1
|
Liu S, Feng A, Li Z. Neuron-Derived Extracellular Vesicles: Emerging Regulators in Central Nervous System Disease Progression. Mol Neurobiol 2025:10.1007/s12035-025-05010-4. [PMID: 40325332 DOI: 10.1007/s12035-025-05010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
The diagnosis and exploration of central nervous system (CNS) diseases remain challenging due to the blood-brain barrier (BBB), complex signaling pathways, and heterogeneous clinical manifestations. Neurons, as the core functional units of the CNS, play a pivotal role in CNS disease progression. Extracellular vesicles (EVs), capable of crossing the BBB, facilitate intercellular and cell-extracellular matrix (ECM) communication, making neuron-derived extracellular vesicles (NDEVs) a focal point of research. Recent studies reveal that NDEVs, carrying various bioactive substances, can exert either pathogenic or protective effects in numerous CNS diseases. Additionally, NDEVs show significant potential as biomarkers for CNS diseases. This review summarizes the emerging roles of NDEVs in CNS diseases, including Alzheimer's disease, depression, traumatic brain injury, schizophrenia, ischemic stroke, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. It aims to provide a novel perspective on developing therapeutic and diagnostic strategies for CNS diseases through the study of NDEVs.
Collapse
Affiliation(s)
- Sitong Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Aitong Feng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhigang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, 518107, China.
| |
Collapse
|
2
|
Smart A, Singewald K, Hasanbasri Z, Britt RD, Millhauser GL. Identifying the copper coordination environment between interacting neurodegenerative proteins: A new approach using pulsed EPR with 14N/ 15N isotopic labeling. J Biol Chem 2025; 301:108311. [PMID: 39955064 PMCID: PMC11946511 DOI: 10.1016/j.jbc.2025.108311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/21/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
The trafficking and aggregation of neurodegenerative proteins often involve the interaction between intrinsically disordered domains, stabilized by the inclusion of physiological metal ions such as copper or zinc. Characterizing the metal ion coordination environment is critical for assessing the stability and organization of these relevant protein-protein interactions but is challenging given the lack of regular molecular order or global structure. The cellular prion protein (PrPC) binds both monomers and aggregates of Alzheimer's amyloid-beta (Aβ), promoting Aβ internalization and aberrant signaling, respectively. Both proteins bind Cu2+ with high affinity, opening the potential for copper to form an intermolecular bridge. We describe here a novel approach utilizing multiple EPR experiments to investigate the simultaneous Cu2+ coordination of PrPC and Aβ in a 1:1:1 mixture. Uniformly 15N-labeled PrPC is used in conjunction with natural abundance 14N Aβ, the combination of which leads to distinct energy manifolds for paramagnetic Cu2+ and is resolved by the pulsed EPR experiments ESEEM and HYSCORE. We develop acquisition parameters to simultaneously optimize 14N (I = 1) and 15N (I = ½) pulsed EPR signals and we also advance the theory of ESEEM and HYSCORE to quantitatively describe multiple 15N imidazole coordination. This unique approach provides compelling evidence of a copper-stabilized ternary complex, with equatorial Cu2+ coordination formed by one histidine imidazole from Aβ and three from PrP. Moreover, the methodologies developed here provide a framework for assessing the copper environment in other interacting neurodegenerative proteins.
Collapse
Affiliation(s)
- Amanda Smart
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, United States
| | - Kevin Singewald
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, United States
| | - Zikri Hasanbasri
- Department of Chemistry, University of California Davis, Davis, California, United States
| | - R David Britt
- Department of Chemistry, University of California Davis, Davis, California, United States
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, United States.
| |
Collapse
|
3
|
López-Guerrero V, Posadas Y, Sánchez-López C, Smart A, Miranda J, Singewald K, Bandala Y, Juaristi E, Den Auwer C, Perez-Cruz C, González-Mariscal L, Millhauser G, Segovia J, Quintanar L. A Copper-Binding Peptide with Therapeutic Potential against Alzheimer's Disease: From the Blood-Brain Barrier to Metal Competition. ACS Chem Neurosci 2025; 16:241-261. [PMID: 39723808 PMCID: PMC11741003 DOI: 10.1021/acschemneuro.4c00796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia worldwide. AD brains are characterized by the accumulation of amyloid-β peptides (Aβ) that bind Cu2+ and have been associated with several neurotoxic mechanisms. Although the use of copper chelators to prevent the formation of Cu2+-Aβ complexes has been proposed as a therapeutic strategy, recent studies show that copper is an important neuromodulator that is essential for a neuroprotective mechanism mediated by Cu2+ binding to the cellular prion protein (PrPC). Therefore, in addition to metal selectivity and blood-brain barrier (BBB) permeability, an emerging challenge for copper chelators is to prevent the formation of neurotoxic Cu2+-Aβ species without perturbing the neuroprotective Cu2+-PrPC interaction. Previously, we reported the design of a tetrapeptide (TP) that withdraws Cu2+ from Aβ(1-16) and impacts the Cu2+-induced aggregation of Aβ(1-40). In this study, we improved the drug-like properties of TP in a BBB model, evaluated the metal selectivity of the optimized peptide (TP*), and tested its effect on Cu2+ coordination to PrPC and proteins involved in copper trafficking, such as copper transporter 1 and albumin. Our results show that changing the stereochemistry of the first residue prevents TP degradation in the BBB model and coadministration of TP with a peptide that increases BBB permeability allows its passage through the BBB model. TP* is highly selective toward Cu2+ in the presence of Zn2+ ions, transfers Cu2+ to copper-trafficking proteins, and forms a ternary TP*-Cu2+-PrP species that does not perturb the physiological conformation of PrP and displays only a minor impact in the neuroprotective Cu2+-dependent interaction of PrPC with the N-methyl-d-aspartate receptor. Overall, these results show that TP* displays desirable features for a copper chelator with therapeutic potential against AD. Moreover, this is the first study that explores the effect of a Cu2+ chelator with therapeutic potential for AD on Cu2+ coordination to PrPC (an emerging key player in AD pathology), integrating recent knowledge about metalloproteins involved in AD with the design of copper chelators against AD.
Collapse
Affiliation(s)
- Victor
E. López-Guerrero
- Department
of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
- Department
of Chemistry, Center for Research and Advanced
Studies (Cinvestav), Mexico City 07360, Mexico
| | - Yanahi Posadas
- Department
of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
- Department
of Pharmacology, Center for Research and
Advanced Studies (Cinvestav), Mexico
City 07360, Mexico
| | - Carolina Sánchez-López
- Center
for Research in Aging, Center for Research
and Advanced Studies (Cinvestav), Mexico City 14330, Mexico
| | - Amanda Smart
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, 1156, Santa Cruz 95064, United States
| | - Jael Miranda
- Department
of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
| | - Kevin Singewald
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, 1156, Santa Cruz 95064, United States
| | - Yamir Bandala
- Department
of Chemistry, Center for Research and Advanced
Studies (Cinvestav), Mexico City 07360, Mexico
| | - Eusebio Juaristi
- Department
of Chemistry, Center for Research and Advanced
Studies (Cinvestav), Mexico City 07360, Mexico
- El Colegio
Nacional, Mexico City 06020, Mexico
| | | | - Claudia Perez-Cruz
- Department
of Pharmacology, Center for Research and
Advanced Studies (Cinvestav), Mexico
City 07360, Mexico
| | - Lorenza González-Mariscal
- Department
of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
| | - Glenn Millhauser
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, 1156, Santa Cruz 95064, United States
| | - Jose Segovia
- Department
of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
| | - Liliana Quintanar
- Department
of Chemistry, Center for Research and Advanced
Studies (Cinvestav), Mexico City 07360, Mexico
- Center
for Research in Aging, Center for Research
and Advanced Studies (Cinvestav), Mexico City 14330, Mexico
| |
Collapse
|
4
|
Liu Y, Tuttle MD, Kostylev MA, Roseman GP, Zilm KW, Strittmatter SM. Cellular Prion Protein Conformational Shift after Liquid-Liquid Phase Separation Regulated by a Polymeric Antagonist and Mutations. J Am Chem Soc 2024; 146:27903-27914. [PMID: 39326869 PMCID: PMC11469297 DOI: 10.1021/jacs.4c10590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Liquid-liquid phase separation (LLPS) of intrinsically disordered proteins has been associated with neurodegenerative diseases, although direct mechanisms are poorly defined. Here, we report on a maturation process for the cellular prion protein (PrPC) that involves a conformational change after LLPS and is regulated by mutations and poly(4-styrenesulfonic acid-co-maleic acid) (PSCMA), a molecule that has been reported to rescue Alzheimer's disease-related cognitive deficits by antagonizing the interaction between PrPC and amyloid-β oligomers (Aβo). We show that PSCMA can induce reentrant LLPS of PrPC and lower the saturation concentration (Csat) of PrPC by 100-fold. Regardless of the induction method, PrPC molecules subsequently undergo a maturation process to restrict molecular motion in a more solid-like state. The PSCMA-induced LLPS of PrPC stabilizes the intermediate LLPS conformational state detected by NMR, though the final matured β-sheet-rich state of PrPC is indistinguishable between induction conditions. The disease-associated E200 K mutation of PrPC also accelerates maturation. This post-LLPS shift in protein conformation and dynamics is a possible mechanism of LLPS-induced neurodegeneration.
Collapse
Affiliation(s)
- Yangyi Liu
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
- Departments
of Neuroscience and Neurology, Yale School
of Medicine, 100 College Street, New Haven, Connecticut 06510, United States
| | - Marcus D. Tuttle
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Mikhail A. Kostylev
- Departments
of Neuroscience and Neurology, Yale School
of Medicine, 100 College Street, New Haven, Connecticut 06510, United States
| | - Graham P. Roseman
- Departments
of Neuroscience and Neurology, Yale School
of Medicine, 100 College Street, New Haven, Connecticut 06510, United States
| | - Kurt W. Zilm
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Stephen M. Strittmatter
- Departments
of Neuroscience and Neurology, Yale School
of Medicine, 100 College Street, New Haven, Connecticut 06510, United States
| |
Collapse
|
5
|
Zhao Z, Liu M, Duan L, Lin R, Wang L, Zhang P, Li J, Ma B, Yang Y, Bu F, Wang R, Zhou W, Chao D, Zhao Y, Yin S, Tang L, Zhang W, Li X, Zhao D. Ultrafine Asymmetric Soft/Stiff Nanohybrids with Tunable Patchiness via a Dynamic Surface-Mediated Assembly. J Am Chem Soc 2024. [PMID: 39025826 DOI: 10.1021/jacs.4c05072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Asymmetric soft-stiff patch nanohybrids with small size, spatially separated organics and inorganics, controllable configuration, and appealing functionality are important in applications, while the synthesis remains a great challenge. Herein, based on polymeric single micelles (the smallest assembly subunit of mesoporous materials), we report a dynamic surface-mediated anisotropic assembly approach to fabricate a new type of small asymmetric organic/inorganic patch nanohybrid for the first time. The size of this asymmetric organic/inorganic nanohybrid is ∼20 nm, which contains dual distinct subunits of a soft organic PS-PVP-PEO single micelle nanosphere (12 nm in size and 632 MPa in Young' modulus) and stiff inorganic SiO2 nanobulge (∼8 nm, 2275 MPa). Moreover, the number of SiO2 nanobulges anchored on each micelle can be quantitatively controlled (from 1 to 6) by dynamically tuning the density (fluffy or dense state) of the surface cap organic groups. This small asymmetric patch nanohybrid also exhibits a dramatically enhanced uptake level of which the total amount of intracellular endocytosis is about three times higher than that of the conventional nanohybrids.
Collapse
Affiliation(s)
- Zaiwang Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Mengli Liu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Linlin Duan
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Runfeng Lin
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Lipeng Wang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Pengfei Zhang
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Jun Li
- Henan Institute of Advanced Technology, College of Chemistry, Zhengzhou University, Zhengzhou 450052, China
| | - Bing Ma
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yang Yang
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Fanxing Bu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Ruicong Wang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Wanhai Zhou
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongliang Chao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yujuan Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Sixing Yin
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Lei Tang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Weian Zhang
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Xiaomin Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongyuan Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
6
|
Qarawani A, Naaman E, Ben-Zvi Elimelech R, Harel M, Itzkovich C, Safuri S, Dahan N, Henkin J, Zayit-Soudry S. PEDF-derived peptide protects against Amyloid-β toxicity in vitro and prevents retinal dysfunction in rats. Exp Eye Res 2024; 242:109861. [PMID: 38522635 DOI: 10.1016/j.exer.2024.109861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Amyloid-beta (Aβ), a family of aggregation-prone and neurotoxic peptides, has been implicated in the pathophysiology of age-related macular degeneration (AMD). We have previously shown that oligomeric and fibrillar species of Aβ42 exerted retinal toxicity in rats, but while the consequences of exposure to amyloid were related to intracellular effects, the mechanism of Aβ42 internalization in the retina is not well characterized. In the brain, the 67 kDa laminin receptor (67LR) participates in Aβ-related neuronal cell death. A short peptide derived from pigment epithelium-derived factor (PEDF), formerly designated PEDF-335, was found to mitigate experimental models of ischemic retinopathy via targeting of 67LR. In the present study, we hypothesized that 67LR mediates the uptake of pathogenic Aβ42 assemblies in the retina, and that targeting of this receptor by PEDF-335 may limit the internalization of Aβ, thereby ameliorating its retinotoxicity. To test this assumption ARPE-19 cells in culture were incubated with PEDF-335 before treatment with fibrillar or oligomeric structures of Aβ42. Immunostaining confirmed that PEDF-335 treatment substantially prevented amyloid internalization into ARPE-19 cells and maintained their viability in the presence of toxic oligomeric and fibrillar Aβ42 entities in vitro. FRET competition assay was performed and confirmed the binding of PEDF-335 to 67LR in RPE-like cells. Wild-type rats were treated with intravitreal PEDF-335 in the experimental eye 2 days prior to administration of retinotoxic Aβ42 oligomers or fibrils to both eyes. Retinal function was assessed by electroretinography through 6 weeks post injection. The ERG responses in rats treated with oligomeric or fibrillar Aβ42 assemblies were near-normal in eyes previously treated with intravitreal PEDF-335, whereas those measured in the control eyes treated with injection of the Aβ42 assemblies alone showed pathologic attenuation of the retinal function through 6 weeks. The retinal presence of 67LR was determined ex vivo by immunostaining and western blotting. Retinal staining demonstrated the constitutional expression of 67LR mainly in the retinal nuclear layers. In the presence of Aβ42, the levels of 67LR were increased, although its retinal distribution remained largely unaltered. In contrast, no apparent differences in the retinal expression level of 67LR were noted following exposure to PEDF-335 alone, and its pattern of localization in the retina remained similarly concentrated primarily in the inner and outer nuclear layers. In summary, we found that PEDF-335 confers protection against Aβ42-mediated retinal toxicity, with significant effects noted in cells as well as in vivo in rats. The effects of PEDF-335 in the retina are potentially mediated via binding to 67LR and by at least partial inhibition of Aβ42 internalization. These results suggest that PEDF-335 may merit further consideration in the development of targeted inhibition of amyloid-related toxicity in the retina. More broadly, our observations provide evidence on the importance of extracellular versus intracellular Aβ42 in the retina and suggest concepts on the molecular mechanism of Aβ retinal pathogenicity.
Collapse
Affiliation(s)
- Amanda Qarawani
- Clinical Research Institute, Rambam Health Care Campus, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Efrat Naaman
- Clinical Research Institute, Rambam Health Care Campus, Haifa, Israel; Department of Ophthalmology, Rambam Health Care Campus, Haifa, Israel
| | - Rony Ben-Zvi Elimelech
- Clinical Research Institute, Rambam Health Care Campus, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Michal Harel
- Clinical Research Institute, Rambam Health Care Campus, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Chen Itzkovich
- Clinical Research Institute, Rambam Health Care Campus, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Shadi Safuri
- Clinical Research Institute, Rambam Health Care Campus, Haifa, Israel; Department of Ophthalmology, Rambam Health Care Campus, Haifa, Israel
| | - Nitsan Dahan
- Life Sciences and Engineering (LS&E) Infrastructure Center, Technion-Israel Institute of Technology, Haifa, Israel
| | - Jack Henkin
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States
| | - Shiri Zayit-Soudry
- Clinical Research Institute, Rambam Health Care Campus, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel; Department of Ophthalmology, Rambam Health Care Campus, Haifa, Israel.
| |
Collapse
|
7
|
Rinauro DJ, Chiti F, Vendruscolo M, Limbocker R. Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases. Mol Neurodegener 2024; 19:20. [PMID: 38378578 PMCID: PMC10877934 DOI: 10.1186/s13024-023-00651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/17/2023] [Indexed: 02/22/2024] Open
Abstract
The conversion of native peptides and proteins into amyloid aggregates is a hallmark of over 50 human disorders, including Alzheimer's and Parkinson's diseases. Increasing evidence implicates misfolded protein oligomers produced during the amyloid formation process as the primary cytotoxic agents in many of these devastating conditions. In this review, we analyze the processes by which oligomers are formed, their structures, physicochemical properties, population dynamics, and the mechanisms of their cytotoxicity. We then focus on drug discovery strategies that target the formation of oligomers and their ability to disrupt cell physiology and trigger degenerative processes.
Collapse
Affiliation(s)
- Dillon J Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA.
| |
Collapse
|
8
|
Hazari A, Sawaya MR, Sajimon M, Vlahakis N, Rodriguez J, Eisenberg D, Raskatov JA. Racemic Peptides from Amyloid β and Amylin Form Rippled β-Sheets Rather Than Pleated β-Sheets. J Am Chem Soc 2023; 145:25917-25926. [PMID: 37972334 DOI: 10.1021/jacs.3c11712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The rippled β-sheet was theorized by Pauling and Corey in 1953 as a structural motif in which mirror image peptide strands assemble into hydrogen-bonded periodic arrays with strictly alternating chirality. Structural characterization of the rippled β-sheet was limited to biophysical methods until 2022 when atomic resolution structures of the motif were first obtained. The crystal structural foundation is restricted to four model tripeptides composed exclusively of aromatic residues. Here, we report five new rippled sheet crystal structures derived from amyloid β and amylin, the aggregating toxic peptides of Alzheimer's disease and type II diabetes, respectively. Despite the variation in peptide sequence composition, all five structures form antiparallel rippled β-sheets that extend, like a fibril, along the entire length of the crystalline needle. The long-range packing of the crystals, however, varies. In three of the crystals, the sheets pack face-to-face and exclude water, giving rise to cross-β architectures grossly resembling the steric zipper motif of amyloid fibrils but differing in fundamental details. In the other two crystals, the solvent is encapsulated between the sheets, yielding fibril architectures capable of host-guest chemistry. Our study demonstrates that the formation of rippled β-sheets from aggregating racemic peptide mixtures in three-dimensional (3D) assemblies is a general phenomenon and provides a structural basis for targeting intrinsically disordered proteins.
Collapse
Affiliation(s)
- Amaruka Hazari
- Dept. of Chemistry and Biochemistry, UCSC, 1156 High Street, Santa Cruz, California 95064, United States
| | - Michael R Sawaya
- Dept. of Chemistry and Biochemistry, UCLA, 607 Charles E. Young Drive East, Box 951569, Los Angeles, California 90095-1569, United States
| | - Maria Sajimon
- Dept. of Chemistry and Biochemistry, UCSC, 1156 High Street, Santa Cruz, California 95064, United States
| | - Niko Vlahakis
- Dept. of Chemistry and Biochemistry, UCLA, 607 Charles E. Young Drive East, Box 951569, Los Angeles, California 90095-1569, United States
| | - Jose Rodriguez
- Dept. of Chemistry and Biochemistry, UCLA, 607 Charles E. Young Drive East, Box 951569, Los Angeles, California 90095-1569, United States
| | - David Eisenberg
- Dept. of Chemistry and Biochemistry, UCLA, 607 Charles E. Young Drive East, Box 951569, Los Angeles, California 90095-1569, United States
| | - Jevgenij A Raskatov
- Dept. of Chemistry and Biochemistry, UCSC, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
9
|
Viles JH. Imaging Amyloid-β Membrane Interactions: Ion-Channel Pores and Lipid-Bilayer Permeability in Alzheimer's Disease. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202215785. [PMID: 38515735 PMCID: PMC10952214 DOI: 10.1002/ange.202215785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Indexed: 03/08/2023]
Abstract
The accumulation of the amyloid-β peptides (Aβ) is central to the development of Alzheimer's disease. The mechanism by which Aβ triggers a cascade of events that leads to dementia is a topic of intense investigation. Aβ self-associates into a series of complex assemblies with different structural and biophysical properties. It is the interaction of these oligomeric, protofibril and fibrillar assemblies with lipid membranes, or with membrane receptors, that results in membrane permeability and loss of cellular homeostasis, a key event in Alzheimer's disease pathology. Aβ can have an array of impacts on lipid membranes, reports have included: a carpeting effect; a detergent effect; and Aβ ion-channel pore formation. Recent advances imaging these interactions are providing a clearer picture of Aβ induced membrane disruption. Understanding the relationship between different Aβ structures and membrane permeability will inform therapeutics targeting Aβ cytotoxicity.
Collapse
Affiliation(s)
- John H. Viles
- Department of Biochemistry, SBBS, Queen MaryUniversity of LondonUK
| |
Collapse
|
10
|
Viles JH. Imaging Amyloid-β Membrane Interactions: Ion-Channel Pores and Lipid-Bilayer Permeability in Alzheimer's Disease. Angew Chem Int Ed Engl 2023; 62:e202215785. [PMID: 36876912 PMCID: PMC10953358 DOI: 10.1002/anie.202215785] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
The accumulation of the amyloid-β peptides (Aβ) is central to the development of Alzheimer's disease. The mechanism by which Aβ triggers a cascade of events that leads to dementia is a topic of intense investigation. Aβ self-associates into a series of complex assemblies with different structural and biophysical properties. It is the interaction of these oligomeric, protofibril and fibrillar assemblies with lipid membranes, or with membrane receptors, that results in membrane permeability and loss of cellular homeostasis, a key event in Alzheimer's disease pathology. Aβ can have an array of impacts on lipid membranes, reports have included: a carpeting effect; a detergent effect; and Aβ ion-channel pore formation. Recent advances imaging these interactions are providing a clearer picture of Aβ induced membrane disruption. Understanding the relationship between different Aβ structures and membrane permeability will inform therapeutics targeting Aβ cytotoxicity.
Collapse
Affiliation(s)
- John H. Viles
- Department of Biochemistry, SBBS, Queen MaryUniversity of LondonUK
| |
Collapse
|
11
|
Shang P, Simpson JD, Taylor GM, Sutherland DM, Welsh OL, Aravamudhan P, Natividade RDS, Schwab K, Michel JJ, Poholek AC, Wu Y, Rajasundaram D, Koehler M, Alsteens D, Dermody TS. Paired immunoglobulin-like receptor B is an entry receptor for mammalian orthoreovirus. Nat Commun 2023; 14:2615. [PMID: 37147336 PMCID: PMC10163058 DOI: 10.1038/s41467-023-38327-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
Mammalian orthoreovirus (reovirus) infects most mammals and is associated with celiac disease in humans. In mice, reovirus infects the intestine and disseminates systemically to cause serotype-specific patterns of disease in the brain. To identify receptors conferring reovirus serotype-dependent neuropathogenesis, we conducted a genome-wide CRISPRa screen and identified paired immunoglobulin-like receptor B (PirB) as a receptor candidate. Ectopic expression of PirB allowed reovirus binding and infection. PirB extracelluar D3D4 region is required for reovirus attachment and infectivity. Reovirus binds to PirB with nM affinity as determined by single molecule force spectroscopy. Efficient reovirus endocytosis requires PirB signaling motifs. In inoculated mice, PirB is required for maximal replication in the brain and full neuropathogenicity of neurotropic serotype 3 (T3) reovirus. In primary cortical neurons, PirB expression contributes to T3 reovirus infectivity. Thus, PirB is an entry receptor for reovirus and contributes to T3 reovirus replication and pathogenesis in the murine brain.
Collapse
Affiliation(s)
- Pengcheng Shang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Joshua D Simpson
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Gwen M Taylor
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Danica M Sutherland
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Olivia L Welsh
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Pavithra Aravamudhan
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Rita Dos Santos Natividade
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Kristina Schwab
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joshua J Michel
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amanda C Poholek
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yijen Wu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Melanie Koehler
- Leibniz Institute for Food Systems Biology at the Technical University Munich, Freising, Germany
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Terence S Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Sim KY, Byeon Y, Bae SE, Yang T, Lee CR, Park SG. Mycoplasma fermentans infection induces human necrotic neuronal cell death via IFITM3-mediated amyloid-β (1-42) deposition. Sci Rep 2023; 13:6864. [PMID: 37100873 PMCID: PMC10132800 DOI: 10.1038/s41598-023-34105-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/24/2023] [Indexed: 04/28/2023] Open
Abstract
Mycoplasma fermentans is a proposed risk factor of several neurological diseases that has been detected in necrotic brain lesions of acquired immunodeficiency syndrome patients, implying brain invasiveness. However, the pathogenic roles of M. fermentans in neuronal cells have not been investigated. In this study, we found that M. fermentans can infect and replicate in human neuronal cells, inducing necrotic cell death. Necrotic neuronal cell death was accompanied by intracellular amyloid-β (1-42) deposition, and targeted depletion of amyloid precursor protein by a short hairpin RNA (shRNA) abolished necrotic neuronal cell death. Differential gene expression analysis by RNA sequencing (RNA-seq) showed that interferon-induced transmembrane protein 3 (IFITM3) was dramatically upregulated by M. fermentans infection, and knockdown of IFITM3 abolished both amyloid-β (1-42) deposition and necrotic cell death. A toll-like receptor 4 antagonist inhibited M. fermentans infection-mediated IFITM3 upregulation. M. fermentans infection also induced necrotic neuronal cell death in the brain organoid. Thus, neuronal cell infection by M. fermentans directly induces necrotic cell death through IFITM3-mediated amyloid-β deposition. Our results suggest that M. fermentans is involved in neurological disease development and progression through necrotic neuronal cell death.
Collapse
Affiliation(s)
- Kyu-Young Sim
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Yeongseon Byeon
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - So-Eun Bae
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Taewoo Yang
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Cho-Rong Lee
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sung-Gyoo Park
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Zhang L, Su Y, Liang X, Cao K, Luo Q, Luo H. Ultrasensitive and point-of-care detection of plasma phosphorylated tau in Alzheimer's disease using colorimetric and surface-enhanced Raman scattering dual-readout lateral flow assay. NANO RESEARCH 2023; 16:7459-7469. [PMID: 37223429 PMCID: PMC9971675 DOI: 10.1007/s12274-022-5354-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 05/25/2023]
Abstract
Phosphorylation of tau at Ser (396, 404) (p-tau396,404) is one of the earliest phosphorylation events, and plasma p-tau396,404 level appears to be a potentially promising biomarker of Alzheimer's disease (AD). The low abundance and easy degradation of p-tau in the plasma make the lateral flow assay (LFA) a suitable choice for point-of-care detection of plasma p-tau396,404 levels. Herein, based on our screening of a pair of p-tau396,404-specific antibodies, we developed a colorimetric and surface-enhanced Raman scattering (SERS) dual-readout LFA for the rapid, highly sensitive, and robust detection of plasma p-tau396,404 levels. This LFA realized a detection limit of 60 pg/mL by the naked eye or 3.8 pg/mL by SERS without cross-reacting with other tau species. More importantly, LFA rapidly and accurately differentiated AD patients from healthy controls, suggesting that it has the potential for clinical point-of-care application in AD diagnosis. This dual-readout LFA has the advantages of simple operation, rapid, and ultra-sensitive detection, providing a new way for early AD diagnosis and intervention, especially in primary and community AD screening. Electronic Supplementary Material Supplementary material (characterization of AuNPs and 4-MBA@AuNP probe; the optimal 4-MBA load for AuNPs; the optimal K2CO3 volumes for 4-MBA@AuNP-3G5 conjugates; the optimal 3G5 load for 4-MBA@AuNP conjugates; effect of NaCl concentration on 4-MBA@AuNP-3G5 stability; the linear curve of T-line color and SERS intensity versus different p-tau396,404 concentrations; the comparison of colorimetric-based LFA test results and the diagnosis results; Raman intensities and antibody activity of 4-MBA@AuNP-3G5 before and after storage; colorimetric intensity of dual-readout LFA detecting different concentrations of p-tau396,404 protein; sequence of synthesized peptides used in this study; information of the participants in this study; the information of antibodies used in this study) is available in the online version of this article at 10.1007/s12274-022-5354-4.
Collapse
Affiliation(s)
- Liding Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Ying Su
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Xiaohan Liang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Kai Cao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Qingming Luo
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228 China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, Jiangsu Industrial Technology Research Institute (JITRI), Suzhou, 215123 China
| | - Haiming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074 China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, Jiangsu Industrial Technology Research Institute (JITRI), Suzhou, 215123 China
| |
Collapse
|
14
|
Cellular prion protein offers neuroprotection in astrocytes submitted to amyloid β oligomer toxicity. Mol Cell Biochem 2022:10.1007/s11010-022-04631-w. [PMID: 36576715 DOI: 10.1007/s11010-022-04631-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022]
Abstract
The cellular prion protein (PrPC), in its native conformation, performs numerous cellular and cognitive functions in brain tissue. However, despite the cellular prion research in recent years, there are still questions about its participation in oxidative and neurodegenerative processes. This study aims to elucidate the involvement of PrPC in the neuroprotection cascade in the presence of oxidative stressors. For that, astrocytes from wild-type mice and knockout to PrPC were subjected to the induction of oxidative stress with hydrogen peroxide (H2O2) and with the toxic oligomer of the amyloid β protein (AβO). We observed that the presence of PrPC showed resistance in the cell viability of astrocytes. It was also possible to monitor changes in basic levels of metals and associate them with an induced damage condition, indicating the precise role of PrPC in metal homeostasis, where the absence of PrPC leads to metallic unbalance, culminating in cellular vulnerability to oxidative stress. Increased caspase 3, p-Tau, p53, and Bcl2 may establish a relationship between a PrPC and an induced damage condition. Complementarily, it has been shown that PrPC prevents the internalization of AβO and promotes its degradation under oxidative stress induction, thus preventing protein aggregation in astrocytes. It was also observed that the presence of PrPC can be related to translocating SOD1 to cell nuclei under oxidative stress, probably controlling DNA damage. The results of this study suggest that PrPC acts against oxidative stress activating the cellular response and defense by displaying neuroprotection to neurons and ensuring the functionality of astrocytes.
Collapse
|
15
|
Muacevic A, Adler JR. Mitogen Activated Protein Kinase (MAPK) Activation, p53, and Autophagy Inhibition Characterize the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike Protein Induced Neurotoxicity. Cureus 2022; 14:e32361. [PMID: 36514706 PMCID: PMC9733976 DOI: 10.7759/cureus.32361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and prions use common pathogenic pathways to induce toxicity in neurons. Infectious prions rapidly activate the p38 mitogen activated protein kinase (MAPK) pathway, and SARS-CoV-2 spike proteins rapidly activate both the p38 MAPK and c-Jun NH2-terminal kinase (JNK) pathways through toll-like receptor signaling, indicating the potential for similar neurotoxicity, causing prion and prion-like disease. In this review, we analyze the roles of autophagy inhibition, molecular mimicry, elevated intracellular p53 levels and reduced Wild-type p53-induced phosphatase 1 (Wip1) and dual-specificity phosphatase (DUSP) expression in neurons in the disease process. The pathways induced by the spike protein via toll-like receptor activation induce both the upregulation of PrPC (the normal isoform of the prion protein, PrP) and the expression of β amyloid. Through the spike-protein-dependent elevation of p53 levels via β amyloid metabolism, increased PrPC expression can lead to PrP misfolding and impaired autophagy, generating prion disease. We conclude that, according to the age of the spike protein-exposed patient and the state of their cellular autophagy activity, excess sustained activity of p53 in neurons may be a catalytic factor in neurodegeneration. An autoimmune reaction via molecular mimicry likely also contributes to neurological symptoms. Overall results suggest that neurodegeneration is in part due to the intensity and duration of spike protein exposure, patient advanced age, cellular autophagy activity, and activation, function and regulation of p53. Finally, the neurologically damaging effects can be cumulatively spike-protein dependent, whether exposure is by natural infection or, more substantially, by repeated mRNA vaccination.
Collapse
|
16
|
Chikugo A, Irie Y, Tsukano C, Uchino A, Maki T, Kume T, Kawase T, Hirose K, Kageyama Y, Tooyama I, Irie K. Optimization of the Linker Length in the Dimer Model of E22P-Aβ40 Tethered at Position 38. ACS Chem Neurosci 2022; 13:2913-2923. [PMID: 36095282 DOI: 10.1021/acschemneuro.2c00436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Since amyloid β (Aβ) oligomers are more cytotoxic than fibrils, various dimer models have been synthesized. We focused on the C-terminal region that could form a hydrophobic core in the aggregation process and identified a toxic conformer-restricted dimer model (E22P,G38DAP-Aβ40 dimer) with an l,l-2,6-diaminopimelic acid linker (n = 3) at position 38, which exhibited moderate cytotoxicity. We synthesized four additional linkers (n = 2, 4, 5, 7) to determine the most appropriate distance between the two Aβ40 monomers for a toxic dimer model. Each di-Fmoc-protected two-valent amino acid was synthesized from a corresponding dialdehyde or cycloalkene followed by ozonolysis, using a Horner-Wadsworth-Emmons reaction and asymmetric hydrogenation. Then, the corresponding Aβ40 dimer models with these linkers at position 38 were synthesized using the solid-phase Fmoc strategy. Their cytotoxicity toward SH-SY5Y cells suggested that the shorter the linker length, the stronger the cytotoxicity. Particularly, the E22P,G38DAA-Aβ40 dimer (n = 2) formed protofibrillar aggregates and exhibited the highest cytotoxicity, equivalent to E22P-Aβ42, the most cytotoxic analogue of Aβ42. Ion mobility-mass spectrometry (IM-MS) measurement indicated that all dimer models except the E22P,G38DAA-Aβ40 dimer existed as stable oligomers (12-24-mer). NativePAGE analysis supported the IM-MS data, but larger oligomers (30-150-mer) were also detected after a 24 h incubation. Moreover, E22P,G38DAA-Aβ40, E22P,G38DAP-Aβ40, and E22P,G38DAZ-Aβ40 (n = 5) dimers suppressed long-term potentiation (LTP). Overall, the ability to form fibrils with cross β-sheet structures was key to achieving cytotoxicity, and forming stable oligomers less than 150-mer did not correlate with cytotoxicity and LTP suppression.
Collapse
Affiliation(s)
- Ayaka Chikugo
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto606-8502, Japan
| | - Yumi Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto606-8502, Japan
| | - Chihiro Tsukano
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto606-8502, Japan
| | - Ayumi Uchino
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto606-8502, Japan
| | - Takahito Maki
- Department of Applied Pharmacology, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, Toyama930-0194, Japan
| | - Toshiaki Kume
- Department of Applied Pharmacology, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, Toyama930-0194, Japan
| | | | | | - Yusuke Kageyama
- Molecular Neuroscience Research Center, Shiga University of Medical Sciences, Shiga520-2192, Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Sciences, Shiga520-2192, Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto606-8502, Japan
| |
Collapse
|
17
|
Hazari A, Sawaya MR, Vlahakis N, Johnstone TC, Boyer D, Rodriguez J, Eisenberg D, Raskatov JA. The rippled β-sheet layer configuration-a novel supramolecular architecture based on predictions by Pauling and Corey. Chem Sci 2022; 13:8947-8952. [PMID: 36091211 PMCID: PMC9365095 DOI: 10.1039/d2sc02531k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022] Open
Abstract
The rippled β-sheet is a peptidic structural motif related to but distinct from the pleated β-sheet. Both motifs were predicted in the 1950s by Pauling and Corey. The pleated β-sheet was since observed in countless proteins and peptides and is considered common textbook knowledge. Conversely, the rippled β-sheet only gained a meaningful experimental foundation in the past decade, and the first crystal structural study of rippled β-sheets was published as recently as this year. Noteworthy, the crystallized assembly stopped at the rippled β-dimer stage. It did not form the extended, periodic rippled β-sheet layer topography hypothesized by Pauling and Corey, thus calling the validity of their prediction into question. NMR work conducted since moreover shows that certain model peptides rather form pleated and not rippled β-sheets in solution. To determine whether the periodic rippled β-sheet layer configuration is viable, the field urgently needs crystal structures. Here we report on crystal structures of two racemic and one quasi-racemic aggregating peptide systems, all of which yield periodic rippled antiparallel β-sheet layers that are in excellent agreement with the predictions by Pauling and Corey. Our study establishes the rippled β-sheet layer configuration as a motif with general features and opens the road to structure-based design of unique supramolecular architectures.
Collapse
Affiliation(s)
- Amaruka Hazari
- Dept. of Chemistry and Biochemistry, UCSC 1156 High Street Santa Cruz CA 95064 USA
| | - Michael R Sawaya
- Dept. of Chemistry and Biochemistry, UCLA 607 Charles E. Young Drive East Box 951569 Los Angeles CA 90095-1569 USA
| | - Niko Vlahakis
- Dept. of Chemistry and Biochemistry, UCLA 607 Charles E. Young Drive East Box 951569 Los Angeles CA 90095-1569 USA
| | - Timothy C Johnstone
- Dept. of Chemistry and Biochemistry, UCSC 1156 High Street Santa Cruz CA 95064 USA
| | - David Boyer
- Dept. of Chemistry and Biochemistry, UCLA 607 Charles E. Young Drive East Box 951569 Los Angeles CA 90095-1569 USA
| | - Jose Rodriguez
- Dept. of Chemistry and Biochemistry, UCLA 607 Charles E. Young Drive East Box 951569 Los Angeles CA 90095-1569 USA
| | - David Eisenberg
- Dept. of Chemistry and Biochemistry, UCLA 607 Charles E. Young Drive East Box 951569 Los Angeles CA 90095-1569 USA
| | - Jevgenij A Raskatov
- Dept. of Chemistry and Biochemistry, UCSC 1156 High Street Santa Cruz CA 95064 USA
| |
Collapse
|
18
|
Shafiq M, Da Vela S, Amin L, Younas N, Harris DA, Zerr I, Altmeppen HC, Svergun D, Glatzel M. The prion protein and its ligands: Insights into structure-function relationships. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119240. [PMID: 35192891 DOI: 10.1016/j.bbamcr.2022.119240] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The prion protein is a multifunctional protein that exists in at least two different folding states. It is subject to diverse proteolytic processing steps that lead to prion protein fragments some of which are membrane-bound whereas others are soluble. A multitude of ligands bind to the prion protein and besides proteinaceous binding partners, interaction with metal ions and nucleic acids occurs. Although of great importance, information on structural and functional consequences of prion protein binding to its partners is limited. Here, we will reflect on the structure-function relationship of the prion protein and its binding partners considering the different folding states and prion protein fragments.
Collapse
Affiliation(s)
- Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Stefano Da Vela
- European Molecular Biology Laboratory (EMBL), Hamburg c/o German Electron Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Ladan Amin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Neelam Younas
- Department of Neurology, University Medical Center Goettingen, Robert-Koch-str. 40, 37075 Goettingen, Germany
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Inga Zerr
- Department of Neurology, University Medical Center Goettingen, Robert-Koch-str. 40, 37075 Goettingen, Germany
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg c/o German Electron Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany.
| |
Collapse
|
19
|
Foley AR, Raskatov J. AN ENANTIOMERIC FRAGMENT PAIR (EFP) APPROACH FOR THE STUDY OF CELLULAR UPTAKE OF INTRINSICALLY DISORDERED PROTEINS. Chembiochem 2022; 23:e202200146. [PMID: 35417609 DOI: 10.1002/cbic.202200146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/10/2022] [Indexed: 11/10/2022]
Abstract
The study of intrinsically disordered and amyloidogenic proteins poses a major challenge to researchers: the propensity of the system to aggregate and to form amyloid fibrils and deposits . This intrinsic nature limits the way amyloids can be studied and increases the level of complexity of the techniques needed to study the system of interest. Recent reports suggest that cellular recognition and internalization of pre-fibrillary species of amyloidogenic peptides and proteins may initiate some of its toxic actions. Therefore, developing novels tools to facilitate the understanding and determination of the interactions between intrinsically disordered proteins and the cellular membrane is becoming increasingly valuable. Here, we present and propose an approach for the study of the interactions of intrinsically disordered proteins with the cellular surface based on the use of enantiomeric fragment pairs (EFPs). By following a stepwise methodology in which the amyloidogenic peptide or protein is fragmented into specific segments, we show how this approach can be exploited to differentiate between different types of cellular uptake, to determine the degree of receptor-mediated cellular internalization of intrinsically disordered peptides and proteins, and to pinpoint the specific regions within the amino acid sequence responsible for the cellular recognition. Adopting this approach overcomes aggregation-related challenges and offers a particularly well-suited platform for the elucidation of receptor-intermediated recognition, uptake, and toxicity.
Collapse
Affiliation(s)
| | - Jevgenij Raskatov
- UCSC, Chemistry and Biochemistry, 1156 High Street, 95064, Santa Cruz, UNITED STATES
| |
Collapse
|
20
|
Mohammadi B, Song F, Matamoros-Angles A, Shafiq M, Damme M, Puig B, Glatzel M, Altmeppen HC. Anchorless risk or released benefit? An updated view on the ADAM10-mediated shedding of the prion protein. Cell Tissue Res 2022; 392:215-234. [PMID: 35084572 PMCID: PMC10113312 DOI: 10.1007/s00441-022-03582-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022]
Abstract
The prion protein (PrP) is a broadly expressed glycoprotein linked with a multitude of (suggested) biological and pathological implications. Some of these roles seem to be due to constitutively generated proteolytic fragments of the protein. Among them is a soluble PrP form, which is released from the surface of neurons and other cell types by action of the metalloprotease ADAM10 in a process termed 'shedding'. The latter aspect is the focus of this review, which aims to provide a comprehensive overview on (i) the relevance of proteolytic processing in regulating cellular PrP functions, (ii) currently described involvement of shed PrP in neurodegenerative diseases (including prion diseases and Alzheimer's disease), (iii) shed PrP's expected roles in intercellular communication in many more (patho)physiological conditions (such as stroke, cancer or immune responses), (iv) and the need for improved research tools in respective (future) studies. Deeper mechanistic insight into roles played by PrP shedding and its resulting fragment may pave the way for improved diagnostics and future therapeutic approaches in diseases of the brain and beyond.
Collapse
Affiliation(s)
- Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Working Group for Interdisciplinary Neurobiology and Immunology (INI Research), Hamburg, Germany
| | - Feizhi Song
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Andreu Matamoros-Angles
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Markus Damme
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Berta Puig
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | |
Collapse
|
21
|
Kuhn AJ, Ehlke B, Johnstone TC, Oliver SRJ, Raskatov JA. A crystal-structural study of Pauling-Corey rippled sheets. Chem Sci 2022; 13:671-680. [PMID: 35173931 PMCID: PMC8768883 DOI: 10.1039/d1sc05731f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
Following the seminal theoretical work on the pleated β-sheet published by Pauling and Corey in 1951, the rippled β-sheet was hypothesized by the same authors in 1953. In the pleated β-sheet the interacting β-strands have the same chirality, whereas in the rippled β-sheet the interacting β-strands are mirror-images. Unlike with the pleated β-sheet that is now common textbook knowledge, the rippled β-sheet has been much slower to evolve. Much of the experimental work on rippled sheets came from groups that study aggregating racemic peptide systems over the course of the past decade. This includes MAX1/DMAX hydrogels (Schneider), L/D-KFE8 aggregating systems (Nilsson), and racemic Amyloid β mixtures (Raskatov). Whether a racemic peptide mixture is “ripple-genic” (i.e., whether it forms a rippled sheet) or “pleat-genic” (i.e., whether it forms a pleated sheet) is likely governed by a complex interplay of thermodynamic and kinetic effects. Structural insights into rippled sheets remain limited to only a very few studies that combined sparse experimental structural constraints with molecular modeling. Crystal structures of rippled sheets are needed so we can rationally design rippled sheet architectures. Here we report a high-resolution crystal structure, in which (l,l,l)-triphenylalanine and (d,d,d)-triphenylalanine form dimeric antiparallel rippled sheets, which pack into herringbone layer structures. The arrangements of the tripeptides and their mirror-images in the individual dimers were in excellent agreement with the theoretical predictions by Pauling and Corey. A subsequent mining of the PDB identified three orphaned rippled sheets among racemic protein crystal structures. Following the seminal theoretical work on the pleated β-sheet published by Pauling and Corey in 1951, the rippled β-sheet was hypothesized by the same authors in 1953.![]()
Collapse
Affiliation(s)
- Ariel J Kuhn
- Dept. of Chemistry and Biochemistry, UCSC 1156 High Street Santa Cruz California USA
| | - Beatriz Ehlke
- Dept. of Chemistry and Biochemistry, UCSC 1156 High Street Santa Cruz California USA
| | - Timothy C Johnstone
- Dept. of Chemistry and Biochemistry, UCSC 1156 High Street Santa Cruz California USA
| | - Scott R J Oliver
- Dept. of Chemistry and Biochemistry, UCSC 1156 High Street Santa Cruz California USA
| | - Jevgenij A Raskatov
- Dept. of Chemistry and Biochemistry, UCSC 1156 High Street Santa Cruz California USA
| |
Collapse
|
22
|
Linsenmeier L, Mohammadi B, Shafiq M, Frontzek K, Bär J, Shrivastava AN, Damme M, Song F, Schwarz A, Da Vela S, Massignan T, Jung S, Correia A, Schmitz M, Puig B, Hornemann S, Zerr I, Tatzelt J, Biasini E, Saftig P, Schweizer M, Svergun D, Amin L, Mazzola F, Varani L, Thapa S, Gilch S, Schätzl H, Harris DA, Triller A, Mikhaylova M, Aguzzi A, Altmeppen HC, Glatzel M. Ligands binding to the prion protein induce its proteolytic release with therapeutic potential in neurodegenerative proteinopathies. SCIENCE ADVANCES 2021; 7:eabj1826. [PMID: 34818048 PMCID: PMC8612689 DOI: 10.1126/sciadv.abj1826] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/20/2021] [Indexed: 05/07/2023]
Abstract
The prion protein (PrPC) is a central player in neurodegenerative diseases, such as prion diseases or Alzheimer’s disease. In contrast to disease-promoting cell surface PrPC, extracellular fragments act neuroprotective by blocking neurotoxic disease-associated protein conformers. Fittingly, PrPC release by the metalloprotease ADAM10 represents a protective mechanism. We used biochemical, cell biological, morphological, and structural methods to investigate mechanisms stimulating this proteolytic shedding. Shed PrP negatively correlates with prion conversion and is markedly redistributed in murine brain in the presence of prion deposits or amyloid plaques, indicating a sequestrating activity. PrP-directed ligands cause structural changes in PrPC and increased shedding in cells and organotypic brain slice cultures. As an exception, some PrP-directed antibodies targeting repetitive epitopes do not cause shedding but surface clustering, endocytosis, and degradation of PrPC. Both mechanisms may contribute to beneficial actions described for PrP-directed ligands and pave the way for new therapeutic strategies against currently incurable neurodegenerative diseases.
Collapse
Affiliation(s)
- Luise Linsenmeier
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Karl Frontzek
- Institute of Neuropathology, University of Zurich, Zürich, Switzerland
| | - Julia Bär
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Molecular Neurobiology Hamburg (ZMNH), UKE, Hamburg, Germany
| | - Amulya N. Shrivastava
- École Normale Supérieure, Institut de Biologie de l’ENS (IBENS), INSERM, CNRS, PSL Research University, Paris, France
| | - Markus Damme
- Institute of Biochemistry, Christian Albrechts University, Kiel, Germany
| | - Feizhi Song
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Alexander Schwarz
- Institute of Nanostructure and Solid State Physics, Universität Hamburg, Hamburg, Germany
| | - Stefano Da Vela
- European Molecular Biology Laboratory (EMBL), Hamburg, Germany
| | - Tania Massignan
- Dulbecco Telethon Laboratory of Prions and Amyloids, CIBIO, University of Trento, Trento, Italy
| | - Sebastian Jung
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Angela Correia
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Berta Puig
- Department of Neurology, Experimental Research in Stroke and Inflammation, UKE, Hamburg, Germany
| | - Simone Hornemann
- Institute of Neuropathology, University of Zurich, Zürich, Switzerland
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| | - Emiliano Biasini
- Dulbecco Telethon Laboratory of Prions and Amyloids, CIBIO, University of Trento, Trento, Italy
| | - Paul Saftig
- Institute of Biochemistry, Christian Albrechts University, Kiel, Germany
| | | | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg, Germany
| | - Ladan Amin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Federica Mazzola
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Simrika Thapa
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada
| | - Sabine Gilch
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada
| | - Hermann Schätzl
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada
| | - David A. Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Antoine Triller
- École Normale Supérieure, Institut de Biologie de l’ENS (IBENS), INSERM, CNRS, PSL Research University, Paris, France
| | - Marina Mikhaylova
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Molecular Neurobiology Hamburg (ZMNH), UKE, Hamburg, Germany
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zürich, Switzerland
| | - Hermann C. Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
23
|
Foley AR, Raskatov JA. Understanding and controlling amyloid aggregation with chirality. Curr Opin Chem Biol 2021; 64:1-9. [PMID: 33610939 PMCID: PMC8368077 DOI: 10.1016/j.cbpa.2021.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 12/22/2022]
Abstract
Amyloid aggregation and human disease are inextricably linked. Examples include Alzheimer disease, Parkinson disease, and type II diabetes. While seminal advances on the mechanistic understanding of these diseases have been made over the last decades, controlling amyloid fibril formation still represents a challenge, and it is a subject of active research. In this regard, chiral modifications have increasingly been proved to offer a particularly well-suited approach toward accessing to previously unknown aggregation pathways and to provide with novel insights on the biological mechanisms of action of amyloidogenic peptides and proteins. Here, we summarize recent advances on how the use of mirror-image peptides/proteins and d-amino acid incorporations have helped modulate amyloid aggregation, offered new mechanistic tools to study cellular interactions, and allowed us to identify key positions within the peptide/protein sequence that influence amyloid fibril growth and toxicity.
Collapse
Affiliation(s)
- Alejandro R Foley
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Jevgenij A Raskatov
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
24
|
Zhang L, Yang C, Li Y, Niu S, Liang X, Zhang Z, Luo Q, Luo H. Dynamic Changes in the Levels of Amyloid-β 42 Species in the Brain and Periphery of APP/PS1 Mice and Their Significance for Alzheimer's Disease. Front Mol Neurosci 2021; 14:723317. [PMID: 34512259 PMCID: PMC8430227 DOI: 10.3389/fnmol.2021.723317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Although amyloid-β42 (Aβ42) has been used as one of the core biomarkers for Alzheimer’s disease (AD) diagnosis, the dynamic changes of its different forms in the brain, blood, and even intestines and its correlation with the progression of AD disease remain obscure. Herein, we screened Aβ42-specific preferred antibody pairs 1F12/1F12 and 1F12/2C6 to accurately detect Aβ42 types using sandwich ELISA, including total Aβ42, Aβ42 oligomers (Aβ42Os), and Aβ42 monomers (Aβ42Ms). The levels of Aβ42 species in the brain, blood, and intestines of different aged APP/PS1 mice were quantified to study their correlation with AD progression. Total Aβ42 levels in the blood were not correlated with AD progression, but Aβ42Ms level in the blood of 9-month-old APP/PS1 mice was significantly reduced, and Aβ42Os level in the brain was significantly elevated compared to 3-month-old APP/PS1, demonstrating that the levels of Aβ42Ms and Aβ42Os in the blood and brain were correlated with AD progression. Interestingly, in 9-month-old APP/PS1 mice, the level of Aβ42 in the intestine was higher than that in 3-month-old APP/PS1 mice, indicating that the increased level of Aβ42 in the gastrointestinal organs may also be related to the progression of AD. Meanwhile, changes in the gut microbiota composition of APP/PS1 mice with age were also observed. Therefore, the increase in Aβ derived from intestinal tissues and changes in microbiome composition can be used as a potential early diagnosis tool for AD, and further used as an indicator of drug intervention to reduce brain amyloid.
Collapse
Affiliation(s)
- Liding Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Changwen Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqing Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Shiqi Niu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohan Liang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihong Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.,School of Biomedical Engineering, Hainan University, Haikou, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.,School of Biomedical Engineering, Hainan University, Haikou, China
| | - Haiming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Zhang S, Guaglianone G, Morris MA, Yoo S, Howitz WJ, Xing L, Zheng JG, Jusuf H, Huizar G, Lin J, Kreutzer AG, Nowick JS. Expression of N-Terminal Cysteine Aβ 42 and Conjugation to Generate Fluorescent and Biotinylated Aβ 42. Biochemistry 2021; 60:1191-1200. [PMID: 33793198 PMCID: PMC9059633 DOI: 10.1021/acs.biochem.1c00105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluorescent derivatives of the β-amyloid peptides (Aβ) are valuable tools for studying the interactions of Aβ with cells. Facile access to labeled expressed Aβ offers the promise of Aβ with greater sequence and stereochemical integrity, without impurities from amino acid deletion and epimerization. Here, we report methods for the expression of Aβ42 with an N-terminal cysteine residue, Aβ(C1-42), and its conjugation to generate Aβ42 bearing fluorophores or biotin. The methods rely on the hitherto unrecognized observation that expression of the Aβ(MC1-42) gene yields the Aβ(C1-42) peptide, because the N-terminal methionine is endogenously excised by Escherichia coli. Conjugation of Aβ(C1-42) with maleimide-functionalized fluorophores or biotin affords the N-terminally labeled Aβ42. The expression affords ∼14 mg of N-terminal cysteine Aβ from 1 L of bacterial culture. Subsequent conjugation affords ∼3 mg of labeled Aβ from 1 L of bacterial culture with minimal cost for labeling reagents. High-performance liquid chromatography analysis indicates the N-terminal cysteine Aβ to be >97% pure and labeled Aβ peptides to be 94-97% pure. Biophysical studies show that the labeled Aβ peptides behave like unlabeled Aβ and suggest that labeling of the N-terminus does not substantially alter the properties of the Aβ. We further demonstrate applications of the fluorophore-labeled Aβ peptides by using fluorescence microscopy to visualize their interactions with mammalian cells and bacteria. We anticipate that these methods will provide researchers convenient access to useful N-terminally labeled Aβ, as well as Aβ with an N-terminal cysteine that enables further functionalization.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Chemistry, University of California-Irvine, Irvine, California 92697-2025, United States
| | - Gretchen Guaglianone
- Department of Chemistry, University of California-Irvine, Irvine, California 92697-2025, United States
| | - Michael A. Morris
- Department of Chemistry, University of California-Irvine, Irvine, California 92697-2025, United States
| | - Stan Yoo
- Department of Chemistry, University of California-Irvine, Irvine, California 92697-2025, United States
| | - William J. Howitz
- Department of Chemistry, University of California-Irvine, Irvine, California 92697-2025, United States
| | - Li Xing
- Irvine Materials Research Institute (IMRI), University of California-Irvine, Irvine, California 92697-2575, United States
| | - Jian-Guo Zheng
- Irvine Materials Research Institute (IMRI), University of California-Irvine, Irvine, California 92697-2575, United States
| | - Hannah Jusuf
- Department of Chemistry, University of California-Irvine, Irvine, California 92697-2025, United States
| | - Grace Huizar
- Department of Chemistry, University of California-Irvine, Irvine, California 92697-2025, United States
| | - Jonathan Lin
- Department of Chemistry, University of California-Irvine, Irvine, California 92697-2025, United States
| | - Adam G. Kreutzer
- Department of Chemistry, University of California-Irvine, Irvine, California 92697-2025, United States
| | - James S. Nowick
- Department of Chemistry, University of California-Irvine, Irvine, California 92697-2025, United States
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|