1
|
Gaul E, Spyrou MA. Historical plague pandemics: perspectives from ancient DNA. Trends Microbiol 2025; 33:7-10. [PMID: 39613690 DOI: 10.1016/j.tim.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 12/01/2024]
Abstract
Ancient DNA research has provided important insights into the evolutionary history of Yersinia pestis during the historical plague pandemics. Future work should prioritise a more diversified approach to sampling, to ensure a broader understanding of the factors underlying pandemic onset, spread, and impact across different regions and hosts.
Collapse
Affiliation(s)
- Emily Gaul
- Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Maria A Spyrou
- Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany; Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
2
|
Mongillo J, Zedda N, Rinaldo N, Bellini T, Manfrinato MC, Du Z, Yang R, Stenseth NC, Bramanti B. Differential pathogenicity and lethality of bubonic plague (1720-1945) by sex, age and place. Proc Biol Sci 2024; 291:20240724. [PMID: 39045692 PMCID: PMC11267469 DOI: 10.1098/rspb.2024.0724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
COVID-19 brought back to the attention of the scientific community that males are more susceptible to infectious diseases. What is clear for other infections-that sex and gender differences influence both risk of infection and mortality-is not yet fully elucidated for plague, particularly bubonic plague, although this knowledge can help find specific defences against a disease for which a vaccine is not yet available. To address this question, we analysed data on plague from hospitals in different parts of the world since the early eighteenth century, which provide demographic information on individual patients, diagnosis and course of the disease in the pre-antibiotic era. Assuming that the two sexes were equally represented, we observe a worldwide prevalence of male cases hospitalized at any age, a result which seems better explained by gender-biased (thus cultural) behaviours than biological sex-related factors. Conversely, case fatality rates differ among countries and geographic macro-areas, while globally, lethality appears slightly prevalent in young females and older adults (regardless of sex). Logistic regression models confirm that the main risk factor for bubonic plague death was the geographical location of the cases and being older than 50 years, whereas sex only showcased a slight trend.
Collapse
Affiliation(s)
- J. Mongillo
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara44121, Italy
| | - N. Zedda
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara44121, Italy
| | - N. Rinaldo
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara44121, Italy
| | - T. Bellini
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara44121, Italy
- University Strategic Center for Studies on Gender Medicine, University of Ferrara, Ferrara44121, Italy
| | - M. C. Manfrinato
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara44121, Italy
| | - Z. Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People‘s Republic of China
| | - R. Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People‘s Republic of China
| | - N. C. Stenseth
- Center for Pandemics and One Health Research, Sustainable Health Unit (SUSTAINIT), Faculty of Medicine, University of Oslo, Oslo0316, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo0316, Norway
- Vanke School of Public Health, Tsinghua University, Beijing100084, People‘s Republic of China
| | - B. Bramanti
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara44121, Italy
- University Strategic Center for Studies on Gender Medicine, University of Ferrara, Ferrara44121, Italy
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo0316, Norway
| |
Collapse
|
3
|
Alfani G, Bonetti M, Fochesato M. Pandemics and socio-economic status. Evidence from the plague of 1630 in northern Italy. POPULATION STUDIES 2024; 78:21-42. [PMID: 37161858 DOI: 10.1080/00324728.2023.2197412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/22/2022] [Indexed: 05/11/2023]
Abstract
This paper investigates the biological, socio-economic, and institutional factors shaping the individual risk of death during a major pre-industrial epidemic. We use a micro-demographic database for an Italian city (Carmagnola) during the 1630 plague to explore in detail the survival dynamics of the population admitted to the isolation hospital (lazzaretto). We develop a theoretical model of admissions to the lazzaretto, for better interpretation of the observational data. We explore how age and sex shaped the individual risk of death, and we provide a one-of-a-kind study of the impact of socio-economic status. We report an inversion of the normal mortality gradient by status for those interned at the lazzaretto. The rich enjoyed a greater ability to make decisions about their hospitalization, but this backfired. Instead, the poor sent to the lazzaretto faced a relatively low risk of death because they enjoyed better conditions than they would have experienced outside the hospital.
Collapse
|
4
|
Jackson I, Woodman P, Dowd M, Fibiger L, Cassidy LM. Ancient Genomes From Bronze Age Remains Reveal Deep Diversity and Recent Adaptive Episodes for Human Oral Pathobionts. Mol Biol Evol 2024; 41:msae017. [PMID: 38533900 PMCID: PMC10966897 DOI: 10.1093/molbev/msae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 03/28/2024] Open
Abstract
Ancient microbial genomes can illuminate pathobiont evolution across millenia, with teeth providing a rich substrate. However, the characterization of prehistoric oral pathobiont diversity is limited. In Europe, only preagricultural genomes have been subject to phylogenetic analysis, with none compared to more recent archaeological periods. Here, we report well-preserved microbiomes from two 4,000-year-old teeth from an Irish limestone cave. These contained bacteria implicated in periodontitis, as well as Streptococcus mutans, the major cause of caries and rare in the ancient genomic record. Despite deriving from the same individual, these teeth produced divergent Tannerella forsythia genomes, indicating higher levels of strain diversity in prehistoric populations. We find evidence of microbiome dysbiosis, with a disproportionate quantity of S. mutans sequences relative to other oral streptococci. This high abundance allowed for metagenomic assembly, resulting in its first reported ancient genome. Phylogenetic analysis indicates major postmedieval population expansions for both species, highlighting the inordinate impact of recent dietary changes. In T. forsythia, this expansion is associated with the replacement of older lineages, possibly reflecting a genome-wide selective sweep. Accordingly, we see dramatic changes in T. forsythia's virulence repertoire across this period. S. mutans shows a contrasting pattern, with deeply divergent lineages persisting in modern populations. This may be due to its highly recombining nature, allowing for maintenance of diversity through selective episodes. Nonetheless, an explosion in recent coalescences and significantly shorter branch lengths separating bacteriocin-carrying strains indicate major changes in S. mutans demography and function coinciding with sugar popularization during the industrial period.
Collapse
Affiliation(s)
- Iseult Jackson
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
- The SFI Centre for Research Training in Genomics Data Science, University of Galway, Galway, Ireland
| | - Peter Woodman
- Department of Archaeology, University College Cork, Cork, Ireland
| | - Marion Dowd
- Faculty of Science, Atlantic Technological University, Sligo, Ireland
| | - Linda Fibiger
- School of History, Classics and Archaeology, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Lara M Cassidy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
5
|
Bennasar-Figueras A. The Natural and Clinical History of Plague: From the Ancient Pandemics to Modern Insights. Microorganisms 2024; 12:146. [PMID: 38257973 PMCID: PMC10818976 DOI: 10.3390/microorganisms12010146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The human pathogen Yersinia pestis is responsible for bubonic, septicemic, and pneumonic plague. A deeply comprehensive overview of its historical context, bacteriological characteristics, genomic analysis based on ancient DNA (aDNA) and modern strains, and its impact on historical and actual human populations, is explored. The results from multiple studies have been synthesized to investigate the origins of plague, its transmission, and effects on different populations. Additionally, molecular interactions of Y. pestis, from its evolutionary origins to its adaptation to flea-born transmission, and its impact on human and wild populations are considered. The characteristic combinations of aDNA patterns, which plays a decisive role in the reconstruction and analysis of ancient genomes, are reviewed. Bioinformatics is fundamental in identifying specific Y. pestis lineages, and automated pipelines are among the valuable tools in implementing such studies. Plague, which remains among human history's most lethal infectious diseases, but also other zoonotic diseases, requires the continuous investigation of plague topics. This can be achieved by improving molecular and genetic screening of animal populations, identifying ecological and social determinants of outbreaks, increasing interdisciplinary collaborations among scientists and public healthcare providers, and continued research into the characterization, diagnosis, and treatment of these diseases.
Collapse
Affiliation(s)
- Antoni Bennasar-Figueras
- Microbiologia—Departament de Biologia, Universitat de les Illes Balears (UIB), Campus UIB, Carretera de Valldemossa, Km 7.5, 07122 Palma de Mallorca, Spain; ; Tel.: +34-971172778
- Facultat de Medicina, Hospital Universitari Son Espases (HUSE), Universitat de les Illes Balears (UIB), Carretera de Valldemossa, 79, 07122 Palma de Mallorca, Spain
| |
Collapse
|
6
|
Parker CE, Hiss AN, Spyrou MA, Neumann GU, Slavin P, Nelson EA, Nagel S, Dalidowski X, Friederich S, Krause J, Herbig A, Haak W, Bos KI. 14th century Yersinia pestis genomes support emergence of pestis secunda within Europe. PLoS Pathog 2023; 19:e1011404. [PMID: 37463152 PMCID: PMC10414589 DOI: 10.1371/journal.ppat.1011404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/10/2023] [Accepted: 05/04/2023] [Indexed: 07/20/2023] Open
Abstract
Pestis secunda (1356-1366 CE) is the first of a series of plague outbreaks in Europe that followed the Black Death (1346-1353 CE). Collectively this period is called the Second Pandemic. From a genomic perspective, the majority of post-Black Death strains of Yersinia pestis thus far identified in Europe display diversity accumulated over a period of centuries that form a terminal sub-branch of the Y. pestis phylogeny. It has been debated if these strains arose from local evolution of Y. pestis or if the disease was repeatedly reintroduced from an external source. Plague lineages descended from the pestis secunda, however, are thought to have persisted in non-human reservoirs outside Europe, where they eventually gave rise to the Third Pandemic (19th and 20th centuries). Resolution of competing hypotheses on the origins of the many post-Black Death outbreaks has been hindered in part by the low representation of Y. pestis genomes in archaeological specimens, especially for the pestis secunda. Here we report on five individuals from Germany that were infected with lineages of plague associated with the pestis secunda. For the two genomes of high coverage, one groups within the known diversity of genotypes associated with the pestis secunda, while the second carries an ancestral genotype that places it earlier. Through consideration of historical sources that explore first documentation of the pandemic in today's Central Germany, we argue that these data provide robust evidence to support a post-Black Death evolution of the pathogen within Europe rather than a re-introduction from outside. Additionally, we demonstrate retrievability of Y. pestis DNA in post-cranial remains and highlight the importance of hypothesis-free pathogen screening approaches in evaluations of archaeological samples.
Collapse
Affiliation(s)
- Cody E. Parker
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Alina N. Hiss
- Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Maria A. Spyrou
- Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institute for Achaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Gunnar U. Neumann
- Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Philip Slavin
- Division of History, Heritage and Politics, University of Stirling, Stirling, Scotland, United Kingdom
| | | | - Sarah Nagel
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Xandra Dalidowski
- Landesamt für Denkmalpflege und Archäologie, Sachsen-Anhalt, Halle (Saale), Germany
| | - Susanne Friederich
- Landesamt für Denkmalpflege und Archäologie, Sachsen-Anhalt, Halle (Saale), Germany
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Alexander Herbig
- Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Wolfgang Haak
- Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kirsten I. Bos
- Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
7
|
Clavel P, Louis L, Sarkissian CD, Thèves C, Gillet C, Chauvey L, Tressières G, Schiavinato S, Calvière-Tonasso L, Telmon N, Clavel B, Jonvel R, Tzortzis S, Bouniol L, Fémolant JM, Klunk J, Poinar H, Signoli M, Costedoat C, Spyrou MA, Seguin-Orlando A, Orlando L. Improving the extraction of ancient Yersinia pestis genomes from the dental pulp. iScience 2023; 26:106787. [PMID: 37250315 PMCID: PMC10214834 DOI: 10.1016/j.isci.2023.106787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/11/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Ancient DNA preserved in the dental pulp offers the opportunity to characterize the genome of some of the deadliest pathogens in human history. However, while DNA capture technologies help, focus sequencing efforts, and therefore, reduce experimental costs, the recovery of ancient pathogen DNA remains challenging. Here, we tracked the kinetics of ancient Yersinia pestis DNA release in solution during a pre-digestion of the dental pulp. We found that most of the ancient Y. pestis DNA is released within 60 min at 37°C in our experimental conditions. We recommend a simple pre-digestion as an economical procedure to obtain extracts enriched in ancient pathogen DNA, as longer digestion times release other types of templates, including host DNA. Combining this procedure with DNA capture, we characterized the genome sequences of 12 ancient Y. pestis bacteria from France dating to the second pandemic outbreaks of the 17th and 18th centuries Common Era.
Collapse
Affiliation(s)
- Pierre Clavel
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Lexane Louis
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Clio Der Sarkissian
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Catherine Thèves
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Claudia Gillet
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Lorelei Chauvey
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Gaétan Tressières
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Stéphanie Schiavinato
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Laure Calvière-Tonasso
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Norbert Telmon
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Benoît Clavel
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements (AASPE), CNRS-UMR7209, Muséum national d’histoire naturelle, 55 Rue Buffon, 75005 Paris, France
| | - Richard Jonvel
- Amiens Métropole Service Archéologie Préventive, 2 rue Colbert, 80000 Amiens, France
| | - Stéfan Tzortzis
- Service Régional de l’Archéologie, 21 allée Claude Forbin, 13100 Aix-en-Provence, France
| | - Laetitia Bouniol
- Service archéologique de la ville de Beauvais, 1 rue Desgroux, 60021 Beauvais, France
| | - Jean-Marc Fémolant
- Service archéologique de la ville de Beauvais, 1 rue Desgroux, 60021 Beauvais, France
| | | | - Hendrik Poinar
- McMaster Ancient DNA Centre, Departments of Anthropology, Biology and Biochemistry, McMaster University, Hamilton, ON L8S 4L9, Canada
- Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S, 4L9, Canada
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| | - Michel Signoli
- Aix-Marseille Université, CNRS, EFS, ADES, 13005 Marseille, France
| | | | - Maria A. Spyrou
- Institute for Archaeological Sciences, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Andaine Seguin-Orlando
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Ludovic Orlando
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| |
Collapse
|
8
|
Plagued by a cryptic clock: insight and issues from the global phylogeny of Yersinia pestis. Commun Biol 2023; 6:23. [PMID: 36658311 PMCID: PMC9852431 DOI: 10.1038/s42003-022-04394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/21/2022] [Indexed: 01/21/2023] Open
Abstract
Plague has an enigmatic history as a zoonotic pathogen. This infectious disease will unexpectedly appear in human populations and disappear just as suddenly. As a result, a long-standing line of inquiry has been to estimate when and where plague appeared in the past. However, there have been significant disparities between phylogenetic studies of the causative bacterium, Yersinia pestis, regarding the timing and geographic origins of its reemergence. Here, we curate and contextualize an updated phylogeny of Y. pestis using 601 genome sequences sampled globally. Through a detailed Bayesian evaluation of temporal signal in subsets of these data we demonstrate that a Y. pestis-wide molecular clock is unstable. To resolve this, we developed a new approach in which each Y. pestis population was assessed independently, enabling us to recover substantial temporal signal in five populations, including the ancient pandemic lineages which we now estimate may have emerged decades, or even centuries, before a pandemic was historically documented from European sources. Despite this methodological advancement, we only obtain robust divergence dates from populations sampled over a period of at least 90 years, indicating that genetic evidence alone is insufficient for accurately reconstructing the timing and spread of short-term plague epidemics.
Collapse
|
9
|
Yang R, Atkinson S, Chen Z, Cui Y, Du Z, Han Y, Sebbane F, Slavin P, Song Y, Yan Y, Wu Y, Xu L, Zhang C, Zhang Y, Hinnebusch BJ, Stenseth NC, Motin VL. Yersinia pestis and Plague: some knowns and unknowns. ZOONOSES (BURLINGTON, MASS.) 2023; 3:5. [PMID: 37602146 PMCID: PMC10438918 DOI: 10.15212/zoonoses-2022-0040] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Since its first identification in 1894 during the third pandemic in Hong Kong, there has been significant progress of understanding the lifestyle of Yersinia pestis, the pathogen that is responsible for plague. Although we now have some understanding of the pathogen's physiology, genetics, genomics, evolution, gene regulation, pathogenesis and immunity, there are many unknown aspects of the pathogen and its disease development. Here, we focus on some of the knowns and unknowns relating to Y. pestis and plague. We notably focus on some key Y. pestis physiological and virulence traits that are important for its mammal-flea-mammal life cycle but also its emergence from the enteropathogen Yersinia pseudotuberculosis. Some aspects of the genetic diversity of Y. pestis, the distribution and ecology of plague as well as the medical countermeasures to protect our population are also provided. Lastly, we present some biosafety and biosecurity information related to Y. pestis and plague.
Collapse
Affiliation(s)
- Ruifu Yang
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Steve Atkinson
- School of Life Sciences, Centre for Biomolecular Science, University of Nottingham, Nottingham, United Kingdom
| | - Ziqi Chen
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Yujun Cui
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Zongmin Du
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yanping Han
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Florent Sebbane
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Philip Slavin
- Division of History and Politics, University of Stirling, Stirling FK9 4LJ, UK
| | - Yajun Song
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yanfeng Yan
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yarong Wu
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Lei Xu
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Chutian Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yun Zhang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - B. Joseph Hinnebusch
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Nils Chr. Stenseth
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Vladimir L. Motin
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
10
|
No evidence for persistent natural plague reservoirs in historical and modern Europe. Proc Natl Acad Sci U S A 2022; 119:e2209816119. [PMID: 36508668 PMCID: PMC9907128 DOI: 10.1073/pnas.2209816119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Caused by Yersinia pestis, plague ravaged the world through three known pandemics: the First or the Justinianic (6th-8th century); the Second (beginning with the Black Death during c.1338-1353 and lasting until the 19th century); and the Third (which became global in 1894). It is debatable whether Y. pestis persisted in European wildlife reservoirs or was repeatedly introduced from outside Europe (as covered by European Union and the British Isles). Here, we analyze environmental data (soil characteristics and climate) from active Chinese plague reservoirs to assess whether such environmental conditions in Europe had ever supported "natural plague reservoirs". We have used new statistical methods which are validated through predicting the presence of modern plague reservoirs in the western United States. We find no support for persistent natural plague reservoirs in either historical or modern Europe. Two factors make Europe unfavorable for long-term plague reservoirs: 1) Soil texture and biochemistry and 2) low rodent diversity. By comparing rodent communities in Europe with those in China and the United States, we conclude that a lack of suitable host species might be the main reason for the absence of plague reservoirs in Europe today. These findings support the hypothesis that long-term plague reservoirs did not exist in Europe and therefore question the importance of wildlife rodent species as the primary plague hosts in Europe.
Collapse
|
11
|
Spyrou MA, Musralina L, Gnecchi Ruscone GA, Kocher A, Borbone PG, Khartanovich VI, Buzhilova A, Djansugurova L, Bos KI, Kühnert D, Haak W, Slavin P, Krause J. The source of the Black Death in fourteenth-century central Eurasia. Nature 2022; 606:718-724. [PMID: 35705810 PMCID: PMC9217749 DOI: 10.1038/s41586-022-04800-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 04/25/2022] [Indexed: 12/20/2022]
Abstract
The origin of the medieval Black Death pandemic (AD 1346-1353) has been a topic of continuous investigation because of the pandemic's extensive demographic impact and long-lasting consequences1,2. Until now, the most debated archaeological evidence potentially associated with the pandemic's initiation derives from cemeteries located near Lake Issyk-Kul of modern-day Kyrgyzstan1,3-9. These sites are thought to have housed victims of a fourteenth-century epidemic as tombstone inscriptions directly dated to 1338-1339 state 'pestilence' as the cause of death for the buried individuals9. Here we report ancient DNA data from seven individuals exhumed from two of these cemeteries, Kara-Djigach and Burana. Our synthesis of archaeological, historical and ancient genomic data shows a clear involvement of the plague bacterium Yersinia pestis in this epidemic event. Two reconstructed ancient Y. pestis genomes represent a single strain and are identified as the most recent common ancestor of a major diversification commonly associated with the pandemic's emergence, here dated to the first half of the fourteenth century. Comparisons with present-day diversity from Y. pestis reservoirs in the extended Tian Shan region support a local emergence of the recovered ancient strain. Through multiple lines of evidence, our data support an early fourteenth-century source of the second plague pandemic in central Eurasia.
Collapse
Affiliation(s)
- Maria A Spyrou
- Institute for Archaeological Sciences, Eberhard Karls University of Tübingen, Tübingen, Germany.
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany.
| | - Lyazzat Musralina
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
- Laboratory of Population Genetics, Institute of Genetics and Physiology, Almaty, Kazakhstan
- Kazakh National University by al-Farabi, Almaty, Kazakhstan
| | - Guido A Gnecchi Ruscone
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Arthur Kocher
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
- Transmission, Infection, Diversification & Evolution Group, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Pier-Giorgio Borbone
- Department of Civilisations and Forms of Knowledge, University of Pisa, Pisa, Italy
| | - Valeri I Khartanovich
- Department of Physical Anthropology, Kunstkamera, Peter the Great Museum of Anthropology and Ethnography, Russian Academy of Sciences, St Petersburg, Russian Federation
| | - Alexandra Buzhilova
- Research Institute and Museum of Anthropology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Leyla Djansugurova
- Laboratory of Population Genetics, Institute of Genetics and Physiology, Almaty, Kazakhstan
| | - Kirsten I Bos
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Denise Kühnert
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
- Transmission, Infection, Diversification & Evolution Group, Max Planck Institute for the Science of Human History, Jena, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Philip Slavin
- Division of History, Heritage and Politics, University of Stirling, Stirling, UK.
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany.
| |
Collapse
|
12
|
Stone Age Yersinia pestis genomes shed light on the early evolution, diversity, and ecology of plague. Proc Natl Acad Sci U S A 2022; 119:e2116722119. [PMID: 35412864 PMCID: PMC9169917 DOI: 10.1073/pnas.2116722119] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The bacterium Yersinia pestis has caused numerous historically documented outbreaks of plague and research using ancient DNA could demonstrate that it already affected human populations during the Neolithic. However, the pathogen’s genetic diversity, geographic spread, and transmission dynamics during this early period of Y. pestis evolution are largely unexplored. Here, we describe a set of ancient plague genomes up to 5,000 y old from across Eurasia. Our data demonstrate that two genetically distinct forms of Y. pestis evolved in parallel and were both distributed across vast geographic distances, potentially occupying different ecological niches. Interpreted within the archeological context, our results suggest that the spread of plague during this period was linked to increased human mobility and intensification of animal husbandry. The bacterial pathogen Yersinia pestis gave rise to devastating outbreaks throughout human history, and ancient DNA evidence has shown it afflicted human populations as far back as the Neolithic. Y. pestis genomes recovered from the Eurasian Late Neolithic/Early Bronze Age (LNBA) period have uncovered key evolutionary steps that led to its emergence from a Yersinia pseudotuberculosis-like progenitor; however, the number of reconstructed LNBA genomes are too few to explore its diversity during this critical period of development. Here, we present 17 Y. pestis genomes dating to 5,000 to 2,500 y BP from a wide geographic expanse across Eurasia. This increased dataset enabled us to explore correlations between temporal, geographical, and genetic distance. Our results suggest a nonflea-adapted and potentially extinct single lineage that persisted over millennia without significant parallel diversification, accompanied by rapid dispersal across continents throughout this period, a trend not observed in other pathogens for which ancient genomes are available. A stepwise pattern of gene loss provides further clues on its early evolution and potential adaptation. We also discover the presence of the flea-adapted form of Y. pestis in Bronze Age Iberia, previously only identified in in the Caucasus and the Volga regions, suggesting a much wider geographic spread of this form of Y. pestis. Together, these data reveal the dynamic nature of plague’s formative years in terms of its early evolution and ecology.
Collapse
|
13
|
Preventive Measures against Pandemics from the Beginning of Civilization to Nowadays—How Everything Has Remained the Same over the Millennia. J Clin Med 2022; 11:jcm11071960. [PMID: 35407571 PMCID: PMC8999828 DOI: 10.3390/jcm11071960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023] Open
Abstract
As of 27 March 2022, the β-coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 487 million individuals worldwide, causing more than 6.14 million deaths. SARS-CoV-2 spreads through close contact, causing the coronavirus disease 2019 (COVID-19); thus, emergency lockdowns have been implemented worldwide to avoid its spread. COVID-19 is not the first infectious disease that humankind has had to face during its history. Indeed, humans have recurrently been threatened by several emerging pathogens that killed a substantial fraction of the population. Historical sources document that as early as between the 10th and the 6th centuries BCE, the authorities prescribed physical–social isolation, physical distancing, and quarantine of the infected subjects until the end of the disease, measures that strongly resemble containment measures taken nowadays. In this review, we show a historical and literary overview of different epidemic diseases and how the recommendations in the pre-vaccine era were, and still are, effective in containing the contagion.
Collapse
|
14
|
Barbieri R, Nodari R, Signoli M, Epis S, Raoult D, Drancourt M. Differential word expression analyses highlight plague dynamics during the second pandemic. ROYAL SOCIETY OPEN SCIENCE 2022; 9:210039. [PMID: 35070338 PMCID: PMC8728171 DOI: 10.1098/rsos.210039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Research on the second plague pandemic that swept over Europe from the fourteenth to nineteenth centuries mainly relies on the exegesis of contemporary texts and is prone to interpretive bias. By leveraging certain bioinformatic tools routinely used in biology, we developed a quantitative lexicography of 32 texts describing two major plague outbreaks, using contemporary plague-unrelated texts as negative controls. Nested, network and category analyses of a 207-word pan-lexicome, comprising overrepresented terms in plague-related texts, indicated that 'buboes' and 'carbuncles' are words that were significantly associated with the plague and signalled an ectoparasite-borne plague. Moreover, plague-related words were associated with the terms 'merchandise', 'movable', 'tatters', 'bed' and 'clothes'. Analysing ancient texts using the method reported in this paper can certify plague-related historical records and indicate the particularities of each plague outbreak, which can inform on the potential sources for the causative Yersinia pestis.
Collapse
Affiliation(s)
- Rémi Barbieri
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille 13005, France
- UMR 7268, Anthropologie bioculturelle, Droit, Ethique et Santé, Aix Marseille Univ, 11 CNRS, EFS, ADES, Marseille 13344, France
- IHU Méditerranée Infection, Marseille 13005, France
| | - Riccardo Nodari
- Department of Biosciences and Pediatric Clinical Research Center ‘Romeo and Enrica Invernizzi’, University of Milan, Milan 20133, Italy
| | - Michel Signoli
- UMR 7268, Anthropologie bioculturelle, Droit, Ethique et Santé, Aix Marseille Univ, 11 CNRS, EFS, ADES, Marseille 13344, France
| | - Sara Epis
- Department of Biosciences and Pediatric Clinical Research Center ‘Romeo and Enrica Invernizzi’, University of Milan, Milan 20133, Italy
| | - Didier Raoult
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille 13005, France
- IHU Méditerranée Infection, Marseille 13005, France
| | - Michel Drancourt
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille 13005, France
- IHU Méditerranée Infection, Marseille 13005, France
| |
Collapse
|
15
|
Abstract
Like modern metagenomics, ancient metagenomics is a highly data-rich discipline, with the added challenge that the DNA of interest is degraded and, depending on the sample type, in low abundance. This requires the application of specialized measures during molecular experiments and computational analyses. Furthermore, researchers often work with finite sample sizes, which impedes optimal experimental design and control of confounding factors, and with ethically sensitive samples necessitating the consideration of additional guidelines. In September 2020, early career researchers in the field of ancient metagenomics met (Standards, Precautions & Advances in Ancient Metagenomics 2 [SPAAM2] community meeting) to discuss the state of the field and how to address current challenges. Here, in an effort to bridge the gap between ancient and modern metagenomics, we highlight and reflect upon some common misconceptions, provide a brief overview of the challenges in our field, and point toward useful resources for potential reviewers and newcomers to the field.
Collapse
|
16
|
Guellil M, Rinaldo N, Zedda N, Kersten O, Gonzalez Muro X, Stenseth NC, Gualdi-Russo E, Bramanti B. Bioarchaeological insights into the last plague of Imola (1630-1632). Sci Rep 2021; 11:22253. [PMID: 34782694 PMCID: PMC8593082 DOI: 10.1038/s41598-021-98214-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/31/2021] [Indexed: 12/30/2022] Open
Abstract
The plague of 1630-1632 was one of the deadliest plague epidemics to ever hit Northern Italy, and for many of the affected regions, it was also the last. While accounts on plague during the early 1630s in Florence and Milan are frequent, much less is known about the city of Imola. We analyzed the full skeletal assemblage of four mass graves (n = 133 individuals) at the Lazaretto dell'Osservanza, which date back to the outbreak of 1630-1632 in Imola and evaluated our results by integrating new archival sources. The skeletons showed little evidence of physical trauma and were covered by multiple layers of lime, which is characteristic for epidemic mass mortality sites. We screened 15 teeth for Yersinia pestis aDNA and were able to confirm the presence of plague in Imola via metagenomic analysis. Additionally, we studied a contemporaneous register, in which a friar recorded patient outcomes at the lazaretto during the last year of the epidemic. Our multidisciplinary approach combining historical, osteological and genomic data provided a unique opportunity to reconstruct an in-depth picture of the last plague of Imola through the city's main lazaretto.
Collapse
Affiliation(s)
- Meriam Guellil
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316, Oslo, Norway.
- Institute of Genomics, Estonian Biocentre, University of Tartu, 51010, Tartu, Estonia.
| | - Natascia Rinaldo
- Department of Neuroscience and Rehabilitation, Faculty of Medicine, Pharmacy and Prevention, University of Ferrara, 44121, Ferrara, Italy.
| | - Nicoletta Zedda
- Department of Neuroscience and Rehabilitation, Faculty of Medicine, Pharmacy and Prevention, University of Ferrara, 44121, Ferrara, Italy
| | - Oliver Kersten
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | | | - Nils Chr Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Emanuela Gualdi-Russo
- Department of Neuroscience and Rehabilitation, Faculty of Medicine, Pharmacy and Prevention, University of Ferrara, 44121, Ferrara, Italy
| | - Barbara Bramanti
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316, Oslo, Norway.
- Department of Neuroscience and Rehabilitation, Faculty of Medicine, Pharmacy and Prevention, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
17
|
Bramanti B, Wu Y, Yang R, Cui Y, Stenseth NC. Assessing the origins of the European Plagues following the Black Death: A synthesis of genomic, historical, and ecological information. Proc Natl Acad Sci U S A 2021; 118:e2101940118. [PMID: 34465619 PMCID: PMC8433512 DOI: 10.1073/pnas.2101940118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The second plague pandemic started in Europe with the Black Death in 1346 and lasted until the 19th century. Based on ancient DNA studies, there is a scientific disagreement over whether the bacterium, Yersinia pestis, came into Europe once (Hypothesis 1) or repeatedly over the following four centuries (Hypothesis 2). Here, we synthesize the most updated phylogeny together with historical, archeological, evolutionary, and ecological information. On the basis of this holistic view, we conclude that Hypothesis 2 is the most plausible. We also suggest that Y. pestis lineages might have developed attenuated virulence during transmission, which can explain the convergent evolutionary signals, including pla decay, that appeared at the end of the pandemics.
Collapse
Affiliation(s)
- Barbara Bramanti
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway;
- Department of Neuroscience and Rehabilitation, Faculty of Medicine, Pharmacy and Prevention, University of Ferrara, 44121 Ferrara, Italy
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China;
| | - Nils Chr Stenseth
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway;
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Seguin-Orlando A, Costedoat C, Der Sarkissian C, Tzortzis S, Kamel C, Telmon N, Dalén L, Thèves C, Signoli M, Orlando L. No particular genomic features underpin the dramatic economic consequences of 17 th century plague epidemics in Italy. iScience 2021; 24:102383. [PMID: 33981971 PMCID: PMC8082092 DOI: 10.1016/j.isci.2021.102383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/25/2021] [Accepted: 03/29/2021] [Indexed: 10/26/2022] Open
Abstract
The 17th century plague epidemic had a particularly strong demographic toll in Southern Europe, especially Italy, where it caused long-lasting economical damage. Whether this resulted from ineffective sanitation measures or more pathogenic Yersinia pestis strains remains unknown. DNA screening of 26 skeletons from the 1629-1630 plague cemetery of Lariey (French Alps) identified two teeth rich in plague genetic material. Further sequencing revealed two Y. pestis genomes phylogenetically closest to those from the 1636 outbreak of San Procolo a Naturno, Italy. They both belonged to a cluster extending from the Alps to Northern Germany that probably propagated during the Thirty Years war. Sequence variation did not support faster evolutionary rates in the Italian genomes and revealed only rare private non-synonymous mutations not affecting virulence genes. This, and the more heterogeneous spatial diffusion of the epidemic outside Italy, suggests environmental or social rather than biological causes for the severe Italian epidemic trajectory.
Collapse
Affiliation(s)
- Andaine Seguin-Orlando
- Centre for Anthropobiology and Genomics of Toulouse CAGT, UMR 5288, CNRS, Université Toulouse III Paul Sabatier, Faculté de Médecine Purpan, Bâtiment A, 37 allées Jules Guesde, 31000 Toulouse, France
- Institute for Advanced Study in Toulouse IAST, Université Toulouse I Capitole, Esplanade de l’Université, 31080 Toulouse cedex 06, France
| | - Caroline Costedoat
- Anthropologie bio-culturelle, droit, éthique et santé ADES, UMR 7268 CNRS EFS, Aix-Marseille Université, Faculté de Médecine, Secteur Nord Bâtiment A CS80011, Boulevard Pierre Dramard, 13344 Marseille Cedex 15, France
| | - Clio Der Sarkissian
- Centre for Anthropobiology and Genomics of Toulouse CAGT, UMR 5288, CNRS, Université Toulouse III Paul Sabatier, Faculté de Médecine Purpan, Bâtiment A, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Stéfan Tzortzis
- Ministère de la Culture et de la Communication, Direction Régionale des Affaires Culturelles de PACA, Service Régional de l’Archéologie, 23 bd du Roi René, 13617 Aix-en-Provence cedex, France
| | - Célia Kamel
- Anthropologie bio-culturelle, droit, éthique et santé ADES, UMR 7268 CNRS EFS, Aix-Marseille Université, Faculté de Médecine, Secteur Nord Bâtiment A CS80011, Boulevard Pierre Dramard, 13344 Marseille Cedex 15, France
| | - Norbert Telmon
- Centre for Anthropobiology and Genomics of Toulouse CAGT, UMR 5288, CNRS, Université Toulouse III Paul Sabatier, Faculté de Médecine Purpan, Bâtiment A, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden
| | - Catherine Thèves
- Centre for Anthropobiology and Genomics of Toulouse CAGT, UMR 5288, CNRS, Université Toulouse III Paul Sabatier, Faculté de Médecine Purpan, Bâtiment A, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Michel Signoli
- Anthropologie bio-culturelle, droit, éthique et santé ADES, UMR 7268 CNRS EFS, Aix-Marseille Université, Faculté de Médecine, Secteur Nord Bâtiment A CS80011, Boulevard Pierre Dramard, 13344 Marseille Cedex 15, France
| | - Ludovic Orlando
- Centre for Anthropobiology and Genomics of Toulouse CAGT, UMR 5288, CNRS, Université Toulouse III Paul Sabatier, Faculté de Médecine Purpan, Bâtiment A, 37 allées Jules Guesde, 31000 Toulouse, France
| |
Collapse
|
19
|
Charters E, Heitman K. How epidemics end. CENTAURUS; INTERNATIONAL MAGAZINE OF THE HISTORY OF SCIENCE AND MEDICINE 2021; 63:210-224. [PMID: 33821019 PMCID: PMC8014506 DOI: 10.1111/1600-0498.12370] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
As COVID-19 drags on and new vaccines promise widespread immunity, the world's attention has turned to predicting how the present pandemic will end. How do societies know when an epidemic is over and normal life can resume? What criteria and markers indicate such an end? Who has the insight, authority, and credibility to decipher these signs? Detailed research on past epidemics has demonstrated that they do not end suddenly; indeed, only rarely do the diseases in question actually end. This article examines the ways in which scholars have identified and described the end stages of previous epidemics, pointing out that significantly less attention has been paid to these periods than to origins and climaxes. Analysis of the ends of epidemics illustrates that epidemics are as much social, political, and economic events as they are biological; the "end," therefore, is as much a process of social and political negotiation as it is biomedical. Equally important, epidemics end at different times for different groups, both within one society and across regions. Multidisciplinary research into how epidemics end reveals how the end of an epidemic shifts according to perspective, whether temporal, geographic, or methodological. A multidisciplinary analysis of how epidemics end suggests that epidemics should therefore be framed not as linear narratives-from outbreak to intervention to termination-but within cycles of disease and with a multiplicity of endings.
Collapse
|