1
|
Diaz-Barreiro A, Talabot-Ayer D, Huard A, Cereghetti G, Tonacini J, Maillasson M, Francés-Monerris A, Mortier E, Palmer G. Full-length and N-terminally truncated recombinant interleukin-38 variants are similarly inefficient in antagonizing interleukin-36 and interleukin-1 receptors. Cell Commun Signal 2025; 23:34. [PMID: 39833821 PMCID: PMC11744908 DOI: 10.1186/s12964-025-02035-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Interleukin (IL)-38 is an IL-1 family cytokine that was proposed to exert anti-inflammatory effects. However, its mechanisms of action are not well understood and the identity of the IL-38 receptor(s) remains debated. Proposed candidates include the IL-1 receptor (IL-1R1), the IL-36 receptor (IL-36R) and the orphan receptor IL-1RAPL1. Yet, in literature, IL-38 is often presented as an IL-36R antagonist. METHODS The N-terminus of the IL-38 protein produced in a human keratinocyte cell line and of endogenous epidermal IL-38 isolated from healthy human skin was characterized by mass spectrometry. The effects of various recombinant forms of IL-38 on IL-36R- and IL-1R1-mediated responses were assessed in IL-36R HEK Blue reporter cells and in a normal human keratinocyte cell line. IL-8 and IL-6 production was quantified by ELISA. Binding of recombinant IL-38 proteins to the IL-36R was assessed by surface plasmon resonance. RESULTS Analysis of its native N-terminus revealed that the IL-38 protein produced by human keratinocytes starts at cysteine 2. In cell-based assays, neither full-length amino acid 2-152 IL-38 nor two N-terminally truncated forms of the protein showed efficient antagonist activity on IL-36R- and IL-1R1-mediated responses. The recombinant IL-38 proteins bound to the IL-36R with only moderate affinity, which may provide a mechanistic explanation for inefficient IL-36R antagonism. CONCLUSIONS Our results argue against meaningful inhibitory effects of any of the recombinant IL-38 variants tested on IL-36R or IL-1R1-mediated responses. The mechanisms underlying reported anti-inflammatory effects of IL-38 are thus still unclear, but seem unlikely to be mediated by classical IL-36R or IL-1R1 antagonism.
Collapse
Affiliation(s)
- Alejandro Diaz-Barreiro
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, Geneva, CH-1211, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Dominique Talabot-Ayer
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, Geneva, CH-1211, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Arnaud Huard
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, Geneva, CH-1211, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Gea Cereghetti
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jenna Tonacini
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, Geneva, CH-1211, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Mike Maillasson
- Nantes Université, CNRS, Inserm, CRCI 2 NA, Nantes, France
- Nantes Université, Centre Hospitalo-Universitaire (CHU) Nantes, Inserm, CNRS, SFR Bonamy, UMS BioCore, Imp@ct Platform, Inserm, Nantes, France
| | | | - Erwan Mortier
- Nantes Université, CNRS, Inserm, CRCI 2 NA, Nantes, France
- Nantes Université, Centre Hospitalo-Universitaire (CHU) Nantes, Inserm, CNRS, SFR Bonamy, UMS BioCore, Imp@ct Platform, Inserm, Nantes, France
| | - Gaby Palmer
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, Geneva, CH-1211, Switzerland.
- Geneva Centre for Inflammation Research, Geneva, Switzerland.
| |
Collapse
|
2
|
Tsilioni I, Kempuraj D, Theoharides TC. Nobiletin and Eriodictyol Suppress Release of IL-1β, CXCL8, IL-6, and MMP-9 from LPS, SARS-CoV-2 Spike Protein, and Ochratoxin A-Stimulated Human Microglia. Int J Mol Sci 2025; 26:636. [PMID: 39859348 PMCID: PMC11766385 DOI: 10.3390/ijms26020636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Neuroinflammation is involved in various neurological and neurodegenerative disorders in which the activation of microglia is one of the key factors. In this study, we examined the anti-inflammatory effects of the flavonoids nobiletin (5,6,7,8,3',4'-hexamethoxyflavone) and eriodictyol (3',4',5,7-tetraxydroxyflavanone) on human microglia cell line activation stimulated by either lipopolysaccharide (LPS), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) full-length Spike protein (FL-Spike), or the mycotoxin ochratoxin A (OTA). Human microglia were preincubated with the flavonoids (10, 50, and 100 µM) for 2 h, following which, they were stimulated for 24 h. The inflammatory mediators interleukin-1 beta (IL-1β), chemokine (C-X-C motif) ligand 8 (CXCL8), IL-6, and matrix metalloproteinase-9 (MMP-9) were quantified in the cell culture supernatant by enzyme-linked immunosorbent assay (ELISA). Both nobiletin and eriodictyol significantly inhibited the LPS, FL-Spike, and OTA-stimulated release of IL-1β, CXCL8, IL-6, and MMP-9 at 50 and 100 µM, while, in most cases, nobiletin was also effective at 10 µM, with the most pronounced reductions at 100 µM. These findings suggest that both nobiletin and eriodictyol are potent inhibitors of the pathogen-stimulated microglial release of inflammatory mediators, highlighting their potential for therapeutic application in neuroinflammatory diseases, such as long COVID.
Collapse
Affiliation(s)
- Irene Tsilioni
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Duraisamy Kempuraj
- Center of Excellence for Neuroinflammation Research, Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Theoharis C. Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
- Center of Excellence for Neuroinflammation Research, Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| |
Collapse
|
3
|
Ross-Munro E, Isikgel E, Fleiss B. Evaluation of the Efficacy of a Full-Spectrum Low-THC Cannabis Plant Extract Using In Vitro Models of Inflammation and Excitotoxicity. Biomolecules 2024; 14:1434. [PMID: 39595610 PMCID: PMC11592195 DOI: 10.3390/biom14111434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Evidence has accumulated that Cannabis-derived compounds have the potential to treat neuroinflammatory changes present in neurodevelopmental conditions such as autism spectrum disorder. However, research is needed on the specific brain health benefits of strains of whole Cannabis extract that are ready for commercial production. Here, we explore the anti-inflammatory and neuroprotective effects of NTI-164, a genetically unique high-cannabidiol (CBD), low-Δ9-tetrahydrocannabinol extract, and also CBD alone on BV-2 microglia and SHSY-5Y neurons. Inflammation-induced up-regulation of microglial inflammatory markers was significantly attenuated by NTI-164, but not by CBD. NTI-164 promoted undifferentiated neuron proliferation and differentiated neuron survival under excitotoxic conditions. These effects suggest the potential for NTI-164 as a treatment for neuropathologies.
Collapse
Affiliation(s)
- Emily Ross-Munro
- School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia;
| | - Esra Isikgel
- Fenix Innovation Group Pty Ltd., Melbourne, VIC 3149, Australia;
| | - Bobbi Fleiss
- School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia;
| |
Collapse
|
4
|
Kempuraj D, Dourvetakis KD, Cohen J, Valladares DS, Joshi RS, Kothuru SP, Anderson T, Chinnappan B, Cheema AK, Klimas NG, Theoharides TC. Neurovascular unit, neuroinflammation and neurodegeneration markers in brain disorders. Front Cell Neurosci 2024; 18:1491952. [PMID: 39526043 PMCID: PMC11544127 DOI: 10.3389/fncel.2024.1491952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Neurovascular unit (NVU) inflammation via activation of glial cells and neuronal damage plays a critical role in neurodegenerative diseases. Though the exact mechanism of disease pathogenesis is not understood, certain biomarkers provide valuable insight into the disease pathogenesis, severity, progression and therapeutic efficacy. These markers can be used to assess pathophysiological status of brain cells including neurons, astrocytes, microglia, oligodendrocytes, specialized microvascular endothelial cells, pericytes, NVU, and blood-brain barrier (BBB) disruption. Damage or derangements in tight junction (TJ), adherens junction (AdJ), and gap junction (GJ) components of the BBB lead to increased permeability and neuroinflammation in various brain disorders including neurodegenerative disorders. Thus, neuroinflammatory markers can be evaluated in blood, cerebrospinal fluid (CSF), or brain tissues to determine neurological disease severity, progression, and therapeutic responsiveness. Chronic inflammation is common in age-related neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), and dementia. Neurotrauma/traumatic brain injury (TBI) also leads to acute and chronic neuroinflammatory responses. The expression of some markers may also be altered many years or even decades before the onset of neurodegenerative disorders. In this review, we discuss markers of neuroinflammation, and neurodegeneration associated with acute and chronic brain disorders, especially those associated with neurovascular pathologies. These biomarkers can be evaluated in CSF, or brain tissues. Neurofilament light (NfL), ubiquitin C-terminal hydrolase-L1 (UCHL1), glial fibrillary acidic protein (GFAP), Ionized calcium-binding adaptor molecule 1 (Iba-1), transmembrane protein 119 (TMEM119), aquaporin, endothelin-1, and platelet-derived growth factor receptor beta (PDGFRβ) are some important neuroinflammatory markers. Recent BBB-on-a-chip modeling offers promising potential for providing an in-depth understanding of brain disorders and neurotherapeutics. Integration of these markers in clinical practice could potentially enhance early diagnosis, monitor disease progression, and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Kirk D. Dourvetakis
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Jessica Cohen
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Daniel Seth Valladares
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Rhitik Samir Joshi
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Sai Puneeth Kothuru
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
- College of Psychology, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Tristin Anderson
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Baskaran Chinnappan
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Amanpreet K. Cheema
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Nancy G. Klimas
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
- Miami VA Geriatric Research Education and Clinical Center (GRECC), Miami Veterans Affairs Healthcare System, Miami, FL, United States
| | - Theoharis C. Theoharides
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
- Department of Immunology, Tufts, University School of Medicine, Boston, MA, United States
| |
Collapse
|
5
|
Kovacheva E, Gevezova M, Maes M, Sarafian V. The mast cells - Cytokines axis in Autism Spectrum Disorder. Neuropharmacology 2024; 249:109890. [PMID: 38431049 DOI: 10.1016/j.neuropharm.2024.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disturbance, diagnosed in early childhood. It is associated with varying degrees of dysfunctional communication and social skills, repetitive and stereotypic behaviors. Regardless of the constant increase in the number of diagnosed patients, there are still no established treatment schemes in global practice. Many children with ASD have allergic symptoms, often in the absence of mast cell (MC) positive tests. Activation of MCs may release molecules related to inflammation and neurotoxicity, which contribute to the pathogenesis of ASD. The aim of the present paper is to enrich the current knowledge regarding the relationship between MCs and ASD by providing PPI network analysis-based data that reveal key molecules and immune pathways associated with MCs in the pathogenesis of autism. Network and enrichment analyzes were performed using receptor information and secreted molecules from activated MCs identified in ASD patients. Our analyses revealed cytokines and key marker molecules for MCs degranulation, molecular pathways of key mediators released during cell degranulation, as well as various receptors. Understanding the relationship between ASD and the activation of MCs, as well as the involved molecules and interactions, is important for elucidating the pathogenesis of ASD and developing effective future treatments for autistic patients by discovering new therapeutic target molecules.
Collapse
Affiliation(s)
- Eleonora Kovacheva
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria; Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Maria Gevezova
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria; Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Michael Maes
- Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria; Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand; Cognitive Fitness and Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University-Plovdiv, Plovdiv, Bulgaria; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria; Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
6
|
Kovacheva E, Gevezova M, Maes M, Sarafian V. Mast Cells in Autism Spectrum Disorder-The Enigma to Be Solved? Int J Mol Sci 2024; 25:2651. [PMID: 38473898 DOI: 10.3390/ijms25052651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a disturbance of neurodevelopment with a complicated pathogenesis and unidentified etiology. Many children with ASD have a history of "allergic symptoms", often in the absence of mast cell (MC)-positive tests. Activation of MCs by various stimuli may release molecules related to inflammation and neurotoxicity, contributing to the development of ASD. The aim of the present paper is to enrich the current knowledge on the relationship between MCs and ASD by discussing key molecules and immune pathways associated with MCs in the pathogenesis of autism. Cytokines, essential marker molecules for MC degranulation and therapeutic targets, are also highlighted. Understanding the relationship between ASD and the activation of MCs, as well as the involved molecules and interactions, are the main points contributing to solving the enigma. Key molecules, associated with MCs, may provide new insights to the discovery of drug targets for modeling inflammation in ASD.
Collapse
Affiliation(s)
- Eleonora Kovacheva
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Maria Gevezova
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Michael Maes
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Cognitive Fitness and Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Psychiatry, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
7
|
Gao Y, Cai L, Wu Y, Jiang M, Zhang Y, Ren W, Song Y, Li L, Lei Z, Wu Y, Zhu L, Li J, Li D, Li G, Luo C, Tao L. Emerging functions and therapeutic targets of IL-38 in central nervous system diseases. CNS Neurosci Ther 2024; 30:e14550. [PMID: 38334236 PMCID: PMC10853902 DOI: 10.1111/cns.14550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 02/10/2024] Open
Abstract
Interleukin (IL)-38 is a newly discovered cytokine of the IL-1 family, which binds various receptors (i.e., IL-36R, IL-1 receptor accessory protein-like 1, and IL-1R1) in the central nervous system (CNS). The hallmark physiological function of IL-38 is competitive binding to IL-36R, as does the IL-36R antagonist. Emerging research has shown that IL-38 is abnormally expressed in the serum and brain tissue of patients with ischemic stroke (IS) and autism spectrum disorder (ASD), suggesting that IL-38 may play an important role in neurological diseases. Important advances include that IL-38 alleviates neuromyelitis optica disorder (NMOD) by inhibiting Th17 expression, improves IS by protecting against atherosclerosis via regulating immune cells and inflammation, and reduces IL-1β and CXCL8 release through inhibiting human microglial activity post-ASD. In contrast, IL-38 mRNA is markedly increased and is mainly expressed in phagocytes in spinal cord injury (SCI). IL-38 ablation attenuated SCI by reducing immune cell infiltration. However, the effect and underlying mechanism of IL-38 in CNS diseases remain inadequately characterized. In this review, we summarize the biological characteristics, pathophysiological role, and potential mechanisms of IL-38 in CNS diseases (e.g., NMOD, Alzheimer's disease, ASD, IS, TBI, and SCI), aiming to explore the therapeutic potential of IL-38 in the prevention and treatment of CNS diseases.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
- Department of NeurosurgeryPennsylvania State University College of MedicineState CollegePennsylvaniaUSA
- Department of Forensic ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Luwei Cai
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Yulu Wu
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Min Jiang
- Department of Forensic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yidan Zhang
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Wenjing Ren
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Yirui Song
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Lili Li
- Department of Child and Adolescent HealthcareChildren's Hospital of Soochow UniversitySuzhouChina
| | - Ziguang Lei
- Department of Forensic ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Youzhuang Wu
- Department of Forensic ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Luwen Zhu
- Department of Forensic ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Jing Li
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Dongya Li
- Department of OrthopedicsThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Guohong Li
- Department of NeurosurgeryPennsylvania State University College of MedicineState CollegePennsylvaniaUSA
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Luyang Tao
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| |
Collapse
|
8
|
Luo Y, Wang Z. The Impact of Microglia on Neurodevelopment and Brain Function in Autism. Biomedicines 2024; 12:210. [PMID: 38255315 PMCID: PMC10813633 DOI: 10.3390/biomedicines12010210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Microglia, as one of the main types of glial cells in the central nervous system (CNS), are widely distributed throughout the brain and spinal cord. The normal number and function of microglia are very important for maintaining homeostasis in the CNS. In recent years, scientists have paid widespread attention to the role of microglia in the CNS. Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder, and patients with ASD have severe deficits in behavior, social skills, and communication. Most previous studies on ASD have focused on neuronal pathological changes, such as increased cell proliferation, accelerated neuronal differentiation, impaired synaptic development, and reduced neuronal spontaneous and synchronous activity. Currently, more and more research has found that microglia, as immune cells, can promote neurogenesis and synaptic pruning to maintain CNS homeostasis. They can usually reduce unnecessary synaptic connections early in life. Some researchers have proposed that many pathological phenotypes of ASD may be caused by microglial abnormalities. Based on this, we summarize recent research on microglia in ASD, focusing on the function of microglia and neurodevelopmental abnormalities. We aim to clarify the essential factors influenced by microglia in ASD and explore the possibility of microglia-related pathways as potential research targets for ASD.
Collapse
Affiliation(s)
- Yuyi Luo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China;
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China;
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|
9
|
Verma G, Dhawan M, Saied AA, Kaur G, Kumar R, Emran TB. Immunomodulatory approaches in managing lung inflammation in COVID-19: A double-edge sword. Immun Inflamm Dis 2023; 11:e1020. [PMID: 37773723 PMCID: PMC10521379 DOI: 10.1002/iid3.1020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/19/2023] [Accepted: 09/09/2023] [Indexed: 10/01/2023] Open
Abstract
INTRODUCTION The novel coronavirus infectious disease 2019 (COVID-19) which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as a gigantic problem. The lung is the major target organ of SARS-CoV-2 and some of its variants like Delta and Omicron variant adapted in such a way that these variants can significantly damage this vital organ of the body. These variants raised a few eyebrows as the outbreaks have been seen in the vaccinated population. Patients develop severe respiratory illnesses which eventually prove fatal unless treated early. MAIN BODY Studies have shown that SARS-CoV-2 causes the release of pro-inflammatory cytokines such as interleukin (IL)-6, IL-1β and tumor necrosis factor (TNF)-α which are mediators of lung inflammation, lung damage, fever, and fibrosis. Additionally, various chemokines have been found to play an important role in the disease progression. A plethora of pro-inflammatory cytokines "cytokine storm" has been observed in severe cases of SARS-CoV-2 infection leading to acute respiratory distress syndrome (ARDS) and pneumonia that may prove fatal. To counteract cytokine storm-inducing lung inflammation, several promising immunomodulatory approaches are being investigated in numerous clinical trials. However, the benefits of using these strategies should outweigh the risks involved as the use of certain immunosuppressive approaches might lead the host susceptible to secondary bacterial infections. CONCLUSION The present review discusses promising immunomodulatory approaches to manage lung inflammation in COVID-19 cases which may serve as potential therapeutic options in the future and may prove lifesaving.
Collapse
Affiliation(s)
- Geetika Verma
- Department of Experimental Medicine and BiotechnologyPost Graduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia
| | - Manish Dhawan
- Department of MicrobiologyPunjab Agricultural UniversityLudhianaIndia
- Trafford CollegeAltrinchamUK
| | | | - Geetika Kaur
- Department of Opthalmology, Visual and Anatomical SciencesWayne State University School of MedicineDetroitMichiganUSA
| | - Reetesh Kumar
- Department of Agricultural Sciences, Institute of Applied Sciences and HumanitiesGLA UniversityMathuraIndia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health SciencesDaffodil International UniversityDhakaBangladesh
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer CenterBrown UniversityProvidenceRhode IslandUnited States
| |
Collapse
|
10
|
Chen W, Xi S, Ke Y, Lei Y. The emerging role of IL-38 in diseases: A comprehensive review. Immun Inflamm Dis 2023; 11:e991. [PMID: 37647430 PMCID: PMC10461426 DOI: 10.1002/iid3.991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Abstract
INTRODUCTION Interleukin-38 (IL-38) is a new type of anti-inflammatory cytokine, which is mainly expressed in the immunity-related organs and is involved in various diseases including cardiovascular and cerebrovascular diseases, lung diseases, viral infectious diseases and autoimmune diseases. AIM This review aims to detail the biological function, receptors and signaling of IL-38, which highlights its therapeutic potential in related diseases. CONCLUSION This article provides a comprehensive review of the association between interleukin-38 and related diseases, using interleukin-38 as a keyword and searching the relevant literature through Pubmed and Web of science up to July 2023.
Collapse
Affiliation(s)
- Weijun Chen
- Center of Forensic ExpertiseAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- School of Forensic MedcineZunyi Medical UniversityZunyiGuizhouChina
| | - Shuangyun Xi
- Center of Forensic ExpertiseAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- School of Forensic MedcineZunyi Medical UniversityZunyiGuizhouChina
| | - Yong Ke
- Center of Forensic ExpertiseAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- School of Forensic MedcineZunyi Medical UniversityZunyiGuizhouChina
| | - Yinlei Lei
- Center of Forensic ExpertiseAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- School of Forensic MedcineZunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
11
|
Xiong Y, Chen J, Li Y. Microglia and astrocytes underlie neuroinflammation and synaptic susceptibility in autism spectrum disorder. Front Neurosci 2023; 17:1125428. [PMID: 37021129 PMCID: PMC10067592 DOI: 10.3389/fnins.2023.1125428] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/03/2023] [Indexed: 04/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder with onset in childhood. The mechanisms underlying ASD are unclear. In recent years, the role of microglia and astrocytes in ASD has received increasing attention. Microglia prune the synapses or respond to injury by sequestrating the injury site and expressing inflammatory cytokines. Astrocytes maintain homeostasis in the brain microenvironment through the uptake of ions and neurotransmitters. However, the molecular link between ASD and microglia and, or astrocytes remains unknown. Previous research has shown the significant role of microglia and astrocytes in ASD, with reports of increased numbers of reactive microglia and astrocytes in postmortem tissues and animal models of ASD. Therefore, an enhanced understanding of the roles of microglia and astrocytes in ASD is essential for developing effective therapies. This review aimed to summarize the functions of microglia and astrocytes and their contributions to ASD.
Collapse
|
12
|
Wu Z, Luo C, Zheng B. Progress of Research into the Interleukin-1 Family in Cardiovascular Disease. J Inflamm Res 2022; 15:6683-6694. [PMID: 36536642 PMCID: PMC9759010 DOI: 10.2147/jir.s390915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/30/2022] [Indexed: 09/01/2023] Open
Abstract
Inflammatory factors, such as the IL-1 family, are generally acknowledged to be involved in systemic diseases and IL-1α and IL-1β, in particular, have been linked to cardiovascular disease with IL-18, IL-33, IL-36, IL-37 and IL-38 yet to be explored. The current review aims to summarize mechanisms of IL-18, IL-33, IL-36, IL-37 and IL-38 in myocardial infarction, hypertension, arrhythmia, valvular disease and aneurysm and to explore the potential for cardiovascular disease treatment strategies and discuss future directions for prevention and treatment.
Collapse
Affiliation(s)
- Zimin Wu
- Department of Cardiovascular Surgery Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Cheng Luo
- Department of Cardiovascular Surgery Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Baoshi Zheng
- Department of Cardiovascular Surgery Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| |
Collapse
|
13
|
Tsilioni I, Natelson B, Theoharides TC. Exosome-associated mitochondrial DNA from patients with myalgic encephalomyelitis/chronic fatigue syndrome stimulates human microglia to release IL-1β. Eur J Neurosci 2022; 56:5784-5794. [PMID: 36153118 DOI: 10.1111/ejn.15828] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/10/2022] [Accepted: 06/19/2022] [Indexed: 12/29/2022]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease that presents with fatigue, sleep disturbances, malaise, and cognitive problems. The pathogenesis of ME/CFS is presently unknown, and serum levels of potential biomarkers have been inconsistent. Here, we show that mitochondrial DNA (mtDNA) associated with serum exosomes, is increased in ME/CFS patients only after exercise. Moreover, exosomes isolated from patients with ME/CFS stimulate significant release of IL-1β from cultured human microglia. These results provide evidence that activation of microglia by serum-derived exosomes may serve as a potential novel pathogenetic factor and target for treatment of ME/CFS.
Collapse
Affiliation(s)
- Irene Tsilioni
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Benjamin Natelson
- Pain and Fatigue Study Center, Department of Neurology, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA.,School of Graduate Biomedical Sciences, Program in Pharmacology and Experimental Therapeutics, Tufts University, Boston, Massachusetts, USA.,Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts, USA.,Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Zhang XH, Li Y, Zhou L, Tian GP. Interleukin-38 in atherosclerosis. Clin Chim Acta 2022; 536:86-93. [PMID: 36150521 DOI: 10.1016/j.cca.2022.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022]
Abstract
Chronic inflammation caused by immune cells and their mediators is a characteristic of atherosclerosis. Interleukin-38 (IL-38), a member of the IL-1 family, exerts multiple anti-inflammatory effects via specific ligand-receptor interactions. Upon recognizing a specific receptor, IL-38 restrains mitogen-activated protein kinase (MAPK), nuclear factor kappa B (NK-κB), or other inflammation-related signaling pathways in inflammatory disease. Further research has shown that IL-38 also displays anti-atherosclerotic effects and reduces the occurrence and risk of cardiovascular events. On the one hand, IL-38 can regulate innate and adaptive immunity to inhibit inflammation, reduce pathological neovascularization, and inhibit apoptosis. On the other hand, it can curb obesity, reduce hyperlipidemia, and restrain insulin resistance to reduce cardiovascular disease risk. Therefore, this article expounds on the vital function of IL-38 in the development of atherosclerosis to provide a theoretical basis for further in-depth studies of IL-38 and insights on the prophylaxis and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xiao-Hong Zhang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yu Li
- Department of Orthopaedics, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, China
| | - Li Zhou
- Department of Pathology, Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing 400036, China.
| | - Guo-Ping Tian
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
15
|
Haghshenas MR, Zamir MR, Sadeghi M, Fattahi MJ, Mirshekari K, Ghaderi A. Clinical relevance and therapeutic potential of IL-38 in immune and non-immune-related disorders. Eur Cytokine Netw 2022; 33:54-69. [PMID: 37052152 PMCID: PMC10134710 DOI: 10.1684/ecn.2022.0480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2022] [Indexed: 04/14/2023]
Abstract
Interleukin-38 (IL-38) is the most recent member of the IL-1 family that acts as a natural inflammatory inhibitor by binding to cognate receptors, particularly the IL-36 receptor. In vitro, animal and human studies on autoimmune, metabolic, cardiovascular and allergic diseases, as well sepsis and respiratory viral infections, have shown that IL-38 exerts an anti-inflammatory activity by modulating the generation and function of inflammatory cytokines (e.g. IL-6, IL-8, IL-17 and IL-36) and regulating dendritic cells, M2 macrophages and regulatory T cells (Tregs). Accordingly, IL-38 may possess therapeutic potential for these types of diseases. IL-38 down-regulates CCR3+ eosinophil cells, CRTH2+ Th2 cells, Th17 cells, and innate lymphoid type 2 cells (ILC2), but up-regulates Tregs, and this has influenced the design of immunotherapeutic strategies based on regulatory cells/cytokines for allergic asthma in future studies. In auto-inflammatory diseases, IL-38 alleviates skin inflammation by regulating γδ T cells and limiting the production of IL-17. Due to its ability to suppress IL-1β, IL-6 and IL-36, this cytokine could reduce COVID-19 severity, and might be employed as a therapeutic tool. IL-38 may also influence host immunity and/or the components of the cancer microenvironment, and has been shown to improve the outcome of colorectal cancer, and may participate in tumour progression in lung cancer possibly by modulating CD8 tumour infiltrating T cells and PD-L1 expression. In this review, we first briefly present the biological and immunological functions of IL-38, and then discuss the important roles of IL-38 in various types of diseases, and finally highlight its use in therapeutic strategies.
Collapse
Affiliation(s)
- Mohammad Reza Haghshenas
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Roshan Zamir
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboubeh Sadeghi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Fattahi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kimia Mirshekari
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Saad AK, Akour A, Mahboob A, AbuRuz S, Sadek B. Role of Brain Modulators in Neurodevelopment: Focus on Autism Spectrum Disorder and Associated Comorbidities. Pharmaceuticals (Basel) 2022; 15:612. [PMID: 35631438 PMCID: PMC9144645 DOI: 10.3390/ph15050612] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Autism spectrum disorder (ASD) and associated neurodevelopmental disorders share similar pathogenesis and clinical features. Pathophysiological changes in these diseases are rooted in early neuronal stem cells in the uterus. Several genetic and environmental factors potentially perturb neurogenesis and synaptogenesis processes causing incomplete or altered maturation of the brain that precedes the symptomology later in life. In this review, the impact of several endogenous neuromodulators and pharmacological agents on the foetus during pregnancy, manifested on numerous aspects of neurodevelopment is discussed. Within this context, some possible insults that may alter these modulators and therefore alter their role in neurodevelopment are high-lighted. Sometimes, a particular insult could influence several neuromodulator systems as is supported by recent research in the field of ASD and associated disorders. Dopaminergic hy-pothesis prevailed on the table for discussion of the pathogenesis of schizophrenia (SCH), atten-tion-deficit hyperactivity disorder (ADHD) and ASD for a long time. However, recent cumulative evidence suggests otherwise. Indeed, the neuromodulators that are dysregulated in ASD and comorbid disorders are as diverse as the causes and symptoms of this disease. Additionally, these neuromodulators have roles in brain development, further complicating their involvement in comorbidity. This review will survey the current understanding of the neuromodulating systems to serve the pharmacological field during pregnancy and to minimize drug-related insults in pa-tients with ASD and associated comorbidity disorders, e.g., SCH or ADHD.
Collapse
Affiliation(s)
- Ali K. Saad
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman P.O. Box 11942, Jordan
| | - Abdulla Mahboob
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
| | - Salahdein AbuRuz
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman P.O. Box 11942, Jordan
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| |
Collapse
|
17
|
Kassianidis G, Siampanos A, Poulakou G, Adamis G, Rapti A, Milionis H, Dalekos GN, Petrakis V, Sympardi S, Metallidis S, Alexiou Z, Gkavogianni T, Giamarellos-Bourboulis EJ, Theoharides TC. Calprotectin and Imbalances between Acute-Phase Mediators Are Associated with Critical Illness in COVID-19. Int J Mol Sci 2022; 23:ijms23094894. [PMID: 35563282 PMCID: PMC9099708 DOI: 10.3390/ijms23094894] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
The trajectory from moderate and severe COVID-19 into acute respiratory distress syndrome (ARDS) necessitating mechanical ventilation (MV) is a field of active research. We determined serum levels within 24 h of presentation of 20 different sets of mediators (calprotectin, pro- and anti-inflammatory cytokines, interferons) of patients with COVID-19 at different stages of severity (asymptomatic, moderate, severe and ARDS/MV). The primary endpoint was to define associations with critical illness, and the secondary endpoint was to identify the pathways associated with mortality. Results were validated in serial measurements of mediators among participants of the SAVE-MORE trial. Levels of the proinflammatory interleukin (IL)-8, IL-18, matrix metalloproteinase-9, platelet-derived growth factor (PDGF)-B and calprotectin (S100A8/A9) were significantly higher in patients with ARDS and MV. Levels of the anti-inflammatory IL-1ra and IL-33r were also increased; IL-38 was increased only in asymptomatic patients but significantly decreased in the more severe cases. Multivariate ordinal regression showed that pathways of IL-6, IL-33 and calprotectin were associated with significant probability for worse outcome. Calprotectin was serially increased from baseline among patients who progressed to ARDS and MV. Further research is needed to decipher the significance of these findings compared to other acute-phase reactants, such as C-reactive protein (CRP) or ferritin, for the prognosis and development of effective treatments.
Collapse
Affiliation(s)
- Georgios Kassianidis
- Intensive Care Unit, Korgialeneion-Benakeion Athens General Hospital, 115 26 Athens, Greece;
| | - Athanasios Siampanos
- 4th Department of Internal Medicine, ATTIKON University General Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini Street, 124 62 Athens, Greece; (A.S.); (T.G.)
| | - Garyphalia Poulakou
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - George Adamis
- 1st Department of Internal Medicine, G. Gennimatas General Hospital of Athens, 115 27 Athens, Greece;
| | - Aggeliki Rapti
- 2nd Department of Pulmonary Medicine, Sotiria General Hospital of Chest Diseases, 115 27 Athens, Greece;
| | - Haralampos Milionis
- 1st Department of Internal Medicine, Medical School, University of Ioannina, 455 00 Ioannina, Greece;
| | - George N. Dalekos
- Department of Medicine and Research Laboratory of Internal Medicine, National and European Expertise Center in Autoimmune Liver Diseases, General University Hospital of Larissa, 412 21 Larissa, Greece;
| | - Vasileios Petrakis
- 2nd Department of Internal Medicine, Medical School, Democritus University of Thrace, 681 00 Alexandroupolis, Greece;
| | - Styliani Sympardi
- 1st Department of Internal Medicine, Thriasio General Hospital of Eleusis, 196 00 Magoula, Greece;
| | - Symeon Metallidis
- 1st Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, 546 21 Thessaloniki, Greece;
| | - Zoi Alexiou
- 2nd Department of Internal Medicine, Thriasio General Hospital of Eleusis, 196 00 Magoula, Greece;
| | - Theologia Gkavogianni
- 4th Department of Internal Medicine, ATTIKON University General Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini Street, 124 62 Athens, Greece; (A.S.); (T.G.)
| | - Evangelos J. Giamarellos-Bourboulis
- 4th Department of Internal Medicine, ATTIKON University General Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini Street, 124 62 Athens, Greece; (A.S.); (T.G.)
- Correspondence: (E.J.G.-B.); (T.C.T.); Tel.: +30-210-58-31-994 (E.J.G.-B.); Fax: +30-210-53-26446 (E.J.G.-B.)
| | - Theoharis C. Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA
- Institute of Neuro-Immune Medicine, Nova Southeastern University, Clearwater, FL 33759, USA
- Correspondence: (E.J.G.-B.); (T.C.T.); Tel.: +30-210-58-31-994 (E.J.G.-B.); Fax: +30-210-53-26446 (E.J.G.-B.)
| |
Collapse
|
18
|
Interleukin-38 in Health and Disease. Cytokine 2022; 152:155824. [DOI: 10.1016/j.cyto.2022.155824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022]
|
19
|
Immune Dysregulation in Autism Spectrum Disorder: What Do We Know about It? Int J Mol Sci 2022; 23:ijms23063033. [PMID: 35328471 PMCID: PMC8955336 DOI: 10.3390/ijms23063033] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex multifactorial neurodevelopmental disorders characterized by a wide and variable set of neuropsychiatric symptoms, including deficits in social communication, narrow and restricted interests, and repetitive behavior. The immune hypothesis is considered to be a major factor contributing to autism pathogenesis, as well as a way to explain the differences of the clinical phenotypes and comorbidities influencing disease course and severity. Evidence highlights a link between immune dysfunction and behavioral traits in autism from several types of evidence found in both cerebrospinal fluid and peripheral blood and their utility to identify autistic subgroups with specific immunophenotypes; underlying behavioral symptoms are also shown. This review summarizes current insights into immune dysfunction in ASD, with particular reference to the impact of immunological factors related to the maternal influence of autism development; comorbidities influencing autism disease course and severity; and others factors with particular relevance, including obesity. Finally, we described main elements of similarities between immunopathology overlapping neurodevelopmental and neurodegenerative disorders, taking as examples autism and Parkinson Disease, respectively.
Collapse
|
20
|
Diaz-Barreiro A, Huard A, Palmer G. Multifaceted roles of IL-38 in inflammation and cancer. Cytokine 2022; 151:155808. [DOI: 10.1016/j.cyto.2022.155808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
|
21
|
Nadeem A, Ahmad SF, Al-Harbi NO, Al-Ayadhi LY, Sarawi W, Attia SM, Bakheet SA, Alqarni SA, Ali N, AsSobeai HM. Imbalance in pro-inflammatory and anti-inflammatory cytokines milieu in B cells of children with autism. Mol Immunol 2021; 141:297-304. [PMID: 34915269 DOI: 10.1016/j.molimm.2021.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 11/01/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
B cells play multiple roles in preservation of healthy immune system including management of immune responses by expression of pro- and anti-inflammatory cytokines. Several earlier studies have documented that B cells express both pro-inflammatory cytokines such as IL-6, TNF-α as well as anti-inflammatory cytokines such as IL-10. However, it is yet to be examined whether these pro-/anti-inflammatory cytokines are expressed in B cells of children with autism spectrum disorder (ASD). Pathophysiology of ASD begins in early childhood and is characterized by repetitive/restricted behavioral patterns, and dysfunction in communal/communication skills. ASD pathophysiology also has a strong component of immune dysfunction which has been highlighted in numerous earlier publications. In this study, we specifically explored pro-/anti-inflammatory cytokines (IL-6, IL-17A, IFN-γ, TNF-α, IL-10) in B cells of ASD subjects and compared them typically developing control (TDC) children. Present study shows that inflammatory cytokines such as IL-6 and TNF-α are elevated in B cells of ASD subjects, while anti-inflammatory cytokine, IL-10 is decreased in ASD group when compared to TDC group. Further, TLR4 activation by its ligand, lipopolysaccharide (LPS) further upregulates inflammatory potential of B cells from ASD group by increasing IL-6 expression, whereas LPS has no significant effect on IL-10 expression in ASD group. Furthermore, LPS-induced inflammatory signaling of IL-6 in B cells of ASD subjects was partially mitigated by the pretreatment with NF-kB inhibitor. Present study propounds the idea that B cells could be crucial players in causing immune dysfunction in ASD subjects through an imbalance in expression of pro-/anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Laila Y Al-Ayadhi
- Autism Research and Treatment Center, AL-Amodi Autism Research Chair, Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Wedad Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Alqarni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Homood M AsSobeai
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Esmaeilzadeh A, Bahmaie N, Nouri E, Hajkazemi MJ, Zareh Rafie M. Immunobiological Properties and Clinical Applications of Interleukin-38 for Immune-Mediated Disorders: A Systematic Review Study. Int J Mol Sci 2021; 22:12552. [PMID: 34830435 PMCID: PMC8625918 DOI: 10.3390/ijms222212552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
Exponential growth in the usage of "cytokines" (as seroimmunobiomarkers) has facilitated more accurate prognosis, early diagnosis, novel, and efficient immunotherapeutics. Numerous studies have reported immunopathophysiological and immunopathological processes of interleukin-38 (IL-38). Therefore, in this systematic review article, the authors aimed to present an updated comprehensive overview on the immunobiological mechanisms, diagnostic, and immune gene-based therapeutic potentials of IL-38. According to our inclusion and exclusion criteria, a total of 216 articles were collected from several search engines and databases from the January 2012 to July 2021 time interval by using six main keywords. Physiologic or pathologic microenvironments, optimal dosage, and involved receptors affect the functionalities of IL-38. Alterations in serum levels of IL-38 play a major role in the immunopathogenesis of a wide array of immune-mediated disorders. IL-38 shows anti-inflammatory activities by reduction or inhibition of pro-inflammatory cytokines, supporting the therapeutic aspects of IL-38 in inflammatory autoimmune diseases. According to the importance of pre-clinical studies, it seems that manipulation of the immune system by immunomodulatory properties of IL-38 can increase the accuracy of diagnosis, and decipher optimal clinical outcomes. To promote our knowledge, more collaboration is highly recommended among laboratory scientists, internal/infectious diseases specialists, oncologists, immunologists, diseases-specific biomarkers scientists, and basic medical researchers.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan 4513956111, Iran
- Immunotherapy Research & Technology Group, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran
| | - Nazila Bahmaie
- Department of Allergy and Immunology, Faculty of Medicine, Graduate School of Health Science, Near East University (NEU), Nicosia 99138, Cyprus;
- Pediatric Ward, Department of Allergy and Immunology, Near East University affiliated Hospital, Nicosia 99138, Cyprus
- Serology and Immunology Ward, Clinical Diagnosis Laboratory, Private Baskent Hospital, Nicosia 99138, Cyprus
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
| | - Elham Nouri
- School of Paramedicine, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran;
- Shahid Beheshti University Affiliated Hospital, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran
| | - Mohammad Javad Hajkazemi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran; (M.J.H.); (M.Z.R.)
| | - Maryam Zareh Rafie
- School of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran; (M.J.H.); (M.Z.R.)
| |
Collapse
|
23
|
Luo P, Zhao T, He H. IL-38-mediated NLRP3/caspase-1 inhibition is a disease-modifying treatment for TMJ inflammation. Ann N Y Acad Sci 2021; 1508:92-104. [PMID: 34671981 DOI: 10.1111/nyas.14704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/09/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022]
Abstract
Recently, interleukin-38 (IL-38) was identified as an important anti-inflammatory and immunosuppressive factor, but its functional role in temporomandibular joint (TMJ) inflammation remains unknown. This study aimed to elucidate how IL-38 affects chondrocytes and the underlying mechanism that contributes to anti-inflammatory processes in the TMJ. Western blotting, quantitative real-time PCR, enzyme-linked immunosorbent assay, and immunofluorescence analysis were used to verify that IL-38 has anti-inflammatory effects on chondrocytes, and the related key pathways were analyzed by western blotting. SiRNA-IL-38, siRNA-NLRP3, and MCC950 were used to investigate the mechanism underlying the anti-inflammatory effects of IL-38. Inflammation models were induced by injection of complete Freund's adjuvant in TMJ with mouse recombinant IL-38 in in vivo studies. Histological and immunohistochemical analyses were used to investigate histological changes in the cartilage. The results showed that IL-38 inhibited the expression of inflammatory cytokines and MMPs. IL-38 limited inflammation by inhibiting the expression of MAPKs/NF-κB and the NLRP3/caspase-1 pathway. In vivo, IL-38 reduced chondrocyte inflammation and limited cartilage degeneration. This study shows for the first time that IL-38 plays a protective role in TMJ cartilage. IL-38 exerts anti-inflammatory effects through the NLRP3/caspase-1 pathway and may be a promising agent for treating TMJ inflammation.
Collapse
Affiliation(s)
- Ping Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Tingting Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hong He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Penning DH, Cazacu S, Brodie A, Jevtovic-Todorovic V, Kalkanis SN, Lewis M, Brodie C. Neuron-Glia Crosstalk Plays a Major Role in the Neurotoxic Effects of Ketamine via Extracellular Vesicles. Front Cell Dev Biol 2021; 9:691648. [PMID: 34604212 PMCID: PMC8481868 DOI: 10.3389/fcell.2021.691648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/06/2021] [Indexed: 02/02/2023] Open
Abstract
Background: There is a compelling evidence from animal models that early exposure to clinically relevant general anesthetics (GAs) interferes with brain development, resulting in long-lasting cognitive impairments. Human studies have been inconclusive and are challenging due to numerous confounding factors. Here, we employed primary human neural cells to analyze ketamine neurotoxic effects focusing on the role of glial cells and their activation state. We also explored the roles of astrocyte-derived extracellular vesicles (EVs) and different components of the brain-derived neurotrophic factor (BDNF) pathway. Methods: Ketamine effects on cell death were analyzed using live/dead assay, caspase 3 activity and PARP-1 cleavage. Astrocytic and microglial cell differentiation was determined using RT-PCR, ELISA and phagocytosis assay. The impact of the neuron-glial cell interactions in the neurotoxic effects of ketamine was analyzed using transwell cultures. In addition, the role of isolated and secreted EVs in this cross-talk were studied. The expression and function of different components of the BDNF pathway were analyzed using ELISA, RT-PCR and gene silencing. Results: Ketamine induced neuronal and oligodendrocytic cell apoptosis and promoted pro-inflammatory astrocyte (A1) and microglia (M1) phenotypes. Astrocytes and microglia enhanced the neurotoxic effects of ketamine on neuronal cells, whereas neurons increased oligodendrocyte cell death. Ketamine modulated different components in the BDNF pathway: decreasing BDNF secretion in neurons and astrocytes while increasing the expression of p75 in neurons and that of BDNF-AS and pro-BDNF secretion in both neurons and astrocytes. We demonstrated an important role of EVs secreted by ketamine-treated astrocytes in neuronal cell death and a role for EV-associated BDNF-AS in this effect. Conclusions: Ketamine exerted a neurotoxic effect on neural cells by impacting both neuronal and non-neuronal cells. The BDNF pathway and astrocyte-derived EVs represent important mediators of ketamine effects. These results contribute to a better understanding of ketamine neurotoxic effects in humans and to the development of potential approaches to decrease its neurodevelopmental impact.
Collapse
Affiliation(s)
- Donald H Penning
- Department of Anesthesiology, Pain Management and Perioperative Medicine, Henry Ford Hospital, Detroit, MI, United States.,Department of Neurosurgery, Henry Ford Health System, Detroit, MI, United States
| | - Simona Cazacu
- Department of Anesthesiology, Pain Management and Perioperative Medicine, Henry Ford Hospital, Detroit, MI, United States.,Department of Neurosurgery, Henry Ford Health System, Detroit, MI, United States
| | | | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Steve N Kalkanis
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, United States
| | - Michael Lewis
- Department of Anesthesiology, Pain Management and Perioperative Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Chaya Brodie
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, United States.,Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
25
|
Theoharides TC. Ways to Address Perinatal Mast Cell Activation and Focal Brain Inflammation, including Response to SARS-CoV-2, in Autism Spectrum Disorder. J Pers Med 2021; 11:860. [PMID: 34575637 PMCID: PMC8465360 DOI: 10.3390/jpm11090860] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/08/2023] Open
Abstract
The prevalence of autism spectrum disorder (ASD) continues to increase, but no distinct pathogenesis or effective treatment are known yet. The presence of many comorbidities further complicates matters, making a personalized approach necessary. An increasing number of reports indicate that inflammation of the brain leads to neurodegenerative changes, especially during perinatal life, "short-circuiting the electrical system" in the amygdala that is essential for our ability to feel emotions, but also regulates fear. Inflammation of the brain can result from the stimulation of mast cells-found in all tissues including the brain-by neuropeptides, stress, toxins, and viruses such as SARS-CoV-2, leading to the activation of microglia. These resident brain defenders then release even more inflammatory molecules and stop "pruning" nerve connections, disrupting neuronal connectivity, lowering the fear threshold, and derailing the expression of emotions, as seen in ASD. Many epidemiological studies have reported a strong association between ASD and atopic dermatitis (eczema), asthma, and food allergies/intolerance, all of which involve activated mast cells. Mast cells can be triggered by allergens, neuropeptides, stress, and toxins, leading to disruption of the blood-brain barrier (BBB) and activation of microglia. Moreover, many epidemiological studies have reported a strong association between stress and atopic dermatitis (eczema) during gestation, which involves activated mast cells. Both mast cells and microglia can also be activated by SARS-CoV-2 in affected mothers during pregnancy. We showed increased expression of the proinflammatory cytokine IL-18 and its receptor, but decreased expression of the anti-inflammatory cytokine IL-38 and its receptor IL-36R, only in the amygdala of deceased children with ASD. We further showed that the natural flavonoid luteolin is a potent inhibitor of the activation of both mast cells and microglia, but also blocks SARS-CoV-2 binding to its receptor angiotensin-converting enzyme 2 (ACE2). A treatment approach should be tailored to each individual patient and should address hyperactivity/stress, allergies, or food intolerance, with the introduction of natural molecules or drugs to inhibit mast cells and microglia, such as liposomal luteolin.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Suite 304, Boston, MA 02111, USA
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA
| |
Collapse
|
26
|
Unterman I, Bloch I, Cazacu S, Kazimirsky G, Ben-Zeev B, Berman BP, Brodie C, Tabach Y. Expanding the MECP2 network using comparative genomics reveals potential therapeutic targets for Rett syndrome. eLife 2021; 10:e67085. [PMID: 34355696 PMCID: PMC8346285 DOI: 10.7554/elife.67085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Inactivating mutations in the Methyl-CpG Binding Protein 2 (MECP2) gene are the main cause of Rett syndrome (RTT). Despite extensive research into MECP2 function, no treatments for RTT are currently available. Here, we used an evolutionary genomics approach to construct an unbiased MECP2 gene network, using 1028 eukaryotic genomes to prioritize proteins with strong co-evolutionary signatures with MECP2. Focusing on proteins targeted by FDA-approved drugs led to three promising targets, two of which were previously linked to MECP2 function (IRAK, KEAP1) and one that was not (EPOR). The drugs targeting these three proteins (Pacritinib, DMF, and EPO) were able to rescue different phenotypes of MECP2 inactivation in cultured human neural cell types, and appeared to converge on Nuclear Factor Kappa B (NF-κB) signaling in inflammation. This study highlights the potential of comparative genomics to accelerate drug discovery, and yields potential new avenues for the treatment of RTT.
Collapse
Affiliation(s)
- Irene Unterman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-CanadaJerusalemIsrael
| | - Idit Bloch
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-CanadaJerusalemIsrael
| | - Simona Cazacu
- Hermelin Brain Tumor Center, Henry Ford HospitalDetroitUnited States
| | - Gila Kazimirsky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-GanIsrael
| | - Bruria Ben-Zeev
- Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical CenterRamat GanIsrael
| | - Benjamin P Berman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-CanadaJerusalemIsrael
| | - Chaya Brodie
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-GanIsrael
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-CanadaJerusalemIsrael
| |
Collapse
|
27
|
Peng G, Peng X, Tong T, Zhang X, Xu M, Peng X. Correlation analysis of expression of CC and CXC chemokines in children with autism spectrum disorder. Medicine (Baltimore) 2021; 100:e26391. [PMID: 34128902 PMCID: PMC8213293 DOI: 10.1097/md.0000000000026391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/26/2021] [Indexed: 01/04/2023] Open
Abstract
To investigate the relationship between the expression of CC and CXC chemokines and autism spectrum disorder (ASD).A total of 62 children with ASD (ASD group) and 60 gender- and age-matched normal children (control group) admitted to our hospital from January 2019 to January 2020 were included in the study. Monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α), macrophage inflammatory protein-1β (MIP-1β), regulated upon activation, normal T-cell expressed and secreted (RANTES), interleukin-8 (IL-8), monokine induced by interferon (IFN)-γ (MIG), and purified human interferon-γ-induced protein-10 (IP-10) were detected in the ASD group. The correlation between the above indexes and the severity of the ASD group was analyzed.Significantly increased MCP-1 levels (P < .01) along with the markedly decreased MIP-1α and MIP-1β levels (P < .01) were detected in the venous blood of the ASD group compared with the control group. In addition, they exhibited no significant difference (yet a downward trend) in the level of RANTES (P > .05). Children in the ASD group showed significantly decreased IP-10 levels (P < .01); however, they had no noticeable change (yet a decreasing trend) in the levels of IL-8 and MIG (P > .05). MCP-1 level was positively related to the Module 1 scores of Autism Diagnostic Observation Schedule-second edition (ADOS-2), whereas the levels of Childhood Autism Rating Scale MIP-1α, MIP-1β, IL-8, IP-10, and MIG were negatively correlated with the ADOS-2 Module 1 scores (P < .01). However, no significant correlation was found between RANTES and the ADOS-2 Module 1 scores (P > .05).The levels of CC chemokines (MCP-1, MIP-1α, MIP-1β, and RANTES) and CXC chemokines (IL-8, IP-10, and MIG) are positively correlated with the pathogenesis of ASD. Inflammation is an important contributing factor to ASD.
Collapse
Affiliation(s)
- Guangyang Peng
- Department of Child Rehabilitation, Huanggang Pingan and Rehabilitation Hospital
| | - Xiaofei Peng
- Department of Child Rehabilitation, Huanggang Pingan and Rehabilitation Hospital
| | - Tingting Tong
- Department of Child Rehabilitation, Huanggang Pingan and Rehabilitation Hospital
| | - Xiuyun Zhang
- Department of Child Rehabilitation, Huanggang Pingan and Rehabilitation Hospital
| | - Min Xu
- Department of Child Rehabilitation, Huanggang Pingan and Rehabilitation Hospital
| | - Xiaofang Peng
- Huanggang Central Hospital, Huanggang, Hubei 438000, China
| |
Collapse
|
28
|
Huard A, Do HN, Frank AC, Sirait-Fischer E, Fuhrmann D, Hofmann MCJ, Raue R, Palmer G, Brüne B, de Bruin N, Weigert A. IL-38 Ablation Reduces Local Inflammation and Disease Severity in Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2021; 206:1058-1066. [PMID: 33504620 DOI: 10.4049/jimmunol.2000923] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022]
Abstract
IL-38 is an IL-1 family receptor antagonist that restricts IL-17-driven inflammation by limiting cytokine production from macrophages and T cells. In the current study, we aimed to explore its role in experimental autoimmune encephalomyelitis in mice, which is, among others, driven by IL-17. Unexpectedly, IL-38-deficient mice showed strongly reduced clinical scores and histological markers of experimental autoimmune encephalomyelitis. This was accompanied by reduced inflammatory cell infiltrates, including macrophages and T cells, as well as reduced expression of inflammatory markers in the spinal cord. IL-38 was highly expressed by infiltrating macrophages in the spinal cord, and in vitro activated IL-38-deficient bone marrow-derived macrophages showed reduced expression of inflammatory markers, accompanied by altered cellular metabolism. These data suggest an alternative cell-intrinsic role of IL-38 to promote inflammation in the CNS.
Collapse
Affiliation(s)
- Arnaud Huard
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Hoai Nam Do
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Ann-Christin Frank
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Evelyn Sirait-Fischer
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Dominik Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | | | - Rebecca Raue
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Gaby Palmer
- Department of Pathology-Immunology, University of Geneva School of Medicine, 1211 Geneva, Switzerland; and.,Division of Rheumatology, Department of Medicine, University Hospitals, 1211 Geneva, Switzerland
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology, 65926 Frankfurt, Germany
| | - Natasja de Bruin
- Fraunhofer Institute for Translational Medicine and Pharmacology, 65926 Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany;
| |
Collapse
|
29
|
Papathanasiou E, Conti P, Carinci F, Lauritano D, Theoharides TC. IL-1 Superfamily Members and Periodontal Diseases. J Dent Res 2020; 99:1425-1434. [PMID: 32758110 DOI: 10.1177/0022034520945209] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Periodontitis is a complex, multifactorial chronic disease involving continuous interactions among bacteria, host immune/inflammatory responses, and modifying genetic and environmental factors. More than any other cytokine family, the interleukin (IL)-1 family includes key signaling molecules that trigger and perpetuate periodontal inflammation. Over the years, the IL-1 family expanded to include 11 members of cytokines, some with agonist activity (IL-1α, IL-1β, IL-18, IL-33, IL-36α, IL-36β, and IL-36γ), receptor antagonists (IL-1Ra, IL-36Ra), and 2 anti-inflammatory cytokines (IL-37, IL-38). The IL-1 receptor antagonist (IL-1Ra) has emerged as a pivotal player in the defense against periodontitis. IL-33 primarily induces the production of Th2-associated cytokines but acts as an "alarmin" via stimulation of mast cells. The IL-36 subclass of cytokines may be important in regulating mucosal inflammation and homeostasis. IL-37 suppresses innate and acquired immune responses. IL-38 is the most recent member of the IL-1 superfamily and has anti-inflammatory properties similar to those of IL-37 but through different receptors. However, limited evidence exists regarding the role of IL-37 and IL-38 in periodontitis. Despite the development of IL-1 blocking agents, therapeutic blockade of select IL-1 family members for periodontitis has only been partially investigated in preclinical and clinical research, while the development of IL-37 and IL-38 as novel anti-inflammatory drugs has not been considered adequately. Here, we review the key properties of the IL-1 family members and provide insights into targeting or promoting select cytokines as new therapeutic agents.
Collapse
Affiliation(s)
- E Papathanasiou
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA, USA.,Center for Clinical and Translational Research, Forsyth Institute, Cambridge, MA, USA
| | - P Conti
- Immunology Division, Postgraduate Medical School, University of Chieti, Pescara, Italy
| | - F Carinci
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - D Lauritano
- Department of Medicine and Surgery, Centre of Neuroscience of Milan, University of Milano-Bicocca, Milan, Italy
| | - T C Theoharides
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA.,School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.,Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
| |
Collapse
|