1
|
Copos C, Sun YH, Zhu K, Zhang Y, Reid B, Draper B, Lin F, Yue H, Bernadskaya Y, Zhao M, Mogilner A. Galvanotactic directionality of cell groups depends on group size. Proc Natl Acad Sci U S A 2025; 122:e2416440122. [PMID: 40392857 DOI: 10.1073/pnas.2416440122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 04/20/2025] [Indexed: 05/22/2025] Open
Abstract
Motile cells migrate directionally in the electric field (EF) in a process known as galvanotaxis, an important phenomenon in wound healing and development. We previously reported that individual fish keratocyte cells migrate to the cathode in EFs, that inhibition of PI3 kinase (PI3K) reverses single cells to the anode, and that large cohesive groups of either unperturbed or PI3K-inhibited cells migrate to the cathode. Here, we report that small uninhibited cell groups move to the cathode, while small groups of PI3K-inhibited cells move to the anode. Small groups move faster than large groups, and groups of unperturbed cells move faster than PI3K-inhibited cell groups of comparable sizes. The shapes and sizes of large groups change little when they start migrating, while size and shapes of small groups change significantly, and lamellipodia disappear from the rear edges of these groups. The computational model, according to which cells inside and at the edge of the group interpret directional signals differently, explains the observations. Namely, cells in the group interior are directed to the cathode independently whether they are PI3K-inhibited or not. Meanwhile, the edge cells behave like individual cells: They are directed to the cathode in uninhibited groups and to the anode in PI3K-inhibited groups. As a result, all cells drive uninhibited groups to the cathode, while larger PI3K-inhibited groups are directed by cell majority in the group interior to the cathode, while majority of the edge cells in small groups win the tug-of-war driving these groups to the anode.
Collapse
Affiliation(s)
- Calina Copos
- Department of Biology, Northeastern University, Boston, MA 02115
- Department of Mathematics, Northeastern University, Boston, MA 02115
| | - Yao-Hui Sun
- Department of Ophthalmology and Vision Science, School of Medicine, University of California, Davis, Sacramento, CA 95817
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817
| | - Kan Zhu
- Department of Ophthalmology and Vision Science, School of Medicine, University of California, Davis, Sacramento, CA 95817
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817
| | - Yan Zhang
- Department of Occupational and Environmental Health, Hangzhou Normal University School of Public Health, Hangzhou 311121, China
| | - Brian Reid
- Department of Ophthalmology and Vision Science, School of Medicine, University of California, Davis, Sacramento, CA 95817
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817
| | - Bruce Draper
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Haicen Yue
- Department of Physics, University of Vermont, Burlington, VT 05405
| | - Yelena Bernadskaya
- Courant Institute, New York University, New York, NY 10012
- Department of Biology, New York University, New York, NY 10012
| | - Min Zhao
- Department of Ophthalmology and Vision Science, School of Medicine, University of California, Davis, Sacramento, CA 95817
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817
| | - Alex Mogilner
- Courant Institute, New York University, New York, NY 10012
- Department of Biology, New York University, New York, NY 10012
| |
Collapse
|
2
|
Ciapa L, Tran Y, Frétigny C, Chateauminois A, Verneuil E. Molecular adsorption induces normal stresses at frictional interfaces of hydrogels. SOFT MATTER 2025; 21:2529-2540. [PMID: 40063056 DOI: 10.1039/d4sm01439a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Friction experiments were conducted on hydrogel thin films sliding against a rigid sphere in a low velocity regime where molecular adsorption at the sliding interface sets the friction force, through a dissipative adsorption-stretching-desorption mechanism initially postulated by Schallamach [A. Schallamach, Wear, 1963, 6, 375]. By carefully imaging the contact from the initial indentation step of the sphere into the hydrogel to steady state sliding, we evidence for the first time that this very same adsorption mechanism also results in a normal force embedding the sphere further into the hydrogel. Observations of this tangential-normal coupling are made on a variety of chemically modified silica spheres, over 3 decades in velocity and at varied normal loads, thereby demonstrating its robustness. Quantitative measurements of the extra normal force and of the friction-velocity relationship versus normal load are well rationalized within a theoretical model based on the thermal actuation of molecular bonds. To do so, we account for the finite non-zero thickness of the sliding interface at which molecular adsorption and stretching events produce an out-of-plane force responsible for both friction and normal adhesive-like pull-in.
Collapse
Affiliation(s)
- Lola Ciapa
- Soft Matter Science and Engineering (SIMM), ESPCI Paris, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France.
| | - Yvette Tran
- Soft Matter Science and Engineering (SIMM), ESPCI Paris, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France.
| | - Christian Frétigny
- Soft Matter Science and Engineering (SIMM), ESPCI Paris, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France.
| | - Antoine Chateauminois
- Soft Matter Science and Engineering (SIMM), ESPCI Paris, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France.
| | - Emilie Verneuil
- Soft Matter Science and Engineering (SIMM), ESPCI Paris, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France.
| |
Collapse
|
3
|
Bose S, Wang H, Xu X, Gopinath A, Dasbiswas K. Elastic interactions compete with persistent cell motility to drive durotaxis. Biophys J 2024; 123:3721-3735. [PMID: 39327734 PMCID: PMC11560314 DOI: 10.1016/j.bpj.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/14/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024] Open
Abstract
Many animal cells that crawl on extracellular substrates exhibit durotaxis, i.e., directed migration toward stiffer substrate regions. This has implications in several biological processes including tissue development and tumor progression. Here, we introduce a phenomenological model for single-cell durotaxis that incorporates both elastic deformation-mediated cell-substrate interactions and the stochasticity of cell migration. Our model is motivated by a key observation in an early demonstration of durotaxis: a single, contractile cell at a sharp interface between a softer and a stiffer region of an elastic substrate reorients and migrates toward the stiffer region. We model migrating cells as self-propelling, persistently motile agents that exert contractile traction forces on their elastic substrate. The resulting substrate deformations induce elastic interactions with mechanical boundaries, captured by an elastic potential. The dynamics is determined by two crucial parameters: the strength of the cellular traction-induced boundary elastic interaction (A), and the persistence of cell motility (Pe). Elastic forces and torques resulting from the potential orient cells perpendicular (parallel) to the boundary and accumulate (deplete) them at the clamped (free) boundary. Thus, a clamped boundary induces an attractive potential that drives durotaxis, while a free boundary induces a repulsive potential that prevents antidurotaxis. By quantifying the steady-state position and orientation probability densities, we show how the extent of accumulation (depletion) depends on the strength of the elastic potential and motility. We compare and contrast crawling cells with biological microswimmers and other synthetic active particles, where accumulation at confining boundaries is well known. We define metrics quantifying boundary accumulation and durotaxis, and present a phase diagram that identifies three possible regimes: durotaxis, and adurotaxis with and without motility-induced accumulation at the boundary. Overall, our model predicts how durotaxis depends on cell contractility and motility, successfully explains some previous observations, and provides testable predictions to guide future experiments.
Collapse
Affiliation(s)
- Subhaya Bose
- Department of Physics, University of California, Merced, Merced, California
| | - Haiqin Wang
- Technion - Israel Institute of Technology, Haifa, Israel; Department of Physics and MATEC Key Lab, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong, China
| | - Xinpeng Xu
- Technion - Israel Institute of Technology, Haifa, Israel; Department of Physics and MATEC Key Lab, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong, China.
| | - Arvind Gopinath
- Department of Bioengineering, University of California, Merced, Merced, California.
| | - Kinjal Dasbiswas
- Department of Physics, University of California, Merced, Merced, California.
| |
Collapse
|
4
|
De PS, De R. Emergence of biphasic versus monotonic response of actin retrograde flow and cell traction force with varying substrate rigidity. Phys Rev E 2024; 110:054414. [PMID: 39690572 DOI: 10.1103/physreve.110.054414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 10/21/2024] [Indexed: 12/19/2024]
Abstract
The transmission of cytoskeletal forces to the extracellular matrix through focal adhesion complexes is essential for a multitude of biological processes, such as cell migration, cell differentiation, tissue development, and cancer progression, among others. During migration, focal adhesions arrest the actin retrograde flow towards the cell interior, allowing the cell front to move forward. Here, we address a puzzling observation of the existence of two distinct phenomena: a biphasic vs a monotonic relationship of the retrograde flow and cell traction force with substrate rigidity. In the former, maximum traction force and minimum retrograde flow velocity are observed at an intermediate optimal substrate stiffness; while in the latter, the actin retrograde flow decreases and traction force increases with increasing substrate stiffness. We propose a theoretical model for cell-matrix adhesions at the leading edge of a migrating cell, incorporating a novel approach in force loading rate sensitive binding and reinforcement of focal adhesions assembly and the subsequent force-induced slowing down of actin flow. Our model exhibits both biphasic and monotonic responses of the retrograde flow and cell traction force with increasing substrate rigidity, owing to the cell's ability to sense and adapt to the fast-growing forces. Furthermore, our analysis shows how competition between different timescales regulated by loading rate sensitivity influences the biphasic versus monotonic behavior and the emergence of optimal substrate rigidity in the biphasic scenario. We also elucidate how the viscoelastic properties of the substrate regulate these nonlinear responses and predict the loss of cell sensitivity to variation in substrate rigidity when adhesions are subjected to high forces.
Collapse
|
5
|
Xue R, Chen Y, Gong Z, Jiang H. Superposition of Substrate Deformation Fields Induced by Molecular Clutches Explains Cell Spatial Sensing of Ligands. ACS NANO 2024; 18:21144-21155. [PMID: 39088555 DOI: 10.1021/acsnano.4c03667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Cells can sense the physical properties of the extracellular matrices (ECMs), such as stiffness and ligand density, through cell adhesions to actively regulate their behaviors. Recent studies have shown that varying ligand spacing of ECMs can influence adhesion size, cell spreading, and even stem cell differentiation, indicating that cells have the spatial sensing ability of ECM ligands. However, the mechanism of the cells' spatial sensing remains unclear. In this study, we have developed a lattice-spring motor-clutch model by integrating cell membrane deformation, the talin unfolding mechanism, and the lattice spring for substrate ligand distribution to explore how the spatial distribution of integrin ligands and substrate stiffness influence cell spreading and adhesion dynamics. By applying the Gillespie algorithm, we found that large ligand spacing reduces the superposition effect of the substrate's displacement fields generated by pulling force from motor-clutch units, increasing the effective stiffness probed by the force-sensitive receptors; this finding explains a series of previous experiments. Furthermore, using the mean-field theory, we obtain the effective stiffness sensed by bound clutches analytically; our analysis shows that the bound clutch number and ligand spacing are the two key factors that affect the superposition effects of deformation fields and, hence, the effective stiffness. Overall, our study reveals the mechanism of cells' spatial sensing, i.e., ligand spacing changes the effective stiffness sensed by cells due to the superposition effect of deformation fields, which provides a physical clue for designing and developing biological materials that effectively control cell behavior and function.
Collapse
Affiliation(s)
- Ruihao Xue
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yonggang Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ze Gong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, 15 Beisihuan West Road, Beijing 100190, China
| | - Hongyuan Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
6
|
Copos C, Sun YH, Zhu K, Zhang Y, Reid B, Draper B, Lin F, Yue H, Bernadskaya Y, Zhao M, Mogilner A. Galvanotactic directionality of cell groups depends on group size. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607794. [PMID: 39185145 PMCID: PMC11343102 DOI: 10.1101/2024.08.13.607794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Motile cells migrate directionally in the electric field in a process known as galvanotaxis, important and under-investigated phenomenon in wound healing and development. We previously reported that individual fish keratocyte cells migrate to the cathode in electric fields, that inhibition of PI3 kinase reverses single cells to the anode, and that large cohesive groups of either unperturbed or PI3K-inhibited cells migrate to the cathode. Here we find that small uninhibited cell groups move to the cathode, while small groups of PI3K-inhibited cells move to the anode. Small groups move faster than large groups, and groups of unperturbed cells move faster than PI3K-inhibited cell groups of comparable sizes. Shapes and sizes of large groups change little when they start migrating, while size and shapes of small groups change significantly, lamellipodia disappear from the rear edges of these groups, and their shapes start to resemble giant single cells. Our results are consistent with the computational model, according to which cells inside and at the edge of the groups pool their propulsive forces to move but interpret directional signals differently. Namely, cells in the group interior are directed to the cathode independently of their chemical state. Meanwhile, the edge cells behave like individual cells: they are directed to the cathode/anode in uninhibited/PI3K-inhibited groups, respectively. As a result, all cells drive uninhibited groups to the cathode, while larger PI3K-inhibited groups are directed by cell majority in the group interior to the cathode, while majority of the edge cells in small groups win the tug-of-war driving these groups to the anode.
Collapse
Affiliation(s)
- Calina Copos
- Department of Biology and Department of Mathematics, Northeastern University, Boston, MA 02115
| | - Yao-Hui Sun
- Department of Ophthalmology and Vision Science and Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817
| | - Kan Zhu
- Department of Ophthalmology and Vision Science and Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817
| | - Yan Zhang
- Department of Occupational and Environmental Health, Hangzhou Normal University School of Public Health, Hangzhou 311121, China
| | - Brian Reid
- Department of Ophthalmology and Vision Science and Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817
| | - Bruce Draper
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Haicen Yue
- Department of Physics, University of Vermont, Burlington, VT 05405
| | - Yelena Bernadskaya
- Courant Institute and Department of Biology, New York University, New York, NY 10012
| | - Min Zhao
- Department of Ophthalmology and Vision Science and Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817
| | - Alex Mogilner
- Courant Institute and Department of Biology, New York University, New York, NY 10012
| |
Collapse
|
7
|
Alexandre A, Anderson L, Collin-Dufresne T, Guérin T, Dean DS. Self-phoretic oscillatory motion in a harmonic trap. Phys Rev E 2024; 109:064147. [PMID: 39020931 DOI: 10.1103/physreve.109.064147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/15/2024] [Indexed: 07/20/2024]
Abstract
We consider the motion of a harmonically trapped overdamped particle, which is submitted to a self-phoretic force, that is proportional to the gradient of a diffusive field for which the particle itself is the source. In agreement with existing results for free particles or particles in a bounded domain, we find that the system exhibits a transition between an immobile phase, where the particle stays at the center of the trap, and an oscillatory state. We perform an exact analysis giving access to the bifurcation threshold, as well as the frequency of oscillations and their amplitude near the threshold. Our analysis also characterizes the shape of two-dimensional oscillations that take place along a circle or a straight line. Our results are confirmed by numerical simulations.
Collapse
Affiliation(s)
- Arthur Alexandre
- Laboratory of Computational Biology and Theoretical Biophysics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Université Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
| | | | | | | | - David S Dean
- Université Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
- Team MONC, INRIA Bordeaux Sud Ouest, CNRS UMR 5251, Bordeaux INP, Université Bordeaux, F-33400 Talence, France
| |
Collapse
|
8
|
Heyn JCJ, Rädler JO, Falcke M. Mesenchymal cell migration on one-dimensional micropatterns. Front Cell Dev Biol 2024; 12:1352279. [PMID: 38694822 PMCID: PMC11062138 DOI: 10.3389/fcell.2024.1352279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/29/2024] [Indexed: 05/04/2024] Open
Abstract
Quantitative studies of mesenchymal cell motion are important to elucidate cytoskeleton function and mechanisms of cell migration. To this end, confinement of cell motion to one dimension (1D) significantly simplifies the problem of cell shape in experimental and theoretical investigations. Here we review 1D migration assays employing micro-fabricated lanes and reflect on the advantages of such platforms. Data are analyzed using biophysical models of cell migration that reproduce the rich scenario of morphodynamic behavior found in 1D. We describe basic model assumptions and model behavior. It appears that mechanical models explain the occurrence of universal relations conserved across different cell lines such as the adhesion-velocity relation and the universal correlation between speed and persistence (UCSP). We highlight the unique opportunity of reproducible and standardized 1D assays to validate theory based on statistical measures from large data of trajectories and discuss the potential of experimental settings embedding controlled perturbations to probe response in migratory behavior.
Collapse
Affiliation(s)
- Johannes C. J. Heyn
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Joachim O. Rädler
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Martin Falcke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Physics, Humboldt University, Berlin, Germany
| |
Collapse
|
9
|
Brückner DB, Broedersz CP. Learning dynamical models of single and collective cell migration: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:056601. [PMID: 38518358 DOI: 10.1088/1361-6633/ad36d2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Single and collective cell migration are fundamental processes critical for physiological phenomena ranging from embryonic development and immune response to wound healing and cancer metastasis. To understand cell migration from a physical perspective, a broad variety of models for the underlying physical mechanisms that govern cell motility have been developed. A key challenge in the development of such models is how to connect them to experimental observations, which often exhibit complex stochastic behaviours. In this review, we discuss recent advances in data-driven theoretical approaches that directly connect with experimental data to infer dynamical models of stochastic cell migration. Leveraging advances in nanofabrication, image analysis, and tracking technology, experimental studies now provide unprecedented large datasets on cellular dynamics. In parallel, theoretical efforts have been directed towards integrating such datasets into physical models from the single cell to the tissue scale with the aim of conceptualising the emergent behaviour of cells. We first review how this inference problem has been addressed in both freely migrating and confined cells. Next, we discuss why these dynamics typically take the form of underdamped stochastic equations of motion, and how such equations can be inferred from data. We then review applications of data-driven inference and machine learning approaches to heterogeneity in cell behaviour, subcellular degrees of freedom, and to the collective dynamics of multicellular systems. Across these applications, we emphasise how data-driven methods can be integrated with physical active matter models of migrating cells, and help reveal how underlying molecular mechanisms control cell behaviour. Together, these data-driven approaches are a promising avenue for building physical models of cell migration directly from experimental data, and for providing conceptual links between different length-scales of description.
Collapse
Affiliation(s)
- David B Brückner
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Chase P Broedersz
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilian-University Munich, Theresienstr. 37, D-80333 Munich, Germany
| |
Collapse
|
10
|
Flommersfeld J, Stöberl S, Shah O, Rädler JO, Broedersz CP. Geometry-Sensitive Protrusion Growth Directs Confined Cell Migration. PHYSICAL REVIEW LETTERS 2024; 132:098401. [PMID: 38489624 DOI: 10.1103/physrevlett.132.098401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/30/2024] [Indexed: 03/17/2024]
Abstract
The migratory dynamics of cells can be influenced by the complex microenvironment through which they move. It remains unclear how the motility machinery of confined cells responds and adapts to their microenvironment. Here, we propose a biophysical mechanism for a geometry-dependent coupling between cellular protrusions and the nucleus that leads to directed migration. We apply our model to geometry-guided cell migration to obtain insights into the origin of directed migration on asymmetric adhesive micropatterns and the polarization enhancement of cells observed under strong confinement. Remarkably, for cells that can choose between channels of different size, our model predicts an intricate dependence for cellular decision making as a function of the two channel widths, which we confirm experimentally.
Collapse
Affiliation(s)
- Johannes Flommersfeld
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081HV Amsterdam, Netherlands
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilian-University Munich, Theresienstraße 37, D-80333 Munich, Germany
| | - Stefan Stöberl
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilian-University, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany
| | - Omar Shah
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081HV Amsterdam, Netherlands
| | - Joachim O Rädler
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilian-University, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany
| | - Chase P Broedersz
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081HV Amsterdam, Netherlands
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilian-University Munich, Theresienstraße 37, D-80333 Munich, Germany
| |
Collapse
|
11
|
Bonilla-Quintana M, Rangamani P. Biophysical Modeling of Actin-Mediated Structural Plasticity Reveals Mechanical Adaptation in Dendritic Spines. eNeuro 2024; 11:ENEURO.0497-23.2024. [PMID: 38383589 DOI: 10.1523/eneuro.0497-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/13/2024] [Indexed: 02/23/2024] Open
Abstract
Synaptic plasticity is important for learning and memory formation; it describes the strengthening or weakening of connections between synapses. The postsynaptic part of excitatory synapses resides in dendritic spines, which are small protrusions on the dendrites. One of the key features of synaptic plasticity is its correlation with the size of these spines. A long-lasting synaptic strength increase [long-term potentiation (LTP)] is only possible through the reconfiguration of the actin spine cytoskeleton. Here, we develop an experimentally informed three-dimensional computational model in a moving boundary framework to investigate this reconfiguration. Our model describes the reactions between actin and actin-binding proteins leading to the cytoskeleton remodeling and their effect on the spine membrane shape to examine the spine enlargement upon LTP. Moreover, we find that the incorporation of perisynaptic elements enhances spine enlargement upon LTP, exhibiting the importance of accounting for these elements when studying structural LTP. Our model shows adaptation to repeated stimuli resulting from the interactions between spine proteins and mechanical forces.
Collapse
Affiliation(s)
- Mayte Bonilla-Quintana
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
12
|
Abeyaratne R, Purohit PK. A continuum mechanical model of cell motion driven by a biphasic traction stress. J R Soc Interface 2024; 21:20230543. [PMID: 38228181 PMCID: PMC10791542 DOI: 10.1098/rsif.2023.0543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024] Open
Abstract
The aim of this paper is to place the cell locomotion problem within the general framework of classical continuum mechanics, and while doing so, to account for the deformation of the actin network in the cytoskeleton; the myosin activity on the lamellum including its effect on depolymerization at the trailing edge; model the stress-dependent driving forces and kinetic laws controlling polymerization at the leading edge, depolymerization at the trailing edge and ATP hydrolysis consistently with the dissipation inequality; and, based on the observations in Gardel et al. (Gardel et al. 2008 J. Cell Biol. 183, 999-1005 (doi:10.1083/jcb.200810060)), include a biphasic velocity-dependent traction stress acting on the actin network. While we chose certain specific models for each of these, in part to allow for an analytical solution, the generality of the framework allows one to readily introduce different constitutive laws to describe these phenomena as might be needed, for example, to study some different type of cells. As described in §5, the predictions of the model compare well with observations such as the magnitude of the very different actin retrograde speeds in the lamellum and lamellipodium including their jump at the interface, the magnitude of the cell speed, and the relative lengths of the lamellipodium and lamellum.
Collapse
Affiliation(s)
- Rohan Abeyaratne
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Prashant K. Purohit
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Abstract
Understanding complex living systems, which are fundamentally constrained by physical phenomena, requires combining experimental data with theoretical physical and mathematical models. To develop such models, collaborations between experimental cell biologists and theoreticians are increasingly important but these two groups often face challenges achieving mutual understanding. To help navigate these challenges, this Perspective discusses different modelling approaches, including bottom-up hypothesis-driven and top-down data-driven models, and highlights their strengths and applications. Using cell mechanics as an example, we explore the integration of specific physical models with experimental data from the molecular, cellular and tissue level up to multiscale input. We also emphasize the importance of constraining model complexity and outline strategies for crosstalk between experimental design and model development. Furthermore, we highlight how physical models can provide conceptual insights and produce unifying and generalizable frameworks for biological phenomena. Overall, this Perspective aims to promote fruitful collaborations that advance our understanding of complex biological systems.
Collapse
Affiliation(s)
- Cornelia Schwayer
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - David B Brückner
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
14
|
Alonso-Matilla R, Provenzano PP, Odde DJ. Optimal cell traction forces in a generalized motor-clutch model. Biophys J 2023; 122:3369-3385. [PMID: 37475213 PMCID: PMC10465728 DOI: 10.1016/j.bpj.2023.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/25/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023] Open
Abstract
Cells exert forces on mechanically compliant environments to sense stiffness, migrate, and remodel tissue. Cells can sense environmental stiffness via myosin-generated pulling forces acting on F-actin, which is in turn mechanically coupled to the environment via adhesive proteins, akin to a clutch in a drivetrain. In this "motor-clutch" framework, the force transmitted depends on the complex interplay of motor, clutch, and environmental properties. Previous mean-field analysis of the motor-clutch model identified the conditions for optimal stiffness for maximal force transmission via a dimensionless number that combines motor-clutch parameters. However, in this and other previous mean-field analyses, the motor-clutch system is assumed to have balanced motors and clutches and did not consider force-dependent clutch reinforcement and catch bond behavior. Here, we generalize the motor-clutch analytical framework to include imbalanced motor-clutch regimes, with clutch reinforcement and catch bonding, and investigate optimality with respect to all parameters. We found that traction force is strongly influenced by clutch stiffness, and we discovered an optimal clutch stiffness that maximizes traction force, suggesting that cells could tune their clutch mechanical properties to perform a specific function. The results provide guidance for maximizing the accuracy of cell-generated force measurements via molecular tension sensors by designing their mechanosensitive linker peptide to be as stiff as possible. In addition, we found that, on rigid substrates, the mean-field analysis identifies optimal motor properties, suggesting that cells could regulate their myosin repertoire and activity to maximize force transmission. Finally, we found that clutch reinforcement shifts the optimum substrate stiffness to larger values, whereas the optimum substrate stiffness is insensitive to clutch catch bond properties. Overall, our work reveals novel features of the motor-clutch model that can affect the design of molecular tension sensors and provide a generalized analytical framework for predicting and controlling cell adhesion and migration in immunotherapy and cancer.
Collapse
Affiliation(s)
- Roberto Alonso-Matilla
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota; University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota; University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, Minnesota
| | - Paolo P Provenzano
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota; University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota; University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota; Department of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota; Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | - David J Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota; University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota; University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
15
|
Bidone TC, Odde DJ. Multiscale models of integrins and cellular adhesions. Curr Opin Struct Biol 2023; 80:102576. [PMID: 36947952 PMCID: PMC10238663 DOI: 10.1016/j.sbi.2023.102576] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/24/2023]
Abstract
Computational models of integrin-based adhesion complexes have revealed important insights into the mechanisms by which cells establish connections with their external environment. However, how changes in conformation and function of individual adhesion proteins regulate the dynamics of whole adhesion complexes remains largely elusive. This is because of the large separation in time and length scales between the dynamics of individual adhesion proteins (nanoseconds and nanometers) and the emergent dynamics of the whole adhesion complex (seconds and micrometers), and the limitations of molecular simulation approaches in extracting accurate free energies, conformational transitions, reaction mechanisms, and kinetic rates, that can inform mechanisms at the larger scales. In this review, we discuss models of integrin-based adhesion complexes and highlight their main findings regarding: (i) the conformational transitions of integrins at the molecular and macromolecular scales and (ii) the molecular clutch mechanism at the mesoscale. Lastly, we present unanswered questions in the field of modeling adhesions and propose new ideas for future exciting modeling opportunities.
Collapse
Affiliation(s)
- Tamara C Bidone
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA.
| | - David J Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA. https://twitter.com/davidodde
| |
Collapse
|
16
|
Kitahata H, Koyano Y. Mathematical modeling for the synchronization of two interacting active rotors. Phys Rev E 2023; 107:064607. [PMID: 37464628 DOI: 10.1103/physreve.107.064607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/07/2023] [Indexed: 07/20/2023]
Abstract
We investigate the synchronization of active rotors. A rotor is composed of a free-rotating arm with a particle that releases a surface-active chemical compound. It exhibits self-rotation due to the surface tension gradient originating from the concentration field of the surface-active compound released from the rotor. In a system with two active rotors, they should interact through the concentration field. Thus, the interaction between them does not depend only on the instantaneous positions, but also on the dynamics of the concentration field. By numerical simulations, we show that in-phase and antiphase synchronizations occur depending on the distance between the two rotors. The stability of the synchronization mode is analyzed based on phase reduction theorem through the calculation of the concentration field in the co-rotating frame with the active rotor. We also confirm that the numerical results meet the prediction by theoretical analyses.
Collapse
Affiliation(s)
- Hiroyuki Kitahata
- Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Yuki Koyano
- Department of Human Environmental Science, Graduate School of Human Development and Environment, Kobe University, Kobe 657-0011, Japan
| |
Collapse
|
17
|
Amiri B, Heyn JCJ, Schreiber C, Rädler JO, Falcke M. On multistability and constitutive relations of cell motion on fibronectin lanes. Biophys J 2023; 122:753-766. [PMID: 36739476 PMCID: PMC10027452 DOI: 10.1016/j.bpj.2023.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Cell motility on flat substrates exhibits coexisting steady and oscillatory morphodynamics, the biphasic adhesion-velocity relation, and the universal correlation between speed and persistence (UCSP) as simultaneous observations common to many cell types. Their universality and concurrency suggest a unifying mechanism causing all three of them. Stick-slip models for cells on one-dimensional lanes suggest multistability to arise from the nonlinear friction of retrograde flow. This study suggests a mechanical mechanism controlled by integrin signaling on the basis of a biophysical model and analysis of trajectories of MDA-MB-231 cells on fibronectin lanes, which additionally explains the constitutive relations. The experiments exhibit cells with steady or oscillatory morphodynamics and either spread or moving with spontaneous transitions between the dynamic regimes, spread and moving, and spontaneous direction reversals. Our biophysical model is based on the force balance at the protrusion edge, the noisy clutch of retrograde flow, and a response function of friction and membrane drag to integrin signaling. The theory reproduces the experimentally observed cell states, characteristics of oscillations, and state probabilities. Analysis of experiments with the biophysical model establishes a stick-slip oscillation mechanism, and explains multistability of cell states and the statistics of state transitions. It suggests protrusion competition to cause direction reversal events, the statistics of which explain the UCSP. The effect of integrin signaling on drag and friction explains the adhesion-velocity relation and cell behavior at fibronectin density steps. The dynamics of our mechanism are nonlinear flow mechanics driven by F-actin polymerization and shaped by the noisy clutch of retrograde flow friction, protrusion competition via membrane tension, and drag forces. Integrin signaling controls the parameters of the mechanical system.
Collapse
Affiliation(s)
- Behnam Amiri
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Johannes C J Heyn
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Christoph Schreiber
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Joachim O Rädler
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), Munich, Germany.
| | - Martin Falcke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Physics, Humboldt University, Berlin, Germany.
| |
Collapse
|
18
|
Giordano S. Temperature dependent model for the quasi-static stick-slip process on a soft substrate. SOFT MATTER 2023; 19:1813-1833. [PMID: 36789855 DOI: 10.1039/d2sm01262f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The classical Prandtl-Tomlinson model is the most famous and efficient method to describe the stick-slip phenomenon and the resulting friction between a slider and a corrugated substrate. It is widely used in all studies of frictional physics and notably in nanotribology. However, it considers a rigid or undeformable substrate and therefore is hardly applicable for investigating the physics of soft matter and in particular biophysics. For this reason, we introduce here a modified model that is capable of taking into consideration a soft or deformable substrate. It is realized by a sequence of elastically bound quadratic energy wells, which represent the corrugated substrate. We study the quasi-static behavior of the system through the equilibrium statistical mechanics. We thus determine the static friction and the deformation of the substrate as a function of temperature and substrate stiffness. The results are of interest for the study of cell motion in biophysics and for haptic and tactile systems in microtechnology.
Collapse
Affiliation(s)
- Stefano Giordano
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN - Institut d*Electronique de Microélectronique et de Nanotechnologie, F-59000 Lille, France.
| |
Collapse
|
19
|
Daniel M, Eleršič Filipič K, Filová E, Judl T, Fojt J. Modelling the role of membrane mechanics in cell adhesion on titanium oxide nanotubes. Comput Methods Biomech Biomed Engin 2023; 26:281-290. [PMID: 35380071 DOI: 10.1080/10255842.2022.2058875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Titanium surface treated with titanium oxide nanotubes was used in many studies to quantify the effect of surface topography on cell fate. However, the predicted optimal diameter of nanotubes considerably differs among studies. We propose a model that explains cell adhesion to a nanostructured surface by considering the deformation energy of cell protrusions into titanium nanotubes and the adhesion to the surface. The optimal surface topology is defined as a geometry that gives the membrane a minimum energy shape. A dimensionless parameter, the cell interaction index, was proposed to describe the interplay between the cell membrane bending, the intrinsic curvature, and the strength of cell adhesion. Model simulation shows that an optimal nanotube diameter ranging from 20 nm to 100 nm (cell interaction index between 0.2 and 1, respectively) is feasible within a certain range of parameters describing cell membrane adhesion and bending. The results indicate a possibility to tune the topology of a nanostructural surface in order to enhance the proliferation and differentiation of cells mechanically compatible with the given surface geometry while suppressing the growth of other mechanically incompatible cells.
Collapse
Affiliation(s)
- Matej Daniel
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague, Czechia
| | | | - Eva Filová
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | | | - Jaroslav Fojt
- Faculty of Chemical Technology, University of Chemistry and Technology Prague, Prague, Czechia
| |
Collapse
|
20
|
Huang J, Wu J, Wang J, Xu M, Jiao J, Qiang Y, Zhang F, Li Z. Rock Climbing-Inspired Electrohydrodynamic Cryoprinting of Micropatterned Porous Fiber Scaffolds with Improved MSC Therapy for Wound Healing. ADVANCED FIBER MATERIALS 2023; 5:312-326. [DOI: 10.1007/s42765-022-00224-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/09/2022] [Indexed: 10/28/2023]
|
21
|
Shu W, Kaplan CN. A multiscale whole-cell theory for mechanosensitive migration on viscoelastic substrates. Biophys J 2023; 122:114-129. [PMID: 36493781 PMCID: PMC9822805 DOI: 10.1016/j.bpj.2022.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/25/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Increasing experimental evidence validates that both the elastic stiffness and viscosity of the extracellular matrix regulate mesenchymal cell behavior, such as the rational switch between durotaxis (cell migration to stiffer regions), anti-durotaxis (migration to softer regions), and adurotaxis (stiffness-insensitive migration). To reveal the mechanisms underlying the crossover between these motility regimes, we have developed a multiscale chemomechanical whole-cell theory for mesenchymal migration. Our framework couples the subcellular focal adhesion dynamics at the cell-substrate interface with the cellular cytoskeletal mechanics and the chemical signaling pathways involving Rho GTPase proteins. Upon polarization by the Rho GTPase gradients, our simulated cell migrates by concerted peripheral protrusions and contractions, a hallmark of the mesenchymal mode. The resulting cell dynamics quantitatively reproduces the experimental migration speed as a function of the uniform substrate stiffness and explains the influence of viscosity on the migration efficiency. In the presence of stiffness gradients and absence of chemical polarization, our simulated cell can exhibit durotaxis, anti-durotaxis, and adurotaxis respectively with increasing substrate stiffness or viscosity. The cell moves toward an optimally stiff region from softer regions during durotaxis and from stiffer regions during anti-durotaxis. We show that cell polarization through steep Rho GTPase gradients can reverse the migration direction dictated by the mechanical cues. Overall, our theory demonstrates that opposing durotactic behaviors emerge via the interplay between intracellular signaling and cell-medium mechanical interactions in agreement with experiments, thereby elucidating complex mechanosensing at the single-cell level.
Collapse
Affiliation(s)
- Wenya Shu
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - C Nadir Kaplan
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
| |
Collapse
|
22
|
Levario-Diaz V, Alvarado RE, Rodriguez-Quinteros CM, Fink A, Christian J, Feng W, Cavalcanti-Adam EA. 1D micro-nanopatterned integrin ligand surfaces for directed cell movement. Front Cell Dev Biol 2022; 10:972624. [PMID: 36531964 PMCID: PMC9755580 DOI: 10.3389/fcell.2022.972624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2023] Open
Abstract
Cell-extracellular matrix (ECM) adhesion mediated by integrins is a highly regulated process involved in many vital cellular functions such as motility, proliferation and survival. However, the influence of lateral integrin clustering in the coordination of cell front and rear dynamics during cell migration remains unresolved. For this purpose, we describe a novel protocol to fabricate 1D micro-nanopatterned stripes by integrating the block copolymer micelle nanolithography (BCMNL) technique and maskless near UV lithography-based photopatterning. The photopatterned 10 μm-wide stripes consist of a quasi-perfect hexagonal arrangement of gold nanoparticles, decorated with the RGD (arginine-glycine-aspartate) motif for single integrin heterodimer binding, and placed at a distance of 50, 80, and 100 nm to regulate integrin clustering and focal adhesion dynamics. By employing time-lapse microscopy and immunostaining, we show that the displacement and speed of fibroblasts changes according to the nanoscale spacing of adhesion sites. We found that as the lateral spacing of adhesive peptides increased, fibroblast morphology was more elongated. This was accompanied by a decreased formation of mature focal adhesions and stress fibers, which increased cell displacement and speed. These results provide new insights into the migratory behavior of fibroblasts in 1D environments and our protocol offers a new platform to design and manufacture confined environments in 1D for integrin-mediated cell adhesion.
Collapse
Affiliation(s)
- Victoria Levario-Diaz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany
| | | | | | - Andreas Fink
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Joel Christian
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Wenqian Feng
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany
- College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | | |
Collapse
|
23
|
McEvoy E, Sneh T, Moeendarbary E, Javanmardi Y, Efimova N, Yang C, Marino-Bravante GE, Chen X, Escribano J, Spill F, Garcia-Aznar JM, Weeraratna AT, Svitkina TM, Kamm RD, Shenoy VB. Feedback between mechanosensitive signaling and active forces governs endothelial junction integrity. Nat Commun 2022; 13:7089. [PMID: 36402771 PMCID: PMC9675837 DOI: 10.1038/s41467-022-34701-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/03/2022] [Indexed: 11/21/2022] Open
Abstract
The formation and recovery of gaps in the vascular endothelium governs a wide range of physiological and pathological phenomena, from angiogenesis to tumor cell extravasation. However, the interplay between the mechanical and signaling processes that drive dynamic behavior in vascular endothelial cells is not well understood. In this study, we propose a chemo-mechanical model to investigate the regulation of endothelial junctions as dependent on the feedback between actomyosin contractility, VE-cadherin bond turnover, and actin polymerization, which mediate the forces exerted on the cell-cell interface. Simulations reveal that active cell tension can stabilize cadherin bonds, but excessive RhoA signaling can drive bond dissociation and junction failure. While actin polymerization aids gap closure, high levels of Rac1 can induce junction weakening. Combining the modeling framework with experiments, our model predicts the influence of pharmacological treatments on the junction state and identifies that a critical balance between RhoA and Rac1 expression is required to maintain junction stability. Our proposed framework can help guide the development of therapeutics that target the Rho family of GTPases and downstream active mechanical processes.
Collapse
Affiliation(s)
- Eoin McEvoy
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Biomedical Engineering, University of Galway, Galway, H91 HX31, Ireland
| | - Tal Sneh
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yousef Javanmardi
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
| | - Nadia Efimova
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Changsong Yang
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gloria E Marino-Bravante
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Xingyu Chen
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jorge Escribano
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Fabian Spill
- School of Mathematics, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | | | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
24
|
Godeau AL, Leoni M, Comelles J, Guyomar T, Lieb M, Delanoë-Ayari H, Ott A, Harlepp S, Sens P, Riveline D. 3D single cell migration driven by temporal correlation between oscillating force dipoles. eLife 2022; 11:71032. [PMID: 35899947 PMCID: PMC9395190 DOI: 10.7554/elife.71032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Directional cell locomotion requires symmetry breaking between the front and rear of the cell. In some cells, symmetry breaking manifests itself in a directional flow of actin from the front to the rear of the cell. Many cells, especially in physiological 3D matrices do not show such coherent actin dynamics and present seemingly competing protrusion/retraction dynamics at their front and back. How symmetry breaking manifests itself for such cells is therefore elusive. We take inspiration from the scallop theorem proposed by Purcell for micro-swimmers in Newtonian fluids: self-propelled objects undergoing persistent motion at low Reynolds number must follow a cycle of shape changes that breaks temporal symmetry. We report similar observations for cells crawling in 3D. We quantified cell motion using a combination of 3D live cell imaging, visualization of the matrix displacement and a minimal model with multipolar expansion. We show that our cells embedded in a 3D matrix form myosin-driven force dipoles at both sides of the nucleus, that locally and periodically pinch the matrix. The existence of a phase shift between the two dipoles is required for directed cell motion which manifests itself as cycles with finite area in the dipole-quadrupole diagram, a formal equivalence to the Purcell cycle. We confirm this mechanism by triggering local dipolar contractions with a laser. This leads to directed motion. Our study reveals that these cells control their motility by synchronizing dipolar forces distributed at front and back. This result opens new strategies to externally control cell motion as well as for the design of micro-crawlers.
Collapse
Affiliation(s)
- Amélie Luise Godeau
- Laboratory of Cell Physics, University of Strasbourg, CNRS, IGBMC, Illkirch, France
| | | | - Jordi Comelles
- Laboratory of Cell Physics, University of Strasbourg, CNRS, IGBMC, Illkirch, France
| | - Tristan Guyomar
- Laboratory of Cell Physics, University of Strasbourg, CNRS, IGBMC, Illkirch, France
| | - Michele Lieb
- Laboratory of Cell Physics, University of Strasbourg, CNRS, IGBMC, Illkirch, France
| | - Hélène Delanoë-Ayari
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5306, LyonVilleurbanne Cedex, France
| | - Albrecht Ott
- Universität des Saarlandes, Saarbrücken, Germany
| | - Sebastien Harlepp
- INSERM UMR S1109, Institut d'Hématologie et d'Immunologie, Strasbourg, France
| | - Pierre Sens
- Laboratoire Physico Chimie Curie, Institut Curie, CNRS UMR168, Paris, France
| | - Daniel Riveline
- Development and stem cells, University of Strasbourg, CNRS, IGBMC, Illkirch, France
| |
Collapse
|
25
|
Theeyancheri L, Chaki S, Bhattacharjee T, Chakrabarti R. Migration of active rings in porous media. Phys Rev E 2022; 106:014504. [PMID: 35974648 DOI: 10.1103/physreve.106.014504] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Inspired by how the shape deformations in active organisms help them to migrate through disordered porous environments, we simulate active ring polymers in two-dimensional random porous media. Flexible and inextensible active ring polymers navigate smoothly through the disordered media. In contrast, semiflexible rings undergo transient trapping inside the pore space; the degree of trapping is inversely correlated with the increase in activity. We discover that flexible rings swell while inextensible and semiflexible rings monotonically shrink upon increasing the activity. Together, our findings identify the optimal migration of active ring polymers through porous media.
Collapse
Affiliation(s)
- Ligesh Theeyancheri
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Subhasish Chaki
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Tapomoy Bhattacharjee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
26
|
Generic self-stabilization mechanism for biomolecular adhesions under load. Nat Commun 2022; 13:2197. [PMID: 35459276 PMCID: PMC9033785 DOI: 10.1038/s41467-022-29823-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 03/20/2022] [Indexed: 11/09/2022] Open
Abstract
Mechanical loading generally weakens adhesive structures and eventually leads to their rupture. However, biological systems can adapt to loads by strengthening adhesions, which is essential for maintaining the integrity of tissue and whole organisms. Inspired by cellular focal adhesions, we suggest here a generic, molecular mechanism that allows adhesion systems to harness applied loads for self-stabilization through adhesion growth. The mechanism is based on conformation changes of adhesion molecules that are dynamically exchanged with a reservoir. Tangential loading drives the occupation of some states out of equilibrium, which, for thermodynamic reasons, leads to association of further molecules with the cluster. Self-stabilization robustly increases adhesion lifetimes in broad parameter ranges. Unlike for catch-bonds, bond rupture rates can increase monotonically with force. The self-stabilization principle can be realized in many ways in complex adhesion-state networks; we show how it naturally occurs in cellular adhesions involving the adaptor proteins talin and vinculin. Cellular adhesions have the remarkable property that they adapt their stability to the applied mechanical load. Here, authors describe a generic physical mechanism that explains self-stabilization of idealized adhesion systems under shear.
Collapse
|
27
|
Peterson MSE, Baskaran A, Hagan MF. Vesicle shape transformations driven by confined active filaments. Nat Commun 2021; 12:7247. [PMID: 34903731 PMCID: PMC8668962 DOI: 10.1038/s41467-021-27310-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 11/12/2021] [Indexed: 12/02/2022] Open
Abstract
In active matter systems, deformable boundaries provide a mechanism to organize internal active stresses. To study a minimal model of such a system, we perform particle-based simulations of an elastic vesicle containing a collection of polar active filaments. The interplay between the active stress organization due to interparticle interactions and that due to the deformability of the confinement leads to a variety of filament spatiotemporal organizations that have not been observed in bulk systems or under rigid confinement, including highly-aligned rings and caps. In turn, these filament assemblies drive dramatic and tunable transformations of the vesicle shape and its dynamics. We present simple scaling models that reveal the mechanisms underlying these emergent behaviors and yield design principles for engineering active materials with targeted shape dynamics.
Collapse
Affiliation(s)
- Matthew S E Peterson
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA, 02453, United States
| | - Aparna Baskaran
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA, 02453, United States.
| | - Michael F Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA, 02453, United States.
| |
Collapse
|
28
|
Fauser J, Brennan M, Tsygankov D, Karginov AV. Methods for assessment of membrane protrusion dynamics. CURRENT TOPICS IN MEMBRANES 2021; 88:205-234. [PMID: 34862027 DOI: 10.1016/bs.ctm.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Membrane protrusions are a critical facet of cell function. Mediating fundamental processes such as cell migration, cell-cell interactions, phagocytosis, as well as assessment and remodeling of the cell environment. Different protrusion types and morphologies can promote different cellular functions and occur downstream of distinct signaling pathways. As such, techniques to quantify and understand the inner workings of protrusion dynamics are critical for a comprehensive understanding of cell biology. In this chapter, we describe approaches to analyze cellular protrusions and correlate physical changes in cell morphology with biochemical signaling processes. We address methods to quantify and characterize protrusion types and velocity, mathematical approaches to predictive models of cytoskeletal changes, and implementation of protein engineering and biosensor design to dissect cell signaling driving protrusive activity. Combining these approaches allows cell biologists to develop a comprehensive understanding of the dynamics of membrane protrusions.
Collapse
Affiliation(s)
- Jordan Fauser
- University of Illinois at Chicago, Department of Cellular and Molecular Pharmacology and Regenerative Medicine, Chicago, IL, United States
| | - Martin Brennan
- University of Illinois at Chicago, Department of Cellular and Molecular Pharmacology and Regenerative Medicine, Chicago, IL, United States
| | - Denis Tsygankov
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, United States
| | - Andrei V Karginov
- University of Illinois at Chicago, Department of Cellular and Molecular Pharmacology and Regenerative Medicine, Chicago, IL, United States.
| |
Collapse
|
29
|
Paneru G, Park JT, Pak HK. Transport and Diffusion Enhancement in Experimentally Realized Non-Gaussian Correlated Ratchets. J Phys Chem Lett 2021; 12:11078-11084. [PMID: 34748337 DOI: 10.1021/acs.jpclett.1c03037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Living cells are known to generate non-Gaussian active fluctuations significantly larger than thermal fluctuations owing to various active processes. Understanding the effect of these active fluctuations on various physicochemical processes, such as the transport of molecular motors, is a fundamental problem in nonequilibrium physics. Therefore, we experimentally and numerically studied an active Brownian ratchet comprising a colloidal particle in an optically generated asymmetric periodic potential driven by non-Gaussian noise having finite-amplitude active bursts, each arriving at random and decaying exponentially. We find that the particle velocity is maximum for relatively sparse bursts with finite correlation time and non-Gaussian distribution. These occasional kicks, which produce Brownian yet non-Gaussian diffusion, are more efficient for transport and diffusion enhancement of the particle than the incessant kicks of active Ornstein-Uhlenbeck noise.
Collapse
Affiliation(s)
- Govind Paneru
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jin Tae Park
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Hyuk Kyu Pak
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
30
|
Drozdowski OM, Ziebert F, Schwarz US. Optogenetic control of intracellular flows and cell migration: A comprehensive mathematical analysis with a minimal active gel model. Phys Rev E 2021; 104:024406. [PMID: 34525652 DOI: 10.1103/physreve.104.024406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/14/2021] [Indexed: 12/23/2022]
Abstract
The actin cytoskeleton of cells is in continuous motion due to both polymerization of new filaments and their contraction by myosin II molecular motors. Through adhesion to the substrate, such intracellular flow can be converted into cell migration. Recently, optogenetics has emerged as a new powerful experimental method to control both actin polymerization and myosin II contraction. While optogenetic control of polymerization can initiate cell migration by generating protrusion, it is less clear if and how optogenetic control of contraction can also affect cell migration. Here we analyze the latter situation using a minimal variant of active gel theory into which we include optogenetic activation as a spatiotemporally constrained perturbation. The model can describe the symmetrical flow of the actomyosin system observed in optogenetic experiments, but not the long-lasting polarization required for cell migration. Motile solutions become possible if cytoskeletal polymerization is included through the boundary conditions. Optogenetic activation of contraction can then initiate locomotion in a symmetrically spreading cell and strengthen motility in an asymmetrically polymerizing one. If designed appropriately, it can also arrest motility even for protrusive boundaries.
Collapse
Affiliation(s)
- Oliver M Drozdowski
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany and BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Falko Ziebert
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany and BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Ulrich S Schwarz
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany and BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| |
Collapse
|