. Here, we directly address this issue by impairing the glutamatergic output of Cajal-Retzius cells with the conditional ablation of vGluT2, which is their main vesicular glutamate transporter. Although two distinct conditional knockout lines do not reveal major alterations in hippocampal-layer organization and dendritic length of principal neurons or GABAergic cells, we find parallel deficits in specific hippocampal-dependent behaviors and in their putative underlying microcircuits. First, conditional knockout animals show increased innate anxiety and decreased feedforward GABAergic inhibition on dentate gyrus granule cells. Second, we observe impaired spatial memory processing, which is associated with decreased spine density and reduced AMPA/NMDA ratio of postsynaptic responses at the perforant- and entorhino-hippocampal pathways. We conclude that glutamate synaptically released by Cajal-Retzius cells is critical for the regulation of hippocampal microcircuits and specific types of behaviors. Anstötz et al. report that postnatal hippocampal Cajal-Retzius cells use vGluT2 as their main glutamate vesicular transporter. Conditional inactivation of vGluT2 in mice reveals both behavioral and network alterations. The observed results indicate the involvement of Cajal-Retzius cells in the regulation of innate anxiety/spatial memory and in potentially related neuronal circuits.
Collapse
Affiliation(s)
- Max Anstötz
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany.
| | - Sun Kyong Lee
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gianmaria Maccaferri
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
11
|
Mercurio S, Serra L, Pagin M, Nicolis SK. Deconstructing Sox2 Function in Brain Development and Disease. Cells 2022; 11:cells11101604. [PMID: 35626641 PMCID: PMC9139651 DOI: 10.3390/cells11101604] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
SOX2 is a transcription factor conserved throughout vertebrate evolution, whose expression marks the central nervous system from the earliest developmental stages. In humans, SOX2 mutation leads to a spectrum of CNS defects, including vision and hippocampus impairments, intellectual disability, and motor control problems. Here, we review how conditional Sox2 knockout (cKO) in mouse with different Cre recombinases leads to very diverse phenotypes in different regions of the developing and postnatal brain. Surprisingly, despite the widespread expression of Sox2 in neural stem/progenitor cells of the developing neural tube, some regions (hippocampus, ventral forebrain) appear much more vulnerable than others to Sox2 deletion. Furthermore, the stage of Sox2 deletion is also a critical determinant of the resulting defects, pointing to a stage-specificity of SOX2 function. Finally, cKOs illuminate the importance of SOX2 function in different cell types according to the different affected brain regions (neural precursors, GABAergic interneurons, glutamatergic projection neurons, Bergmann glia). We also review human genetics data regarding the brain defects identified in patients carrying mutations within human SOX2 and examine the parallels with mouse mutants. Functional genomics approaches have started to identify SOX2 molecular targets, and their relevance for SOX2 function in brain development and disease will be discussed.
Collapse
|
12
|
Osterburg C, Dötsch V. Structural diversity of p63 and p73 isoforms. Cell Death Differ 2022; 29:921-937. [PMID: 35314772 PMCID: PMC9091270 DOI: 10.1038/s41418-022-00975-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 01/25/2023] Open
Abstract
Abstract
The p53 protein family is the most studied protein family of all. Sequence analysis and structure determination have revealed a high similarity of crucial domains between p53, p63 and p73. Functional studies, however, have shown a wide variety of different tasks in tumor suppression, quality control and development. Here we review the structure and organization of the individual domains of p63 and p73, the interaction of these domains in the context of full-length proteins and discuss the evolutionary origin of this protein family.
Facts
Distinct physiological roles/functions are performed by specific isoforms.
The non-divided transactivation domain of p63 has a constitutively high activity while the transactivation domains of p53/p73 are divided into two subdomains that are regulated by phosphorylation.
Mdm2 binds to all three family members but ubiquitinates only p53.
TAp63α forms an autoinhibited dimeric state while all other vertebrate p53 family isoforms are constitutively tetrameric.
The oligomerization domain of p63 and p73 contain an additional helix that is necessary for stabilizing the tetrameric states. During evolution this helix got lost independently in different phylogenetic branches, while the DNA binding domain became destabilized and the transactivation domain split into two subdomains.
Open questions
Is the autoinhibitory mechanism of mammalian TAp63α conserved in p53 proteins of invertebrates that have the same function of genomic quality control in germ cells?
What is the physiological function of the p63/p73 SAM domains?
Do the short isoforms of p63 and p73 have physiological functions?
What are the roles of the N-terminal elongated TAp63 isoforms, TA* and GTA?
Collapse
|
13
|
Maeso-Alonso L, López-Ferreras L, Marques MM, Marin MC. p73 as a Tissue Architect. Front Cell Dev Biol 2021; 9:716957. [PMID: 34368167 PMCID: PMC8343074 DOI: 10.3389/fcell.2021.716957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
The TP73 gene belongs to the p53 family comprised by p53, p63, and p73. In response to physiological and pathological signals these transcription factors regulate multiple molecular pathways which merge in an ensemble of interconnected networks, in which the control of cell proliferation and cell death occupies a prominent position. However, the complex phenotype of the Trp73 deficient mice has revealed that the biological relevance of this gene does not exclusively rely on its growth suppression effects, but it is also intertwined with other fundamental roles governing different aspects of tissue physiology. p73 function is essential for the organization and homeostasis of different complex microenvironments, like the neurogenic niche, which supports the neural progenitor cells and the ependyma, the male and female reproductive organs, the respiratory epithelium or the vascular network. We propose that all these, apparently unrelated, developmental roles, have a common denominator: p73 function as a tissue architect. Tissue architecture is defined by the nature and the integrity of its cellular and extracellular compartments, and it is based on proper adhesive cell-cell and cell-extracellular matrix interactions as well as the establishment of cellular polarity. In this work, we will review the current understanding of p73 role as a neurogenic niche architect through the regulation of cell adhesion, cytoskeleton dynamics and Planar Cell Polarity, and give a general overview of TAp73 as a hub modulator of these functions, whose alteration could impinge in many of the Trp73 -/- phenotypes.
Collapse
Affiliation(s)
- Laura Maeso-Alonso
- Departamento de Biología Molecular, Instituto de Biomedicina (IBIOMED), University of León, León, Spain
| | - Lorena López-Ferreras
- Departamento de Biología Molecular, Instituto de Biomedicina (IBIOMED), University of León, León, Spain
| | - Margarita M Marques
- Departamento de Producción Animal, Instituto de Desarrollo Ganadero y Sanidad Animal, University of León, León, Spain
| | - Maria C Marin
- Departamento de Biología Molecular, Instituto de Biomedicina (IBIOMED), University of León, León, Spain
| |
Collapse
|
14
|
López-Ferreras L, Martínez-García N, Maeso-Alonso L, Martín-López M, Díez-Matilla Á, Villoch-Fernandez J, Alonso-Olivares H, Marques MM, Marin MC. Deciphering the Nature of Trp73 Isoforms in Mouse Embryonic Stem Cell Models: Generation of Isoform-Specific Deficient Cell Lines Using the CRISPR/Cas9 Gene Editing System. Cancers (Basel) 2021; 13:cancers13133182. [PMID: 34202306 PMCID: PMC8268375 DOI: 10.3390/cancers13133182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The Trp73 gene is involved in the regulation of multiple biological processes such as response to stress, differentiation and tissue architecture. This gene gives rise to structurally different N and C-terminal isoforms which lead to differences in its biological activity in a cell type dependent manner. However, there is a current lack of physiological models to study these isoforms. The aim of this study was to generate specific p73-isoform-deficient mouse embryonic stem cell lines using the CRISPR/Cas9 system. Their special features, self-renewal and pluripotency, make embryonic stem cells a useful research tool that allows the generation of cells from any of the three germ layers carrying specific inactivation of p73-isoforms. Characterization of the generated cell lines indicates that while the individual elimination of TA- or DN-p73 isoform is compatible with pluripotency, it results in alterations of the transcriptional profiles and the pluripotent state of the embryonic stem cells in an isoform-specific manner. Abstract The p53 family has been widely studied for its role in various physiological and pathological processes. Imbalance of p53 family proteins may contribute to developmental abnormalities and pathologies in humans. This family exerts its functions through a profusion of isoforms that are generated by different promoter usage and alternative splicing in a cell type dependent manner. In particular, the Trp73 gene gives rise to TA and DN-p73 isoforms that confer p73 a dual nature. The biological relevance of p73 does not only rely on its tumor suppression effects, but on its pivotal role in several developmental processes. Therefore, the generation of cellular models that allow the study of the individual isoforms in a physiological context is of great biomedical relevance. We generated specific TA and DN-p73-deficient mouse embryonic stem cell lines using the CRISPR/Cas9 gene editing system and validated them as physiological bona fide p73-isoform knockout models. Global gene expression analysis revealed isoform-specific alterations of distinctive transcriptional networks. Elimination of TA or DN-p73 is compatible with pluripotency but prompts naïve pluripotent stem cell transition into the primed state, compromising adequate lineage differentiation, thus suggesting that differential expression of p73 isoforms acts as a rheostat during early cell fate determination.
Collapse
Affiliation(s)
- Lorena López-Ferreras
- Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain; (L.L.-F.); (N.M.-G.); (L.M.-A.); (M.M.-L.); (Á.D.-M.); (J.V.-F.); (H.A.-O.)
- Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
| | - Nicole Martínez-García
- Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain; (L.L.-F.); (N.M.-G.); (L.M.-A.); (M.M.-L.); (Á.D.-M.); (J.V.-F.); (H.A.-O.)
- Departamento de Producción Animal, Universidad de León, 24071 León, Spain
| | - Laura Maeso-Alonso
- Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain; (L.L.-F.); (N.M.-G.); (L.M.-A.); (M.M.-L.); (Á.D.-M.); (J.V.-F.); (H.A.-O.)
- Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
| | - Marta Martín-López
- Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain; (L.L.-F.); (N.M.-G.); (L.M.-A.); (M.M.-L.); (Á.D.-M.); (J.V.-F.); (H.A.-O.)
- Biomar Microbial Technologies, Parque Tecnológico de León, Armunia, 24009 León, Spain
| | - Ángela Díez-Matilla
- Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain; (L.L.-F.); (N.M.-G.); (L.M.-A.); (M.M.-L.); (Á.D.-M.); (J.V.-F.); (H.A.-O.)
| | - Javier Villoch-Fernandez
- Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain; (L.L.-F.); (N.M.-G.); (L.M.-A.); (M.M.-L.); (Á.D.-M.); (J.V.-F.); (H.A.-O.)
- Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
| | - Hugo Alonso-Olivares
- Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain; (L.L.-F.); (N.M.-G.); (L.M.-A.); (M.M.-L.); (Á.D.-M.); (J.V.-F.); (H.A.-O.)
- Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
| | - Margarita M. Marques
- Departamento de Producción Animal, Universidad de León, 24071 León, Spain
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, 24071 León, Spain
- Correspondence: (M.M.M.); (M.C.M.); Tel.: +34-987-291757 (M.M.M.); +34-987-291490 (M.C.M.)
| | - Maria C. Marin
- Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain; (L.L.-F.); (N.M.-G.); (L.M.-A.); (M.M.-L.); (Á.D.-M.); (J.V.-F.); (H.A.-O.)
- Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
- Correspondence: (M.M.M.); (M.C.M.); Tel.: +34-987-291757 (M.M.M.); +34-987-291490 (M.C.M.)
| |
Collapse
|
15
|
Mazor G, Smirnov D, Ben David H, Khrameeva E, Toiber D, Rotblat B. TP73-AS1 is induced by YY1 during TMZ treatment and highly expressed in the aging brain. Aging (Albany NY) 2021; 13:14843-14861. [PMID: 34115613 PMCID: PMC8221307 DOI: 10.18632/aging.203182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
Aging is a factor associated with poor prognosis in glioblastoma (GBM). It is therefore important to understand the molecular features of aging contributing to GBM morbidity. TP73-AS1 is a long noncoding RNA (lncRNA) over expressed in GBM tumors shown to promote resistance to the chemotherapeutic temozolomide (TMZ), and tumor aggressiveness. How the expression of TP73-AS1 is regulated is not known, nor is it known if its expression is associated with aging. By analyzing transcriptional data obtained from natural and pathological aging brain, we found that the expression of TP73-AS1 is high in pathological and naturally aging brains. YY1 physically associates with the promoter of TP73-AS1 and we found that along with TP73-AS1, YY1 is induced by TMZ. We found that the TP73-AS1 promoter is activated by TMZ, and by YY1 over expression. Using CRISPRi to deplete YY1, we found that YY1 promotes up regulation of TP73-AS1 and the activation of its promoter during TMZ treatment. In addition, we identified two putative YY1 binding sites within the TP73-AS1 promoter, and used mutagenesis to find that they are essential for TMZ mediated promoter activation. Together, our data positions YY1 as an important TP73-AS1 regulator, demonstrating that TP73-AS1 is expressed in the natural and pathological aging brain, including during neurodegeneration and cancer. Our findings advance our understanding of TP73-AS1 expression, bringing forth a new link between TMZ resistance and aging, both of which contribute to GBM morbidity.
Collapse
Affiliation(s)
- Gal Mazor
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Dmitri Smirnov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.,The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Hila Ben David
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Ekaterina Khrameeva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Debra Toiber
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel.,The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Barak Rotblat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel.,The National Institute for Biotechnology in the Negev, Beer Sheva 8410501, Israel
| |
Collapse
|
16
|
p53/p73 Protein Network in Colorectal Cancer and Other Human Malignancies. Cancers (Basel) 2021; 13:cancers13122885. [PMID: 34207603 PMCID: PMC8227208 DOI: 10.3390/cancers13122885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The p53 family of proteins comprises p53, p63, and p73, which share high structural and functional similarity. The two distinct promoters of each locus, the alternative splicing, and the alternative translation initiation sites enable the generation of numerous isoforms with different protein-interacting domains and distinct activities. The co-expressed p53/p73 isoforms have significant but distinct roles in carcinogenesis. Their activity is frequently impaired in human tumors including colorectal carcinoma due to dysregulated expression and a dominant-negative effect accomplished by some isoforms and p53 mutants. The interactions between isoforms are particularly important to understand the onset of tumor formation, progression, and therapeutic response. The understanding of the p53/p73 network can contribute to the development of new targeted therapies. Abstract The p53 tumor suppressor protein is crucial for cell growth control and the maintenance of genomic stability. Later discovered, p63 and p73 share structural and functional similarity with p53. To understand the p53 pathways more profoundly, all family members should be considered. Each family member possesses two promoters and alternative translation initiation sites, and they undergo alternative splicing, generating multiple isoforms. The resulting isoforms have important roles in carcinogenesis, while their expression is dysregulated in several human tumors including colorectal carcinoma, which makes them potential targets in cancer treatment. Their activities arise, at least in part, from the ability to form tetramers that bind to specific DNA sequences and activate the transcription of target genes. In this review, we summarize the current understanding of the biological activities and regulation of the p53/p73 isoforms, highlighting their role in colorectal tumorigenesis. The analysis of the expression patterns of the p53/p73 isoforms in human cancers provides an important step in the improvement of cancer therapy. Furthermore, the interactions among the p53 family members which could modulate normal functions of the canonical p53 in tumor tissue are described. Lastly, we emphasize the importance of clinical studies to assess the significance of combining the deregulation of different members of the p53 family to define the outcome of the disease.
Collapse
|
17
|
Causeret F, Moreau MX, Pierani A, Blanquie O. The multiple facets of Cajal-Retzius neurons. Development 2021; 148:268379. [PMID: 34047341 DOI: 10.1242/dev.199409] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cajal-Retzius neurons (CRs) are among the first-born neurons in the developing cortex of reptiles, birds and mammals, including humans. The peculiarity of CRs lies in the fact they are initially embedded into the immature neuronal network before being almost completely eliminated by cell death at the end of cortical development. CRs are best known for controlling the migration of glutamatergic neurons and the formation of cortical layers through the secretion of the glycoprotein reelin. However, they have been shown to play numerous additional key roles at many steps of cortical development, spanning from patterning and sizing functional areas to synaptogenesis. The use of genetic lineage tracing has allowed the discovery of their multiple ontogenetic origins, migratory routes, expression of molecular markers and death dynamics. Nowadays, single-cell technologies enable us to appreciate the molecular heterogeneity of CRs with an unprecedented resolution. In this Review, we discuss the morphological, electrophysiological, molecular and genetic criteria allowing the identification of CRs. We further expose the various sources, migration trajectories, developmental functions and death dynamics of CRs. Finally, we demonstrate how the analysis of public transcriptomic datasets allows extraction of the molecular signature of CRs throughout their transient life and consider their heterogeneity within and across species.
Collapse
Affiliation(s)
- Frédéric Causeret
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France
| | - Matthieu X Moreau
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France
| | - Alessandra Pierani
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France.,Groupe Hospitalier Universitaire Paris Psychiatrie et Neurosciences, F-75014 Paris, France
| | - Oriane Blanquie
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, D-55128 Mainz, Germany
| |
Collapse
|
18
|
Melino G. Molecular Mechanisms and Function of the p53 Protein Family Member - p73. BIOCHEMISTRY (MOSCOW) 2021; 85:1202-1209. [PMID: 33202205 DOI: 10.1134/s0006297920100089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over 20 years after identification of p53 and its crucial function in cancer progression, two members of the same protein family were identified, namely p63 and p73. Since then, a body of information has been accumulated on each of these genes and their interrelations. Biological role of p73 has been elucidated thanks to four distinct knockout mice models: (i) with deletion of the entire TP73 gene, (ii) with deletion of exons encoding the full length TAp73 isoforms, (iii) with deletions of exons encoding the shorter DNp73 isoform, and (iv) with deletion of exons encoding C-terminal of the alpha isoform. This work, as well as expression studies in cancer and overwhelming body of molecular studies, allowed establishing major role of TP73 both in cancer and in neuro-development, as well as ciliogenesis, and metabolism. Here, we recapitulate the major milestones of this endeavor.
Collapse
Affiliation(s)
- G Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133, Italy.
| |
Collapse
|
19
|
Amelio I, Bertolo R, Bove P, Candi E, Chiocchi M, Cipriani C, Di Daniele N, Ganini C, Juhl H, Mauriello A, Marani C, Marshall J, Montanaro M, Palmieri G, Piacentini M, Sica G, Tesauro M, Rovella V, Tisone G, Shi Y, Wang Y, Melino G. Cancer predictive studies. Biol Direct 2020; 15:18. [PMID: 33054808 PMCID: PMC7557058 DOI: 10.1186/s13062-020-00274-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 12/21/2022] Open
Abstract
The identification of individual or clusters of predictive genetic alterations might help in defining the outcome of cancer treatment, allowing for the stratification of patients into distinct cohorts for selective therapeutic protocols. Neuroblastoma (NB) is the most common extracranial childhood tumour, clinically defined in five distinct stages (1-4 & 4S), where stages 3-4 define chemotherapy-resistant, highly aggressive disease phases. NB is a model for geneticists and molecular biologists to classify genetic abnormalities and identify causative disease genes. Despite highly intensive basic research, improvements on clinical outcome have been predominantly observed for less aggressive cancers, that is stages 1,2 and 4S. Therefore, stages 3-4 NB are still complicated at the therapeutic level and require more intense fundamental research. Using neuroblastoma as a model system, here we herein outline how cancer prediction studies can help at steering preclinical and clinical research toward the identification and exploitation of specific genetic landscape. This might result in maximising the therapeutic success and minimizing harmful effects in cancer patients.
Collapse
Affiliation(s)
- Ivano Amelio
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Riccardo Bertolo
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - Pierluigi Bove
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - Eleonora Candi
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Marcello Chiocchi
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Chiara Cipriani
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - Nicola Di Daniele
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Carlo Ganini
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | | | - Alessandro Mauriello
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Carla Marani
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - John Marshall
- Medstar Georgetown University Hospital, Georgetown University, Washington DC, USA
| | - Manuela Montanaro
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Giampiero Palmieri
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Mauro Piacentini
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Giuseppe Sica
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Manfredi Tesauro
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Valentina Rovella
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Giuseppe Tisone
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Yufang Shi
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Gerry Melino
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
20
|
Niklison-Chirou MV, Agostini M, Amelio I, Melino G. Regulation of Adult Neurogenesis in Mammalian Brain. Int J Mol Sci 2020; 21:ijms21144869. [PMID: 32660154 PMCID: PMC7402357 DOI: 10.3390/ijms21144869] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Adult neurogenesis is a multistage process by which neurons are generated and integrated into existing neuronal circuits. In the adult brain, neurogenesis is mainly localized in two specialized niches, the subgranular zone (SGZ) of the dentate gyrus and the subventricular zone (SVZ) adjacent to the lateral ventricles. Neurogenesis plays a fundamental role in postnatal brain, where it is required for neuronal plasticity. Moreover, perturbation of adult neurogenesis contributes to several human diseases, including cognitive impairment and neurodegenerative diseases. The interplay between extrinsic and intrinsic factors is fundamental in regulating neurogenesis. Over the past decades, several studies on intrinsic pathways, including transcription factors, have highlighted their fundamental role in regulating every stage of neurogenesis. However, it is likely that transcriptional regulation is part of a more sophisticated regulatory network, which includes epigenetic modifications, non-coding RNAs and metabolic pathways. Here, we review recent findings that advance our knowledge in epigenetic, transcriptional and metabolic regulation of adult neurogenesis in the SGZ of the hippocampus, with a special attention to the p53-family of transcription factors.
Collapse
Affiliation(s)
- Maria Victoria Niklison-Chirou
- Centre for Therapeutic Innovation (CTI-Bath), Department of Pharmacy & Pharmacology, University of Bath, Bath BA2 7AY, UK;
- Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.A.); (I.A.)
| | - Ivano Amelio
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.A.); (I.A.)
- School of Life Sciences, University of Nottingham, Nottingham NG7 2HU, UK
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.A.); (I.A.)
- Correspondence:
| |
Collapse
|