1
|
Gómez-Mudarra FA, Aullón G, Jover J. Exploring nickel-catalyzed organochalcogen synthesis via cross-coupling of benzonitrile and alkyl chalcogenols with computational tools. Org Biomol Chem 2025; 23:1673-1682. [PMID: 39783826 DOI: 10.1039/d4ob01865f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The preparation of organochalcogens has increased in recent times due to their promising biological activity properties. This work studies the reaction mechanism of a nickel(0)-catalyzed cross-coupling between benzonitrile and propanethiol to produce new C-S bonds by computational means. The proposed mechanism follows the classical oxidative addition/transmetalation/reductive elimination cross-coupling sequence, involving an unusual oxidative addition of a Ph-CN bond onto the active species. The computed catalytic cycle for thioether synthesis has been examined to determine whether the same protocol could be employed to build the analogous C-Se and C-Te bonds. The proposed mechanism for C-S coupling is validated by microkinetic modeling and shows a very good agreement with available experimental data. The extension of the proposed mechanism to C-Se and C-Te couplings indicates that these new reactions should be operative, although their reaction rates appear to be significantly slower.
Collapse
Affiliation(s)
- Francisco A Gómez-Mudarra
- Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
- Institut de Química Teòrica i Computacional (IQTC-UB), Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Gabriel Aullón
- Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
- Institut de Química Teòrica i Computacional (IQTC-UB), Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Jesús Jover
- Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
- Institut de Química Teòrica i Computacional (IQTC-UB), Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| |
Collapse
|
2
|
Zhang R, Xie X, Liu J, Pan R, Huang Y, Du Y. A novel selenoglycoside compound GlcSeCys alleviates diets-induced obesity and metabolic dysfunctions with the modulation of Galectin-1 and selenoproteins. Life Sci 2024:123259. [PMID: 39557393 DOI: 10.1016/j.lfs.2024.123259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Selenium, an essential trace element in human, has been shown to play protective roles in obesity and metabolic disorders despite insufficient understanding of mechanisms. Moreover, it's well known that biological actions of selenium compounds differed greatly due to divergent chemical forms. Selenoglycoside is a type of organoselenium compounds with excellent hydrophilicity, but biological activity of which in vivo are almost unknown. We have designed and synthesized Se-β-d-glucopyranosyl-D-selenocysteine, a novel selenoglycoside compound named GlcSeCys. Herein, GlcSeCys was given to high fat high cholesterol (HFHC) fed mice to determine its actions as well as relevant molecular mechanisms using transcriptome and multiple molecular biological methods. It was revealed that GlcSeCys displayed pronounced anti-obesity effect and significantly alleviated hyperglycemia, hyperinsulinemia along with hepatic steatosis in HFHC diets-induced mice. Mechanistically, GlcSeCys was found to inhibit lipogenesis, lipid uptake and inflammation in liver, along with attenuation of Galectin-1 and induction of selenoprotein S (SELENOS). With regard to adipose tissues, GlcSeCys ameliorated hypertrophy of adipocytes, suppressed lipids biosynthesis and stimulated WAT browning along with abrogated WAT inflammation activation, which were in line with repression of Galectin-1 and increase of GPx3. Collectively, our results uncovered, for the first time, that selenoglycoside compound GlcSeCys possessed excellent protective effects against obesity and metabolic disorders, and the mechanisms were correlated with modulation of Galectin-1 and selenoproteins, shedding lights upon molecular biology of selenium and novel therapeutic for obesity and relevant metabolic disorders.
Collapse
Affiliation(s)
- Ruhui Zhang
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinni Xie
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jun Liu
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256606, Shandong Province, China
| | - Ruiying Pan
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Huang
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Ruswandi YAR, Lesmana R, Rosdianto AM, Gunadi JW, Goenawan H, Zulhendri F. Understanding the Roles of Selenium on Thyroid Hormone-Induced Thermogenesis in Adipose Tissue. Biol Trace Elem Res 2024; 202:2419-2441. [PMID: 37758980 DOI: 10.1007/s12011-023-03854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Brown adipose tissue (BAT) and white adipose tissue (WAT) are known to regulate lipid metabolism. A lower amount of BAT compared to WAT, along with adipose tissue dysfunction, can result in obesity. Studies have shown that selenium supplementation protects against adipocyte dysfunction, decreases WAT triglycerides, and increases BAT triiodothyronine (T3). In this review, we discuss the relationship between selenium and lipid metabolism regulation through selenoprotein deiodinases and the role of deiodinases and thyroid hormones in the induction of adipose tissue thermogenesis. Upon 22 studies included in our review, we found that studies investigating the relationship between selenium and deiodinases demonstrated that selenium supplementation affects the iodothyronine deiodinase 2 (DIO2) protein and the expression of its associated gene, DIO2, proportionally. However, its effect on DIO1 is inconsistent while its effect on DIO3 activity is not detected. Studies have shown that the activity of deiodinases especially DIO2 protein and DIO2 gene expression is increased along with other browning markers upon white adipose tissue browning induction. Studies showed that thermogenesis is stimulated by the thyroid hormone T3 as its activity is correlated to the expression of other thermogenesis markers. A proposed mechanism of thermogenesis induction in selenium supplementation is by autophagy control. However, more studies are needed to establish the role of T3 and autophagy in adipose tissue thermogenesis, especially, since some studies have shown that thermogenesis can function even when T3 activity is lacking and studies related to autophagy in adipose tissue thermogenesis have contradictory results.
Collapse
Affiliation(s)
- Yasmin Anissa R Ruswandi
- Graduate School of Master Program in Anti-Aging and Aesthetic Medicine, Faculty of Medicine, Universitas Padjadjaran, Kabupaten Sumedang, West Java, Indonesia
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang, KM.21, Hegarmanah, Kec. Jatinangor, Kabupaten Sumedang, West Java, 45363, Indonesia.
| | - Aziiz Mardanarian Rosdianto
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang, KM.21, Hegarmanah, Kec. Jatinangor, Kabupaten Sumedang, West Java, 45363, Indonesia
- Veterinary Medicine Study Program, Faculty of Medicine, Universitas Padjadjaran, Kabupaten Sumedang, West Java, Indonesia
| | - Julia Windi Gunadi
- Department of Physiology, Faculty of Medicine, Maranatha Christian University, Bandung, West Java, Indonesia
| | - Hanna Goenawan
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang, KM.21, Hegarmanah, Kec. Jatinangor, Kabupaten Sumedang, West Java, 45363, Indonesia
| | - Felix Zulhendri
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Kabupaten Sumedang, West Java, Indonesia
- Kebun Efi, Kabanjahe, 22171, North Sumatra, Indonesia
| |
Collapse
|
4
|
Burger N, Chouchani ET. A new era of cysteine proteomics - Technological advances in thiol biology. Curr Opin Chem Biol 2024; 79:102435. [PMID: 38382148 DOI: 10.1016/j.cbpa.2024.102435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
Cysteines are amenable to a diverse set of modifications that exhibit critical regulatory functions over the proteome and thereby control a wide range of cellular processes. Proteomic technologies have emerged as a powerful strategy to interrogate cysteine modifications across the proteome. Recent advancements in enrichment strategies, multiplexing capabilities and increased analytical sensitivity have enabled deeper quantitative cysteine profiling, capturing a substantial proportion of the cysteine proteome. This is complemented by a rapidly growing repertoire of analytical strategies illuminating the diverse landscape of cysteine modifications. Cysteine chemoproteomics technologies have evolved into a powerful strategy to facilitate the development of covalent drugs, opening unprecedented opportunities to target the extensive undrugged proteome. Herein we review recent technological and scientific advances that shape the cysteine proteomics field.
Collapse
Affiliation(s)
- Nils Burger
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Lee N, Park SJ, Lange M, Tseyang T, Doshi MB, Kim TY, Song Y, Kim DI, Greer PL, Olzmann JA, Spinelli JB, Kim D. Selenium reduction of ubiquinone via SQOR suppresses ferroptosis. Nat Metab 2024; 6:343-358. [PMID: 38351124 PMCID: PMC11694790 DOI: 10.1038/s42255-024-00974-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 01/02/2024] [Indexed: 02/28/2024]
Abstract
The canonical biological function of selenium is in the production of selenocysteine residues of selenoproteins, and this forms the basis for its role as an essential antioxidant and cytoprotective micronutrient. Here we demonstrate that, via its metabolic intermediate hydrogen selenide, selenium reduces ubiquinone in the mitochondria through catalysis by sulfide quinone oxidoreductase. Through this mechanism, selenium rapidly protects against lipid peroxidation and ferroptosis in a timescale that precedes selenoprotein production, doing so even when selenoprotein production has been eliminated. Our findings identify a regulatory mechanism against ferroptosis that implicates sulfide quinone oxidoreductase and expands our understanding of selenium in biology.
Collapse
Affiliation(s)
- Namgyu Lee
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Biomedical Science & Engineering, Dankook University, Cheonan, Republic of Korea.
| | - Sung Jin Park
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mike Lange
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Tenzin Tseyang
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mihir B Doshi
- Department of Biomedical Science & Engineering, Dankook University, Cheonan, Republic of Korea
| | | | - Yoseb Song
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Paul L Greer
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Jessica B Spinelli
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dohoon Kim
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
6
|
Punzalan C, Wang L, Bajrami B, Yao X. Measurement and utilization of the proteomic reactivity by mass spectrometry. MASS SPECTROMETRY REVIEWS 2024; 43:166-192. [PMID: 36924435 DOI: 10.1002/mas.21837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Chemical proteomics, which involves studying the covalent modifications of proteins by small molecules, has significantly contributed to our understanding of protein function and has become an essential tool in drug discovery. Mass spectrometry (MS) is the primary method for identifying and quantifying protein-small molecule adducts. In this review, we discuss various methods for measuring proteomic reactivity using MS and covalent proteomics probes that engage through reactivity-driven and proximity-driven mechanisms. We highlight the applications of these methods and probes in live-cell measurements, drug target identification and validation, and characterizing protein-small molecule interactions. We conclude the review with current developments and future opportunities in the field, providing our perspectives on analytical considerations for MS-based analysis of the proteomic reactivity landscape.
Collapse
Affiliation(s)
- Clodette Punzalan
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Lei Wang
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
- AD Bio US, Takeda, Lexington, Massachusetts, 02421, USA
| | - Bekim Bajrami
- Chemical Biology & Proteomics, Biogen, Cambridge, Massachusetts, USA
| | - Xudong Yao
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
- Institute for Systems Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
7
|
Chaudière J. Biological and Catalytic Properties of Selenoproteins. Int J Mol Sci 2023; 24:10109. [PMID: 37373256 DOI: 10.3390/ijms241210109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Selenocysteine is a catalytic residue at the active site of all selenoenzymes in bacteria and mammals, and it is incorporated into the polypeptide backbone by a co-translational process that relies on the recoding of a UGA termination codon into a serine/selenocysteine codon. The best-characterized selenoproteins from mammalian species and bacteria are discussed with emphasis on their biological function and catalytic mechanisms. A total of 25 genes coding for selenoproteins have been identified in the genome of mammals. Unlike the selenoenzymes of anaerobic bacteria, most mammalian selenoenzymes work as antioxidants and as redox regulators of cell metabolism and functions. Selenoprotein P contains several selenocysteine residues and serves as a selenocysteine reservoir for other selenoproteins in mammals. Although extensively studied, glutathione peroxidases are incompletely understood in terms of local and time-dependent distribution, and regulatory functions. Selenoenzymes take advantage of the nucleophilic reactivity of the selenolate form of selenocysteine. It is used with peroxides and their by-products such as disulfides and sulfoxides, but also with iodine in iodinated phenolic substrates. This results in the formation of Se-X bonds (X = O, S, N, or I) from which a selenenylsulfide intermediate is invariably produced. The initial selenolate group is then recycled by thiol addition. In bacterial glycine reductase and D-proline reductase, an unusual catalytic rupture of selenium-carbon bonds is observed. The exchange of selenium for sulfur in selenoproteins, and information obtained from model reactions, suggest that a generic advantage of selenium compared with sulfur relies on faster kinetics and better reversibility of its oxidation reactions.
Collapse
Affiliation(s)
- Jean Chaudière
- CBMN (CNRS, UMR 5248), University of Bordeaux, 33600 Pessac, France
| |
Collapse
|
8
|
Wang X, Wu B, Sun G, Gao J, Huang T, Liu J, Zhou Q, He X, Zhang S, Wang CY, Zhang Z, Zhu H. Dietary selenomethionine attenuates obesity by enhancing beiging process in white adipose tissue. J Nutr Biochem 2023; 113:109230. [PMID: 36435293 DOI: 10.1016/j.jnutbio.2022.109230] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 09/21/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022]
Abstract
Imbalanced nutrient intake causes abnormal energy metabolism, which results in obesity. There is feasible evidence that selenium-rich (Se-rich) foods may alleviate obesity and enhance general public health, but the underlying mechanisms remain elusive. Herein we examined the effect of Se supplementation on white adipose tissue beiging process. The mice were fed with a normal diet or a Se-deficient high-fat diet (DHFD) until significant differences in terms of body weight, glucose tolerance and insulin sensitivity. Next, mice in the DHFD group were changed to a high-fat diet (HFD) containing specified amounts of selenomethionine (SeMet) (0, 150, 300, and 600 μg/kg) and continued to feed for 14 weeks. Notably, 150 μg/kg SeMet supplement highly protected mice from DHFD-induced obesity, insulin resistance, and lipid deposits in the liver and kidney, and featured by the enhanced beiging process in white adipose tissue and increased energy expenditure. Moreover, upon cold challenge, 150 μg/kg SeMet supplement enhanced cold tolerance in mice by inducing adipose beiging to promote energy expenditure, as evidenced by the increased expression of uncoupling protein-1 (UCP1) in adipocytes. Similarly, SeMet (10 μM) promoted the differentiation of beige adipocytes from the stromal vascular fraction. Collectively, our data support that optimal supplementation of SeMet could enhance the beiging process to attenuate HFD-induced obesity, which provides new insights into the relationship between dietary SeMet and type 2 diabetes.
Collapse
Affiliation(s)
- Xiaohui Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Bo Wu
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei Selenium and Human Health Institute, Enshi, Hubei, China
| | - Guogen Sun
- Hubei Selenium and Human Health Institute, Enshi, Hubei, China
| | - Jia Gao
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Teng Huang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Jing Liu
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Qing Zhou
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Xiaoyu He
- Branch of National Clinical Research Center for Metabolic Diseases, Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shu Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Zixiong Zhang
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei Selenium and Human Health Institute, Enshi, Hubei, China.
| | - He Zhu
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Thermogenic Adipose Redox Mechanisms: Potential Targets for Metabolic Disease Therapies. Antioxidants (Basel) 2023; 12:antiox12010196. [PMID: 36671058 PMCID: PMC9854447 DOI: 10.3390/antiox12010196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Metabolic diseases, such as diabetes and non-alcoholic fatty liver disease (NAFLD), have several negative health outcomes on affected humans. Dysregulated energy metabolism is a key component underlying the pathophysiology of these conditions. Adipose tissue is a fundamental regulator of energy homeostasis that utilizes several redox reactions to carry out the metabolism. Brown and beige adipose tissues, in particular, perform highly oxidative reactions during non-shivering thermogenesis to dissipate energy as heat. The appropriate regulation of energy metabolism then requires coordinated antioxidant mechanisms to counterbalance the oxidation reactions. Indeed, non-shivering thermogenesis activation can cause striking changes in concentrations of both oxidants and antioxidants in order to adapt to various oxidative environments. Current therapeutic options for metabolic diseases either translate poorly from rodent models to humans (in part due to the challenges of creating a physiologically relevant rodent model) or tend to have numerous side effects, necessitating novel therapies. As increased brown adipose tissue activity results in enhanced energy expenditure and is associated with beneficial effects on metabolic health, such as decreased obesity, it has gathered great interest as a modulator of metabolic disease. One potential reason for the beneficial health effects may be that although non-shivering thermogenesis is enormously oxidative, it is also associated with decreased oxidant formation after its activation. However, targeting its redox mechanisms specifically to alter metabolic disease remains an underexplored area. Therefore, this review will discuss the role of adipose tissue in energy homeostasis, non-shivering thermogenesis in adults, and redox mechanisms that may serve as novel therapeutic targets of metabolic disease.
Collapse
|
10
|
Takeda Y, Harada Y, Yoshikawa T, Dai P. Mitochondrial Energy Metabolism in the Regulation of Thermogenic Brown Fats and Human Metabolic Diseases. Int J Mol Sci 2023; 24:ijms24021352. [PMID: 36674862 PMCID: PMC9861294 DOI: 10.3390/ijms24021352] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Brown fats specialize in thermogenesis by increasing the utilization of circulating blood glucose and fatty acids. Emerging evidence suggests that brown adipose tissue (BAT) prevents the incidence of obesity-associated metabolic diseases and several types of cancers in humans. Mitochondrial energy metabolism in brown/beige adipocytes regulates both uncoupling protein 1 (UCP1)-dependent and -independent thermogenesis for cold adaptation and the utilization of excess nutrients and energy. Many studies on the quantification of human BAT indicate that mass and activity are inversely correlated with the body mass index (BMI) and visceral adiposity. Repression is caused by obesity-associated positive and negative factors that control adipocyte browning, de novo adipogenesis, mitochondrial energy metabolism, UCP1 expression and activity, and noradrenergic response. Systemic and local factors whose levels vary between lean and obese conditions include growth factors, inflammatory cytokines, neurotransmitters, and metal ions such as selenium and iron. Modulation of obesity-associated repression in human brown fats is a promising strategy to counteract obesity and related metabolic diseases through the activation of thermogenic capacity. In this review, we highlight recent advances in mitochondrial metabolism, thermogenic regulation of brown fats, and human metabolic diseases.
Collapse
Affiliation(s)
- Yukimasa Takeda
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
- Correspondence: (Y.T.); (P.D.); Tel.: +81-75-251-5444 (Y.T.); +81-75-251-5135 (P.D.)
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshikazu Yoshikawa
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
- Louis Pasteur Center for Medical Research, 103-5 Tanaka-Monzen-cho, Sakyo-ku, Kyoto 606-8225, Japan
| | - Ping Dai
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
- Correspondence: (Y.T.); (P.D.); Tel.: +81-75-251-5444 (Y.T.); +81-75-251-5135 (P.D.)
| |
Collapse
|
11
|
Ralston NVC. Concomitant selenoenzyme inhibitor exposures as etiologic contributors to disease: Implications for preventative medicine. Arch Biochem Biophys 2023; 733:109469. [PMID: 36423662 DOI: 10.1016/j.abb.2022.109469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
The physiological activities of selenium (Se) occur through enzymes that incorporate selenocysteine (Sec), a rare but important amino acid. The human genome includes 25 genes coding for Sec that employ it to catalyze challenging reactions. Selenoenzymes control thyroid hormones, calcium activities, immune responses, and perform other vital roles, but most are devoted to preventing and reversing oxidative damage. As the most potent intracellular nucleophile (pKa 5.2), Sec is vulnerable to binding by metallic and organic soft electrophiles (E*). These electron poor reactants initially form covalent bonds with nucleophiles such as cysteine (Cys) whose thiol (pKa 8.3) forms adducts which function as suicide substrates for selenoenzymes. These adducts orient E* to interact with Sec and since Se has a higher affinity for E* than sulfur, the E* transfers to Sec and irreversibly inhibits the enzyme's activity. Organic electrophiles have lower Se-binding affinities than metallic E*, but exposure sources are more abundant. Individuals with poor Se status are more vulnerable to the toxic effects of high E* exposures. The relative E*:Se stoichiometries remain undefined, but the aggregate effects of multiple E* exposures are predicted to be additive and possibly synergistic under certain conditions. The potential for the combined Se-binding effects of common pharmaceutical, dietary, or environmental E* require study, but even temporary loss of selenoenzyme activities would accentuate oxidative damage to tissues. As various degenerative diseases are associated with accumulating DNA damage, defining the effects of complementary E* exposures on selenoenzyme activities may enhance the ability of preventative medicine to support healthy aging.
Collapse
Affiliation(s)
- Nicholas V C Ralston
- Earth System Science and Policy, University of North Dakota, Grand Forks, ND, USA.
| |
Collapse
|
12
|
Selenium and selenoproteins in thermogenic adipocytes. Arch Biochem Biophys 2022; 731:109445. [PMID: 36265651 PMCID: PMC9981474 DOI: 10.1016/j.abb.2022.109445] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/20/2022]
Abstract
Selenium (Se) is involved in energy metabolism in the liver, white adipose tissue, and skeletal muscle, and may also play a role in thermogenic adipocytes, i.e. brown and beige adipocytes. Thereby this micronutrient is a key nutritional target to aid in combating obesity and metabolic diseases. In thermogenic adipocytes, particularly in brown adipose tissue (BAT), the selenoprotein type 2 iodothyronine deiodinase (DIO2) is essential for the activation of adaptive thermogenesis. Recent evidence has suggested that additional selenoproteins may also be participating in this process, and a role for Se itself through its metabolic pathways is also envisioned. In this review, we discuss the recognized effects and the knowledge gaps in the involvement of Se metabolism and selenoproteins in the mechanisms of adaptive thermogenesis in thermogenic (brown and beige) adipocytes.
Collapse
|
13
|
Hussein RA, Ahmed M, Kuldyushev N, Schönherr R, Heinemann SH. Selenomethionine incorporation in proteins of individual mammalian cells determined with a genetically encoded fluorescent sensor. Free Radic Biol Med 2022; 192:191-199. [PMID: 36152916 DOI: 10.1016/j.freeradbiomed.2022.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/26/2022]
Abstract
Selenomethionine (SeMet) randomly replaces methionine (Met) in protein translation. Because of strongly differing redox properties of SeMet and Met, SeMet mis-incorporation may have detrimental effects on protein function, possibly compromising the use of nutritional SeMet supplementation as an anti-oxidant. Studying the functional impact of SeMet in proteins on a cellular level is hampered by the lack of accurate and efficient methods for estimating the SeMet incorporation level in individual viable cells. Here we introduce and apply a method to measure the extent of SeMet incorporation in cellular proteins by utilizing a genetically encoded fluorescent methionine oxidation probe. Supplementation of SeMet in mammalian culture medium resulted in >84% incorporation of SeMet, and SeMet labeling as low as 5% was readily measured. Kinetics and extent of SeMet incorporation on the single-cell level under live-cell imaging conditions provided direct access to protein turn-over kinetics and SeMet redox properties in a cellular context. The method is furthermore suited for experiments utilizing high-throughput fluorescence microplate readers or fluorescence-activated cell sorting (FACS) analysis.
Collapse
Affiliation(s)
- Rama A Hussein
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Marwa Ahmed
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Nikita Kuldyushev
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Roland Schönherr
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Stefan H Heinemann
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany.
| |
Collapse
|
14
|
Tang H, Jia G, Gao J, Yang F, Tang Z, Liu Y, Wang C. Quantifying Turnover Dynamics of Selenoproteome by Isotopic Perturbation. Anal Chem 2022; 94:9636-9647. [PMID: 35763570 DOI: 10.1021/acs.analchem.2c00895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selenium, as an essential trace element of life, is closely related to human health and is required to produce selenoproteins, a family of important functional proteins in many living organisms. All selenoproteins contain a special amino acid, selenocysteine, which often serves as their active-site residue, and the expression and activity of selenoproteins are fine-tuned. However, the turnover dynamics of selenoproteome has never been systematically investigated, especially in a site-specific manner for selenocysteines. In the current work, we developed a chemical proteomic strategy named "SElenoprotein Turnover Rate by Isotope Perturbation (SETRIP)" to quantitatively monitor the turnover dynamics of selenoproteins at the proteomic level. The kinetic rates and half-lives of nine selenoproteins were accurately measured by combining Na274SeO3 metabolic labeling with pulse-chase chemoproteomics. The half-lives of selenoproteins were measured to range from 6 to 32 h with the housekeeping selenoprotein glutathione peroxidases (GPX4) showing a faster turnover rate, implying that the hierarchy regulation also exists in the turnover of selenoproteins in addition to expression and activity. Our study generated a global portrait of dynamic changes in the selenoproteome and provided important clues to study the roles of selenium in biology.
Collapse
Affiliation(s)
- Huan Tang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guogeng Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jinjun Gao
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fan Yang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ziyao Tang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuan Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Liu G, Li J, Pang B, Li Y, Xu F, Liao N, Shao D, Jiang C, Shi J. Potential role of selenium in alleviating obesity-related iron dyshomeostasis. Crit Rev Food Sci Nutr 2022; 63:10032-10046. [PMID: 35574661 DOI: 10.1080/10408398.2022.2074961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Obesity is a serious health problem in modern life and increases the risk of many comorbidities including iron dyshomeostasis. In contrast to malnourished anemia, obesity-related iron dyshomeostasis is mainly caused by excessive fat accumulation, inflammation, and disordered gut microbiota. In obesity, iron dyshomeostasis also induces disorders associated with gut microbiota, neurodegenerative injury, oxidative damage, and fat accumulation in the liver. Selenium deficiency is often accompanied by obesity or iron deficiency, and selenium supplementation has been shown to alleviate obesity and overcome iron deficiency. Selenium inhibits fat accumulation and exhibits anti-inflammatory activity. It regulates gut microbiota, prevents neurodegenerative injury, alleviates oxidative damage to the body, and ameliorates hepatic fat accumulation. These effects theoretically meet the requirements for the inhibition of factors underlying obesity-related iron dyshomeostasis. Selenium supplementation may have a potential role in the alleviation of obesity-related iron dyshomeostasis. This review verifies this hypothesis in theory. All the currently reported causes and results of obesity-related iron dyshomeostasis are reviewed comprehensively, together with the effects of selenium. The challenges and strategies of selenium supplementation are also discussed. The findings demonstrate the possibility of selenium-containing drugs or functional foods in alleviating obesity-related iron dyshomeostasis.
Collapse
Affiliation(s)
- Guanwen Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Junjun Li
- College of Enology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Bing Pang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yinghui Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Fengqin Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Ning Liao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| |
Collapse
|
16
|
Maret W, Blower P. Teaching the chemical elements in biochemistry: Elemental biology and metallomics. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 50:283-289. [PMID: 35218613 PMCID: PMC9303777 DOI: 10.1002/bmb.21614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Biochemistry primarily focuses on the non-metal chemical elements carbon, oxygen, nitrogen, hydrogen, sulfur, and phosphorus in the four groups of building blocks (sugars, lipids, amino acids, and nucleotides) and the corresponding macromolecules. However, at least 10 essential chemical elements of life are metals. This article discusses the consequences of such a bias, presents current knowledge that over 20 chemical elements are required for life, and makes a case for-and suggests benefits of-teaching elemental biology alongside molecular biology and biochemistry, and inorganic chemistry in addition to organic chemistry. A relatively new interdisciplinary field, metallomics, has the potential to be a platform for integration when added to glycomics, lipidomics, proteomics, and genomics. It would fill a major gap in contemporary education, be relevant for many areas of science, and facilitate the teaching of important principles of chemistry in the biological sciences, thus helping students to gain a broader understanding of life processes from the molecular to the systemic biology level.
Collapse
Affiliation(s)
- Wolfgang Maret
- Department of Biochemistry, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Philip Blower
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| |
Collapse
|
17
|
Why succinate? Physiological regulation by a mitochondrial coenzyme Q sentinel. Nat Chem Biol 2022; 18:461-469. [PMID: 35484255 PMCID: PMC9150600 DOI: 10.1038/s41589-022-01004-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/25/2022] [Indexed: 12/15/2022]
Abstract
Metabolites once considered solely in catabolism or anabolism turn out to have key regulatory functions. Among these, the citric acid cycle intermediate succinate stands out owing to its multiple roles in disparate pathways, its dramatic concentration changes and its selective cell release. Here we propose that succinate has evolved as a signaling modality because its concentration reflects the coenzyme Q (CoQ) pool redox state, a central redox couple confined to the mitochondrial inner membrane. This connection is of general importance because CoQ redox state integrates three bioenergetic parameters: mitochondrial electron supply, oxygen tension and ATP demand. Succinate, by equilibrating with the CoQ pool, enables the status of this central bioenergetic parameter to be communicated from mitochondria to the rest of the cell, into the circulation and to other cells. The logic of this form of regulation explains many emerging roles of succinate in biology, and suggests future research questions.
Collapse
|
18
|
Quinn CM, Xu S, Hou G, Chen Q, Sail D, Byrd RA, Rozovsky S. 77Se- 13C based dipolar correlation experiments to map selenium sites in microcrystalline proteins. JOURNAL OF BIOMOLECULAR NMR 2022; 76:29-37. [PMID: 35320434 PMCID: PMC9195563 DOI: 10.1007/s10858-022-00390-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Sulfur-containing sites in proteins are of great importance for both protein structure and function, including enzymatic catalysis, signaling pathways, and recognition of ligands and protein partners. Selenium-77 is an NMR active spin-1/2 nucleus that shares many physiochemical properties with sulfur and can be readily introduced into proteins at sulfur sites without significant perturbations to the protein structure. The sulfur-containing amino acid methionine is commonly found at protein-protein or protein-ligand binding sites. Its selenium-containing counterpart, selenomethionine, has a broad chemical shift dispersion useful for NMR-based studies of complex systems. Methods such as (1H)-77Se-13C double cross polarization or {77Se}-13C REDOR could be valuable to map the local environment around selenium sites in proteins but have not been demonstrated to date. In this work, we explore these dipolar transfer mechanisms for structural characterization of the GB1 V39SeM variant of the model protein GB1 and demonstrate that 77Se-13C based correlations can be used to map the local environment around selenium sites in proteins. We have found that the general detection limit is ~ 5 Å, but longer range distances up to ~ 7 Å can be observed as well. This study establishes a framework for the future characterization of selenium sites at protein-protein or protein-ligand binding interfaces.
Collapse
Affiliation(s)
- Caitlin M. Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Shiping Xu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Guangjin Hou
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Qingqing Chen
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Deepak Sail
- Chemistry and Synthesis Center, National Heart Lung and Blood Institute, Bethesda, MD, USA
| | - R. Andrew Byrd
- Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
19
|
Oo SM, Oo HK, Takayama H, Ishii KA, Takeshita Y, Goto H, Nakano Y, Kohno S, Takahashi C, Nakamura H, Saito Y, Matsushita M, Okamatsu-Ogura Y, Saito M, Takamura T. Selenoprotein P-mediated reductive stress impairs cold-induced thermogenesis in brown fat. Cell Rep 2022; 38:110566. [PMID: 35354056 DOI: 10.1016/j.celrep.2022.110566] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 02/03/2022] [Accepted: 03/03/2022] [Indexed: 02/08/2023] Open
Abstract
Reactive oxygen species (ROS) activate uncoupler protein 1 (UCP1) in brown adipose tissue (BAT) under physiological cold exposure and noradrenaline (NA) stimulation to increase thermogenesis. However, the endogenous regulator of ROS in activated BAT and its role in pathological conditions remain unclear. We show that serum levels of selenoprotein P (SeP; encoded by SELENOP) negatively correlate with BAT activity in humans. Physiological cold exposure downregulates Selenop in BAT. Selenop knockout mice show higher rectal temperatures and UCP1 sulfenylation during cold exposure. SeP treatment to brown adipocytes eliminated the NA-induced mitochondrial ROS by upregulating glutathione peroxidase 4 and impaired cellular thermogenesis. A high-fat/high-sucrose diet elevates serum SeP levels and diminishes the elevated NA-induced thermogenesis in BAT-Selenop KO mice. Therefore, SeP is the intrinsic factor inducing reductive stress that impairs thermogenesis in BAT and may be a potential therapeutic target for obesity and diabetes.
Collapse
Affiliation(s)
- Swe Mar Oo
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Hein Ko Oo
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Hiroaki Takayama
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan; Life Sciences Division, Engineering and Technology Department, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kiyo-Aki Ishii
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan; Department of System Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Yumie Takeshita
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Hisanori Goto
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Yujiro Nakano
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Susumu Kohno
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroyuki Nakamura
- Department of Environmental and Preventive Medicine, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masayuki Saito
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan.
| |
Collapse
|
20
|
Chemoproteomic interrogation of selenocysteine by low-pH isoTOP-ABPP. Methods Enzymol 2022; 662:187-225. [DOI: 10.1016/bs.mie.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Steinbrenner H, Duntas LH, Rayman MP. The role of selenium in type-2 diabetes mellitus and its metabolic comorbidities. Redox Biol 2022; 50:102236. [PMID: 35144052 PMCID: PMC8844812 DOI: 10.1016/j.redox.2022.102236] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 02/07/2023] Open
Abstract
This review addresses the role of the essential trace element, selenium, in type-2 diabetes mellitus (T2DM) and its metabolic co-morbidities, i.e., metabolic syndrome, obesity and non-alcoholic fatty liver disease. We refer to the dietary requirements of selenium and the key physiological roles of selenoproteins. We explore the dysregulated fuel metabolism in T2DM and its co-morbidities, emphasizing the relevance of inflammation and oxidative stress. We describe the epidemiology of observational and experimental studies of selenium in diabetes and related conditions, explaining that the interaction between selenium status and glucose control is not limited to hyperglycemia but extends to hypoglycemia. We propose that the association between high plasma/serum selenium and T2DM/fasting plasma glucose observed in many cross-sectional studies may rely on the upregulation of hepatic selenoprotein-P biosynthesis in conditions of hyperglycemia and insulin resistance. While animal studies have revealed potential molecular mechanisms underlying adverse effects of severe selenium/selenoprotein excess and deficiency in the pathogenesis of insulin resistance and β-cell dysfunction, their translational significance is rather limited. Importantly, dietary selenium supplementation does not appear to be a major causal factor for the development of T2DM in humans though we cannot currently exclude a small contribution of selenium on top of other risk factors, in particular if it is ingested at high (supranutritional) doses. Elevated selenium biomarkers that are often measured in T2DM patients are more likely to be a consequence, rather than a cause, of diabetes.
Collapse
|
22
|
Atkins JF, O’Connor KM, Bhatt PR, Loughran G. From Recoding to Peptides for MHC Class I Immune Display: Enriching Viral Expression, Virus Vulnerability and Virus Evasion. Viruses 2021; 13:1251. [PMID: 34199077 PMCID: PMC8310308 DOI: 10.3390/v13071251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Accepted: 06/19/2021] [Indexed: 01/02/2023] Open
Abstract
Many viruses, especially RNA viruses, utilize programmed ribosomal frameshifting and/or stop codon readthrough in their expression, and in the decoding of a few a UGA is dynamically redefined to specify selenocysteine. This recoding can effectively increase viral coding capacity and generate a set ratio of products with the same N-terminal domain(s) but different C-terminal domains. Recoding can also be regulatory or generate a product with the non-universal 21st directly encoded amino acid. Selection for translation speed in the expression of many viruses at the expense of fidelity creates host immune defensive opportunities. In contrast to host opportunism, certain viruses, including some persistent viruses, utilize recoding or adventitious frameshifting as part of their strategy to evade an immune response or specific drugs. Several instances of recoding in small intensively studied viruses escaped detection for many years and their identification resolved dilemmas. The fundamental importance of ribosome ratcheting is consistent with the initial strong view of invariant triplet decoding which however did not foresee the possibility of transitory anticodon:codon dissociation. Deep level dynamics and structural understanding of recoding is underway, and a high level structure relevant to the frameshifting required for expression of the SARS CoV-2 genome has just been determined.
Collapse
Affiliation(s)
- John F. Atkins
- Schools of Biochemistry and Microbiology, University College Cork, T12 XF62 Cork, Ireland; (K.M.O.); (P.R.B.); (G.L.)
| | - Kate M. O’Connor
- Schools of Biochemistry and Microbiology, University College Cork, T12 XF62 Cork, Ireland; (K.M.O.); (P.R.B.); (G.L.)
| | - Pramod R. Bhatt
- Schools of Biochemistry and Microbiology, University College Cork, T12 XF62 Cork, Ireland; (K.M.O.); (P.R.B.); (G.L.)
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Gary Loughran
- Schools of Biochemistry and Microbiology, University College Cork, T12 XF62 Cork, Ireland; (K.M.O.); (P.R.B.); (G.L.)
| |
Collapse
|
23
|
Wang Z, Wang QA, Liu Y, Jiang L. Energy metabolism in brown adipose tissue. FEBS J 2021; 288:3647-3662. [PMID: 34028971 DOI: 10.1111/febs.16015] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022]
Abstract
Brown adipose tissue (BAT) is well known to burn calories through uncoupled respiration, producing heat to maintain body temperature. This 'calorie wasting' feature makes BAT a special tissue, which can function as an 'energy sink' in mammals. While a combination of high energy intake and low energy expenditure is the leading cause of overweight and obesity in modern society, activating a safe 'energy sink' has been proposed as a promising obesity treatment strategy. Metabolically, lipids and glucose have been viewed as the major energy substrates in BAT, while succinate, lactate, branched-chain amino acids, and other metabolites can also serve as energy substrates for thermogenesis. Since the cataplerotic and anaplerotic reactions of these metabolites interconnect with each other, BAT relies on its dynamic, flexible, and complex metabolism to support its special function. In this review, we summarize how BAT orchestrates the metabolic utilization of various nutrients to support thermogenesis and contributes to whole-body metabolic homeostasis.
Collapse
Affiliation(s)
- Zhichao Wang
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA, USA
| | - Qiong A Wang
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA, USA.,Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Institute for Advanced Studies, Wuhan University, China
| | - Lei Jiang
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA, USA.,Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| |
Collapse
|
24
|
Kremer PM, Torres DJ, Hashimoto AC, Berry MJ. Sex-Specific Metabolic Impairments in a Mouse Model of Disrupted Selenium Utilization. Front Nutr 2021; 8:682700. [PMID: 34041261 PMCID: PMC8141863 DOI: 10.3389/fnut.2021.682700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
The essential micronutrient selenium (Se) provides antioxidant defense and supports numerous biological functions. Obtained through dietary intake, Se is incorporated into selenoproteins via the amino acid, selenocysteine (Sec). Mice with genetic deletion of the Se carrier, selenoprotein P (SELENOP), and the Se recycling enzyme selenocysteine lyase (SCLY), suffer from sexually dimorphic neurological deficits and require Se supplementation for viability. These impairments are more pronounced in males and are exacerbated by dietary Se restriction. We report here that, by 10 weeks of age, female Selenop/Scly double knockout (DKO) mice supplemented with 1 mg/ml sodium selenite in drinking water develop signs of hyper-adiposity not seen in male DKO mice. Unexpectedly, this metabolic phenotype can be reversed by removing Se from the drinking water at post-natal day 22, just prior to puberty. Restricting access to Se at this age prevents excess body weight gain and restriction from either post-natal day 22 or 37 reduces gonadal fat deposits. These results provide new insight into the sex-dependent relationship between Se and metabolic homeostasis.
Collapse
Affiliation(s)
- Penny M Kremer
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Daniel J Torres
- Pacific Biosciences Research Center, University of Hawaii at Manoa, School of Ocean and Earth Science and Technology, Honolulu, HI, United States
| | - Ann C Hashimoto
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Marla J Berry
- Pacific Biosciences Research Center, University of Hawaii at Manoa, School of Ocean and Earth Science and Technology, Honolulu, HI, United States
| |
Collapse
|
25
|
Kilonzo VW, Sasuclark AR, Torres DJ, Coyle C, Pilat JM, Williams CS, Pitts MW. Juvenile Selenium Deficiency Impairs Cognition, Sensorimotor Gating, and Energy Homeostasis in Mice. Front Nutr 2021; 8:667587. [PMID: 34026810 PMCID: PMC8138326 DOI: 10.3389/fnut.2021.667587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/09/2021] [Indexed: 02/03/2023] Open
Abstract
Selenium (Se) is an essential micronutrient of critical importance to mammalian life. Its biological effects are primarily mediated via co-translational incorporation into selenoproteins, as the unique amino acid, selenocysteine. These proteins play fundamental roles in redox signaling and includes the glutathione peroxidases and thioredoxin reductases. Environmental distribution of Se varies considerably worldwide, with concomitant effects on Se status in humans and animals. Dietary Se intake within a narrow range optimizes the activity of Se-dependent antioxidant enzymes, whereas both Se-deficiency and Se-excess can adversely impact health. Se-deficiency affects a significant proportion of the world's population, with hypothyroidism, cardiomyopathy, reduced immunity, and impaired cognition being common symptoms. Although relatively less prevalent, Se-excess can also have detrimental consequences and has been implicated in promoting both metabolic and neurodegenerative disease in humans. Herein, we sought to comprehensively assess the developmental effects of both Se-deficiency and Se-excess on a battery of neurobehavioral and metabolic tests in mice. Se-deficiency elicited deficits in cognition, altered sensorimotor gating, and increased adiposity, while Se-excess was surprisingly beneficial.
Collapse
Affiliation(s)
- Victor W. Kilonzo
- Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI, United States
| | - Alexandru R. Sasuclark
- Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI, United States
| | - Daniel J. Torres
- Pacific Biosciences Research Center, University of Hawaii at Manoa, School of Ocean and Earth Science and Technology (SOEST), Honolulu, HI, United States
| | - Celine Coyle
- Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI, United States
| | - Jennifer M. Pilat
- Department of Medicine and Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Christopher S. Williams
- Department of Medicine and Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Matthew W. Pitts
- Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI, United States
| |
Collapse
|
26
|
Liu Y, Yu Y, Meng Q, Jia X, Zhu J, Tang C, Zhao Q, Feng X, Zhang J. A Fluorescent Probe for the Specific Staining of Cysteine Containing Proteins and Thioredoxin Reductase in SDS-PAGE. BIOSENSORS 2021; 11:bios11050132. [PMID: 33922498 PMCID: PMC8146322 DOI: 10.3390/bios11050132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
A naphthalimide-based fluorescent probe, Nap-I, with iodoacetamide as the alkylating group, has been synthesized, and its specific fluorescent staining of proteins containing cysteine (Cys) and selenocysteine (Sec) residues in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) has been evaluated. This molecule shows good fluorescence properties in the labeling of protein Cys/Sec residues, while reducing steric hindrance and minimizing changes in the water solubility of proteins. Reaction parameters, such as labeling time and pH, have been investigated, and the optimal labeling conditions for Cys-containing proteins have been determined. Thioredoxin reductase (TXNRD) is best stained at low pH. The probe Nap-I has been successfully used for the quantification of serum proteins and hemoglobin in Tan sheep serum, and TXNRD in Tan sheep liver and muscle has been labeled at low pH. Based on the probe Nap-I, we have also distinguished TXNRD1 and TXNRD2 by SDS-PAGE. The results showed that, compared with the normal microenvironment in which the protein resides, the lower the pH value, the greater the TXNRD activity.
Collapse
Affiliation(s)
- Yuning Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Y.); (Q.M.); (X.J.); (J.Z.); (C.T.); (Q.Z.)
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanan Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Y.); (Q.M.); (X.J.); (J.Z.); (C.T.); (Q.Z.)
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingshi Meng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Y.); (Q.M.); (X.J.); (J.Z.); (C.T.); (Q.Z.)
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xueting Jia
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Y.); (Q.M.); (X.J.); (J.Z.); (C.T.); (Q.Z.)
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiawei Zhu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Y.); (Q.M.); (X.J.); (J.Z.); (C.T.); (Q.Z.)
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Y.); (Q.M.); (X.J.); (J.Z.); (C.T.); (Q.Z.)
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Y.); (Q.M.); (X.J.); (J.Z.); (C.T.); (Q.Z.)
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohui Feng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Y.); (Q.M.); (X.J.); (J.Z.); (C.T.); (Q.Z.)
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Y.); (Q.M.); (X.J.); (J.Z.); (C.T.); (Q.Z.)
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
27
|
Nogueira CW, Barbosa NV, Rocha JBT. Toxicology and pharmacology of synthetic organoselenium compounds: an update. Arch Toxicol 2021; 95:1179-1226. [PMID: 33792762 PMCID: PMC8012418 DOI: 10.1007/s00204-021-03003-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
Here, we addressed the pharmacology and toxicology of synthetic organoselenium compounds and some naturally occurring organoselenium amino acids. The use of selenium as a tool in organic synthesis and as a pharmacological agent goes back to the middle of the nineteenth and the beginning of the twentieth centuries. The rediscovery of ebselen and its investigation in clinical trials have motivated the search for new organoselenium molecules with pharmacological properties. Although ebselen and diselenides have some overlapping pharmacological properties, their molecular targets are not identical. However, they have similar anti-inflammatory and antioxidant activities, possibly, via activation of transcription factors, regulating the expression of antioxidant genes. In short, our knowledge about the pharmacological properties of simple organoselenium compounds is still elusive. However, contrary to our early expectations that they could imitate selenoproteins, organoselenium compounds seem to have non-specific modulatory activation of antioxidant pathways and specific inhibitory effects in some thiol-containing proteins. The thiol-oxidizing properties of organoselenium compounds are considered the molecular basis of their chronic toxicity; however, the acute use of organoselenium compounds as inhibitors of specific thiol-containing enzymes can be of therapeutic significance. In summary, the outcomes of the clinical trials of ebselen as a mimetic of lithium or as an inhibitor of SARS-CoV-2 proteases will be important to the field of organoselenium synthesis. The development of computational techniques that could predict rational modifications in the structure of organoselenium compounds to increase their specificity is required to construct a library of thiol-modifying agents with selectivity toward specific target proteins.
Collapse
Affiliation(s)
- Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| | - Nilda V Barbosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - João B T Rocha
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| |
Collapse
|
28
|
Seale LA, Ogawa-Wong AN, Watanabe LM, Khadka VS, Menor M, Torres DJ, Carlson BA, Hatfield DL, Berry MJ. Adaptive Thermogenesis in a Mouse Model Lacking Selenoprotein Biosynthesis in Brown Adipocytes. Int J Mol Sci 2021; 22:E611. [PMID: 33435397 PMCID: PMC7827413 DOI: 10.3390/ijms22020611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 12/02/2022] Open
Abstract
Selenoproteins are a class of proteins with the selenium-containing amino acid selenocysteine (Sec) in their primary structure. Sec is incorporated into selenoproteins via recoding of the stop codon UGA, with specific cis and trans factors required during translation to avoid UGA recognition as a stop codon, including a Sec-specific tRNA, tRNA[Ser]Sec, encoded in mice by the gene Trsp. Whole-body deletion of Trsp in mouse is embryonically lethal, while targeted deletion of Trsp in mice has been used to understand the role of selenoproteins in the health and physiology of various tissues. We developed a mouse model with the targeted deletion of Trsp in brown adipocytes (Trspf/f-Ucp1-Cre+/-), a cell type predominant in brown adipose tissue (BAT) controlling energy expenditure via activation of adaptive thermogenesis, mostly using uncoupling protein 1 (Ucp1). At room temperature, Trspf/f-Ucp1-Cre+/- mice maintain oxygen consumption and Ucp1 expression, with male Trspf/f-Ucp1-Cre+/- mice accumulating more triglycerides in BAT than both female Trspf/f-Ucp1-Cre+/- mice or Trspf/f controls. Acute cold exposure neither reduced core body temperature nor changed the expression of selenoprotein iodothyronine deiodinase type II (Dio2), a marker of adaptive thermogenesis, in Trspf/f-Ucp1-Cre+/- mice. Microarray analysis of BAT from Trspf/f-Ucp1-Cre+/- mice revealed glutathione S-transferase alpha 3 (Gsta3) and ELMO domain containing 2 (Elmod2) as the transcripts most affected by the loss of Trsp. Male Trspf/f-Ucp1-Cre+/- mice showed mild hypothyroidism while downregulating thyroid hormone-responsive genes Thrsp and Tshr in their BATs. In summary, modest changes in the BAT of Trspf/f-Ucp1-Cre +/- mice implicate a mild thyroid hormone dysfunction in brown adipocytes.
Collapse
Affiliation(s)
- Lucia A. Seale
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (A.N.O.-W.); (L.M.W.); (D.J.T.)
- Pacific Biomedical Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
| | - Ashley N. Ogawa-Wong
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (A.N.O.-W.); (L.M.W.); (D.J.T.)
| | - Ligia M. Watanabe
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (A.N.O.-W.); (L.M.W.); (D.J.T.)
| | - Vedbar S. Khadka
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA; (V.S.K.); (M.M.)
| | - Mark Menor
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA; (V.S.K.); (M.M.)
| | - Daniel J. Torres
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (A.N.O.-W.); (L.M.W.); (D.J.T.)
- Pacific Biomedical Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
| | - Bradley A. Carlson
- Molecular Biology of Selenium Section, Mouse Genetics Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.A.C.); (D.L.H.)
| | - Dolph L. Hatfield
- Molecular Biology of Selenium Section, Mouse Genetics Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.A.C.); (D.L.H.)
| | - Marla J. Berry
- Pacific Biomedical Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
| |
Collapse
|
29
|
Lizcano F, Arroyave F. Control of Adipose Cell Browning and Its Therapeutic Potential. Metabolites 2020; 10:metabo10110471. [PMID: 33227979 PMCID: PMC7699191 DOI: 10.3390/metabo10110471] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Adipose tissue is the largest endocrine organ in humans and has an important influence on many physiological processes throughout life. An increasing number of studies have described the different phenotypic characteristics of fat cells in adults. Perhaps one of the most important properties of fat cells is their ability to adapt to different environmental and nutritional conditions. Hypothalamic neural circuits receive peripheral signals from temperature, physical activity or nutrients and stimulate the metabolism of white fat cells. During this process, changes in lipid inclusion occur, and the number of mitochondria increases, giving these cells functional properties similar to those of brown fat cells. Recently, beige fat cells have been studied for their potential role in the regulation of obesity and insulin resistance. In this context, it is important to understand the embryonic origin of beige adipocytes, the response of adipocyte to environmental changes or modifications within the body and their ability to transdifferentiate to elucidate the roles of these cells for their potential use in therapeutic strategies for obesity and metabolic diseases. In this review, we discuss the origins of the different fat cells and the possible therapeutic properties of beige fat cells.
Collapse
Affiliation(s)
- Fernando Lizcano
- Center of Biomedical Investigation, (CIBUS), Universidad de La Sabana, 250008 Chia, Colombia
- Correspondence:
| | - Felipe Arroyave
- Doctoral Program in Biociencias, Universidad de La Sabana, 250008 Chia, Colombia
| |
Collapse
|