1
|
Liu Y, Zhangding Z, Liu X, Hu J. Chromatin-centric insights into DNA replication. Trends Genet 2025; 41:412-424. [PMID: 39765445 DOI: 10.1016/j.tig.2024.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 05/08/2025]
Abstract
DNA replication ensures the precise transmission of genetic information from parent to daughter cells. In eukaryotes, this process involves the replication of every base pair within a highly complex chromatin environment, encompassing multiple levels of chromatin structure and various chromatin metabolic processes. Recent evidence has demonstrated that DNA replication is strictly regulated in both temporal and spatial dimensions by factors such as 3D genome structure and transcription, which is crucial for maintaining genomic stability in each cell cycle. In this review, we discuss the diverse mechanisms that govern eukaryotic DNA replication, emphasizing the roles of chromatin architecture and transcriptional activity within the mammalian chromatin landscape. These insights provide a foundation for future investigations in this field.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China; Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhengrong Zhangding
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xuhao Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jiazhi Hu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China; Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan 610213, China.
| |
Collapse
|
2
|
Merino MF, Cosma MP, Neguembor MV. Super-resolving chromatin in its own terms: Recent approaches to portray genomic organization. Curr Opin Struct Biol 2025; 92:103021. [PMID: 40037101 DOI: 10.1016/j.sbi.2025.103021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 03/06/2025]
Abstract
Chromatin organizes in a highly hierarchical manner that affects gene regulation. While many discoveries in the field have been driven by genomic techniques, super-resolution microscopy has proved to be an essential method to fully understand folding in single cells. In this article we summarize the main strategies to probe chromatin architecture using single-molecule localization microscopy and some of the key findings this has enabled. We specifically focus on the recent developments in techniques using oligonucleotide libraries and how their versatility drives multiplexing. These multiplexed libraries allow to super-resolve architectural proteins, DNA folding and transcription. We compare the latest results in this field and reflect about the future of these methods.
Collapse
Affiliation(s)
- Manuel Fernández Merino
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain; Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain.
| | - Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain; Instituto de Biología Molecular de Barcelona (IBMB), CSIC, Barcelona, 08028, Spain.
| |
Collapse
|
3
|
Coßmann J, Kos PI, Varamogianni-Mamatsi V, Assenheimer DS, Bischof TA, Kuhn T, Vomhof T, Papantonis A, Giorgetti L, Gebhardt JCM. Increasingly efficient chromatin binding of cohesin and CTCF supports chromatin architecture formation during zebrafish embryogenesis. Nat Commun 2025; 16:1833. [PMID: 39979259 PMCID: PMC11842872 DOI: 10.1038/s41467-025-56889-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/05/2025] [Indexed: 02/22/2025] Open
Abstract
The three-dimensional folding of chromosomes is essential for nuclear functions such as DNA replication and gene regulation. The emergence of chromatin architecture is thus an important process during embryogenesis. To shed light on the molecular and kinetic underpinnings of chromatin architecture formation, we characterized biophysical properties of cohesin and CTCF binding to chromatin and their changes upon cofactor depletion using single-molecule imaging in live developing zebrafish embryos. We found that chromatin-bound fractions of both cohesin and CTCF increased significantly between the 1000-cell and shield stages, which we could explain through changes in both their association and dissociation rates. Moreover, increasing binding of cohesin restricted chromatin motion, potentially via loop extrusion, and showed distinct stage-dependent nuclear distribution. Polymer simulations with experimentally derived parameters recapitulated the experimentally observed gradual emergence of chromatin architecture. Our findings reveal molecular kinetics underlying chromatin architecture formation during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Jonas Coßmann
- Institute of Biophysics, Ulm University, Ulm, Germany
- Institute of Experimental Physics and IQST, Ulm University, Ulm, Germany
| | - Pavel I Kos
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Devin S Assenheimer
- Institute of Biophysics, Ulm University, Ulm, Germany
- Institute of Experimental Physics and IQST, Ulm University, Ulm, Germany
| | - Tobias A Bischof
- Institute of Biophysics, Ulm University, Ulm, Germany
- Institute of Experimental Physics and IQST, Ulm University, Ulm, Germany
| | - Timo Kuhn
- Institute of Biophysics, Ulm University, Ulm, Germany
| | - Thomas Vomhof
- Institute of Biophysics, Ulm University, Ulm, Germany
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - J Christof M Gebhardt
- Institute of Biophysics, Ulm University, Ulm, Germany.
- Institute of Experimental Physics and IQST, Ulm University, Ulm, Germany.
| |
Collapse
|
4
|
Tan YY, Liu J, Su QP. Advancing Platelet Research Through Live-Cell Imaging: Challenges, Techniques, and Insights. SENSORS (BASEL, SWITZERLAND) 2025; 25:491. [PMID: 39860861 PMCID: PMC11768609 DOI: 10.3390/s25020491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Platelet cells are essential to maintain haemostasis and play a critical role in thrombosis. They swiftly respond to vascular injury by adhering to damaged vessel surfaces, activating signalling pathways, and aggregating with each other to control bleeding. This dynamic process of platelet activation is intricately coordinated, spanning from membrane receptor maturation to intracellular interactions to whole-cell responses. Live-cell imaging has become an invaluable tool for dissecting these complexes. Despite its benefits, live imaging of platelets presents significant technical challenges. This review addresses these challenges, identifying key areas in need of further development and proposing possible solutions. We also focus on the dynamic processes of platelet adhesion, activation, and aggregation in haemostasis and thrombosis, applying imaging capacities from the microscale to the nanoscale. By exploring various live imaging techniques, we demonstrate how these approaches offer crucial insights into platelet biology and deepen our understanding of these three core events. In conclusion, this review provides an overview of the imaging methods currently available for studying platelet dynamics, guiding researchers in selecting suitable techniques for specific studies. By advancing our knowledge of platelet behaviour, these imaging methods contribute to research on haemostasis, thrombosis, and platelet-related diseases, ultimately aiming to improve clinical outcomes.
Collapse
Affiliation(s)
- Yuping Yolanda Tan
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; (Y.Y.T.); (J.L.)
- Heart Research Institute, Newtown, NSW 2042, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Jinghan Liu
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; (Y.Y.T.); (J.L.)
- Heart Research Institute, Newtown, NSW 2042, Australia
| | - Qian Peter Su
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; (Y.Y.T.); (J.L.)
- Heart Research Institute, Newtown, NSW 2042, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
5
|
Cartland SP, Patil MS, Kelland E, Le N, Boccanfuso L, Stanley CP, Cholan PM, Dona MI, Patrick R, McGrath J, Su QP, Alwis I, Ganss R, Powell JE, Harvey RP, Pinto AR, Griffith TS, Loa J, Aitken SJ, Robinson DA, Patel S, Kavurma MM. The generation of stable microvessels in ischemia is mediated by endothelial cell derived TRAIL. SCIENCE ADVANCES 2024; 10:eadn8760. [PMID: 39365855 PMCID: PMC11451529 DOI: 10.1126/sciadv.adn8760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/28/2024] [Indexed: 10/06/2024]
Abstract
Reversal of ischemia is mediated by neo-angiogenesis requiring endothelial cell (EC) and pericyte interactions to form stable microvascular networks. We describe an unrecognized role for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in potentiating neo-angiogenesis and vessel stabilization. We show that the endothelium is a major source of TRAIL in the healthy circulation compromised in peripheral artery disease (PAD). EC deletion of TRAIL in vivo or in vitro inhibited neo-angiogenesis, pericyte recruitment, and vessel stabilization, resulting in reduced lower-limb blood perfusion with ischemia. Activation of the TRAIL receptor (TRAIL-R) restored blood perfusion and stable blood vessel networks in mice. Proof-of-concept studies showed that Conatumumab, an agonistic TRAIL-R2 antibody, promoted vascular sprouts from explanted patient arteries. Single-cell RNA sequencing revealed heparin-binding EGF-like growth factor in mediating EC-pericyte communications dependent on TRAIL. These studies highlight unique TRAIL-dependent mechanisms mediating neo-angiogenesis and vessel stabilization and the potential of repurposing TRAIL-R2 agonists to stimulate stable and functional microvessel networks to treat ischemia in PAD.
Collapse
Affiliation(s)
- Siân P. Cartland
- Heart Research Institute, The University of Sydney, Sydney, Australia
- Centre for Peripheral Artery Disease, Heart Research Institute, Sydney, Australia
| | - Manisha S. Patil
- Heart Research Institute, The University of Sydney, Sydney, Australia
- Centre for Peripheral Artery Disease, Heart Research Institute, Sydney, Australia
| | - Elaina Kelland
- Heart Research Institute, The University of Sydney, Sydney, Australia
- Centre for Peripheral Artery Disease, Heart Research Institute, Sydney, Australia
| | - Natalie Le
- Heart Research Institute, The University of Sydney, Sydney, Australia
- Centre for Peripheral Artery Disease, Heart Research Institute, Sydney, Australia
| | - Lauren Boccanfuso
- Heart Research Institute, The University of Sydney, Sydney, Australia
| | - Christopher P. Stanley
- Heart Research Institute, The University of Sydney, Sydney, Australia
- Centre for Peripheral Artery Disease, Heart Research Institute, Sydney, Australia
| | | | | | - Ralph Patrick
- Victor Chang Cardiac Research Institute, Sydney, Australia
| | | | - Qian Peter Su
- School of Biomedical Engineering, University of Technology, Sydney, Australia
- Heart Research Institute, Sydney, Australia
| | - Imala Alwis
- Heart Research Institute, The University of Sydney, Sydney, Australia
| | - Ruth Ganss
- Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, Australia
| | - Joseph E. Powell
- Garvan-Weizmann Centre for Cellular Genomics, Sydney, Australia
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, Australia
| | - Richard P. Harvey
- Victor Chang Cardiac Research Institute, Sydney, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
| | | | | | - Jacky Loa
- Royal Prince Alfred Hospital, Sydney, Australia
| | - Sarah J. Aitken
- Centre for Peripheral Artery Disease, Heart Research Institute, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Concord Institute of Academic Surgery, Concord Hospital, Sydney, Australia
| | - David A. Robinson
- Centre for Peripheral Artery Disease, Heart Research Institute, Sydney, Australia
- Royal Prince Alfred Hospital, Sydney, Australia
| | - Sanjay Patel
- Heart Research Institute, The University of Sydney, Sydney, Australia
- Royal Prince Alfred Hospital, Sydney, Australia
| | - Mary M. Kavurma
- Heart Research Institute, The University of Sydney, Sydney, Australia
- Centre for Peripheral Artery Disease, Heart Research Institute, Sydney, Australia
| |
Collapse
|
6
|
Engl W, Kunstar-Thomas A, Chen S, Ng WS, Sielaff H, Zhao ZW. Single-molecule imaging of SWI/SNF chromatin remodelers reveals bromodomain-mediated and cancer-mutants-specific landscape of multi-modal DNA-binding dynamics. Nat Commun 2024; 15:7646. [PMID: 39223123 PMCID: PMC11369179 DOI: 10.1038/s41467-024-52040-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Despite their prevalent cancer implications, the in vivo dynamics of SWI/SNF chromatin remodelers and how misregulation of such dynamics underpins cancer remain poorly understood. Using live-cell single-molecule tracking, we quantify the intranuclear diffusion and chromatin-binding of three key subunits common to all major human SWI/SNF remodeler complexes (BAF57, BAF155 and BRG1), and resolve two temporally distinct stable binding modes for the fully assembled complex. Super-resolved density mapping reveals heterogeneous, nanoscale remodeler binding "hotspots" across the nucleoplasm where multiple binding events (especially longer-lived ones) preferentially cluster. Importantly, we uncover distinct roles of the bromodomain in modulating chromatin binding/targeting in a DNA-accessibility-dependent manner, pointing to a model where successive longer-lived binding within "hotspots" leads to sustained productive remodeling. Finally, systematic comparison of six common BRG1 mutants implicated in various cancers unveils alterations in chromatin-binding dynamics unique to each mutant, shedding insight into a multi-modal landscape regulating the spatio-temporal organizational dynamics of SWI/SNF remodelers.
Collapse
Affiliation(s)
- Wilfried Engl
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 119543, Singapore
- Centre for BioImaging Sciences, Faculty of Science, National University of Singapore, Singapore, 117557, Singapore
| | - Aliz Kunstar-Thomas
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 119543, Singapore
- Centre for BioImaging Sciences, Faculty of Science, National University of Singapore, Singapore, 117557, Singapore
| | - Siyi Chen
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 119543, Singapore
- Centre for BioImaging Sciences, Faculty of Science, National University of Singapore, Singapore, 117557, Singapore
| | - Woei Shyuan Ng
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 119543, Singapore
- Centre for BioImaging Sciences, Faculty of Science, National University of Singapore, Singapore, 117557, Singapore
| | - Hendrik Sielaff
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 119543, Singapore
- Centre for BioImaging Sciences, Faculty of Science, National University of Singapore, Singapore, 117557, Singapore
| | - Ziqing Winston Zhao
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 119543, Singapore.
- Centre for BioImaging Sciences, Faculty of Science, National University of Singapore, Singapore, 117557, Singapore.
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore.
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, 119077, Singapore.
| |
Collapse
|
7
|
Tian M, Wang Z, Su Z, Shibata E, Shibata Y, Dutta A, Zang C. Integrative analysis of DNA replication origins and ORC-/MCM-binding sites in human cells reveals a lack of overlap. eLife 2024; 12:RP89548. [PMID: 38567819 PMCID: PMC10990492 DOI: 10.7554/elife.89548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Based on experimentally determined average inter-origin distances of ~100 kb, DNA replication initiates from ~50,000 origins on human chromosomes in each cell cycle. The origins are believed to be specified by binding of factors like the origin recognition complex (ORC) or CTCF or other features like G-quadruplexes. We have performed an integrative analysis of 113 genome-wide human origin profiles (from five different techniques) and five ORC-binding profiles to critically evaluate whether the most reproducible origins are specified by these features. Out of ~7.5 million union origins identified by all datasets, only 0.27% (20,250 shared origins) were reproducibly obtained in at least 20 independent SNS-seq datasets and contained in initiation zones identified by each of three other techniques, suggesting extensive variability in origin usage and identification. Also, 21% of the shared origins overlap with transcriptional promoters, posing a conundrum. Although the shared origins overlap more than union origins with constitutive CTCF-binding sites, G-quadruplex sites, and activating histone marks, these overlaps are comparable or less than that of known transcription start sites, so that these features could be enriched in origins because of the overlap of origins with epigenetically open, promoter-like sequences. Only 6.4% of the 20,250 shared origins were within 1 kb from any of the ~13,000 reproducible ORC-binding sites in human cancer cells, and only 4.5% were within 1 kb of the ~11,000 union MCM2-7-binding sites in contrast to the nearly 100% overlap in the two comparisons in the yeast, Saccharomyces cerevisiae. Thus, in human cancer cell lines, replication origins appear to be specified by highly variable stochastic events dependent on the high epigenetic accessibility around promoters, without extensive overlap between the most reproducible origins and currently known ORC- or MCM-binding sites.
Collapse
Affiliation(s)
- Mengxue Tian
- Center for Public Health Genomics, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Zhenjia Wang
- Center for Public Health Genomics, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Zhangli Su
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Etsuko Shibata
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Yoshiyuki Shibata
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Chongzhi Zang
- Center for Public Health Genomics, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Public Health Sciences, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
8
|
González-Acosta D, Lopes M. DNA replication and replication stress response in the context of nuclear architecture. Chromosoma 2024; 133:57-75. [PMID: 38055079 PMCID: PMC10904558 DOI: 10.1007/s00412-023-00813-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023]
Abstract
The DNA replication process needs to be coordinated with other DNA metabolism transactions and must eventually extend to the full genome, regardless of chromatin status, gene expression, secondary structures and DNA lesions. Completeness and accuracy of DNA replication are crucial to maintain genome integrity, limiting transformation in normal cells and offering targeting opportunities for proliferating cancer cells. DNA replication is thus tightly coordinated with chromatin dynamics and 3D genome architecture, and we are only beginning to understand the underlying molecular mechanisms. While much has recently been discovered on how DNA replication initiation is organised and modulated in different genomic regions and nuclear territories-the so-called "DNA replication program"-we know much less on how the elongation of ongoing replication forks and particularly the response to replication obstacles is affected by the local nuclear organisation. Also, it is still elusive how specific components of nuclear architecture participate in the replication stress response. Here, we review known mechanisms and factors orchestrating replication initiation, and replication fork progression upon stress, focusing on recent evidence linking genome organisation and nuclear architecture with the cellular responses to replication interference, and highlighting open questions and future challenges to explore this exciting new avenue of research.
Collapse
Affiliation(s)
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Pierzynska-Mach A, Czada C, Vogel C, Gwosch E, Osswald X, Bartoschek D, Diaspro A, Kappes F, Ferrando-May E. DEK oncoprotein participates in heterochromatin replication via SUMO-dependent nuclear bodies. J Cell Sci 2023; 136:jcs261329. [PMID: 37997922 PMCID: PMC10753498 DOI: 10.1242/jcs.261329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
The correct inheritance of chromatin structure is key for maintaining genome function and cell identity and preventing cellular transformation. DEK, a conserved non-histone chromatin protein, has recognized tumor-promoting properties, its overexpression being associated with poor prognosis in various cancer types. At the cellular level, DEK displays pleiotropic functions, influencing differentiation, apoptosis and stemness, but a characteristic oncogenic mechanism has remained elusive. Here, we report the identification of DEK bodies, focal assemblies of DEK that regularly occur at specific, yet unidentified, sites of heterochromatin replication exclusively in late S-phase. In these bodies, DEK localizes in direct proximity to active replisomes in agreement with a function in the early maturation of heterochromatin. A high-throughput siRNA screen, supported by mutational and biochemical analyses, identifies SUMO as one regulator of DEK body formation, linking DEK to the complex SUMO protein network that controls chromatin states and cell fate. This work combines and refines our previous data on DEK as a factor essential for heterochromatin integrity and facilitating replication under stress, and delineates an avenue of further study for unraveling the contribution of DEK to cancer development.
Collapse
Affiliation(s)
| | - Christina Czada
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Christopher Vogel
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Eva Gwosch
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Xenia Osswald
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Denis Bartoschek
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Alberto Diaspro
- Nanoscopy & NIC@IIT, Istituto Italiano di Tecnologia, Genoa 16152, Italy
- DIFILAB, Department of Physics, University of Genoa, Genoa 16146, Italy
| | - Ferdinand Kappes
- Duke Kunshan University, Division of Natural and Applied Sciences, Kunshan 215316, People's Republic of China
| | - Elisa Ferrando-May
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
- German Cancer Research Center, Heidelberg 69120, Germany
| |
Collapse
|
10
|
Tian M, Wang Z, Su Z, Shibata E, Shibata Y, Dutta A, Zang C. Integrative analysis of DNA replication origins and ORC/MCM binding sites in human cells reveals a lack of overlap. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550556. [PMID: 37546918 PMCID: PMC10402023 DOI: 10.1101/2023.07.25.550556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Based on experimentally determined average inter-origin distances of ∼100 kb, DNA replication initiates from ∼50,000 origins on human chromosomes in each cell cycle. The origins are believed to be specified by binding of factors like the Origin Recognition Complex (ORC) or CTCF or other features like G-quadruplexes. We have performed an integrative analysis of 113 genome-wide human origin profiles (from five different techniques) and 5 ORC-binding profiles to critically evaluate whether the most reproducible origins are specified by these features. Out of ∼7.5 million union origins identified by all datasets, only 0.27% were reproducibly obtained in at least 20 independent SNS-seq datasets and contained in initiation zones identified by each of three other techniques (20,250 shared origins), suggesting extensive variability in origin usage and identification. 21% of the shared origins overlap with transcriptional promoters, posing a conundrum. Although the shared origins overlap more than union origins with constitutive CTCF binding sites, G-quadruplex sites and activating histone marks, these overlaps are comparable or less than that of known Transcription Start Sites, so that these features could be enriched in origins because of the overlap of origins with epigenetically open, promoter-like sequences. Only 6.4% of the 20,250 shared origins were within 1 kb from any of the ∼13,000 reproducible ORC binding sites in human cancer cells, and only 4.5% were within 1 kb of the ∼11,000 union MCM2-7 binding sites in contrast to the nearly 100% overlap in the two comparisons in the yeast, S. cerevisiae . Thus, in human cancer cell lines, replication origins appear to be specified by highly variable stochastic events dependent on the high epigenetic accessibility around promoters, without extensive overlap between the most reproducible origins and currently known ORC- or MCM-binding sites.
Collapse
|
11
|
Sun Y, Xu X, Zhao W, Zhang Y, Chen K, Li Y, Wang X, Zhang M, Xue B, Yu W, Hou Y, Wang C, Xie W, Li C, Kong D, Wang S, Sun Y. RAD21 is the core subunit of the cohesin complex involved in directing genome organization. Genome Biol 2023; 24:155. [PMID: 37381036 DOI: 10.1186/s13059-023-02982-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/07/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND The ring-shaped cohesin complex is an important factor for the formation of chromatin loops and topologically associating domains (TADs) by loop extrusion. However, the regulation of association between cohesin and chromatin is poorly understood. In this study, we use super-resolution imaging to reveal the unique role of cohesin subunit RAD21 in cohesin loading and chromatin structure regulation. RESULTS We directly visualize that up-regulation of RAD21 leads to excessive chromatin loop extrusion into a vermicelli-like morphology with RAD21 clustered into foci and excessively loaded cohesin bow-tying a TAD to form a beads-on-a-string-type pattern. In contrast, up-regulation of the other four cohesin subunits results in even distributions. Mechanistically, we identify that the essential role of RAD21 is attributed to the RAD21-loader interaction, which facilitates the cohesin loading process rather than increasing the abundance of cohesin complex upon up-regulation of RAD21. Furthermore, Hi-C and genomic analysis reveal how RAD21 up-regulation affects genome-wide higher-order chromatin structure. Accumulated contacts are shown at TAD corners while inter-TAD interactions increase after vermicelli formation. Importantly, we find that in breast cancer cells, the expression of RAD21 is aberrantly high with poor patient survival and RAD21 forms beads in the nucleus. Up-regulated RAD21 in HeLa cells leads to compartment switching and up-regulation of cancer-related genes. CONCLUSIONS Our results provide key insights into the molecular mechanism by which RAD21 facilitates the cohesin loading process and provide an explanation to how cohesin and loader work cooperatively to promote chromatin extrusion, which has important implications in construction of three-dimensional genome organization.
Collapse
Affiliation(s)
- Yuao Sun
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Xin Xu
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Wenxue Zhao
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, 100871, China
| | - Yu Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing, 100084, China
| | - Keyang Chen
- Yuanpei College, Peking University, Beijing, 100871, China
| | - Yongzheng Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Xiaotian Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Mengling Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Boxin Xue
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wanting Yu
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Yingping Hou
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Chaobin Wang
- Breast Center, Peking University People's Hospital, Beijing, 100044, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing, 100084, China
| | - Cheng Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, 100871, China
| | - Daochun Kong
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Shu Wang
- Breast Center, Peking University People's Hospital, Beijing, 100044, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China.
- Breast Center, Peking University People's Hospital, Beijing, 100044, China.
- National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, 100871, China.
| |
Collapse
|
12
|
Burgers TCQ, Vlijm R. Fluorescence-based super-resolution-microscopy strategies for chromatin studies. Chromosoma 2023:10.1007/s00412-023-00792-9. [PMID: 37000292 PMCID: PMC10356683 DOI: 10.1007/s00412-023-00792-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 04/01/2023]
Abstract
Super-resolution microscopy (SRM) is a prime tool to study chromatin organisation at near biomolecular resolution in the native cellular environment. With fluorescent labels DNA, chromatin-associated proteins and specific epigenetic states can be identified with high molecular specificity. The aim of this review is to introduce the field of diffraction-unlimited SRM to enable an informed selection of the most suitable SRM method for a specific chromatin-related research question. We will explain both diffraction-unlimited approaches (coordinate-targeted and stochastic-localisation-based) and list their characteristic spatio-temporal resolutions, live-cell compatibility, image-processing, and ability for multi-colour imaging. As the increase in resolution, compared to, e.g. confocal microscopy, leads to a central role of the sample quality, important considerations for sample preparation and concrete examples of labelling strategies applicable to chromatin research are discussed. To illustrate how SRM-based methods can significantly improve our understanding of chromatin functioning, and to serve as an inspiring starting point for future work, we conclude with examples of recent applications of SRM in chromatin research.
Collapse
Affiliation(s)
- Thomas C Q Burgers
- Molecular Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Rifka Vlijm
- Molecular Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Groningen, the Netherlands.
| |
Collapse
|
13
|
Hu Y, Stillman B. Origins of DNA replication in eukaryotes. Mol Cell 2023; 83:352-372. [PMID: 36640769 PMCID: PMC9898300 DOI: 10.1016/j.molcel.2022.12.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Errors occurring during DNA replication can result in inaccurate replication, incomplete replication, or re-replication, resulting in genome instability that can lead to diseases such as cancer or disorders such as autism. A great deal of progress has been made toward understanding the entire process of DNA replication in eukaryotes, including the mechanism of initiation and its control. This review focuses on the current understanding of how the origin recognition complex (ORC) contributes to determining the location of replication initiation in the multiple chromosomes within eukaryotic cells, as well as methods for mapping the location and temporal patterning of DNA replication. Origin specification and configuration vary substantially between eukaryotic species and in some cases co-evolved with gene-silencing mechanisms. We discuss the possibility that centromeres and origins of DNA replication were originally derived from a common element and later separated during evolution.
Collapse
Affiliation(s)
- Yixin Hu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Program in Molecular and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
14
|
Dao FY, Lv H, Fullwood MJ, Lin H. Accurate Identification of DNA Replication Origin by Fusing Epigenomics and Chromatin Interaction Information. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9780293. [PMID: 36405252 PMCID: PMC9667886 DOI: 10.34133/2022/9780293] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/30/2022] [Indexed: 07/29/2023]
Abstract
DNA replication initiation is a complex process involving various genetic and epigenomic signatures. The correct identification of replication origins (ORIs) could provide important clues for the study of a variety of diseases caused by replication. Here, we design a computational approach named iORI-Epi to recognize ORIs by incorporating epigenome-based features, sequence-based features, and 3D genome-based features. The iORI-Epi displays excellent robustness and generalization ability on both training datasets and independent datasets of K562 cell line. Further experiments confirm that iORI-Epi is highly scalable in other cell lines (MCF7 and HCT116). We also analyze and clarify the regulatory role of epigenomic marks, DNA motifs, and chromatin interaction in DNA replication initiation of eukaryotic genomes. Finally, we discuss gene enrichment pathways from the perspective of ORIs in different replication timing states and heuristically dissect the effect of promoters on replication initiation. Our computational methodology is worth extending to ORI identification in other eukaryotic species.
Collapse
Affiliation(s)
- Fu-Ying Dao
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Dr, Singapore 117599, Singapore
| | - Hao Lv
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Melissa J. Fullwood
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Dr, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore 138673, Singapore
| | - Hao Lin
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
15
|
Liu L, Cao X, Zhang B, Hyeon C. Dissecting the cosegregation probability from genome architecture mapping. Biophys J 2022; 121:3774-3784. [PMID: 36146938 PMCID: PMC9674989 DOI: 10.1016/j.bpj.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/16/2022] [Accepted: 09/16/2022] [Indexed: 11/21/2022] Open
Abstract
Genome architecture mapping (GAM) is a recently developed methodology that offers the cosegregation probability of two genomic segments from an ensemble of thinly sliced nuclear profiles, enabling us to probe and decipher three-dimensional chromatin organization. The cosegregation probability from GAM binned at 1 Mb, which thus probes the length scale associated with the genomic separation greater than 1 Mb, is, however, not identical to the contact probability obtained from Hi-C, and its correlation with interlocus distance measured with fluorescence in situ hybridization is not so good as the contact probability. In this study, by using a polymer-based model of chromatins, we derive a theoretical expression of the cosegregation probability as well as that of the contact probability and carry out quantitative analyses of how they differ from each other. The results from our study, validated with in silico GAM analysis on three-dimensional genome structures from fluorescence in situ hybridization, suggest that to attain strong correlation with the interlocus distance, a properly normalized version of cosegregation probability needs to be calculated based on a large number of nuclear slices (n>103).
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Xinmeng Cao
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, China
| | - Bokai Zhang
- School of Physical Science and Technology, Southwest University, Chongqing, China
| | - Changbong Hyeon
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea.
| |
Collapse
|
16
|
Rozario AM, Morey A, Elliott C, Russ B, Whelan DR, Turner SJ, Bell TDM. 3D Single Molecule Super-Resolution Microscopy of Whole Nuclear Lamina. Front Chem 2022; 10:863610. [PMID: 35572104 PMCID: PMC9096160 DOI: 10.3389/fchem.2022.863610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Abstract
Single molecule (SM) super-resolution microscopies bypass the diffraction limit of conventional optical techniques and provide excellent spatial resolutions in the tens of nanometers without overly complex microscope hardware. SM imaging using optical astigmatism is an efficient strategy for visualizing subcellular features in 3D with a z-range of up to ∼1 µm per acquisition. This approach however, places high demands on fluorophore brightness and photoswitching resilience meaning that imaging entire cell volumes in 3D using SM super-resolution remains challenging. Here we employ SM astigmatism together with multiplane acquisition to visualize the whole nuclear lamina of COS-7 and T cells in 3D. Nuclear lamina provides structural support to the nuclear envelope and participates in vital nuclear functions including internuclear transport, chromatin organization and gene regulation. Its position at the periphery of the nucleus provides a visible reference of the nuclear boundary and can be used to quantify the spatial distribution of intranuclear components such as histone modifications and transcription factors. We found Alexa Fluor 647, a popular photoswitchable fluorophore, remained viable for over an hour of continuous high laser power exposure, and provided sufficient brightness detectable up to 8 µm deep into a cell, allowing us to capture the entire nuclear lamina in 3D. Our approach provides sufficient super-resolution detail of nuclear lamina morphology to enable quantification of overall nuclear dimensions and local membrane features.
Collapse
Affiliation(s)
- Ashley M. Rozario
- School of Chemistry, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Alison Morey
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Cade Elliott
- School of Chemistry, Monash University, Clayton, VIC, Australia
| | - Brendan Russ
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Donna R. Whelan
- La Trobe Institute for Molecular Science, Bendigo, VIC, Australia
| | - Stephen J. Turner
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- *Correspondence: Stephen J. Turner, ; Toby D. M. Bell,
| | - Toby D. M. Bell
- School of Chemistry, Monash University, Clayton, VIC, Australia
- *Correspondence: Stephen J. Turner, ; Toby D. M. Bell,
| |
Collapse
|
17
|
Stow EC, Simmons JR, An R, Schoborg TA, Davenport NM, Labrador M. A Drosophila insulator interacting protein suppresses enhancer-blocking function and modulates replication timing. Gene 2022; 819:146208. [PMID: 35092858 DOI: 10.1016/j.gene.2022.146208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/17/2021] [Accepted: 01/13/2022] [Indexed: 01/02/2023]
Abstract
Insulators play important roles in genome structure and function in eukaryotes. Interactions between a DNA binding insulator protein and its interacting partner proteins define the properties of each insulator site. The different roles of insulator protein partners in the Drosophila genome and how they confer functional specificity remain poorly understood. The Suppressor of Hairy wing [Su(Hw)] insulator is targeted to the nuclear lamina, preferentially localizes at euchromatin/heterochromatin boundaries, and is associated with the gypsy retrotransposon. Insulator activity relies on the ability of the Su(Hw) protein to bind the DNA at specific sites and interact with Mod(mdg4)67.2 and CP190 partner proteins. HP1 and insulator partner protein 1 (HIPP1) is a partner of Su(Hw), but how HIPP1 contributes to the function of Su(Hw) insulator complexes is unclear. Here, we demonstrate that HIPP1 colocalizes with the Su(Hw) insulator complex in polytene chromatin and in stress-induced insulator bodies. We find that the overexpression of either HIPP1 or Su(Hw) or mutation of the HIPP1 crotonase-like domain (CLD) causes defects in cell proliferation by limiting the progression of DNA replication. We also show that HIPP1 overexpression suppresses the Su(Hw) insulator enhancer-blocking function, while mutation of the HIPP1 CLD does not affect Su(Hw) enhancer blocking. These findings demonstrate a functional relationship between HIPP1 and the Su(Hw) insulator complex and suggest that the CLD, while not involved in enhancer blocking, influences cell cycle progression.
Collapse
Affiliation(s)
- Emily C Stow
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, USA
| | - James R Simmons
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, USA
| | - Ran An
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, USA
| | - Todd A Schoborg
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, USA
| | - Nastasya M Davenport
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, USA
| | - Mariano Labrador
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
18
|
Identification of putative binding interface of PI(3,5)P2 lipid on rice black-streaked dwarf virus (RBSDV) P10 protein. Virology 2022; 570:81-95. [DOI: 10.1016/j.virol.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/15/2022] [Accepted: 03/27/2022] [Indexed: 11/18/2022]
|
19
|
Kim S, Hwang S. G-Quadruplex Matters in Tissue-Specific Tumorigenesis by BRCA1 Deficiency. Genes (Basel) 2022; 13:genes13030391. [PMID: 35327946 PMCID: PMC8948836 DOI: 10.3390/genes13030391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
How and why distinct genetic alterations, such as BRCA1 mutation, promote tumorigenesis in certain tissues, but not others, remain an important issue in cancer research. The underlying mechanisms may reveal tissue-specific therapeutic vulnerabilities. Although the roles of BRCA1, such as DNA damage repair and stalled fork stabilization, obviously contribute to tumor suppression, these ubiquitously important functions cannot explain tissue-specific tumorigenesis by BRCA1 mutations. Recent advances in our understanding of the cancer genome and fundamental cellular processes on DNA, such as transcription and DNA replication, have provided new insights regarding BRCA1-associated tumorigenesis, suggesting that G-quadruplex (G4) plays a critical role. In this review, we summarize the importance of G4 structures in mutagenesis of the cancer genome and cell type-specific gene regulation, and discuss a recently revealed molecular mechanism of G4/base excision repair (BER)-mediated transcriptional activation. The latter adequately explains the correlation between the accumulation of unresolved transcriptional regulatory G4s and multi-level genomic alterations observed in BRCA1-associated tumors. In summary, tissue-specific tumorigenesis by BRCA1 deficiency can be explained by cell type-specific levels of transcriptional regulatory G4s and the role of BRCA1 in resolving it. This mechanism would provide an integrated understanding of the initiation and development of BRCA1-associated tumors.
Collapse
Affiliation(s)
- Sanghyun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Sungnam 13488, Korea;
| | - Sohyun Hwang
- Department of Biomedical Science, College of Life Science, CHA University, Sungnam 13488, Korea;
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Sungnam 13496, Korea
- Correspondence:
| |
Collapse
|
20
|
Zakirov AN, Sosnovskaya S, Ryumina ED, Kharybina E, Strelkova OS, Zhironkina OA, Golyshev SA, Moiseenko A, Kireev II. Fiber-Like Organization as a Basic Principle for Euchromatin Higher-Order Structure. Front Cell Dev Biol 2022; 9:784440. [PMID: 35174159 PMCID: PMC8841976 DOI: 10.3389/fcell.2021.784440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
A detailed understanding of the principles of the structural organization of genetic material is of great importance for elucidating the mechanisms of differential regulation of genes in development. Modern ideas about the spatial organization of the genome are based on a microscopic analysis of chromatin structure and molecular data on DNA–DNA contact analysis using Chromatin conformation capture (3C) technology, ranging from the “polymer melt” model to a hierarchical folding concept. Heterogeneity of chromatin structure depending on its functional state and cell cycle progression brings another layer of complexity to the interpretation of structural data and requires selective labeling of various transcriptional states under nondestructive conditions. Here, we use a modified approach for replication timing-based metabolic labeling of transcriptionally active chromatin for ultrastructural analysis. The method allows pre-embedding labeling of optimally structurally preserved chromatin, thus making it compatible with various 3D-TEM techniques including electron tomography. By using variable pulse duration, we demonstrate that euchromatic genomic regions adopt a fiber-like higher-order structure of about 200 nm in diameter (chromonema), thus providing support for a hierarchical folding model of chromatin organization as well as the idea of transcription and replication occurring on a highly structured chromatin template.
Collapse
Affiliation(s)
- Amir N Zakirov
- Department of Electron Microscopy, AN. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Chair of Cell Biology and Histology, Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Sophie Sosnovskaya
- Department of Electron Microscopy, AN. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Chair of Cell Biology and Histology, Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina D Ryumina
- Department of Electron Microscopy, AN. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina Kharybina
- Department of Electron Microscopy, AN. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Chair of Cell Biology and Histology, Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Olga S Strelkova
- Department of Electron Microscopy, AN. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Oxana A Zhironkina
- Department of Electron Microscopy, AN. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergei A Golyshev
- Department of Electron Microscopy, AN. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Andrey Moiseenko
- Laboratory of Electron Microscopy, Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Igor I Kireev
- Department of Electron Microscopy, AN. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Chair of Cell Biology and Histology, Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
21
|
Super-resolution microscopy reveals stochastic initiation of replication in Drosophila polytene chromosomes. Chromosome Res 2022; 30:361-383. [PMID: 35226231 PMCID: PMC9771856 DOI: 10.1007/s10577-021-09679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/25/2023]
Abstract
Studying the probability distribution of replication initiation along a chromosome is a huge challenge. Drosophila polytene chromosomes in combination with super-resolution microscopy provide a unique opportunity for analyzing the probabilistic nature of replication initiation at the ultrastructural level. Here, we developed a method for synchronizing S-phase induction among salivary gland cells. An analysis of the replication label distribution in the first minutes of S phase and in the following hours after the induction revealed the dynamics of replication initiation. Spatial super-resolution structured illumination microscopy allowed identifying multiple discrete replication signals and to investigate the behavior of replication signals in the first minutes of the S phase at the ultrastructural level. We identified replication initiation zones where initiation occurs stochastically. These zones differ significantly in the probability of replication initiation per time unit. There are zones in which initiation occurs on most strands of the polytene chromosome in a few minutes. In other zones, the initiation on all strands takes several hours. Compact bands are free of replication initiation events, and the replication runs from outer edges to the middle, where band shapes may alter.
Collapse
|
22
|
Yin Y, Lee WTC, Gupta D, Xue H, Tonzi P, Borowiec JA, Huang TT, Modesti M, Rothenberg E. A basal-level activity of ATR links replication fork surveillance and stress response. Mol Cell 2021; 81:4243-4257.e6. [PMID: 34473946 DOI: 10.1016/j.molcel.2021.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/03/2021] [Accepted: 08/06/2021] [Indexed: 11/27/2022]
Abstract
Mammalian cells use diverse pathways to prevent deleterious consequences during DNA replication, yet the mechanism by which cells survey individual replisomes to detect spontaneous replication impediments at the basal level, and their accumulation during replication stress, remain undefined. Here, we used single-molecule localization microscopy coupled with high-order-correlation image-mining algorithms to quantify the composition of individual replisomes in single cells during unperturbed replication and under replicative stress. We identified a basal-level activity of ATR that monitors and regulates the amounts of RPA at forks during normal replication. Replication-stress amplifies the basal activity through the increased volume of ATR-RPA interaction and diffusion-driven enrichment of ATR at forks. This localized crowding of ATR enhances its collision probability, stimulating the activation of its replication-stress response. Finally, we provide a computational model describing how the basal activity of ATR is amplified to produce its canonical replication stress response.
Collapse
Affiliation(s)
- Yandong Yin
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.
| | - Wei Ting Chelsea Lee
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Dipika Gupta
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Huijun Xue
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Peter Tonzi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - James A Borowiec
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Tony T Huang
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Mauro Modesti
- Cancer Research Center of Marseille, CNRS UMR 7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
23
|
Li Y, Xue B, Zhang M, Zhang L, Hou Y, Qin Y, Long H, Su QP, Wang Y, Guan X, Jin Y, Cao Y, Li G, Sun Y. Transcription-coupled structural dynamics of topologically associating domains regulate replication origin efficiency. Genome Biol 2021; 22:206. [PMID: 34253239 PMCID: PMC8276456 DOI: 10.1186/s13059-021-02424-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/30/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Metazoan cells only utilize a small subset of the potential DNA replication origins to duplicate the whole genome in each cell cycle. Origin choice is linked to cell growth, differentiation, and replication stress. Although various genetic and epigenetic signatures have been linked to the replication efficiency of origins, there is no consensus on how the selection of origins is determined. RESULTS We apply dual-color stochastic optical reconstruction microscopy (STORM) super-resolution imaging to map the spatial distribution of origins within individual topologically associating domains (TADs). We find that multiple replication origins initiate separately at the spatial boundary of a TAD at the beginning of the S phase. Intriguingly, while both high-efficiency and low-efficiency origins are distributed homogeneously in the TAD during the G1 phase, high-efficiency origins relocate to the TAD periphery before the S phase. Origin relocalization is dependent on both transcription and CTCF-mediated chromatin structure. Further, we observe that the replication machinery protein PCNA forms immobile clusters around TADs at the G1/S transition, explaining why origins at the TAD periphery are preferentially fired. CONCLUSION Our work reveals a new origin selection mechanism that the replication efficiency of origins is determined by their physical distribution in the chromatin domain, which undergoes a transcription-dependent structural re-organization process. Our model explains the complex links between replication origin efficiency and many genetic and epigenetic signatures that mark active transcription. The coordination between DNA replication, transcription, and chromatin organization inside individual TADs also provides new insights into the biological functions of sub-domain chromatin structural dynamics.
Collapse
Affiliation(s)
- Yongzheng Li
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Boxin Xue
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Mengling Zhang
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Liwei Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yingping Hou
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yizhi Qin
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Haizhen Long
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Peter Su
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yao Wang
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiaodong Guan
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yanyan Jin
- Department of Neurobiology, Beijing Centre of Neural Regeneration and Repair, Capital Medical University, Beijing, 100101, China
| | - Yuan Cao
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China.
- College of Future Technology, Peking University, Beijing, 100871, China.
| |
Collapse
|
24
|
Di X, Wang D, Zhou J, Zhang L, Stenzel MH, Su QP, Jin D. Quantitatively Monitoring In Situ Mitochondrial Thermal Dynamics by Upconversion Nanoparticles. NANO LETTERS 2021; 21:1651-1658. [PMID: 33550807 PMCID: PMC7908016 DOI: 10.1021/acs.nanolett.0c04281] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Temperature dynamics reflect the physiological conditions of cells and organisms. Mitochondria regulate the temperature dynamics in living cells as they oxidize the respiratory substrates and synthesize ATP, with heat being released as a byproduct of active metabolism. Here, we report an upconversion nanoparticle-based thermometer that allows the in situ thermal dynamics monitoring of mitochondria in living cells. We demonstrate that the upconversion nanothermometers can efficiently target mitochondria, and the temperature-responsive feature is independent of probe concentration and medium conditions. The relative sensing sensitivity of 3.2% K-1 in HeLa cells allows us to measure the mitochondrial temperature difference through the stimulations of high glucose, lipid, Ca2+ shock, and the inhibitor of oxidative phosphorylation. Moreover, cells display distinct response time and thermodynamic profiles under different stimulations, which highlight the potential applications of this thermometer to study in situ vital processes related to mitochondrial metabolism pathways and interactions between organelles.
Collapse
Affiliation(s)
- Xiangjun Di
- Institute
for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Dejiang Wang
- Institute
for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jiajia Zhou
- Institute
for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Lin Zhang
- Cluster
for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Martina H. Stenzel
- Cluster
for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Qian Peter Su
- Institute
for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- School
of Biomedical Engineering, Faculty of Engineering and Information
Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Dayong Jin
- Institute
for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- UTS-SUStech
Joint Research Centre for Biomedical Materials & Devices, Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen, China 518055
| |
Collapse
|
25
|
Dao FY, Lv H, Zhang D, Zhang ZM, Liu L, Lin H. DeepYY1: a deep learning approach to identify YY1-mediated chromatin loops. Brief Bioinform 2020; 22:6024741. [PMID: 33279983 DOI: 10.1093/bib/bbaa356] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/19/2020] [Accepted: 11/04/2020] [Indexed: 12/29/2022] Open
Abstract
The protein Yin Yang 1 (YY1) could form dimers that facilitate the interaction between active enhancers and promoter-proximal elements. YY1-mediated enhancer-promoter interaction is the general feature of mammalian gene control. Recently, some computational methods have been developed to characterize the interactions between DNA elements by elucidating important features of chromatin folding; however, no computational methods have been developed for identifying the YY1-mediated chromatin loops. In this study, we developed a deep learning algorithm named DeepYY1 based on word2vec to determine whether a pair of YY1 motifs would form a loop. The proposed models showed a high prediction performance (AUCs$\ge$0.93) on both training datasets and testing datasets in different cell types, demonstrating that DeepYY1 has an excellent performance in the identification of the YY1-mediated chromatin loops. Our study also suggested that sequences play an important role in the formation of YY1-mediated chromatin loops. Furthermore, we briefly discussed the distribution of the replication origin site in the loops. Finally, a user-friendly web server was established, and it can be freely accessed at http://lin-group.cn/server/DeepYY1.
Collapse
Affiliation(s)
- Fu-Ying Dao
- Center for Informational Biology at the University of Electronic Science and Technology of China
| | - Hao Lv
- Center for Informational Biology at the University of Electronic Science and Technology of China
| | - Dan Zhang
- Center for Informational Biology at the University of Electronic Science and Technology of China
| | - Zi-Mei Zhang
- Center for Informational Biology at the University of Electronic Science and Technology of China
| | - Li Liu
- Laboratory of Theoretical Biophysics at the Inner Mongolia University
| | - Hao Lin
- Center for Informational Biology at the University of Electronic Science and Technology of China
| |
Collapse
|