1
|
Myachina TA, Butova XA, Simonova RA, Volzhaninov DA, Kochurova AM, Kopylova GV, Shchepkin DV, Khokhlova AD. The Contractile Function of Ventricular Cardiomyocytes Is More Sensitive to Acute 17β-Estradiol Treatment Compared to Atrial Cardiomyocytes. Cells 2025; 14:561. [PMID: 40277887 PMCID: PMC12026394 DOI: 10.3390/cells14080561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
17β-estradiol (E2) is the most active metabolite of estrogen with a wide range of physiological action on cardiac muscle. Previous studies have reported E2 effects predominantly for the ventricles, while the E2 impact on the atria has been less examined. In this study, we focused on the direct E2 effects on atrial and ventricular contractility at the cellular and molecular levels. Single atrial and ventricular cardiomyocytes (CM) from adult (24 weeks-old) female Wistar rats were incubated with 10 nM E2 for 15 min. Sarcomere length and cytosolic [Ca2+]i transients were measured in mechanically non-loaded CM, and the tension-length relationship was studied in CM mechanically loaded by carbon fibers. The actin-myosin interaction and sarcomeric protein phosphorylation were analyzed using an in vitro motility assay and gel electrophoresis with Pro-Q Diamond phosphoprotein stain. E2 had chamber-specific effects on the contractile function of CM with a pronounced influence on ventricular CM. The characteristics of [Ca2+]i transients did not change in both atrial and ventricular CM. However, in ventricular CM, E2 reduced the amplitude and maximum velocity of sarcomere shortening and decreased the slope of the passive tension-length relationship that was associated with increased TnI and cMyBP-C phosphorylation. E2 treatment accelerated the cross-bridge cycle of both atrial and ventricular myosin that was associated with increased phosphorylation of the myosin essential light chain. This study shows that E2 impairs the mechanical function of the ventricular myocardium while atrial contractility remains mostly preserved. Hormonal replacement therapy (HRT) with estrogen is by far the most effective therapy for treating climacteric symptoms experienced during menopause. Here we found a chamber specificity of myocardial contractile function to E2 that should be taken into account for the potential side effects of HRT.
Collapse
Affiliation(s)
- Tatiana A. Myachina
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
| | - Xenia A. Butova
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
| | - Raisa A. Simonova
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
| | - Denis A. Volzhaninov
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
| | - Anastasia M. Kochurova
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
| | - Galina V. Kopylova
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
| | - Daniil V. Shchepkin
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620026 Yekaterinburg, Russia
| | | |
Collapse
|
2
|
Guldan M, Unlu S, Abdel-Rahman SM, Ozbek L, Gaipov A, Covic A, Soler MJ, Covic A, Kanbay M. Understanding the Role of Sex Hormones in Cardiovascular Kidney Metabolic Syndrome: Toward Personalized Therapeutic Approaches. J Clin Med 2024; 13:4354. [PMID: 39124622 PMCID: PMC11312746 DOI: 10.3390/jcm13154354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Cardiovascular kidney metabolic (CKM) syndrome represents a complex interplay of cardiovascular disease (CVD), chronic kidney disease (CKD), and metabolic comorbidities, posing a significant public health challenge. Gender exerts a critical influence on CKM syndrome, affecting the disease severity and onset through intricate interactions involving sex hormones and key physiological pathways such as the renin-angiotensin system, oxidative stress, inflammation, vascular disease and insulin resistance. It is widely known that beyond the contribution of traditional risk factors, men and women exhibit significant differences in CKM syndrome and its components, with distinct patterns observed in premenopausal women and postmenopausal women compared to men. Despite women generally experiencing a lower incidence of CVD, their outcomes following cardiovascular events are often worse compared to men. The disparities also extend to the treatment approaches for kidney failure, with a higher prevalence of dialysis among men despite women exhibiting higher rates of CKD. The impact of endogenous sex hormones, the correlations between CKM and its components, as well as the long-term effects of treatment modalities using sex hormones, including hormone replacement therapies and gender-affirming therapies, have drawn attention to this topic. Current research on CKM syndrome is hindered by the scarcity of large-scale studies and insufficient integration of gender-specific considerations into treatment strategies. The underlying mechanisms driving the gender disparities in the pathogenesis of CKM syndrome, including the roles of estrogen, progesterone and testosterone derivatives, remain poorly understood, thus limiting their application in personalized therapeutic interventions. This review synthesizes existing knowledge to clarify the intricate relationship between sex hormones, gender disparities, and the progression of CVD within CKM syndrome. By addressing these knowledge gaps, this study aims to guide future research efforts and promote tailored approaches for effectively managing CKD syndrome.
Collapse
Affiliation(s)
- Mustafa Guldan
- Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey; (M.G.); (S.U.); (S.M.A.-R.); (L.O.)
| | - Selen Unlu
- Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey; (M.G.); (S.U.); (S.M.A.-R.); (L.O.)
| | - Sama Mahmoud Abdel-Rahman
- Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey; (M.G.); (S.U.); (S.M.A.-R.); (L.O.)
| | - Laşin Ozbek
- Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey; (M.G.); (S.U.); (S.M.A.-R.); (L.O.)
| | - Abduzhappar Gaipov
- Department of Medicine, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
| | - Andreea Covic
- Department of Nephrology, Grigore T. Popa University of Medicine, 700115 Iasi, Romania;
| | - Maria José Soler
- Nephrology Department, Vall d’Hebron University Hospital, Vall d’Hebron Institute of Research, 08035 Barcelona, Spain;
- Centro de Referencia en Enfermedad, Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), RICORS2040 (Kidney Disease), 08003 Barcelona, Spain
- GEENDIAB (Grupo Español de Estudio de la Nefropatía Diabética), 39008 Santander, Spain
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa University of Medicine, 700115 Iasi, Romania;
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey;
| |
Collapse
|
3
|
Chen P, Wu S, Hu Z, Hao B, Huang Y, Chen X, Guo Y, Wang Z, Chen X, Su M, Chen W, Zhuo Y, Li J, Wei S, Xu B, Xu J. Serum SERCA2a levels in heart failure patients are associated with adverse events after discharge. Medicine (Baltimore) 2024; 103:e37761. [PMID: 38640274 PMCID: PMC11029989 DOI: 10.1097/md.0000000000037761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 04/21/2024] Open
Abstract
Calcium homeostasis imbalance is one of the important pathological mechanisms in heart failure. Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a), a calcium ATPase on the sarcoplasmic reticulum in cardiac myocytes, is a myocardial systolic-diastolic Ca2 + homeostasis regulating enzyme that is not only involved in cardiac diastole but also indirectly affects cardiac myocyte contraction. SERCA2a expression was found to be decreased in myocardial tissue in heart failure, however, there are few reports on serum SERCA2a expression in patients with heart failure, and this study was designed to investigate whether serum SERCA2a levels are associated with the occurrence of adverse events after discharge in patients hospitalized with heart failure. Patients with heart failure hospitalized in the cardiovascular department of the Second Affiliated Hospital of Guangdong Medical University, China, from July 2018 to July 2019 were included in this study, and serum SERCA2a concentrations were measured; each enrolled patient was followed up by telephone after 6 months (6 ± 1 months) for general post-discharge patient status. The correlation between serum SERCA2a levels and the occurrence of adverse events (death or readmission due to heart failure) after hospital discharge was assessed using multiple analysis and trend analysis. Seventy-one patients with heart failure were finally included in this study, of whom 38 (53.5%) were men and 33 (46.5%) were women (All were postmenopausal women). Multiple analysis revealed no correlation between serum SERCA2a levels and the occurrence of adverse events in the total study population and in male patients, but serum SERCA2a levels were associated with the occurrence of adverse outcome events after hospital discharge in female patients (OR = 1.02, P = .047). Further analysis using a trend analysis yielded a 4.0% increase in the risk of adverse outcomes after hospital discharge for each unit increase in SERCA2a in female patients (OR = 1.04; P = .02), while no significant difference was seen in men. This study suggests that serum SERCA2a levels at admission are associated with the occurrence of post-discharge adverse events in postmenopausal female patients hospitalized with heart failure.
Collapse
Affiliation(s)
- Panghe Chen
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shudie Wu
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhihui Hu
- Guangdong Medical University, Zhanjiang, China
| | - Biao Hao
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuesheng Huang
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xu Chen
- Guangdong Medical University, Zhanjiang, China
| | - Yingjie Guo
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhiye Wang
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaoxin Chen
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Miaoling Su
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Weiwen Chen
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yinan Zhuo
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiahao Li
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shaofeng Wei
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bilian Xu
- Guangdong Medical University, Zhanjiang, China
| | - Jinrong Xu
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
4
|
Griffith JA, King RD, Dunn AC, Lewis SE, Maxwell BA, Nurkiewicz TR, Goldsmith WT, Kelley EE, Bowdridge EC. Maternal nano-titanium dioxide inhalation exposure alters placental cyclooxygenase and oxidant balance in a sexually dimorphic manner. ADVANCES IN REDOX RESEARCH 2024; 10:10.1016/j.arres.2023.100090. [PMID: 38562524 PMCID: PMC10979698 DOI: 10.1016/j.arres.2023.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The placenta plays a critical role in nutrient-waste exchange between the maternal and fetal circulation, and thus impacts fetal growth and development. We have previously shown that nano-titanium dioxide (nano-TiO2) inhalation exposure during gestation decreased fetal female pup and placenta mass [1], which persists in the following generation [2]. In utero exposed females, once mated, their offspring's placentas had increased capacity for H2O2 production. Generation of oxidants such as hydrogen peroxide (H2O2), have been shown to impact cyclooxygenase activity, specifically metabolites such as prostacyclin (PGI2) or thromboxane (TXA2). Therefore, we hypothesized that maternal nano-TiO2 inhalation exposure during gestation results in alterations in placental production of prostacyclin and thromboxane mediated by enhanced H2O2 production in a sexually dimorphic manner. Pregnant Sprague-Dawley rats were exposed to nano-TiO2 aerosols or filtered air (sham--control) from gestational day (GD) 10-19. Dams were euthanized on GD 20, and fetal serum and placental tissue were collected based on fetal sex. Fetal placental zones (junctional zone (JZ) and labyrinth zone (LZ)) were assessed for xanthine oxidoreductase (XOR) activity, H2O2, and catalase activity, as well as 6-keto-PGF1α and TXB2 levels. Nano-TiO2 exposed fetal female LZ demonstrated significantly greater XOR activity compared to exposed males. Exposed fetal female LZ also demonstrated significantly diminished catalase activity compared to sham-control females. Exposed fetal female LZ had significantly increased abundance of 6-keto-PGF1α compared to sham-control females and increased TXB2 compared to exposed males. In the aggregate these data indicate that maternal nano-TiO2 inhalation exposure has a greater impact on redox homeostasis and PGI2/TXA2 balance in the fetal female LZ. Future studies need to address if treatment with an XO inhibitor during gestation can prevent diminished fetal female growth during maternal nano-TiO2 inhalation exposure.
Collapse
Affiliation(s)
- Julie A. Griffith
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Rachel D. King
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Allison C. Dunn
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Sara E. Lewis
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Brooke A. Maxwell
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Timothy R. Nurkiewicz
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - William T. Goldsmith
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Eric E. Kelley
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Elizabeth C. Bowdridge
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
5
|
Conte M, De Feo MS, Frantellizzi V, Di Rocco A, Farcomeni A, De Cristofaro F, Maria R, Pisani AR, Rubini G, De Vincentis G. Sex differences in 123I-mIBG scintigraphy imaging techniques in patients with heart failure. Expert Rev Med Devices 2023; 20:769-778. [PMID: 37466442 DOI: 10.1080/17434440.2023.2239139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/07/2023] [Accepted: 07/18/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND 123I-mIBG-scintigraphy could be a useful stratifying tool for patients with heart failure (HF). The purpose of this retrospective study is to evaluate whether there are differences between men and women with HF in terms of the prediction of cardiac arrhythmic events (AE). RESEARCH AND METHODS A total of 306 patients, before implantable-cardioverter-defibrillator (ICD) implantation, were evaluated. They underwent 123I-mIBG-scintigraphy and an evaluation of the results was performed after 85 months of follow-up. Early and late planar and SPECT cardiac images were acquired. Heart-to-mediastinum ratio (HM) for planar images and the sum of the segmental scores (SS) for SPECT were calculated. RESULTS In the general population, age, early SS (ESS), late SS (LSS), and ejection fraction (EF) were statistically significant for the prediction of AE at Cox regression, while early and late HM (eHM,lHM) were not significative for the prediction of AE. Population was divided into females and males and univariate analysis was conducted separately for the two cohorts: no significant variables for prediction of AE were found in females. For males, ESS, LSS, EF, and late HM were statistically significant predictors of AE. The overall survival was similar in males and females, but the risk of AE is lower in males than in females. CONCLUSIONS 123I-mIBG represents a more effective tool for the prediction of AE in male patients than in women.
Collapse
Affiliation(s)
- Miriam Conte
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza, "Sapienza" University of Rome, Rome Italy
| | - Maria Silvia De Feo
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza, "Sapienza" University of Rome, Rome Italy
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza, "Sapienza" University of Rome, Rome Italy
| | - Arianna Di Rocco
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza, "Sapienza" University of Rome, Rome Italy
| | - Alessio Farcomeni
- Department of Economics & Finance, University of Rome "Tor Vergata", Rome, Italy
| | - Flaminia De Cristofaro
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza, "Sapienza" University of Rome, Rome Italy
| | - Ricci Maria
- Nuclear Medicine Unit, Cardarelli Hospital, Campobasso, Italy
| | | | - Giuseppe Rubini
- Nuclear Medicine Department, University of Bari "Aldo Moro", Bari, Italy
| | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza, "Sapienza" University of Rome, Rome Italy
| |
Collapse
|
6
|
Yoshida K, Saucerman JJ, Holmes JW. Multiscale model of heart growth during pregnancy: integrating mechanical and hormonal signaling. Biomech Model Mechanobiol 2022; 21:1267-1283. [PMID: 35668305 DOI: 10.1007/s10237-022-01589-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/01/2022] [Indexed: 12/01/2022]
Abstract
Pregnancy stands at the interface of mechanics and biology. The growing fetus continuously loads the maternal organs as circulating hormone levels surge, leading to significant changes in mechanical and hormonal cues during pregnancy. In response, maternal soft tissues undergo remarkable growth and remodeling to support the mother and baby for a healthy pregnancy. We focus on the maternal left ventricle, which increases its cardiac output and mass during pregnancy. This study develops a multiscale cardiac growth model for pregnancy to understand how mechanical and hormonal cues interact to drive this growth process. We coupled a cell signaling network model that predicts cell-level hypertrophy in response to hormones and stretch to a compartmental model of the rat heart and circulation that predicts organ-level growth in response to hemodynamic changes. We calibrated this multiscale model to data from experimental volume overload and hormonal infusions of angiotensin 2 (AngII), estrogen (E2), and progesterone (P4). We then validated the model's ability to capture interactions between inputs by comparing model predictions against published observations for the combinations of VO + E2 and AngII + E2. Finally, we simulated pregnancy-induced changes in hormones and hemodynamics to predict heart growth during pregnancy. Our model produced growth consistent with experimental data. Overall, our analysis suggests that the rise in P4 during the first half of gestation is an important contributor to heart growth during pregnancy. We conclude with suggestions for future experimental studies that will provide a better understanding of how hormonal and mechanical cues interact to drive pregnancy-induced heart growth.
Collapse
Affiliation(s)
- Kyoko Yoshida
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Jeffrey W Holmes
- School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
7
|
Kaya ST, Agan K, Fulden-Agan A, Agyar-Yoldas P, Ozarslan TO, Kekecoglu M, Kaya A. Protective effect of propolis on myocardial ischemia/reperfusion injury in males and ovariectomized females but not in intact females. J Food Biochem 2022; 46:e14109. [PMID: 35142377 DOI: 10.1111/jfbc.14109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/12/2021] [Accepted: 01/22/2022] [Indexed: 11/30/2022]
Abstract
The aim of this study is to investigate the effect of propolis, which may have estrogenic effects, on myocardial ischemia/reperfusion (mI/R) injury not only in male rats but also in intact and ovariectomized (ovx) female rats. Six groups were formed: untreated males (n = 8), treated males (n = 9), untreated intact females (n = 9), treated intact females (n = 10), untreated ovx females (n = 10), and treated ovx females (n = 8). An alcoholic extract of a single dose of propolis (200 mg/kg) was administered orally daily for 14 days. Thirty minutes of ischemia and 120 min of reperfusion were performed. Blood pressure, heart rate, arrhythmias (ventricular premature contraction [VPC], ventricular tachycardia [VT], ventricular fibrillation [VF]), and myocardial infarct size were evaluated. Total antioxidant status (TAS), total oxidant status (TOS), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and 17 beta-estradiol (E2) were measured. The untreated females showed more resistance to mI/R injury than the untreated males, as evidenced by lower duration, incidence, and score of arrhythmias, and smaller infarct size (p < .05). After ovx, this resistance disappeared. Propolis improved these values in treated males and treated ovx females (p < .05). Propolis increased TAS in treated males and decreased TOS in treated ovx females as well as elevated SOD in all treated groups (p < .05). Propolis decreased E2 level in treated intact females; however, it increased E2 level in treated ovx females (p < .05). The results revealed that propolis could protect the heart against mI/R injury in males and ovx females. PRACTICAL APPLICATIONS: It is known that the female heart has an increased sensitivity to myocardial ischemia/reperfusion (mI/R) injury due to estrogen deficiency and/or estrogen deprivation following menopause or surgical removal of the ovaries. Propolis has the potential to mimic estrogen under physiological and pathophysiological conditions, as well as its antioxidant property. The results indicated that propolis decreased myocardial infarct size, arrhythmia score, arrhythmia duration, and incidence in ovariectomized female rats and male rats. In addition, the present results demonstrated that an alcoholic extract of propolis as a natural product can effectively maintain the resistance of female heart to mI/R injury after estrogen deficiency.
Collapse
Affiliation(s)
- Salih Tunc Kaya
- Faculty of Arts and Science, Department of Biology, Duzce University, Duzce, Turkey
| | - Kagan Agan
- Coordination Unit of Healthy and Environmental, Duzce University, Duzce, Turkey
| | - Aydan Fulden-Agan
- Beekeeping Research, Development and Application Centre, Duzce University, Duzce, Turkey
| | - Pınar Agyar-Yoldas
- Coordination Unit of Healthy and Environmental, Duzce University, Duzce, Turkey
| | - Talat Ogulcan Ozarslan
- Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Meral Kekecoglu
- Faculty of Arts and Science, Department of Biology, Duzce University, Duzce, Turkey.,Beekeeping Research, Development and Application Centre, Duzce University, Duzce, Turkey
| | - Adnan Kaya
- Faculty of Medicine, Department of Internal Medicine, Cardiology Section, Duzce University, Duzce, Turkey
| |
Collapse
|
8
|
Regional Diversities in Fibrogenesis Weighed as a Key Determinant for Atrial Arrhythmogenesis. Biomedicines 2021; 9:biomedicines9121900. [PMID: 34944715 PMCID: PMC8698388 DOI: 10.3390/biomedicines9121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 11/18/2022] Open
Abstract
Atrial fibrosis plays a key role in atrial myopathy, resulting in the genesis of atrial fibrillation (AF). The abnormal distribution of fibrotic tissue, electrical coupling, paracrine interactions, and biomechanical–electrical interactions have all been suggested as causes of fibrosis-related arrhythmogenesis. Moreover, the regional difference in fibrogenesis, specifically the left atrium (LA) exhibiting a higher arrhythmogenesis and level of fibrosis than the right atrium (RA) in AF, is a key contributor to atrial arrhythmogenesis. LA fibroblasts have greater profibrotic cellular activities than RA fibroblasts, but knowledge about the regional diversity of atrial regional fibrogenesis remains limited. This article provides a comprehensive review of research findings on the association between fibrogenesis and arrhythmogenesis from laboratory to clinical evidence and updates the current understanding of the potential mechanism underlying the difference in fibrogenesis between the LA and RA.
Collapse
|
9
|
Rouatbi H, Farhat N, Heying R, Vazquez-Jimenez JF, Parent AS, Seghaye MC. Myocardial Expression of Estrogen Receptor-mRNA Is Associated With Lower Markers of Post-operative Organ Damage in Young Patients With Congenital Cardiac Defect. Front Pediatr 2021; 9:729198. [PMID: 34631625 PMCID: PMC8493930 DOI: 10.3389/fped.2021.729198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Estrogen receptors (ERs) relate to cardio-protection in adults, but their role in younger patients is not known. We aimed to assess the myocardial expression of ERα- and ERβ- mRNA in young patients with congenital cardiac disease and to analyze their putative protective role. Patients and Methods: Twenty children and young adults (seven females and 13 males) with a median age of 13.8 years (interquartile range: 12.3 years) were enrolled in this prospective study. The myocardial expression of ER-mRNA and genes involved in inflammation, growth, and stress response was assessed by real-time PCR and was correlated to post-operative (po) outcome. Results: ER-mRNA was detected in the myocardium of all patients, independently of gender and age. The expression of ER-mRNA correlated with that of mRNA coding for brain natriuretic peptide and for all cytokines tested. A higher ERα-mRNA expression correlated with lower troponin T concentrations at 24 h po (p = 0.032), higher PaO2/FiO2 ratio at 4 h po (p = 0.059), lower fluid retention at 4 h po (p = 0.048), and lower aspartate aminotransferase (AST) levels at 24 h po (p = 0.047). A higher ERβ-mRNA expression was also correlated with lower fluid retention at 24 h po (p = 0.048). Patients in whom the levels of ERα- and ERβ-mRNA were >P50 had lower troponin T (p = 0.003, respectively) and lower AST concentrations at 24 h po (p = 0.043, respectively) than the others. Conclusions: The expression of ERα- and ERβ-mRNA is present in the myocardium of children and young adults with congenital cardiac defect and is associated with lower markers of po organ damage. This suggests that ERs may provide perioperative organ protection in this population.
Collapse
Affiliation(s)
- Hatem Rouatbi
- Department of Pediatrics and Pediatric Cardiology, University Hospital Liège, Liège, Belgium
| | - Nesrine Farhat
- Department of Pediatrics and Pediatric Cardiology, University Hospital Liège, Liège, Belgium
| | - Ruth Heying
- Department of Pediatric Cardiology, University Hospital Leuven, Leuven, Belgium
| | - Jaime F Vazquez-Jimenez
- Department of Pediatric and Congenital Cardiac Surgery, University Hospital Aachen, Aachen, Germany
| | - Anne-Simone Parent
- Department of Pediatric Endocrinology, University Hospital Liège, Liège, Belgium
| | - Marie-Christine Seghaye
- Department of Pediatrics and Pediatric Cardiology, University Hospital Liège, Liège, Belgium
| |
Collapse
|
10
|
Guo Q, Zhang Q, He Y, Shi J, Li H, Peng H. Gender difference of association between plasma N-terminal pro-atrial natriuretic peptide and metabolic syndrome. Hormones (Athens) 2020; 19:541-548. [PMID: 32617886 DOI: 10.1007/s42000-020-00222-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/15/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE The natriuretic peptides (NPs) system, and mainly atrial natriuretic peptide (ANP), plays a key role in human metabolism and cardiometabolic disorders. Due to differences in NP levels and in prevalence of metabolic syndrome (MetS) between men and women, we aimed to explore the gender difference of association between N-terminal pro-atrial natriuretic peptide (NT-proANP) and MetS in a general population in China. METHODS Participants' weight, height, waist circumference, blood pressure, plasma NT-proANP, and other traditional biomarkers were measured. Multivariate logistic regression models were used to determine the association between plasma NT-proANP and MetS, and the odds ratio (OR) and 95% confidence interval (CI) were calculated for men and women, respectively. RESULTS Among 2203 participants, 1361 (61.78%) were women, 687(30.77%) participants had MetS, and the average age was 53 years. Women had a higher level of NT-proANP than men. However, adjusted logistic regression demonstrated that men in the upper quartile group of NT-proANP had 0.60 (95% CI 0.39-0.92) times the risk of having MetS, while women in the upper quartile group had 1.10 (95% CI 0.77-1.56) times the risk of having MetS compared to the lower quartile group. Furthermore, with the increase of the level of NT-proANP, the ORs showed a declining trend in men (P = 0.017), but it was not statistically significant among women (P = 0.700). CONCLUSIONS There are gender differences in the relationship between NT-proANP and MetS, while an inverse association between plasma NT-proANP and MetS in men suggests that higher levels of NT-proANP may be a protective factor for MetS.
Collapse
Affiliation(s)
- Qianlan Guo
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Qiu Zhang
- Center for Disease Prevention and Control of Gusu District, Suzhou, China
| | - Yan He
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Jijun Shi
- Department of Neurology, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongmei Li
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China.
| | - Hao Peng
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
11
|
Strauss-Kruger M, Kruger R, Smith W, Gafane-Matemane LF, Mokwatsi G, Wei W, Fedorova OV, Schutte AE. The Cardiotonic Steroid Marinobufagenin Is a Predictor of Increased Left Ventricular Mass in Obesity: The African-PREDICT Study. Nutrients 2020; 12:E3185. [PMID: 33081045 PMCID: PMC7603247 DOI: 10.3390/nu12103185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
The endogenous Na+/K+-ATPase inhibitor, marinobufagenin (MBG), strongly associates with salt intake and a greater left ventricular mass index (LVMi) in humans and was shown to promote cardiac fibrosis and hypertrophy in animals. The adverse effects of MBG on cardiac remodeling may be exacerbated with obesity, due to an increased sensitivity of Na+/K+-ATPase to MBG. This study determined whether MBG is related to the change in LVMi over time in adults with a body mass index (BMI) ≥30 kg/m2 (obese) and <30 kg/m2 (non-obese). The study followed 275 healthy participants (aged 20-30 years) from the African-Prospective study on the Early Detection and Identification of Cardiovascular disease and Hypertension (African-PREDICT) study over 4.5 years. At baseline, we measured 24 h urine MBG excretion. MBG levels were positively associated with salt intake. LVMi was determined by two-dimensional echocardiography at baseline and after >4.5 years. With multivariate adjusted analyses in obese adults (N = 56), we found a positive association of follow-up LVMi (Adjusted (Adj.) R2 = 0.35; Std. β = 0.311; p = 0.007) and percentage change in LVMi (Adj. R2 = 0.40; Std. β = 0.336; p = 0.003) with baseline MBG excretion. No association of LVMi (Adj. R2 = 0.37; p = 0.85) or percentage change in LVMi (Adj. R2 = 0.19; p = 0.68) with MBG excretion was evident in normal weight adults (N = 123). These findings suggest that obese adults may be more sensitive to the adverse cardiac effects of MBG and provide new insight into the potential role of dietary salt, by way of MBG, in the pathogenesis of cardiac remodeling in obese individuals.
Collapse
Affiliation(s)
- Michél Strauss-Kruger
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom 2520, South Africa; (M.S.-K.); (R.K.); (W.S.); (L.F.G.-M.); (G.M.)
| | - Ruan Kruger
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom 2520, South Africa; (M.S.-K.); (R.K.); (W.S.); (L.F.G.-M.); (G.M.)
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom 2520, South Africa
| | - Wayne Smith
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom 2520, South Africa; (M.S.-K.); (R.K.); (W.S.); (L.F.G.-M.); (G.M.)
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom 2520, South Africa
| | - Lebo F. Gafane-Matemane
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom 2520, South Africa; (M.S.-K.); (R.K.); (W.S.); (L.F.G.-M.); (G.M.)
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom 2520, South Africa
| | - Gontse Mokwatsi
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom 2520, South Africa; (M.S.-K.); (R.K.); (W.S.); (L.F.G.-M.); (G.M.)
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom 2520, South Africa
| | - Wen Wei
- National Institute on Aging, NIH, Baltimore, MD 212242, USA; (W.W.); (O.V.F.)
| | - Olga V. Fedorova
- National Institute on Aging, NIH, Baltimore, MD 212242, USA; (W.W.); (O.V.F.)
| | - Aletta E. Schutte
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom 2520, South Africa; (M.S.-K.); (R.K.); (W.S.); (L.F.G.-M.); (G.M.)
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom 2520, South Africa
- School of Population Health, University of New South Wales, The George Institute for Global Health, Sydney 2052, Australia
| |
Collapse
|
12
|
Suthahar N, Meems LMG, Ho JE, de Boer RA. Sex-related differences in contemporary biomarkers for heart failure: a review. Eur J Heart Fail 2020; 22:775-788. [PMID: 32220046 PMCID: PMC7319414 DOI: 10.1002/ejhf.1771] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 12/28/2022] Open
Abstract
The use of circulating biomarkers for heart failure (HF) is engrained in contemporary cardiovascular practice and provides objective information about various pathophysiological pathways associated with HF syndrome. However, biomarker profiles differ considerably among women and men. For instance, in the general population, markers of cardiac stretch (natriuretic peptides) and fibrosis (galectin‐3) are higher in women, whereas markers of cardiac injury (cardiac troponins) and inflammation (sST2) are higher in men. Such differences may reflect sex‐specific pathogenic processes associated with HF risk, but may also arise as a result of differences in sex hormone profiles and fat distribution. From a clinical perspective, sex‐related differences in biomarker levels may affect the objectivity of biomarkers in HF management because what is considered to be ‘normal’ in one sex may not be so in the other. The objectives of this review are, therefore: (i) to examine the sex‐specific dynamics of clinically relevant HF biomarkers in the general population, as well as in HF patients; (ii) to discuss the overlap between sex‐related and obesity‐related effects, and (iii) to identify knowledge gaps to stimulate research on sex‐related differences in
HF.
Collapse
Affiliation(s)
- Navin Suthahar
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Laura M G Meems
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Jennifer E Ho
- Division of Cardiology, Department of Medicine, and Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rudolf A de Boer
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Cardiovascular disease (CVD) is a non-subsiding disease that remains a leading cause of morbidity and mortality. CVD has been associated with endocrine disruptors, such as bisphenol A (BPA). This review critically summarizes existing findings on BPA and hypertension, with particular attention to genomic, non-genomic, molecular, and cellular mechanisms of action that render BPA as a cardiovascular estrogenic disruptor. RECENT FINDINGS Owing to its similar estrogenic structure, BPA has been shown to affect various phenotypes that are regulated by the natural hormone, estrogen. Indeed, BPA has been shown to interact with estrogen receptors, located both in the cell membrane and in the cytoplasm/nucleus. Given that estrogen plays an important role in cardiovascular physiology, a contributing role for BPA in CVD would not be unexpected. Existing literature, though limited, established BPA as a source of disruption in cardiovascular health, particularly hypertension. However, effects of BPA are largely dependent on the dose, patient gender, tissue, and developmental stage of the exposed tissue/organ. Accumulating evidence argues for an adverse effect of BPA on blood pressure, with this effect being gender, dose, and time specific. Thus, comprehensive studies which take these factors and other parameters, like epigenetic factors, into account are warranted before a thorough understanding is at hand.
Collapse
|
14
|
G-Protein–Coupled Estrogen Receptor Agonist G1 Improves Diastolic Function and Attenuates Cardiac Renin–Angiotensin System Activation in Estrogen-Deficient Hypertensive Rats. J Cardiovasc Pharmacol 2019; 74:443-452. [DOI: 10.1097/fjc.0000000000000721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Bernasochi GB, Boon WC, Delbridge LMD, Bell JR. The myocardium and sex steroid hormone influences. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Glisic M, Rojas LZ, Asllanaj E, Vargas KG, Kavousi M, Ikram MA, Fauser BC, Laven JS, Muka T, Franco OH. Sex steroids, sex hormone-binding globulin and levels of N-terminal pro-brain natriuretic peptide in postmenopausal women. Int J Cardiol 2018; 261:189-195. [DOI: 10.1016/j.ijcard.2018.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 02/27/2018] [Accepted: 03/03/2018] [Indexed: 12/21/2022]
|
17
|
Medrano JL, Naya FJ. The transcription factor MEF2A fine-tunes gene expression in the atrial and ventricular chambers of the adult heart. J Biol Chem 2017; 292:20975-20988. [PMID: 29054930 PMCID: PMC5743072 DOI: 10.1074/jbc.m117.806422] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/10/2017] [Indexed: 11/06/2022] Open
Abstract
The distinct morphological and functional properties of the cardiac chambers arise from an elaborate developmental program involving cell lineage determination, morphogenesis, and dynamic spatiotemporal gene expression patterns. Although a number of transcription factors have been identified for proper gene regulation in the chambers, the complete transcriptional network that controls these patterns remains poorly defined. Previous studies have implicated the MEF2C transcription factor in the regulation of chamber-restricted enhancers. To better understand the mechanisms of MEF2-mediated regional gene regulation in the heart, we took advantage of MEF2A knock-out (KO) mice, a model that displays a predominantly ventricular chamber phenotype. Transcriptomic analysis of atrial and ventricular tissue from adult MEF2A KO hearts revealed a striking difference in chamber gene expression, with a larger proportion of dysregulated genes in the atrial chambers. Canonical pathway analysis of genes preferentially dysregulated in the atria and ventricles revealed distinct MEF2A-dependent cellular processes in each cardiac chamber. In the atria, MEF2A regulated genes involved in fibrosis and adhesion, whereas in the ventricles, it controlled inflammation and endocytosis. Finally, analysis of transcription factor-binding site motifs of differentially dysregulated genes uncovered distinct MEF2A co-regulators for the atrial and ventricular gene sets, and a subset of these was found to cooperate with MEF2A. In conclusion, our results suggest a mechanism in which MEF2 transcriptional activity is differentially recruited to fine-tune gene expression levels in each cardiac chamber. This regulatory mechanism ensures optimal output of these gene products for proper physiological function of the atrial and ventricular chambers.
Collapse
Affiliation(s)
- Jose L Medrano
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| | - Francisco J Naya
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
18
|
Leeners B, Geary N, Tobler PN, Asarian L. Ovarian hormones and obesity. Hum Reprod Update 2017; 23:300-321. [PMID: 28333235 DOI: 10.1093/humupd/dmw045] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 11/23/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Obesity is caused by an imbalance between energy intake, i.e. eating and energy expenditure (EE). Severe obesity is more prevalent in women than men worldwide, and obesity pathophysiology and the resultant obesity-related disease risks differ in women and men. The underlying mechanisms are largely unknown. Pre-clinical and clinical research indicate that ovarian hormones may play a major role. OBJECTIVE AND RATIONALE We systematically reviewed the clinical and pre-clinical literature on the effects of ovarian hormones on the physiology of adipose tissue (AT) and the regulation of AT mass by energy intake and EE. SEARCH METHODS Articles in English indexed in PubMed through January 2016 were searched using keywords related to: (i) reproductive hormones, (ii) weight regulation and (iii) central nervous system. We sought to identify emerging research foci with clinical translational potential rather than to provide a comprehensive review. OUTCOMES We find that estrogens play a leading role in the causes and consequences of female obesity. With respect to adiposity, estrogens synergize with AT genes to increase gluteofemoral subcutaneous AT mass and decrease central AT mass in reproductive-age women, which leads to protective cardiometabolic effects. Loss of estrogens after menopause, independent of aging, increases total AT mass and decreases lean body mass, so that there is little net effect on body weight. Menopause also partially reverses women's protective AT distribution. These effects can be counteracted by estrogen treatment. With respect to eating, increasing estrogen levels progressively decrease eating during the follicular and peri-ovulatory phases of the menstrual cycle. Progestin levels are associated with eating during the luteal phase, but there does not appear to be a causal relationship. Progestins may increase binge eating and eating stimulated by negative emotional states during the luteal phase. Pre-clinical research indicates that one mechanism for the pre-ovulatory decrease in eating is a central action of estrogens to increase the satiating potency of the gastrointestinal hormone cholecystokinin. Another mechanism involves a decrease in the preference for sweet foods during the follicular phase. Genetic defects in brain α-melanocycte-stimulating hormone-melanocortin receptor (melanocortin 4 receptor, MC4R) signaling lead to a syndrome of overeating and obesity that is particularly pronounced in women and in female animals. The syndrome appears around puberty in mice with genetic deletions of MC4R, suggesting a role of ovarian hormones. Emerging functional brain-imaging data indicates that fluctuations in ovarian hormones affect eating by influencing striatal dopaminergic processing of flavor hedonics and lateral prefrontal cortex processing of cognitive inhibitory controls of eating. There is a dearth of research on the neuroendocrine control of eating after menopause. There is also comparatively little research on the effects of ovarian hormones on EE, although changes in ovarian hormone levels during the menstrual cycle do affect resting EE. WIDER IMPLICATIONS The markedly greater obesity burden in women makes understanding the diverse effects of ovarian hormones on eating, EE and body adiposity urgent research challenges. A variety of research modalities can be used to investigate these effects in women, and most of the mechanisms reviewed are accessible in animal models. Therefore, human and translational research on the roles of ovarian hormones in women's obesity and its causes should be intensified to gain further mechanistic insights that may ultimately be translated into novel anti-obesity therapies and thereby improve women's health.
Collapse
Affiliation(s)
- Brigitte Leeners
- Division of Reproductive Endocrinology, University Hospital Zurich, Frauenklinikstr. 10, CH 8091 Zurich, Switzerland.,Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Nori Geary
- Department of Psychiatry, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Philippe N Tobler
- Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland.,Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, 8006 Zurich, Switzerland
| | - Lori Asarian
- Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland.,Institute of Veterinary Physiology, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
19
|
The selective estrogen receptor modulators (SERMs) raloxifene and tamoxifen improve ANP levels and decrease nuclear translocation of NF-kB in estrogen-deficient rats. Pharmacol Rep 2017; 69:798-805. [PMID: 28591668 DOI: 10.1016/j.pharep.2017.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/27/2017] [Accepted: 03/09/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND The selective estrogen receptor modulators (SERMs) raloxifene and tamoxifen are used for the treatment of osteoporosis and cancer, respectively, in women. The impairment of both the Atrial Natriuretic Peptide (ANP) cell signaling system and the translocation of nuclear factor-kappa B (NF-kB) to the cell nucleus are associated with detrimental cardiovascular effects and inflammation. The effects of SERMs on these parameters in the cardiac tissue of estrogen-deficient rats has not been reported. METHODS We investigated the effects of raloxifene and tamoxifen on ANP signaling, p65 NF-kB nuclear translocation, cardiac histology and contractility. Female rats were divided into five groups: control (SHAM), ovariectomized (OVX), OVX-treated 17-β-estradiol (E), OVX-treated raloxifene (RLX) and OVX-treated tamoxifen (TAM). The treatments started 21days after ovariectomy and continued for 14days. RESULTS Ovariectomy reduced ANP mRNA in the left atrium (LA), decreased the content of ANP protein in the LA and in plasma, and increased the level of p65 NF-kB nuclear translocation in the left ventricle. Both 17-β-estradiol and SERMs were able to reverse these alterations, which were induced by the estrogen deficient state. The hemodynamic and cardiac structural parameters analyzed in the present work were not modified by the interventions. CONCLUSIONS Our study demonstrates, for the first time, the additional benefits of raloxifene and tamoxifen in an estrogen-deficient state. These include the normalization of plasmatic and cardiac ANP levels and cardiac p65 NF-kB translocation. Therefore, these treatments promote cardiovascular protection and may contribute to the prevention of cardiac dysfunction observed long-term in postmenopausal women.
Collapse
|
20
|
Methanolic Extract of Ceplukan Leaf (Physalis minima L.) Attenuates Ventricular Fibrosis through Inhibition of TNF-α in Ovariectomized Rats. Adv Pharmacol Sci 2016; 2016:2428052. [PMID: 26941790 PMCID: PMC4752972 DOI: 10.1155/2016/2428052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/10/2016] [Indexed: 01/20/2023] Open
Abstract
The increase of heart failure prevalence on menopausal women was correlated with the decrease of estrogen level. The aim of this study is to investigate the effects of ceplukan leaf (Physalis minima L.), which contains phytoestrogen physalin and withanolides, on ventricular TNF-α level and fibrosis in ovariectomized rats. Wistar rats were divided into six groups (control (-); OVX 5: 5-week ovariectomy (OVX); OVX 9: 9-week ovariectomy; treatments I, II, and III: 9-weeks OVX + 4-week ceplukan leaf's methanolic extract doses 500, 1500, and 2500 mg/kgBW, resp.). TNF-α levels were measured with ELISA. Fibrosis was counted as blue colored tissues percentage using Masson's Trichrome staining. This study showed that prolonged hypoestrogen increases ventricular fibrosis (p < 0.05). Ceplukan leaf treatment also resulted in a decrease of ventricular fibrosis and TNF-α level in dose dependent manner compared to without treatment group (p < 0.05). Furthermore, the TNF-α level was normalized in 2500 mg/kgBW Physalis minima L. (p < 0.05) treatment. The reduction of fibrosis positively correlated with TNF-α level (p < 0.05, r = 0.873). Methanolic extract of ceplukan leaf decreases ventricular fibrosis through the inhibition of ventricular TNF-α level in ovariectomized rats.
Collapse
|
21
|
Sbert-Roig M, Bauzá-Thorbrügge M, Galmés-Pascual BM, Capllonch-Amer G, García-Palmer FJ, Lladó I, Proenza AM, Gianotti M. GPER mediates the effects of 17β-estradiol in cardiac mitochondrial biogenesis and function. Mol Cell Endocrinol 2016; 420:116-24. [PMID: 26628039 DOI: 10.1016/j.mce.2015.11.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/09/2015] [Accepted: 11/22/2015] [Indexed: 12/28/2022]
Abstract
Considering the sexual dimorphism described in cardiac mitochondrial function and oxidative stress, we aimed to investigate the role of 17β-estradiol (E2) in these sex differences and the contribution of E2 receptors to these effects. As a model of chronic deprivation of ovarian hormones, we used ovariectomized (OVX) rats, half of which were treated with E2. Ovariectomy decreased markers of cardiac mitochondrial biogenesis and function and also increased oxidative stress, whereas E2 counteracted these effects. In H9c2 cardiomyocytes we observed that G-protein coupled estrogen receptor (GPER) agonist mimicked the effects of E2 in enhancing mitochondrial function and biogenesis, whereas GPER inhibitor neutralized them. These data suggest that E2 enhances mitochondrial function and decreases oxidative stress in cardiac muscle, thus it could be responsible for the sexual dimorphism observed in mitochondrial biogenesis and function in this tissue. These effects seem to be mediated through GPER stimulation.
Collapse
Affiliation(s)
- Miquel Sbert-Roig
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Ctra. Valldemossa, km 7, 5. E-07122 Palma de Mallorca, Illes Balears, Spain; Instituto de Investigación Sanitaria de Palma (IdISPa), Hospital Universitario Son Espases, edificio S. E-07120 Palma de Mallorca, Illes Balears, Spain
| | - Marco Bauzá-Thorbrügge
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Ctra. Valldemossa, km 7, 5. E-07122 Palma de Mallorca, Illes Balears, Spain; Instituto de Investigación Sanitaria de Palma (IdISPa), Hospital Universitario Son Espases, edificio S. E-07120 Palma de Mallorca, Illes Balears, Spain
| | - Bel M Galmés-Pascual
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Ctra. Valldemossa, km 7, 5. E-07122 Palma de Mallorca, Illes Balears, Spain; Instituto de Investigación Sanitaria de Palma (IdISPa), Hospital Universitario Son Espases, edificio S. E-07120 Palma de Mallorca, Illes Balears, Spain
| | - Gabriela Capllonch-Amer
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Ctra. Valldemossa, km 7, 5. E-07122 Palma de Mallorca, Illes Balears, Spain; Instituto de Investigación Sanitaria de Palma (IdISPa), Hospital Universitario Son Espases, edificio S. E-07120 Palma de Mallorca, Illes Balears, Spain
| | - Francisco J García-Palmer
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Ctra. Valldemossa, km 7, 5. E-07122 Palma de Mallorca, Illes Balears, Spain; Instituto de Investigación Sanitaria de Palma (IdISPa), Hospital Universitario Son Espases, edificio S. E-07120 Palma de Mallorca, Illes Balears, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Lladó
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Ctra. Valldemossa, km 7, 5. E-07122 Palma de Mallorca, Illes Balears, Spain; Instituto de Investigación Sanitaria de Palma (IdISPa), Hospital Universitario Son Espases, edificio S. E-07120 Palma de Mallorca, Illes Balears, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana M Proenza
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Ctra. Valldemossa, km 7, 5. E-07122 Palma de Mallorca, Illes Balears, Spain; Instituto de Investigación Sanitaria de Palma (IdISPa), Hospital Universitario Son Espases, edificio S. E-07120 Palma de Mallorca, Illes Balears, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, Madrid, Spain
| | - Magdalena Gianotti
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Ctra. Valldemossa, km 7, 5. E-07122 Palma de Mallorca, Illes Balears, Spain; Instituto de Investigación Sanitaria de Palma (IdISPa), Hospital Universitario Son Espases, edificio S. E-07120 Palma de Mallorca, Illes Balears, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
22
|
Hotchkiss A, Feridooni T, Baguma-Nibasheka M, McNeil K, Chinni S, Pasumarthi KBS. Atrial natriuretic peptide inhibits cell cycle activity of embryonic cardiac progenitor cells via its NPRA receptor signaling axis. Am J Physiol Cell Physiol 2015; 308:C557-69. [DOI: 10.1152/ajpcell.00323.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/24/2015] [Indexed: 11/22/2022]
Abstract
The biological effects of atrial natriuretic peptide (ANP) are mediated by natriuretic peptide receptors (NPRs), which can either activate guanylyl cyclase (NPRA and NPRB) or inhibit adenylyl cyclase (NPRC) to modulate intracellular cGMP or cAMP, respectively. During cardiac development, ANP serves as an early maker of differentiating atrial and ventricular chamber myocardium. As development proceeds, expression of ANP persists in the atria but declines in the ventricles. Currently, it is not known whether ANP is secreted or the ANP-NPR signaling system plays any active role in the developing ventricles. Thus the primary aims of this study were to 1) examine biological activity of ANP signaling systems in embryonic ventricular myocardium, and 2) determine whether ANP signaling modulates proliferation/differentiation of undifferentiated cardiac progenitor cells (CPCs) and/or cardiomyocytes. Here, we provide evidence that ANP synthesized in embryonic day (E)11.5 ventricular myocytes is actively secreted and processed to its biologically active form. Notably, NPRA and NPRC were detected in E11.5 ventricles and exogenous ANP stimulated production of cGMP in ventricular cell cultures. Furthermore, we showed that exogenous ANP significantly decreased cell number and DNA synthesis of CPCs but not cardiomyocytes and this effect could be reversed by pretreatment with the NPRA receptor-specific inhibitor A71915. ANP treatment also led to a robust increase in nuclear p27 levels in CPCs compared with cardiomyocytes. Collectively, these data provide evidence that in the developing mammalian ventricles ANP plays a local paracrine role in regulating the balance between CPC proliferation and differentiation via NPRA/cGMP-mediated signaling pathways.
Collapse
Affiliation(s)
- Adam Hotchkiss
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tiam Feridooni
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Kathleen McNeil
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sarita Chinni
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
23
|
Abstract
The NIH has recently highlighted the importance of sexual dimorphisms and has mandated inclusion of both sexes in clinical trials and basic research. In this review we highlight new and novel ways sex hormones influence body adiposity and the metabolic syndrome. Understanding how and why metabolic processes differ by sex will enable clinicians to target and personalize therapies based on gender. Adipose tissue function and deposition differ by sex. Females differ with respect to distribution of adipose tissues, males tend to accrue more visceral fat, leading to the classic android body shape which has been highly correlated to increased cardiovascular risk; whereas females accrue more fat in the subcutaneous depot prior to menopause, a feature which affords protection from the negative consequences associated with obesity and the metabolic syndrome. After menopause, fat deposition and accrual shift to favor the visceral depot. This shift is accompanied by a parallel increase in metabolic risk reminiscent to that seen in men. A full understanding of the physiology behind why, and by what mechanisms, adipose tissues accumulate in specific depots and how these depots differ metabolically by sex is important in efforts of prevention of obesity and chronic disease. Estrogens, directly or through activation of their receptors on adipocytes and in adipose tissues, facilitate adipose tissue deposition and function. Evidence suggests that estrogens augment the sympathetic tone differentially to the adipose tissue depots favoring lipid accumulation in the subcutaneous depot in women and visceral fat deposition in men. At the level of adipocyte function, estrogens and their receptors influence the expandability of fat cells enhancing the expandability in the subcutaneous depot and inhibiting it in the visceral depot. Sex hormones clearly influence adipose tissue function and deposition, determining how to capture and utilize their function in a time of caloric surfeit, requires more information. The key will be harnessing the beneficial effects of sex hormones in such a way as to provide 'healthy' adiposity.
Collapse
Affiliation(s)
- Biff F Palmer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Deborah J Clegg
- Biomedical Research Department, Diabetes and Obesity Research Division, Cedars-Sinai Medical Center, Beverly Hills, CA, USA.
| |
Collapse
|
24
|
Wang YC, Xiao XL, Li N, Yang D, Xing Y, Huo R, Liu MY, Zhang YQ, Dong DL. Oestrogen inhibits BMP4-induced BMP4 expression in cardiomyocytes: a potential mechanism of oestrogen-mediated protection against cardiac hypertrophy. Br J Pharmacol 2015; 172:5586-95. [PMID: 25323043 DOI: 10.1111/bph.12983] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 09/17/2014] [Accepted: 10/06/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Oestrogen inhibits cardiac hypertrophy and bone morphogenetic protein-4 (BMP4) induces cardiac hypertrophy. Here we have studied the inhibition by oestrogen of BMP4 expression in cardiomyocytes. EXPERIMENTAL APPROACH Cultures of neonatal rat cardiomyocytes were used in in vitro experiments. Bilatαl ovariectomy (OVX) was carried out in female Kunming mice and cardiac hypertrophy was induced by transverse aortic constriction (TAC). KEY RESULTS Oestrogen inhibited BMP4-induced cardiomyocyte hypertrophy and BMP4 expression in vitro. The inhibition of BMP4-induced BMP4 protein expression by oestrogen was prevented by the inhibitor of oestrogen receptor-β, PHTPP, but not by the inhibitor of oestrogen receptor-α MPP. BMP4 induced smad1/5/8 activation, which was not affected by oestrogen in cardiomyocytes. BMP4 induced JNK but not ERK1/2 and p38 activation, and activated JNK was inhibited by oestrogen. Treatment with the p38 inhibitor SB203580 or the JNK inhibitor SP600125 inhibited BMP4-induced BMP4 expression in cardiomyocytes, but the ERK1/2 inhibitor U0126 increased BMP4-induced BMP4 expression, indicating that JNK, ERK1/2 and p38 MAPKs were all involved, although only JNK activation contributed to the inhibition of BMP4-induced BMP4 expression by oestrogen. TAC induced significant heart hypertrophy in OVX mice in vivo and oestrogen replacement inhibited TAC-induced heart hypertrophy in OVX mice. In parallel with the data of heart hypertrophy, oestrogen replacement significantly reduced the increased BMP4 protein expression in TAC-treated OVX mice. CONCLUSIONS AND IMPLICATIONS Oestrogen treatment inhibited BMP4-induced BMP4 expression in cardiomyocytes through stimulating oestrogen receptor-β and inhibiting JNK activation. Our results provide a novel mechanism underlying oestrogen-mediated protection against cardiac hypertrophy.
Collapse
Affiliation(s)
- Yu-Chun Wang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Xiao-Lin Xiao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Na Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Di Yang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Yue Xing
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Rong Huo
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Ming-Yu Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Yan-Qiu Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - De-Li Dong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| |
Collapse
|
25
|
Fazal L, Azibani F, Vodovar N, Cohen Solal A, Delcayre C, Samuel JL. Effects of biological sex on the pathophysiology of the heart. Br J Pharmacol 2014; 171:555-66. [PMID: 23763376 DOI: 10.1111/bph.12279] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/15/2013] [Accepted: 06/02/2013] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular diseases are the leading causes of death in men and women in industrialized countries. While the effects of biological sex on cardiovascular pathophysiology have long been known, the sex-specific mechanisms mediating these processes have been further elucidated over recent years. This review aims at analysing the sex-based differences in cardiac structure and function in adult mammals, and the sex-based differences in the main molecular mechanisms involved in the response of the heart to pathological situations. It emerged from this review that the sex-based difference is a variable that should be dealt with, not only in basic science or clinical research, but also with regards to therapeutic approaches.
Collapse
Affiliation(s)
- Loubina Fazal
- UMR-S 942, Inserm, Paris, France; University Paris-Diderot, Paris, France
| | | | | | | | | | | |
Collapse
|
26
|
Souza RRD, Oliveira VCD, Curi TCP, Maldonado DC. Effects of ovariectomy on the secretory apparatus in the right atrial cardiomyocytes of middle-aged mice. Clinics (Sao Paulo) 2014; 69:554-8. [PMID: 25141115 PMCID: PMC4129560 DOI: 10.6061/clinics/2014(08)09] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/28/2014] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The aim of the present study was to evaluate the effects of ovariectomy on the secretory apparatus of natriuretic peptides in right atrial cardiomyocytes. METHODS Nine-month-old mice underwent bilateral ovariectomy or sham surgery. The blood exam of the ovariectomized mice showed results consistent with castrated females. Systolic blood pressure was measured after ovariectomy (9 mo of age) and at the moment of sacrifice (12 mo of age). Fragments of the right atrium were collected and prepared for electron microscopy examination. The following variables were quantified: the quantitative density and area of the natriuretic peptide granules, the relative volume of euchromatin in the nucleus, the number of pores per 10 μm of the nuclear membrane and the relative volumes of the mitochondria and Golgi complex. RESULTS The cardiomyocytes obtained from ovariectomized mice indicated that the quantitative density and the area of secretory granules of natriuretic peptides were significantly lower compared with the sham-operated mice. Furthermore, there was a decrease in the relative volume of euchromatin, a lower density of nuclear pores, and lower relative volumes of the mitochondria and Golgi complex in the ovariectomized mice compared with the sham-operated mice. These findings suggest a pool with a low turnover rate, i.e., low synthesis and elimination of natriuretic peptides. CONCLUSION A lack of estrogen caused hypotrophy of the secretory apparatus in right atrial cardiomyocytes that could explain the weak synthesis of natriuretic peptides in mice. Furthermore, one of the mechanisms of blood pressure control was lost, which may explain, in part, the elevated blood pressure in ovariectomized mice.
Collapse
Affiliation(s)
- Romeu R de Souza
- ICB-USP and Department of Biology, Department of Anatomy, São Judas Tadeu University, São Paulo, SP, Brazil
| | | | | | - Diogo C Maldonado
- Department of Anatomy, Federal University of São Paulo, Department of Morphology and Genetics and Nove de Julho University, São Paulo, SP, Brazil
| |
Collapse
|
27
|
Knowlton AA, Korzick DH. Estrogen and the female heart. Mol Cell Endocrinol 2014; 389:31-9. [PMID: 24462775 PMCID: PMC5709037 DOI: 10.1016/j.mce.2014.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/04/2014] [Accepted: 01/05/2014] [Indexed: 12/24/2022]
Abstract
Estrogen has a plethora of effects in the cardiovascular system. Studies of estrogen and the heart span human clinical trials and basic cell and molecular investigations. Greater understanding of cell and molecular responses to estrogens can provide further insights into the findings of clinical studies. Differences in expression and cellular/intracellular distribution of the two main receptors, estrogen receptor (ER) α and β, are thought to account for the specificity and differences in responses to estrogen. Much remains to be learned in this area, but cellular distribution within the cardiovascular system is becoming clearer. Identification of GPER as a third ER has introduced further complexity to the system. 17β-estradiol (E2), the most potent human estrogen, clearly has protective properties activating a signaling cascade leading to cellular protection and also influencing expression of the protective heat shock proteins (HSP). E2 protects the heart from ischemic injury in basic studies, but the picture is more involved in the whole organism and clinical studies. Here the complexity of E2's widespread effects comes into play and makes interpretation of findings more challenging. Estrogen loss occurs primarily with aging, but few studies have used aged models despite clear evidence of differences between the response to estrogen deficiency in adult and aged animals. Thus more work is needed focusing on the effects of aging vs. estrogen loss on the cardiovascular system.
Collapse
Affiliation(s)
- A A Knowlton
- The Department of Veteran's Affairs, Northern California VA, Sacramento, CA, USA; Molecular & Cellular Cardiology, Departments of Medicine and Pharmacology, University of California, Davis, USA.
| | - D H Korzick
- Intercollege Program in Physiology and Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
28
|
Starke RM, Chalouhi N, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, Wada K, Shimada K, Hasan DM, Greig NH, Owens GK, Dumont AS. Critical role of TNF-α in cerebral aneurysm formation and progression to rupture. J Neuroinflammation 2014; 11:77. [PMID: 24739142 PMCID: PMC4022343 DOI: 10.1186/1742-2094-11-77] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 04/01/2014] [Indexed: 01/11/2023] Open
Abstract
Background Alterations in TNF-α expression have been associated with cerebral aneurysms, but a direct role in formation, progression, and rupture has not been established. Methods Cerebral aneurysms were induced through hypertension and a single stereotactic injection of elastase into the basal cistern in mice. To test the role of TNF-α in aneurysm formation, aneurysms were induced in TNF-α knockout mice and mice pretreated with the synthesized TNF-α inhibitor 3,6′dithiothalidomide (DTH). To assess the role of TNF-α in aneurysm progression and rupture, DTH was started 6 days after aneurysm induction. TNF-α expression was assessed through real-time PCR and immunofluorescence staining. Results TNF-α knockout mice and those pre-treated with DTH had significantly decreased incidence of aneurysm formation and rupture as compared to sham mice. As compared with sham mice, TNF-α protein and mRNA expression was not significantly different in TNF-α knockout mice or those pre-treated with DTH, but was elevated in unruptured and furthermore in ruptured aneurysms. Subarachnoid hemorrhage (SAH) occurred between 7 and 21 days following aneurysm induction. To ensure aneurysm formation preceded rupture, additional mice underwent induction and sacrifice after 7 days. Seventy-five percent had aneurysm formation without evidence of SAH. Initiation of DTH treatment 6 days after aneurysm induction did not alter the incidence of aneurysm formation, but resulted in aneurysmal stabilization and a significant decrease in rupture. Conclusions These data suggest a critical role of TNF-α in the formation and rupture of aneurysms in a model of cerebral aneurysm formation. Inhibitors of TNF-α could be beneficial in preventing aneurysmal progression and rupture.
Collapse
Affiliation(s)
- Robert M Starke
- Joseph and Marie Field Cerebrovascular Research Laboratory, Division of Neurovascular and Endovascular Surgery, Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Iwabuchi J, Koshimizu K, Nakagawa T. Expression profile of the aromatase enzyme in the Xenopus brain and localization of estradiol and estrogen receptors in each tissue. Gen Comp Endocrinol 2013; 194:286-94. [PMID: 24135319 DOI: 10.1016/j.ygcen.2013.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/02/2013] [Accepted: 09/28/2013] [Indexed: 01/11/2023]
Abstract
Estradiol (E2) with the strongest bioactivity of the estrogens, is synthesized by the cytochrome p450 aromatase enzyme and plays a key role in sex differentiation of the vertebrate's gonads. In Xenopus, aromatase mRNA is highly expressed in the brain rather than in the gonad during sex differentiation. In this study, we analyzed the stage change, tissue specificity, and localization of the aromatase expression in the Xenopus brain. Regardless of the sex difference, expression level of aromatase was remarkably higher in the brain than in other tissues during the early stages of brain morphogenesis and was observed in the formation regions of the choroid plexus of cerebral ventricle and the paleocortex and olfactory bulb of the prosencephalon. However, E2 concentrations in each tissue indicated a different localization of aromatase and were seen in the heart at almost double the level as seen in the brain. In addition, while aromatase expression level in the brain was increasing, E2 in the whole body began to increase at the same stage. Since the expression level of estrogen receptor α also corresponded to localization of E2, these results may imply that the E2 synthesized by the high aromatase expression in the choroid plexus, which generates cerebrospinal fluid, circulates to the heart and acts through ERα.
Collapse
Affiliation(s)
- Junshin Iwabuchi
- Laboratory of Biochemistry, Department of Chemistry, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan.
| | | | | |
Collapse
|
30
|
Conjugated equine estrogens and estradiol benzoate differentially modulate the natriuretic peptide system in spontaneously hypertensive rats. Menopause 2013; 20:554-60. [PMID: 23615647 DOI: 10.1097/gme.0b013e318276c4cc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The purpose of this study was to compare the effects of conjugated equine estrogens (CEE) and estradiol benzoate on the blood pressure and body weight of spontaneously hypertensive rats (SHRs) and the associated changes in several components of the natriuretic peptide system. METHODS The blood pressure of randomly distributed female SHRs and Wistar rats was determined by tail plethysmography. The rats were ovariectomized and, after 3 weeks, injected daily for 4 days with estradiol benzoate (5 μg/100 g/d), CEE (50 μg/100 g/d), or vehicle (corn oil 0.1 mL/100 g/d). One day after the last injection, the rats were decapitated, and their blood was collected to measure atrial natriuretic peptide (ANP) and estradiol. The atria were removed to measure ANP levels using radioimmunoassay and to quantify ANP messenger RNA expression using real-time polymerase chain reaction. The kidneys and adipose tissue were removed to analyze the expression of natriuretic peptide clearance receptor messenger RNA. RESULTS A reduction in blood pressure was observed in estradiol-treated SHRs, but CEE treatment had no effect. Estradiol decreased the body weight and parametrial adipose tissue mass of SHRs. Estradiol-induced alterations in SHRs were accompanied by increased synthesis and release of ANP. CEE had no effect on body weight but increased the mesenteric adipose tissue mass of SHRs. CONCLUSIONS These results indicate that estradiol and CEE have different effects on the reduction in body weight and blood pressure. These results are correlated with changes in plasma ANP levels.
Collapse
|
31
|
Korzick DH, Lancaster TS. Age-related differences in cardiac ischemia-reperfusion injury: effects of estrogen deficiency. Pflugers Arch 2013; 465:669-85. [PMID: 23525672 DOI: 10.1007/s00424-013-1255-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 02/23/2013] [Accepted: 02/25/2013] [Indexed: 01/17/2023]
Abstract
Despite conflicting evidence for the efficacy of hormone replacement therapy in cardioprotection of postmenopausal women, numerous studies have demonstrated reductions in ischemia/reperfusion (I/R) injury following chronic or acute exogenous estradiol (E2) administration in adult male and female, gonad-intact and gonadectomized animals. It has become clear that ovariectomized adult animals may not accurately represent the combined effects of age and E2 deficiency on reductions in ischemic tolerance seen in the postmenopausal female. E2 is known to regulate the transcription of several cardioprotective genes. Acute, non-genomic E2 signaling can also activate many of the same signaling pathways recruited in cardioprotection. Alterations in cardioprotective gene expression or cardioprotective signal transduction are therefore likely to result within the context of aging and E2 deficiency and may help explain the reduced ischemic tolerance and loss of cardioprotection in the senescent female heart. Quantification of the mitochondrial proteome as it adapts to advancing age and E2 deficiency may also represent a key experimental approach to uncover proteins associated with disruptions in cardiac signaling contributing to age-associated declines in ischemic tolerance. These alterations have important ramifications for understanding the increased morbidity and mortality due to ischemic cardiovascular disease seen in postmenopausal females. Functional perturbations that occur in mitochondrial respiration and Ca(2+) sensitivity with age-associated E2 deficiency may also allow for the identification of alternative therapeutic targets for reducing I/R injury and treatment of the leading cause of death in postmenopausal women.
Collapse
Affiliation(s)
- Donna H Korzick
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
32
|
Wenner MM, Haddadin AS, Taylor HS, Stachenfeld NS. Mechanisms contributing to low orthostatic tolerance in women: the influence of oestradiol. J Physiol 2013; 591:2345-55. [PMID: 23401618 DOI: 10.1113/jphysiol.2012.247882] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The impact of 17β-oestradiol (E2) exposure on autonomic control of orthostasis in young women is unclear. We tested the hypothesis that autonomic cardiovascular regulation is more sensitive to E2 exposure in women with low orthostatic tolerance. Women underwent an initial maximal lower body negative pressure (LBNP) test to place them into a low (LT, n = 7, 22 ± 1 years old, body mass index 22 ± 1 kg m(-2)) or a high orthostatic tolerance group (HT, n = 7, 22 ± 1 years old, body mass index 24 ± 1 kg m(-2)). We then suppressed endogenous reproductive hormone production using a gonadotrophin-releasing hormone antagonist (GnRHant) for 10 days, with E2 administration during the last 7 days of GnRHant. We measured R-R interval and beat-by-beat blood pressure during the modified Oxford protocol, and changes in heart rate, blood pressure and forearm vascular resistance (FVR) during submaximal LBNP. During submaximal LBNP, FVR increased in HT (ANOVA P < 0.05) but not in LT (ANOVA P > 0.05), and stroke volume was lower in LT relative to HT at all levels of LBNP (P < 0.05). Compared with GnRHant, E2 administration shifted FVR lower in LT (ANOVA P < 0.05), with no effect in HT. Administration of E2 increased baroreflex control of heart rate (derived from the modified Oxford protocol) in LT (GnRHant 10.7 ± 2.5 ms mmHg(-1) vs. E2 16.1 ± 2.4 ms mmHg(-1), P < 0.05) but not in HT (GnRHant 13.4 ± 1.9 ms mmHg(-1) vs. E2 15.3 ± 2.4 ms mmHg(-1), n.s.). In conclusion, blunted peripheral vasoconstriction and lower stroke volume contribute to compromised orthostatic tolerance in women; this inability to vasoconstrict is further exacerbated by exposure to E2. Furthermore, E2 administration increases baroreflex-mediated heart rate responses to orthostasis in low orthostatic tolerant women, which is likely to be a compensatory mechanism for the blunted peripheral vascular resistance and lower central volume.
Collapse
Affiliation(s)
- Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19716, USA.
| | | | | | | |
Collapse
|
33
|
Wong PG, Armstrong DWJ, Tse MY, Ventura NM, Pang SC. Contribution of Estrogen to Sex Dimorphic Expression of Cardiac Natriuretic Peptide and Nitric Oxide Synthase Systems in ANP Gene-Disrupted Mice. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojemd.2013.34a2001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Fukumoto T, Tawa M, Yamashita N, Ohkita M, Matsumura Y. Protective effects of 17beta-estradiol on post-ischemic cardiac dysfunction and norepinephrine overflow through the non-genomic estrogen receptor/nitric oxide-mediated pathway in the rat heart. Eur J Pharmacol 2012; 699:74-80. [PMID: 23219795 DOI: 10.1016/j.ejphar.2012.11.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/15/2012] [Accepted: 11/23/2012] [Indexed: 11/27/2022]
Abstract
The present study was undertaken to examine the effect of acute treatment with 17β-estradiol on post-ischemic cardiac dysfunction and norepinephrine overflow and its possible mechanisms. Male rat hearts were perfused with the Langendorff method and subjected to 40 min of global ischemia followed by 30 min of reperfusion. Each drug was perfused from 15 min before ischemia to 5 min after reperfusion. During reperfusion, 17β-estradiol treatment showed significantly greater functional recovery of left ventricular developed pressure (LVDP), left ventricular end diastolic pressure (LVEDP), and dP/dt(max). Excessive norepinephrine release in coronary effluent from the post-ischemic heart was notably suppressed by treatment with 17β-estradiol. These beneficial effects of 17β-estradiol were not observed in the presence of the nitric oxide synthase inhibitor N(G)-nitro-l-arginine and estrogen receptor antagonist ICI 182,780 ((7α, 17β)-7-[9-[(4,4,5,5,5-pentafluoropentyl)sulfinyl]nonyl]estra-1,3,5(10)-triene-3,17-diol), respectively. When NO(2)/NO(3) levels in coronary effluents after the onset of reperfusion were measured, reverse-correlation relationships between NO(2)/NO(3) production and ischemia/reperfusion-induced cardiac dysfunction, as well as norepinephrine overflow were observed. These findings suggest that 17β-estradiol exerts cardioprotective effects against ischemia/reperfusion-induced cardiac dysfunction, at least in part, by suppressing norepinephrine overflow, and that nitric oxide production via estrogen receptor activation plays a key role in this process.
Collapse
Affiliation(s)
- Taiki Fukumoto
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka 569-1094, Japan
| | | | | | | | | |
Collapse
|
35
|
Targeted estrogen delivery reverses the metabolic syndrome. Nat Med 2012; 18:1847-56. [PMID: 23142820 DOI: 10.1038/nm.3009] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 10/19/2012] [Indexed: 12/13/2022]
Abstract
We report the development of a new combinatorial approach that allows for peptide-mediated selective tissue targeting of nuclear hormone pharmacology while eliminating adverse effects in other tissues. Specifically, we report the development of a glucagon-like peptide-1 (GLP-1)-estrogen conjugate that has superior sex-independent efficacy over either of the individual hormones alone to correct obesity, hyperglycemia and dyslipidemia in mice. The therapeutic benefits are driven by pleiotropic dual hormone action to improve energy, glucose and lipid metabolism, as shown by loss-of-function models and genetic action profiling. Notably, the peptide-based targeting strategy also prevents hallmark side effects of estrogen in male and female mice, such as reproductive endocrine toxicity and oncogenicity. Collectively, selective activation of estrogen receptors in GLP-1-targeted tissues produces unprecedented efficacy to enhance the metabolic benefits of GLP-1 agonism. This example of targeting the metabolic syndrome represents the discovery of a new class of therapeutics that enables synergistic co-agonism through peptide-based selective delivery of small molecules. Although our observations with the GLP-1-estrogen conjugate justify translational studies for diabetes and obesity, the multitude of other possible combinations of peptides and small molecules may offer equal promise for other diseases.
Collapse
|
36
|
Tibolone has anti-inflammatory effects in estrogen-deficient female rats on the natriuretic peptide system and TNF-alpha. ACTA ACUST UNITED AC 2012; 179:55-60. [DOI: 10.1016/j.regpep.2012.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 08/10/2012] [Accepted: 08/29/2012] [Indexed: 12/24/2022]
|
37
|
Puzianowska-Kuźnicka M. ESR1 in myocardial infarction. Clin Chim Acta 2012; 413:81-7. [DOI: 10.1016/j.cca.2011.10.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 11/17/2022]
|
38
|
Wirakiat W, Udomuksorn W, Vongvatcharanon S, Vongvatcharanon U. Effects of estrogen via estrogen receptors on parvalbumin levels in cardiac myocytes of ovariectomized rats. Acta Histochem 2012; 114:46-54. [PMID: 21411124 DOI: 10.1016/j.acthis.2011.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/07/2011] [Accepted: 02/10/2011] [Indexed: 11/26/2022]
Abstract
The study investigated the effects of estrogen on parvalbumin (PV) levels in cardiac myocytes of ovariectomized rats, which is a model system for postmenopausal woman. Parvalbumin acts as a relaxing factor in cardiac myocytes. Adult female Wistar rats, 12 weeks old, were randomly divided into 5 groups of 10: sham-operated (SHAM), ovariectomized (OVX), and OVX receiving estrogen replacement of 10 μg/kg (Es10), 20 μg/kg (Es20) and 40 μg/kg (Es40). After 10 weeks, serum estrogen levels were measured and the α and β estrogen receptors in cardiac myocytes were investigated by immunohistochemistry. PV levels were examined by immunohistochemistry and Western blot analysis. Cardiac myocytes of all animals showed strong staining intensities for α immunoreactive (Es α-ir), but weak staining for β immunoreactive (Es β-ir) estrogen receptors. The Es α-ir was reduced in the cardiac myocytes of the OVX groups, but increased in the Es10, Es20 and Es40 groups. We therefore suggest that estrogen effects are mediated via Es α receptors rather than Es β receptors in female rat hearts. Estrogen and PV immunoreactive (PV-ir) levels and the intensity of the PV band observed in the OVX group were less than those of the SHAM group. In the Es10, Es20 and Es40 groups, the increased intensity of the PV-ir and PV bands correlated with the increased estrogen levels. The low PV levels in cardiac myocytes induced by low estrogen were restored by estrogen replacement therapy. Therefore a reduction of PV may lead to diastolic dysfunction in menopause.
Collapse
|
39
|
Vilhena-Franco T, Mecawi AS, Elias LLK, Antunes-Rodrigues J. Oestradiol potentiates hormone secretion and neuronal activation in response to hypertonic extracellular volume expansion in ovariectomised rats. J Neuroendocrinol 2011; 23:481-9. [PMID: 21470318 DOI: 10.1111/j.1365-2826.2011.02133.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Secretion of vasopressin (VP), oxytocin (OT) and atrial natriuretic peptide (ANP) is an essential mechanism for the maintenance of hydromineral homeostasis. Secretion of these hormones is modulated by several circulating factors, including oestradiol. However, it remains unclear how oestradiol exerts this modulation. In the present study we investigated the participation of oestradiol in the secretion of VP, OT and ANP and in activation of vasopressinergic and oxytocinergic neurones of the supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus in response to extracellular volume expansion (EVE). For this purpose, ovariectomised (OVX) rats treated for 7 days with vehicle (corn oil, 0.1 ml/rat, OVX+O group) or oestradiol (oestradiol cypionate, 10 μg/kg, OVX+E group) were subjected to either isotonic (0.15 m NaCl, 2 ml/100 g b.w., i.v.) or hypertonic (0.30 m NaCl, 2 ml/100 g b.w., i.v.) EVE. Blood samples were collected for plasma VP, OT and ANP determination. Another group of rats was subjected to cerebral perfusion, and brain sections were processed for c-Fos-VP and c-Fos-OT double-labelling immunohistochemistry. In OVX+O rats, we observed that both isotonic and hypertonic EVE increased plasma OT and ANP concentrations, although no changes were observed in VP secretion. Oestradiol replacement did not alter hormonal secretion in response to isotonic EVE, but it increased VP secretion and potentiated plasma OT and ANP concentrations in response to hypertonic EVE. Immunohistochemical data showed that, in the OVX+O group, hypertonic EVE increased the number of c-Fos-OT and c-Fos-VP double-labelled neurones in the PVN and SON. Oestradiol replacement did not alter neuronal activation in response to isotonic EVE, but it potentiated vasopressinergic and oxytocinergic neuronal activation in the medial magnocellular PVN (PaMM) and SON. Taken together, these results suggest that oestradiol increases the responsiveness of vasopressinergic and oxytocinergic magnocellular neurones in the PVN and SON in response to osmotic stimulation.
Collapse
Affiliation(s)
- T Vilhena-Franco
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Brasil
| | | | | | | |
Collapse
|
40
|
Tomicek NJ, Miller-Lee JL, Hunter JC, Korzick DH. Estrogen receptor beta does not influence ischemic tolerance in the aged female rat heart. Cardiovasc Ther 2011; 31:32-7. [PMID: 21884022 DOI: 10.1111/j.1755-5922.2011.00288.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Ischemic heart disease remains the leading cause of morbidity and mortality in aged women, with a 2- to 3-fold increase in incidence following menopause. Clinical trials have failed to demonstrate cardioprotective benefit from chronic estrogen (E(2)) replacement therapy, yet protective effects of E(2) have been demonstrated in adult animal models and are mediated by the estrogen receptor (ER) subtypes ERα and ERβ. AIMS The aim of this study was to determine the effects of acute ERβ activation on ischemia/reperfusion (I/R) injury in adult, aged, and aged E(2)-deficient female rats. METHODS Hearts were isolated from adult (6 months; n = 9), aged (24 months; n = 13), and aged ovariectomized (OVX; n = 14) female Fischer 344 rats and subjected to 47 min of global I and 60 min of R. Rats were acutely treated with the ERβ-agonist diarylpropionitrile (DPN; 5 μg/kg) or vehicle 45 min prior to I/R; ERβ mRNA and protein levels were also assessed. RESULTS Acute treatment with DPN had no effect on functional recovery following I/R injury in adult, aged, or aged OVX female rats. Additionally, we were unable to detect ERβ mRNA or protein in the adult or aged female rat myocardium. CONCLUSIONS Here, for the first time, our data suggest that acute ERβ activation does not impact ischemic tolerance in the adult or aged female Fischer 344 rat myocardium and this likely due to a lack of detectable ERβ.
Collapse
Affiliation(s)
- Nanette J Tomicek
- Intercollege Graduate Degree Program in Physiology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
41
|
Schober J, Weil Z, Pfaff D. How generalized CNS arousal strengthens sexual arousal (and vice versa). Horm Behav 2011; 59:689-95. [PMID: 20950622 DOI: 10.1016/j.yhbeh.2010.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 09/23/2010] [Accepted: 10/02/2010] [Indexed: 12/22/2022]
Abstract
Heightened states of generalized CNS arousal are proposed here to facilitate sexual arousal in both males and females. Genetic, pharmacologic and biophysical mechanisms by which this happens are reviewed. Moreover, stimulation of the genital epithelia, as triggers of sex behavior, is hypothesized to lead to a greater generalized arousal in a manner that intensifies sexual motivation. Finally, launched from histochemical studies intended to characterize cells in the genital epithelium, a surprising idea is proposed that links density of innervation with the efficiency of wound healing and with the capacity of that epithelium to stimulate generalized CNS arousal. Thus, bidirectional arousal-related mechanisms that foster sexual behaviors are envisioned as follows: from specific to generalized (as with genital stimulation) and from generalized to specific.
Collapse
Affiliation(s)
- Justine Schober
- Laboratory of Neurobiology and Behavior, The Rockefeller University, NY, USA
| | | | | |
Collapse
|
42
|
Komukai K, Mochizuki S, Yoshimura M. Gender and the renin-angiotensin-aldosterone system. Fundam Clin Pharmacol 2011; 24:687-98. [PMID: 20608988 DOI: 10.1111/j.1472-8206.2010.00854.x] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Premenopausal women are protected to some extent from cardiovascular and kidney diseases. Because this protection weakens after menopause, sex hormones are believed to play an important role in the pathogenesis of cardiovascular and kidney diseases. The cardiovascular system and the kidneys are regulated by the renin-angiotensin-aldosterone system (RAAS), which in turn, appears to be regulated by sex hormones. In general, oestrogen increases angiotensinogen levels and decreases renin levels, angiotensin-converting enzyme (ACE) activity, AT(1) receptor density, and aldosterone production. Oestrogen also activates counterparts of the RAAS such as natriuretic peptides, AT(2) receptor density, and angiotensinogen (1-7). Progesterone competes with aldosterone for mineralocorticoid receptor. Less is known about androgens, but testosterone seems to increase renin levels and ACE activity. These effects of sex hormones on the RAAS can explain at least some of the gender differences in cardiovascular and kidney diseases.
Collapse
Affiliation(s)
- Kimiaki Komukai
- Division of Cardiology, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | | | | |
Collapse
|
43
|
de Andrade EN, Gonçalves GKN, de Oliveira THC, Santos CSD, Souza CLSE, Firmes LB, de Magalhães ACM, Soares TDJ, Reis AMD, Belo NDO. Natriuretic peptide system: a link between fat mass and cardiac hypertrophy and hypertension in fat-fed female rats. ACTA ACUST UNITED AC 2011; 167:149-55. [PMID: 21237215 DOI: 10.1016/j.regpep.2010.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 08/27/2010] [Accepted: 12/29/2010] [Indexed: 11/30/2022]
Abstract
The present study was designed to develop an animal model of hypertension and cardiac hypertrophy associated with obesity in female rats. Furthermore, we studied the involvement of the natriuretic peptide system in the mechanisms of these conditions. Obesity was induced in Wistar rats by a high fat diet and ovariectomy. The rats were divided into four groups: ovariectomized or sham-operated with high-fat diet and ovariectomized or sham-operated with control diet. After 24 weeks of diet, rats were killed, and their tissues were removed. Cardiac atrial natriuretic peptide (ANP), clearance receptor (NPr-C) gene expression was determined by PCR. ANP concentrations were measured in plasma. Ovariectomized fat-fed rats (OF) showed increased body weight, visceral fat depot and blood pressure and decreased sodium excretion compared to other groups. Also, these rats showed higher heart-to-body weight and cell diameters of ventricular cardiomyocytes and lower cardiac ANP mRNA and plasma ANP than the control group. The adipocyte and renal NPr-C mRNA of OF rats were higher than the control group. These data showed that combined ovariectomy and high fat diet elicited obesity, hypertension and cardiac hypertrophy. These results suggest that the impairment of the natriuretic peptide system may be one of the mechanisms involved not only in development of hypertension but also in cardiac hypertrophy associated with obesity in ovariectomized rats.
Collapse
Affiliation(s)
- Everaldo Nery de Andrade
- Multidisciplinary Institute of Health, Federal University of Bahia, Av. Olívia Flores 3000, CEP: 45055-090, Vitória da Conquista, Bahia, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Li XM, Ma YT, Yang YN, Liu F, Chen BD, Han W, Zhang JF, Gao XM. Downregulation of survival signalling pathways and increased apoptosis in the transition of pressure overload-induced cardiac hypertrophy to heart failure. Clin Exp Pharmacol Physiol 2009; 36:1054-61. [DOI: 10.1111/j.1440-1681.2009.05243.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Deneke T, Mügge A, Müller P, de Groot JR. Therapeutic implications of gender differences in supraventricular cardiac arrhythmias: lessons of life cannot be learned in a day. Expert Rev Cardiovasc Ther 2009; 7:879-82. [PMID: 19673664 DOI: 10.1586/erc.09.80] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Médeau V, Moreau F, Trinquart L, Clemessy M, Wémeau JL, Vantyghem MC, Plouin PF, Reznik Y. Clinical and biochemical characteristics of normotensive patients with primary aldosteronism: a comparison with hypertensive cases. Clin Endocrinol (Oxf) 2008; 69:20-8. [PMID: 18284637 DOI: 10.1111/j.1365-2265.2008.03213.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE It is unknown why some patients with biochemical evidence of primary aldosteronism (PA) do not develop hypertension. We aimed to compare clinical and biochemical characteristics of normotensive and hypertensive patients with PA. DESIGN AND PATIENTS Retrospective comparison of 10 normotensive and 168 hypertensive patients with PA for office or ambulatory blood pressure, serum potassium, plasma aldosterone and renin concentrations; the aldosterone:renin ratio, and tumour size. Comparison of initial hormonal pattern and drop in blood pressure following adrenalectomy in five normotensive and nine hypertensive patients matched for age, sex and body mass index. RESULTS The 10 normotensive patients were women and presented with hypokalemia or an adrenal mass. Age, plasma aldosterone and renin concentrations were similar in normotensive and hypertensive cases, but kalemia and body mass index were significantly lower in the normotensive patients. Mean tumour diameter was larger in the normotensive patients than in the hypertensive matched patients with an adenoma (P < 0.01). In normotensive patients, diastolic blood pressure and upright aldosterone correlated negatively with kalemia. Blood pressure was lowered similarly after adrenalectomy in five normotensive PA patients and in their matched hypertensive counterparts. Aldosterone synthase expression was detected in four out of five adrenal tumours. CONCLUSIONS Blood pressure may be normal in patients with well-documented PA. The occurrence of hypokalemia, despite a normal blood pressure profile, suggests that protective mechanisms against hypertension are present in normotensive patients.
Collapse
Affiliation(s)
- Virginie Médeau
- Département d'Hypertension, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Jeanes HL, Tabor C, Black D, Ederveen A, Gray GA. Oestrogen-mediated cardioprotection following ischaemia and reperfusion is mimicked by an oestrogen receptor (ER)alpha agonist and unaffected by an ER beta antagonist. J Endocrinol 2008; 197:493-501. [PMID: 18492815 PMCID: PMC2386536 DOI: 10.1677/joe-08-0071] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oestrogen protects the heart from ischaemic injury. The current study aims to characterise two novel oestrogen receptor (ER) ligands, an ER alpha agonist ERA-45 and an ER beta antagonist ERB-88, and then use them to investigate the roles of ER alpha and ER beta in mediating the cardioprotection by E from ischaemia-reperfusion injury in the rat. The ER ligands were characterised by gene transactivation assay using ER-transfected Chinese hamster ovary (CHO) cells and in bioavailability studies in vivo. Female rats (n=48) were ovariectomised and implanted with 17beta-oestradiol (17 beta E(2)) releasing or placebo pellets. ERA-45, ERB-88 or vehicle was administered for 5 days prior to ischaemia-reperfusion studies. Necrosis, neutrophil infiltration (myeloperoxidase activity) and oxidant stress production (electron paramagnetic resonance) from the area-at-risk were measured to assess reperfusion injury. The ER alpha agonist ERA-45 showed more than 35-fold selectivity for ER alpha compared with ER beta gene transactivation. In vitro, the ER beta antagonist ERB-88 inhibited transactivation by 17 beta E(2) via ER beta with 46-fold selectivity relative to inhibition via ER alpha. In vivo, 17 beta E(2) significantly reduced neutrophil infiltration, oxidant stress and necrosis following ischaemia and reperfusion. Cardioprotection by 17 beta E(2) was not inhibited by ERB-88 but was completely reproduced by ERA-45. In conclusion, protection of the rat heart after ischaemia-reperfusion by 17 beta E(2) is achieved through the reduction of cardiomyocyte death, neutrophil infiltration and oxygen-free radical availability.The results of this study indicate that these effects are primarily mediated via activation of ER alpha.
Collapse
Affiliation(s)
| | | | - Darcey Black
- Organon Laboratories LtdDepartment PharmacologyNewhouse, Lanarkshire, Scotland, ML1 5SHUK
| | - Antwan Ederveen
- Department PharmacologyNV OrganonPO Box 20, 5340 BH OssThe Netherlands
| | | |
Collapse
|
48
|
Ullrich ND, Krust A, Collins P, MacLeod KT. Genomic deletion of estrogen receptors ERalpha and ERbeta does not alter estrogen-mediated inhibition of Ca2+ influx and contraction in murine cardiomyocytes. Am J Physiol Heart Circ Physiol 2008; 294:H2421-7. [PMID: 18441199 DOI: 10.1152/ajpheart.01225.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Estrogens modify contraction of vascular smooth muscle and cardiomyocytes, but suggestions that they confer protective effects on the cardiovascular system remain controversial. The negative inotropic effects of estrogens are a consequence of L-type Ca2+ channel inhibition, but the underlying mechanisms remain elusive. We tested the hypothesis that membrane-associated estrogen receptors (ER)-alpha and -beta are involved. We measured the effect of estrogens on Ca2+ current (ICaL) in isolated ventricular cardiomyocytes of wild-type (WT), ERalpha knockout (ERalphaKO), and ERbetaKO mice using the whole cell patch-clamp technique at 37 degrees C. No differences in current densities or inactivation profiles of ICaL were found under control conditions in WT, ERalphaKO, and ERbetaKO cardiomyocytes, suggesting that absence of either ER has no effect on functional properties of ICaL. In all groups, application of raloxifene (2 microM) or 17alpha- or 17beta-estradiol (50 microM) reduced ICaL (P < 0.001). Raloxifene decreased ICaL by 44 +/- 9% (mean +/- SE) in WT (n = 5), 34 +/- 5% in ERalphaKO (n = 5), and 30 +/- 5% in ERbetaKO mice (n = 8). 17alpha-Estradiol reduced ICaL by 41 +/- 10% in WT (n = 4), 34 +/- 12% in ERalphaKO (n = 7), and 38 +/- 8% in ERbetaKO mice (n = 7). 17beta-Estradiol inhibited ICaL by 31 +/- 4% in WT (n = 4), 28 +/- 6% in ERalphaKO (n = 3), and 42 +/- 3% in ERbetaKO mice (n = 5). Decreases in cell shortening occurred in parallel with these findings. Our results suggest that inhibition of ICaL and the decrease in contraction by estrogens do not depend on ERalpha or ERbeta.
Collapse
Affiliation(s)
- Nina D Ullrich
- Imperial College London, Cardiac Medicine, National Heart and Lung Institute, London, United Kingdom
| | | | | | | |
Collapse
|
49
|
Belo NO, Sairam MR, Dos Reis AM. Impairment of the natriuretic peptide system in follitropin receptor knockout mice and reversal by estradiol: implications for obesity-associated hypertension in menopause. Endocrinology 2008; 149:1399-406. [PMID: 18063689 DOI: 10.1210/en.2007-0572] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogen is considered a major regulator of adipose tissue in females. Estrogen increases circulating levels of atrial natriuretic peptide (ANP), a hormone with renal and cardiovascular effects. The aim of this study was to determine the status of the natriuretic peptide system in female follitropin-receptor knockout (FORKO) mice that could be associated with obesity and hypertension observed in these mutants. Furthermore, estradiol treatment was used to reverse alterations observed. FORKO and wild-type (WT) mice received daily injections of estradiol for 4 d. On the fifth day, blood was collected for determination of plasma ANP levels, and selected tissues were collected for determination of ANP, natriuretic peptide receptor type-A (NPR-A) and type-C (NPR-C) gene expression by RT-PCR and binding of [(125)I]ANP by autoradiography. At 5 months of age, FORKO mice were heavier and had more adipose tissue than WT mice. FORKO mice had lower plasma ANP levels and atrial ANP gene expression and higher renal and adipocyte NPR-C gene expression than WT mice. Estradiol treatment reduced weight gain and increased atrial ANP synthesis as well as decreased ANP clearance NPR-C receptors, resulting in elevation of circulating ANP level. In conclusion, this study shows that FORKO females have an impaired natriuretic peptide system, which may contribute to the susceptibility of FORKO mice to developing age-related hypertension previously shown in these animals. This study establishes a relation between estrogen, adipose tissue, and ANP, which may have important implications in menopausal women.
Collapse
Affiliation(s)
- Najara O Belo
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, CEP 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | | | | |
Collapse
|
50
|
Abstract
Our understanding of the process and initiation of sexual arousal is being enhanced by both animal and human studies, inclusive of basic science principles and research on clinical outcomes. Sexual arousal is dependent on neural (sensory and cognitive) factors, hormonal factors, genetic factors and, in the human case, the complex influences of culture and context. Sexual arousal activates the cognitive and physiologic processes that can eventually lead to sexual behavior. Sexual arousal comprises a particular subset of central nervous system arousal functions which depend on primitive, fundamental arousal mechanisms that cause generalized brain activity, but are manifest in a sociosexual context. The neurophysiology of sexual arousal is seen as a bidirectional system universal to all vertebrates. The following review includes known neural and genomic mechanisms of a hormone-dependent circuit for simple sex behavior. New information about hormone effects on causal steps related to sex hormones' nuclear receptor isoforms expressed by hypothalamic neurons continues to enrich our understanding of this neurophysiology.
Collapse
Affiliation(s)
- Justine M Schober
- Hamot Medical Center, 333 State Street, Suite 201, Erie, PA 16507, USA.
| | | |
Collapse
|