1
|
Zhang Z, Das C. Insights into mechanisms of ubiquitin ADP-ribosylation reversal. Biochem Soc Trans 2024; 52:2525-2537. [PMID: 39584475 DOI: 10.1042/bst20240896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 11/26/2024]
Abstract
Ubiquitination and ADP-ribosylation are two types of post-translational modification (PTM) involved in regulating various cellular activities. In a striking example of direct interplay between ubiquitination and ADP-ribosylation, the bacterial pathogen Legionella pneumophila uses its SidE family of secreted effectors to catalyze an NAD+-dependent phosphoribosyl ubiquitination of host substrates in a process involving the intermediary formation of ADP-ribosylated ubiquitin (ADPR-Ub). This noncanonical ubiquitination pathway is finely regulated by multiple Legionella effectors to ensure a balanced host subjugation. Among the various regulatory effectors, the macrodomain effector MavL has been recently shown to reverse the Ub ADP-ribosylation and regenerate intact Ub. Here, we briefly outline emerging knowledge on ubiquitination and ADP-ribosylation and tap into cases of direct cross-talk between these two PTMs. The chemistry of ADP-ribose in the context of the PTM and the reversal mechanisms of ADP-ribosylation are then highlighted. Lastly, focusing on recent structural studies on the MavL-mediated reversal of Ub ADP-ribosylation, we strive to deduce distinct mechanisms regarding the catalysis and product release of this reaction.
Collapse
Affiliation(s)
- Zhengrui Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, U.S.A
| |
Collapse
|
2
|
Kerr CM, Pfannenstiel JJ, Alhammad YM, O'Connor JJ, Ghimire R, Shrestha R, Khattabi R, Saenjamsai P, Parthasarathy S, McDonald PR, Gao P, Johnson DK, More S, Roy A, Channappanavar R, Fehr AR. Mutation of a highly conserved isoleucine residue in loop 2 of several β-coronavirus macrodomains indicates that enhanced ADP-ribose binding is detrimental for replication. J Virol 2024; 98:e0131324. [PMID: 39387584 PMCID: PMC11575489 DOI: 10.1128/jvi.01313-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/18/2024] [Indexed: 10/13/2024] Open
Abstract
All coronaviruses (CoVs) encode for a conserved macrodomain (Mac1) located in non-structural protein 3. Mac1 is an ADP-ribosylhydrolase that binds and hydrolyzes mono-ADP-ribose from target proteins. Previous work has shown that Mac1 is important for virus replication and pathogenesis. Within Mac1, there are several regions that are highly conserved across CoVs, including the glycine-isoleucine-phenylalanine motif. While we previously demonstrated the importance of the glycine residue for CoV replication and pathogenesis, the impact of the isoleucine and phenylalanine residues remains unknown. To determine how the biochemical activities of these residues impact CoV replication, the isoleucine and the phenylalanine residues were mutated to alanine (I-A/F-A) in both recombinant Mac1 proteins and recombinant CoVs, including murine hepatitis virus, Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The F-A mutant proteins had ADP-ribose binding and/or hydrolysis defects that correlated with attenuated replication and pathogenesis of F-A mutant MERS-CoV and SARS-CoV-2 viruses in cell culture and mice. In contrast, the I-A mutant proteins had normal enzyme activity and enhanced ADP-ribose binding. Despite only demonstrating increased ADP-ribose binding, I-A mutant MERS-CoV and SARS-CoV-2 viruses were highly attenuated in both cell culture and mice, indicating that this isoleucine residue acts as a gate that controls ADP-ribose binding for efficient virus replication. These results highlight the function of this highly conserved residue and provide unique insight into how macrodomains control ADP-ribose binding and hydrolysis to promote viral replication. IMPORTANCE The conserved coronavirus (CoV) macrodomain (Mac1) counters the activity of host ADP-ribosyltransferases and is critical for CoV replication and pathogenesis. As such, Mac1 is a potential therapeutic target for CoV-induced disease. However, we lack a basic knowledge of how several residues in its ADP-ribose binding pocket contribute to its biochemical and virological functions. We engineered mutations into two highly conserved residues in the ADP-ribose binding pocket of Mac1, both as recombinant proteins and viruses for Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Interestingly, a Mac1 isoleucine-to-alanine mutant protein had enhanced ADP-ribose binding which proved to be detrimental for virus replication, indicating that this isoleucine controls ADP-ribose binding and is beneficial for virus replication and pathogenesis. These results provide unique insight into how macrodomains control ADP-ribose binding and will be critical for the development of novel inhibitors targeting Mac1 that could be used to treat CoV-induced disease.
Collapse
Affiliation(s)
- Catherine M. Kerr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | | | - Yousef M. Alhammad
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Joseph J. O'Connor
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Roshan Ghimire
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Rakshya Shrestha
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Reem Khattabi
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Pradtahna Saenjamsai
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | | | - Peter R. McDonald
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas, USA
| | - Philip Gao
- Protein Production Group, University of Kansas, Lawrence, Kansas, USA
| | - David K. Johnson
- Molecular Graphics and Modeling Laboratory and the Computational Chemical Biology Core, University of Kansas, Lawrence, Kansas, USA
| | - Sunil More
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas, USA
- Oklahoma Center for Respiratory and Infectious Diseases, College of Veterinary Medicine, Stillwater, Oklahoma, USA
| | - Anuradha Roy
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas, USA
| | - Rudragouda Channappanavar
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, USA
- Oklahoma Center for Respiratory and Infectious Diseases, College of Veterinary Medicine, Stillwater, Oklahoma, USA
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
3
|
Kerr CM, Pfannenstiel JJ, Alhammad YM, O’Connor JJ, Ghimire R, Shrestha R, Khattabi R, Saenjamsai P, Parthasarathy S, McDonald PR, Gao P, Johnson DK, More S, Roy A, Channappanavar R, Fehr AR. Mutation of a highly conserved isoleucine residue in loop 2 of several β-coronavirus macrodomains indicates that enhanced ADP-ribose binding is detrimental to infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574082. [PMID: 38260573 PMCID: PMC10802294 DOI: 10.1101/2024.01.03.574082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
All coronaviruses (CoVs) encode for a conserved macrodomain (Mac1) located in nonstructural protein 3 (nsp3). Mac1 is an ADP-ribosylhydrolase that binds and hydrolyzes mono-ADP-ribose from target proteins. Previous work has shown that Mac1 is important for virus replication and pathogenesis. Within Mac1, there are several regions that are highly conserved across CoVs, including the GIF (glycine-isoleucine-phenylalanine) motif. To determine how the biochemical activities of these residues impact CoV replication, the isoleucine and the phenylalanine residues were mutated to alanine (I-A/F-A) in both recombinant Mac1 proteins and recombinant CoVs, including murine hepatitis virus (MHV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The F-A mutant proteins had ADP-ribose binding and/or hydrolysis defects that led to attenuated replication and pathogenesis in cell culture and mice. In contrast, the I-A mutations had normal enzyme activity and enhanced ADP-ribose binding. Despite increased ADP-ribose binding, I-A mutant MERS-CoV and SARS-CoV-2 were highly attenuated in both cell culture and mice, indicating that this isoleucine residue acts as a gate that controls ADP-ribose binding for efficient virus replication. These results highlight the function of this highly conserved residue and provide unique insight into how macrodomains control ADP-ribose binding and hydrolysis to promote viral replication.
Collapse
Affiliation(s)
- Catherine M. Kerr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | - Yousef M. Alhammad
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Joseph J. O’Connor
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Roshan Ghimire
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Rakshya Shrestha
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Reem Khattabi
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Pradtahna Saenjamsai
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | - Peter R. McDonald
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas 66047, USA
| | - Philip Gao
- Protein Production Group, University of Kansas, Lawrence, Kansas 66047, USA
| | - David K. Johnson
- Molecular Graphics and Modeling Laboratory and the Computational Chemical Biology Core, University of Kansas, Lawrence, Kansas 66047, USA
| | - Sunil More
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas 66047, USA
- Oklahoma Center for Respiratory and Infectious Diseases, College of Veterinary Medicine, Stillwater, Oklahoma 74078, USA
| | - Anuradha Roy
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas 66047, USA
| | - Rudragouda Channappanavar
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
- Oklahoma Center for Respiratory and Infectious Diseases, College of Veterinary Medicine, Stillwater, Oklahoma 74078, USA
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
4
|
Metabolic Activation of PARP as a SARS-CoV-2 Therapeutic Target-Is It a Bait for the Virus or the Best Deal We Could Ever Make with the Virus? Is AMBICA the Potential Cure? Biomolecules 2023; 13:biom13020374. [PMID: 36830743 PMCID: PMC9953159 DOI: 10.3390/biom13020374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
The COVID-19 pandemic has had a great impact on global health and is an economic burden. Even with vaccines and anti-viral medications we are still scrambling to get a balance. In this perspective, we have shed light upon an extremely feasible approach by which we can control the SARS-CoV-2 infection and the associated complications, bringing some solace to this ongoing turmoil. We are providing some insights regarding an ideal agent which could prevent SARS-CoV-2 multiplication. If we could identify an agent which is an activator of metabolism and is also bioactive, we could prevent corona activation (AMBICA). Some naturally occurring lipid molecules best fit this identity as an agent which has the capacity to replenish our host cells, specifically immune cells, with ATP. It could also act as a source for providing a substrate for host cell PARP family members for MARylation and PARylation processes, leading to manipulation of the viral macro domain function, resulting in curbing the virulence and propagation of SARS-CoV-2. Identification of the right lipid molecule or combination of lipid molecules will fulfill the criteria. This perspective has focused on a unique angle of host-pathogen interaction and will open up a new dimension in treating COVID-19 infection.
Collapse
|
5
|
Goulet A, Cambillau C, Roussel A, Imbert I. Structure Prediction and Analysis of Hepatitis E Virus Non-Structural Proteins from the Replication and Transcription Machinery by AlphaFold2. Viruses 2022; 14:1537. [PMID: 35891516 PMCID: PMC9316534 DOI: 10.3390/v14071537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Hepatitis E virus (HEV) is a major cause of acute viral hepatitis in humans globally. Considered for a long while a public health issue only in developing countries, the HEV infection is now a global public health concern. Most human infections are caused by the HEV genotypes 1, 2, 3 and 4 (HEV-1 to HEV-4). Although HEV-3 and HEV-4 can evolve to chronicity in immunocompromised patients, HEV-1 and HEV-2 lead to self-limited infections. HEV has a positive-sense single-stranded RNA genome of ~7.2 kb that is translated into a large pORF1 replicative polyprotein, essential for the viral RNA genome replication and transcription. Unfortunately, the composition and structure of these replicases are still unknown. The recent release of the powerful machine-learning protein structure prediction software AlphaFold2 (AF2) allows us to accurately predict the structure of proteins and their complexes. Here, we used AF2 with the replicase encoded by the polyprotein pORF1 of the human-infecting HEV-3. The boundaries and structures reveal five domains or nonstructural proteins (nsPs): the methyltransferase, Zn-binding domain, macro, helicase, and RNA-dependent RNA polymerase, reliably predicted. Their substrate-binding sites are similar to those observed experimentally for other related viral proteins. Precisely knowing enzyme boundaries and structures is highly valuable to recombinantly produce stable and active proteins and perform structural, functional and inhibition studies.
Collapse
Affiliation(s)
- Adeline Goulet
- Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7255, LISM, 31 Chemin Joseph Aiguier, 13009 Marseille, France; (A.G.); (A.R.)
| | - Christian Cambillau
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland;
- AlphaGraphix, 24 Carrer d’Amont, 66210 Formiguères, France
| | - Alain Roussel
- Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7255, LISM, 31 Chemin Joseph Aiguier, 13009 Marseille, France; (A.G.); (A.R.)
| | - Isabelle Imbert
- Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7255, LISM, 31 Chemin Joseph Aiguier, 13009 Marseille, France; (A.G.); (A.R.)
| |
Collapse
|
6
|
Reversible modification of mitochondrial ADP/ATP translocases by paired Legionella effector proteins. Proc Natl Acad Sci U S A 2022; 119:e2122872119. [PMID: 35653564 DOI: 10.1073/pnas.2122872119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceMitochondria are organelles of the central metabolism that produce ATP and play fundamental roles in eukaryotic cell function and thereby become targets for pathogenic bacteria to manipulate. We found that the intracellular bacterial pathogen, Legionella pneumophila, targets mitochondrial ADP/ATP translocases (ANTs), the function of which is linked to the mitochondrial ATP synthesis. This is achieved by a pair of effector proteins, Lpg0080 and Lpg0081, which have opposing enzymatic activities as an ADP ribosyltransferase (ART) and an ADP ribosylhydrolase (ARH), respectively, coordinately regulating the chemical modification of ANTs upon infection. Our structural analyses indicate that Lpg0081 is an ARH with a noncanonical macrodomain, whose folding topology is distinct from that of the canonical macrodomain of known eukaryotic, archaeal, and bacterial proteins.
Collapse
|
7
|
Correy GJ, Kneller DW, Phillips G, Pant S, Russi S, Cohen AE, Meigs G, Holton JM, Gahbauer S, Thompson MC, Ashworth A, Coates L, Kovalevsky A, Meilleur F, Fraser JS. The mechanisms of catalysis and ligand binding for the SARS-CoV-2 NSP3 macrodomain from neutron and x-ray diffraction at room temperature. SCIENCE ADVANCES 2022; 8:eabo5083. [PMID: 35622909 PMCID: PMC9140965 DOI: 10.1126/sciadv.abo5083] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 05/04/2023]
Abstract
The nonstructural protein 3 (NSP3) macrodomain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Mac1) removes adenosine diphosphate (ADP) ribosylation posttranslational modifications, playing a key role in the immune evasion capabilities of the virus responsible for the coronavirus disease 2019 pandemic. Here, we determined neutron and x-ray crystal structures of the SARS-CoV-2 NSP3 macrodomain using multiple crystal forms, temperatures, and pHs, across the apo and ADP-ribose-bound states. We characterize extensive solvation in the Mac1 active site and visualize how water networks reorganize upon binding of ADP-ribose and non-native ligands, inspiring strategies for displacing waters to increase the potency of Mac1 inhibitors. Determining the precise orientations of active site water molecules and the protonation states of key catalytic site residues by neutron crystallography suggests a catalytic mechanism for coronavirus macrodomains distinct from the substrate-assisted mechanism proposed for human MacroD2. These data provoke a reevaluation of macrodomain catalytic mechanisms and will guide the optimization of Mac1 inhibitors.
Collapse
Affiliation(s)
- Galen J. Correy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Daniel W. Kneller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, U.S. Department of Energy, Washington, DC 20585, USA
| | - Gwyndalyn Phillips
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, U.S. Department of Energy, Washington, DC 20585, USA
| | - Swati Pant
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, U.S. Department of Energy, Washington, DC 20585, USA
| | - Silvia Russi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - George Meigs
- Department of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James M. Holton
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Department of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stefan Gahbauer
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael C. Thompson
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA 95343, USA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Leighton Coates
- National Virtual Biotechnology Laboratory, U.S. Department of Energy, Washington, DC 20585, USA
- Second Target Station, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, U.S. Department of Energy, Washington, DC 20585, USA
| | - Flora Meilleur
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
8
|
Correy GJ, Kneller DW, Phillips G, Pant S, Russi S, Cohen AE, Meigs G, Holton JM, Gahbauer S, Thompson MC, Ashworth A, Coates L, Kovalevsky A, Meilleur F, Fraser JS. The mechanisms of catalysis and ligand binding for the SARS-CoV-2 NSP3 macrodomain from neutron and X-ray diffraction at room temperature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.07.479477. [PMID: 35169801 PMCID: PMC8845425 DOI: 10.1101/2022.02.07.479477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The NSP3 macrodomain of SARS CoV 2 (Mac1) removes ADP-ribosylation post-translational modifications, playing a key role in the immune evasion capabilities of the virus responsible for the COVID-19 pandemic. Here, we determined neutron and X-ray crystal structures of the SARS-CoV-2 NSP3 macrodomain using multiple crystal forms, temperatures, and pHs, across the apo and ADP-ribose-bound states. We characterize extensive solvation in the Mac1 active site, and visualize how water networks reorganize upon binding of ADP-ribose and non-native ligands, inspiring strategies for displacing waters to increase potency of Mac1 inhibitors. Determining the precise orientations of active site water molecules and the protonation states of key catalytic site residues by neutron crystallography suggests a catalytic mechanism for coronavirus macrodomains distinct from the substrate-assisted mechanism proposed for human MacroD2. These data provoke a re-evaluation of macrodomain catalytic mechanisms and will guide the optimization of Mac1 inhibitors.
Collapse
Affiliation(s)
- Galen J. Correy
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Daniel W. Kneller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, US Department of Energy, USA
| | - Gwyndalyn Phillips
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, US Department of Energy, USA
| | - Swati Pant
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, US Department of Energy, USA
| | - Silvia Russi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
| | - George Meigs
- Department of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, CA 94158, USA
| | - James M. Holton
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
- Department of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, CA 94158, USA
| | - Stefan Gahbauer
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Michael C. Thompson
- Department of Chemistry and Chemical Biology, University of California Merced, CA 95343, USA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer, University of California San Francisco, CA 94158, USA
| | - Leighton Coates
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, US Department of Energy, USA
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, US Department of Energy, USA
| | - Flora Meilleur
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|