1
|
Chen Y, Xu Y, Wang L, Liang Y, Li N, Lourenço J, Yang Y, Lin Q, Wang L, Zhao H, Cazelles B, Song H, Liu Z, Wang Z, Brady OJ, Cauchemez S, Tian H. Indian Ocean temperature anomalies predict long-term global dengue trends. Science 2024; 384:639-646. [PMID: 38723095 DOI: 10.1126/science.adj4427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 04/09/2024] [Indexed: 05/31/2024]
Abstract
Despite identifying El Niño events as a factor in dengue dynamics, predicting the oscillation of global dengue epidemics remains challenging. Here, we investigate climate indicators and worldwide dengue incidence from 1990 to 2019 using climate-driven mechanistic models. We identify a distinct indicator, the Indian Ocean basin-wide (IOBW) index, as representing the regional average of sea surface temperature anomalies in the tropical Indian Ocean. IOBW is closely associated with dengue epidemics for both the Northern and Southern hemispheres. The ability of IOBW to predict dengue incidence likely arises as a result of its effect on local temperature anomalies through teleconnections. These findings indicate that the IOBW index can potentially enhance the lead time for dengue forecasts, leading to better-planned and more impactful outbreak responses.
Collapse
Affiliation(s)
- Yuyang Chen
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Beijing Normal University, Beijing, China
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan, China
| | - Yiting Xu
- School of National Safety and Emergency Management, Beijing Normal University, Zhuhai, China
| | - Lin Wang
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Yilin Liang
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Beijing Normal University, Beijing, China
| | - Naizhe Li
- School of National Safety and Emergency Management, Beijing Normal University, Zhuhai, China
| | - José Lourenço
- Católica Biomedical Research Center, Católica Medical School, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Yun Yang
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Beijing Normal University, Beijing, China
| | - Qiushi Lin
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Beijing Normal University, Beijing, China
| | - Ligui Wang
- Center of Disease Control and Prevention, PLA, Beijing, China
| | - He Zhao
- CMA Earth System Modeling and Prediction Centre, China Meteorological Administration, Beijing, China
| | - Bernard Cazelles
- Institut de Biologie de l'École Normale Supérieure UMR 8197, Eco-Evolutionary Mathematics, École Normale Supérieure, Paris, France
- Unité Mixte Internationnale 209, Mathematical and Computational Modeling of Complex Systems, Sorbonne Université, Paris, France
| | - Hongbin Song
- Center of Disease Control and Prevention, PLA, Beijing, China
| | - Ziyan Liu
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Beijing Normal University, Beijing, China
| | - Zengmiao Wang
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Beijing Normal University, Beijing, China
| | - Oliver J Brady
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Department of Infectious Disease Epidemiology and Dynamics, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, UMR2000, CNRS, Paris, France
| | - Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Beijing Normal University, Beijing, China
| |
Collapse
|
2
|
Vogel MA, Silva GA, Otero-Rodríguez S, Deschutter EJ, Ramos Rincón JM. Seroprevalence of dengue IgG and associated risk factors in symptomatic and asymptomatic adults in Posadas (Misiones, Argentina), 2017-2019. J Infect Public Health 2024; 17:663-668. [PMID: 38447322 DOI: 10.1016/j.jiph.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Dengue represents a major public health problem in the Americas in general, and in Posadas (Misiones, Argentina) in particular. This study aimed to assess the seroprevalence of dengue virus infection, analyze associated factors, and determine the proportion of asymptomatic cases. METHODS This prospective cross-sectional study took place from November 2017 to April 2019 in the High Complexity Laboratory of Misiones, at the School Hospital Dr. Ramón Madariaga in Posadas. A random sample of 301 adults (≥ 15 years) was selected from the electoral registry and stratified by geographical area of residence. Sociodemographic, clinical, and laboratory data were collected by means of a survey and serology. Results were analyzed using multivariable logistic regression. RESULTS The median age of the sample was 33 years; 66% were women, and 46.5% had completed at least secondary school. Anti-dengue IgG antibodies were present in 40.2% of the sample (95% confidence interval [CI] 34.5-45.9%), including 90% of those who reported dengue and 20.5% who did not (odds ratio [OR] 33.25, 95% CI 15.46-71.51, p < 0.001). In the multivariable analysis, adjusted for age, group, gender, and vaccination against yellow fever, seropositivity was associated with having relatives with dengue (adjusted OR 3.96, 95% CI 2.18-7.23; p < 0.001). CONCLUSION Seroprevalence for dengue in Posadas was higher than estimates based on the notification records, and there was a high proportion of asymptomatic cases. Educational level and having a family member who had suffered from dengue were associated with positive serology.
Collapse
Affiliation(s)
- Mara Angelina Vogel
- High Complexity Laboratory of Misiones, Ministry of Health, Posadas, Misiones, Argentina; Master of Public Health and Communicable Diseases, National University of Misiones, Posadas, Argentina.
| | - Gustavo Alfredo Silva
- Master of Public Health and Communicable Diseases, National University of Misiones, Posadas, Argentina; Department of Microbiology. Faculty of Exact, Chemical and Natural Sciences, National University of Misiones, Posadas, Argentina.
| | - Silvia Otero-Rodríguez
- Infectious Diseases Unit, Dr. Balmis General University Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain.
| | - Enrique Jorge Deschutter
- Master of Public Health and Communicable Diseases, National University of Misiones, Posadas, Argentina; Department of Microbiology. Faculty of Exact, Chemical and Natural Sciences, National University of Misiones, Posadas, Argentina.
| | - José Manuel Ramos Rincón
- Clinical Medicine Department, University Miguel Hernández de Elche, Spain; Internal Medicine Department, Dr. Balmis General University Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain.
| |
Collapse
|
3
|
Aogo RA, Zambrana JV, Sanchez N, Ojeda S, Kuan G, Balmaseda A, Gordon A, Harris E, Katzelnick LC. Effects of boosting and waning in highly exposed populations on dengue epidemic dynamics. Sci Transl Med 2023; 15:eadi1734. [PMID: 37967199 PMCID: PMC11001200 DOI: 10.1126/scitranslmed.adi1734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023]
Abstract
Sequential infection with multiple dengue virus (DENV) serotypes is thought to induce enduring protection against dengue disease. However, long-term antibody waning has been observed after repeated DENV infection. Here, we provide evidence that highly immune Nicaraguan children and adults (n = 4478) experience boosting and waning of antibodies during and after major Zika and dengue epidemics. We develop a susceptible-infected-recovered-susceptible (SIRS-type) model that tracks immunity by titer rather than number of infections to show that boosts in highly immune individuals can contribute to herd immunity, delaying their susceptibility to transmissible infection. In contrast, our model of lifelong immunity in highly immune individuals, as previously assumed, results in complete disease eradication after introduction. Periodic epidemics under this scenario can only be sustained with a constant influx of infected individuals into the population or a high basic reproductive number. We also find that Zika virus infection can boost DENV immunity and produce delays and then surges in dengue epidemics, as observed with real epidemiological data. This work provides insight into factors shaping periodicity in dengue incidence and may inform vaccine efforts to maintain population immunity.
Collapse
Affiliation(s)
- Rosemary A. Aogo
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3203, USA
| | - Jose Victor Zambrana
- Sustainable Sciences Institute, Managua, 14007, Nicaragua
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| | - Nery Sanchez
- Sustainable Sciences Institute, Managua, 14007, Nicaragua
| | - Sergio Ojeda
- Sustainable Sciences Institute, Managua, 14007, Nicaragua
| | - Guillermina Kuan
- Sustainable Sciences Institute, Managua, 14007, Nicaragua
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, 12014, Nicaragua
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, 14007, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, 16064, Nicaragua
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Leah C. Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3203, USA
| |
Collapse
|
4
|
Ooi EE, Kalimuddin S. Insights into dengue immunity from vaccine trials. Sci Transl Med 2023; 15:eadh3067. [PMID: 37437017 DOI: 10.1126/scitranslmed.adh3067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
The quest for an effective dengue vaccine has culminated in two approved vaccines and another that has completed phase 3 clinical trials. However, shortcomings exist in each, suggesting that the knowledge on dengue immunity used to develop these vaccines was incomplete. Vaccine trial findings could refine our understanding of dengue immunity, because these are experimentally derived, placebo-controlled data. Results from these trials suggest that neutralizing antibody titers alone are insufficient to inform protection against symptomatic infection, implicating a role for cellular immunity in protection. These findings have relevance for both future dengue vaccine development and application of current vaccines for maximal public health benefit.
Collapse
Affiliation(s)
- Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore 169857, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
| | - Shirin Kalimuddin
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Infectious Diseases, Singapore General Hospital, Singapore 169856, Singapore
| |
Collapse
|
5
|
Vazquez-Prokopec GM, Morrison AC, Paz-Soldan V, Stoddard ST, Koval W, Waller LA, Alex Perkins T, Lloyd AL, Astete H, Elder J, Scott TW, Kitron U. Inapparent infections shape the transmission heterogeneity of dengue. PNAS NEXUS 2023; 2:pgad024. [PMID: 36909820 PMCID: PMC10003742 DOI: 10.1093/pnasnexus/pgad024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 02/02/2023]
Abstract
Transmission heterogeneity, whereby a disproportionate fraction of pathogen transmission events result from a small number of individuals or geographic locations, is an inherent property of many, if not most, infectious disease systems. For vector-borne diseases, transmission heterogeneity is inferred from the distribution of the number of vectors per host, which could lead to significant bias in situations where vector abundance and transmission risk at the household do not correlate, as is the case with dengue virus (DENV). We used data from a contact tracing study to quantify the distribution of DENV acute infections within human activity spaces (AS), the collection of residential locations an individual routinely visits, and quantified measures of virus transmission heterogeneity from two consecutive dengue outbreaks (DENV-4 and DENV-2) that occurred in the city of Iquitos, Peru. Negative-binomial distributions and Pareto fractions showed evidence of strong overdispersion in the number of DENV infections by AS and identified super-spreading units (SSUs): i.e. AS where most infections occurred. Approximately 8% of AS were identified as SSUs, contributing to more than 50% of DENV infections. SSU occurrence was associated more with DENV-2 infection than with DENV-4, a predominance of inapparent infections (74% of all infections), households with high Aedes aegypti mosquito abundance, and high host susceptibility to the circulating DENV serotype. Marked heterogeneity in dengue case distribution, and the role of inapparent infections in defining it, highlight major challenges faced by reactive interventions if those transmission units contributing the most to transmission are not identified, prioritized, and effectively treated.
Collapse
Affiliation(s)
| | - Amy C Morrison
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Valerie Paz-Soldan
- Department of Global Community Health and Behavioral Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Steven T Stoddard
- Division of Health Promotion & Behavioral Sciences, School of Public Health, San Diego State University, San Diego, CA 92182, USA
| | - William Koval
- Department of Biology, University of Chicago, Chicago, IL 60637, USA
| | - Lance A Waller
- Department of Biostatistics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - T Alex Perkins
- Department of Biology, University of Notre Dame, South Bend, IN 46556, USA
| | - Alun L Lloyd
- Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, NC 27607, USA
| | - Helvio Astete
- Virology Department, Naval Medical Research Unit-6, Iquitos 16003, Peru
| | - John Elder
- Division of Health Promotion & Behavioral Sciences, School of Public Health, San Diego State University, San Diego, CA 92182, USA
| | - Thomas W Scott
- Department of Entomology and Nematology, University of California, Davis, CA 95616, USA
| | - Uriel Kitron
- Department of Environmental Sciences, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Mathematical Modelling of Dengue Transmission with Intervention Strategies Using Fractional Derivatives. Bull Math Biol 2022; 84:138. [DOI: 10.1007/s11538-022-01096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 10/10/2022] [Indexed: 11/02/2022]
|
7
|
Manning JE, Chea S, Parker DM, Bohl JA, Lay S, Mateja A, Man S, Nhek S, Ponce A, Sreng S, Kong D, Kimsan S, Meneses C, Fay MP, Suon S, Huy R, Lon C, Leang R, Oliveira F. Development of inapparent dengue associated with increased antibody levels to Aedes aegypti salivary proteins: a longitudinal dengue cohort in Cambodia. J Infect Dis 2021; 226:1327-1337. [PMID: 34718636 DOI: 10.1093/infdis/jiab541] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/26/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND We established the first prospective cohort to understand how infection with dengue virus is influenced by vector-specific determinants like humoral immunity to Aedes aegypti salivary proteins. METHODS Children aged two to nine years old enrolled in the PAGODAS (Pediatric Assessment Group of Dengue and Aedes Saliva) cohort with informed consent by their guardians. Children were followed semi-annually for antibodies to dengue and to proteins in Ae. aegypti salivary gland homogenate using enzyme-linked immunosorbent assays and dengue-specific neutralization titers. Children presented with fever at any time for dengue testing. RESULTS From July 13 to August 30, 2018, we enrolled 771 children. At baseline, 22% (173/770) had evidence of neutralizing antibodies to one or more dengue serotypes. By April 2020, 51 children had symptomatic dengue while 148 dengue-naïve children had inapparent dengue defined by neutralization assays. In a multivariate model, individuals with higher antibodies to Ae. aegypti salivary proteins were 1.5x more likely to have dengue infection (HR 1.47 95% CI 1.05-2.06; p=0.02), particularly individuals with inapparent dengue (HR 1.64 95% CI 1.12-2.41; p=0.01). CONCLUSIONS High levels of seropositivity to Ae. aegypti salivary proteins are associated with future development of dengue infection, primarily inapparent, in dengue-naïve Cambodian children.
Collapse
Affiliation(s)
- Jessica E Manning
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.,International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
| | - Sophana Chea
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia.,National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh Cambodia
| | | | - Jennifer A Bohl
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sreyngim Lay
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia.,National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh Cambodia
| | - Allyson Mateja
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Somnang Man
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia.,National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh Cambodia
| | - Sreynik Nhek
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia.,National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh Cambodia
| | - Aiyana Ponce
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sokunthea Sreng
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia.,National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh Cambodia
| | - Dara Kong
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia.,National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh Cambodia
| | - Soun Kimsan
- National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh Cambodia.,National Dengue Control Program, Ministry of Health, Phnom Penh, Cambodia
| | - Claudio Meneses
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael P Fay
- Biostatistics Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Seila Suon
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia.,National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh Cambodia
| | - Rekol Huy
- National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh Cambodia
| | - Chanthap Lon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.,International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
| | - Rithea Leang
- National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh Cambodia.,National Dengue Control Program, Ministry of Health, Phnom Penh, Cambodia
| | - Fabiano Oliveira
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Katzelnick LC, Zambrana JV, Elizondo D, Collado D, Garcia N, Arguello S, Mercado JC, Miranda T, Ampie O, Mercado BL, Narvaez C, Gresh L, Binder RA, Ojeda S, Sanchez N, Plazaola M, Latta K, Schiller A, Coloma J, Carrillo FB, Narvaez F, Halloran ME, Gordon A, Kuan G, Balmaseda A, Harris E. Dengue and Zika virus infections in children elicit cross-reactive protective and enhancing antibodies that persist long term. Sci Transl Med 2021; 13:eabg9478. [PMID: 34613812 DOI: 10.1126/scitranslmed.abg9478] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Leah C Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA.,Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3203, USA
| | | | | | | | - Nadezna Garcia
- Sustainable Sciences Institute, Managua 14007, Nicaragua
| | - Sonia Arguello
- Sustainable Sciences Institute, Managua 14007, Nicaragua
| | - Juan Carlos Mercado
- Sustainable Sciences Institute, Managua 14007, Nicaragua.,Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua 16064, Nicaragua
| | | | | | | | - César Narvaez
- Sustainable Sciences Institute, Managua 14007, Nicaragua
| | - Lionel Gresh
- Sustainable Sciences Institute, Managua 14007, Nicaragua
| | - Raquel A Binder
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA.,Sustainable Sciences Institute, Managua 14007, Nicaragua
| | - Sergio Ojeda
- Sustainable Sciences Institute, Managua 14007, Nicaragua
| | - Nery Sanchez
- Sustainable Sciences Institute, Managua 14007, Nicaragua
| | | | - Krista Latta
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029, USA
| | - Amy Schiller
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029, USA
| | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Fausto Bustos Carrillo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | | | - M Elizabeth Halloran
- Department of Biostatistics, University of Washington, Seattle, WA 98195-1617, USA.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029, USA
| | - Guillermina Kuan
- Sustainable Sciences Institute, Managua 14007, Nicaragua.,Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua 12014, Nicaragua
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua 14007, Nicaragua.,Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua 16064, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| |
Collapse
|