1
|
Ray SK, Mukherjee S. Mechanical factors in the breast cancer microenvironment: Emphasizing functional adaptation. Biochem Biophys Res Commun 2025; 771:152048. [PMID: 40412051 DOI: 10.1016/j.bbrc.2025.152048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 05/11/2025] [Accepted: 05/17/2025] [Indexed: 05/27/2025]
Abstract
Breast cancer cells can disrupt microenvironments and mechanical balance, leading to significant changes in tissues and alterations in cellular signaling pathways. Recent researches explore advancements in breast cancer cell mechanobiology, focusing on the interaction between cells and their microenvironment and the regulation of cellular behavior through mechanical stress. Factors include the rigidity of the surrounding surface, the substrate's chemical and topological patterns, and the differences between two-dimensional and three-dimensional cultures. Mechanical loading scenarios, such as tensile stretch, compression, and flow-induced shear, are also reviewed to prevent metastasis. However, breast cancer does not follow a strict pattern, and its adaptability facilitated by specific proteins that form the mechanical network. These proteins exhibit modified expression in breast cancer or direct participation in cancer advancement. Directing therapeutic efforts towards the mechanical system may result in more effective therapies in the future. However, this complex task requires caution to prevent potential adverse reactions. The substrate microenvironment and mechanical signals will collaborate to regulate cancer cell advancement and spread. Mechanotransduction, the process by which cells read physical cues, plays a crucial role in breast cancer. Three mechanical stressors, stiffness, interstitial fluid pressure, and solid stress, have been supported as mechanical modifiers in breast cancer. This review presents the potential of directing therapeutic interventions toward the mechanical program to treat cancer and discusses the associated difficulties and limitations.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, 462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, 462020, India.
| |
Collapse
|
2
|
Lin Y, Parajón E, Yuan Q, Ye S, Qin G, Deng Y, Borleis J, Koyfman A, Iglesias PA, Konstantopoulos K, Robinson DN, Devreotes PN. Dynamic and Biphasic Regulation of Cell Migration by Ras. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638204. [PMID: 39990466 PMCID: PMC11844447 DOI: 10.1101/2025.02.13.638204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Ras has traditionally been regarded as a positive regulator and therapeutic target due to its role in cell proliferation, but recent findings indicate a more nuanced role in cell migration, where suppressed Ras activity can unexpectedly promote migration. To clarify this complexity, we systematically modulate Ras activity using various RasGEF and RasGAP proteins and assess their effects on migration dynamics. Leveraging optogenetics, we assess the immediate, non-transcriptional effects of Ras signaling on migration. Local RasGEF recruitment to the plasma membrane induces protrusions and new fronts to effectively guide migration, even in the absence of GPCR/G-protein signaling whereas global recruitment causes immediate cell spreading halting cell migration. Local RasGAP recruitment suppresses protrusions, generates new backs, and repels cells whereas global relocation either eliminates all protrusions to inhibit migration or preserves a single protrusion to maintain polarity. Consistent local and global increases or decreases in signal transduction and cytoskeletal activities accompany these morphological changes. Additionally, we performed cortical tension measurements and found that RasGEFs generally increase cortical tension while RasGAPs decrease it. Our results reveal a biphasic relationship between Ras activity and cellular dynamics, reinforcing our previous findings that optimal Ras activity and cortical tension are critical for efficient migration. Significance This study challenges the traditional view of Ras as solely a positive regulator of cell functions by controlling of gene expression. Using optogenetics to rapidly modulate Ras activity in Dictyostelium , we demonstrate a biphasic relationship between Ras activity and migration: both excessive and insufficient Ras activity impair cell movement. Importantly, these effects occur rapidly, independent of transcriptional changes, revealing the mechanism by which Ras controls cell migration. The findings suggest that optimal Ras activity and cortical tension are crucial for efficient migration, and that targeting Ras in cancer therapy should consider the cell's initial state, aiming to push Ras activity outside the optimal range for migration. This nuanced understanding of the role of Ras in migration has significant implications for developing more effective cancer treatments, as simply inhibiting Ras might inadvertently promote metastasis in certain contexts.
Collapse
|
3
|
Ye C, Zhang B, Lin Y, Han F, Shi H, Dong C, Zhou W. Characteristics of gut microbiota and metabolites in extrahepatic cholangiocarcinoma and their prognostic value for resectable lesions. Front Cell Infect Microbiol 2025; 15:1523863. [PMID: 40028184 PMCID: PMC11868125 DOI: 10.3389/fcimb.2025.1523863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
This study aimed to investigate the relationship between gut microbiota composition, fecal metabolites, and postoperative prognosis in patients with extrahepatic cholangiocarcinoma (eCCA). A total of 53 patients with resectable eCCA and 21 healthy volunteers as a control group were included. 16S rRNA gene sequencing and metabolomic analyses revealed significant differences in the gut microbial community structure and altered fecal metabolites profiles between eCCA patients and healthy controls. Univariate and multivariate Cox regression analyses indicated that factors such as preoperative total bilirubin, indirect bilirubin, and specific metabolites were closely associated with overall survival in patients with eCCA post-surgery. The constructed nomogram model further demonstrated the predictive value of these factors, achieving a C-index of 0.718, with calibration curves confirming its strong predictive performance. In conclusion, gut microbiota composition and fecal metabolites play a crucial role in the surgical prognosis of eCCA patients, providing new insights for clinical prognostic assessment.
Collapse
Affiliation(s)
- Cheng Ye
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Bo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yanyan Lin
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Fangfang Han
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Huaqing Shi
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Chunlu Dong
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Wence Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Peng H, Chao Z, Wang Z, Hao X, Xi Z, Ma S, Guo X, Zhang J, Zhou Q, Qu G, Gao Y, Luo J, Wang Z, Wang J, Li L. Biomechanics in the tumor microenvironment: from biological functions to potential clinical applications. Exp Hematol Oncol 2025; 14:4. [PMID: 39799341 PMCID: PMC11724500 DOI: 10.1186/s40164-024-00591-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/10/2024] [Indexed: 01/15/2025] Open
Abstract
Immune checkpoint therapies have spearheaded drug innovation over the last decade, propelling cancer treatments toward a new era of precision therapies. Nonetheless, the challenges of low response rates and prevalent drug resistance underscore the imperative for a deeper understanding of the tumor microenvironment (TME) and the pursuit of novel targets. Recent findings have revealed the profound impacts of biomechanical forces within the tumor microenvironment on immune surveillance and tumor progression in both murine models and clinical settings. Furthermore, the pharmacological or genetic manipulation of mechanical checkpoints, such as PIEZO1, DDR1, YAP/TAZ, and TRPV4, has shown remarkable potential in immune activation and eradication of tumors. In this review, we delved into the underlying biomechanical mechanisms and the resulting intricate biological meaning in the TME, focusing mainly on the extracellular matrix, the stiffness of cancer cells, and immune synapses. We also summarized the methodologies employed for biomechanical research and the potential clinical translation derived from current evidence. This comprehensive review of biomechanics will enhance the understanding of the functional role of biomechanical forces and provide basic knowledge for the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Hao Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
- The Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Zheng Chao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Zefeng Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaodong Hao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Zirui Xi
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
- The Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Sheng Ma
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Xiangdong Guo
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Junbiao Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Qiang Zhou
- Department of Urology, Qinghai University Affiliated Hospital, Qinghai University Medical College, Xining, 810001, Qinghai, China
| | - Guanyu Qu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
- The Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Yuan Gao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
- The Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhihua Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China.
- Taikang Tongji (Wuhan) Hospital, 420060, Wuhan, China.
| | - Jing Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China.
| | - Le Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China.
| |
Collapse
|
5
|
Zhai FH, Yan MQ, Wang Y. Extraction optimization, identification using UPLC-tandem mass spectrometry, and antioxidant properties of polyphenols from the fruit body of Morchella sextelata. J Food Sci 2024; 89:9214-9229. [PMID: 39592269 DOI: 10.1111/1750-3841.17578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/01/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024]
Abstract
Polyphenols, as important active ingredients in edible fungi, have many beneficial functions. As rare edible fungi, Morchella spp., are highly popular due to their nutritional value and unique flavor. However, most Morchella have not yet been artificially cultivated due to their special biological characteristics, resulting in limited research on polyphenols in artificially cultivated Morchella. In this study, the extraction parameters of polyphenols from artificially cultivated Morchella sextelata were optimized using response surface methodology, the polyphenol components were analyzed via UPLC‒tandem mass spectrometry, and their antioxidant properties were determined in vitro. The optimal extraction process parameters were as follows: ethanol concentration, 43%; solid‒liquid ratio, 1:41 g mL-1; extraction temperature, 52°C; extraction time, 2 h; rotation speed, 180 r min-1; and extraction frequency, twice. The optimized extraction parameters resulted in a polyphenol yield of 4.82 mg g-1, a 69.97% increase. Fourteen phenolic compounds were identified: gallic acid, protocatechuic acid, dl-4-hydroxyphenyllactic acid, methyl 2,4-dihydroxyphenylacetate, salicylic acid, 4-hydroxybenzaldehyde, 4-hydroxyacetophenone, eucommiol, luteolin, ethylparaben, hinokiflavone, amentoflavone, propyl 4-hydroxybenzoate, and 2,6-di-tert-butylphenol. The EC50 values of 1,1-diphenyl-2-picrylhydrazyl (DPPH)· scavenging ability, reducing power and ferrous ion chelating ability of polyphenols were 2.70, 30.98, and 72.06 µg mL-1, respectively. These findings indicated that polyphenols had a significantly stronger ability to scavenge DPPH· compared with their reducing power and ability to chelate ferrous ions. The results of this study provide a solid foundation for the subsequent study of function of M. sextelata polyphenols as well as a theoretical basis for the further development and utilization of M. sextelata, which will help promote healthy development of Morchella industry. PRACTICAL APPLICATION: The extraction, composition, and antioxidant properties of polyphenols from Morchella sextelata were identified, which provides a theoretical basis for better utilization of Morchella resources.
Collapse
Affiliation(s)
- Fei-Hong Zhai
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, China
- Shanxi Key Laboratory of Earth Surface Processes and Resource Ecology Security in Fenhe River Basin, Taiyuan Normal University, Jinzhong, China
| | - Miao-Qing Yan
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, China
| | - Yan Wang
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, China
| |
Collapse
|
6
|
Weißenbruch K, Mayor R. Actomyosin forces in cell migration: Moving beyond cell body retraction. Bioessays 2024; 46:e2400055. [PMID: 39093597 DOI: 10.1002/bies.202400055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
In textbook illustrations of migrating cells, actomyosin contractility is typically depicted as the contraction force necessary for cell body retraction. This dogma has been transformed by the molecular clutch model, which acknowledges that actomyosin traction forces also generate and transmit biomechanical signals at the leading edge, enabling cells to sense and shape their migratory path in mechanically complex environments. To fulfill these complementary functions, the actomyosin system assembles a gradient of contractile energy along the front-rear axis of migratory cells. Here, we highlight the hierarchic assembly and self-regulatory network structure of the actomyosin system and explain how the kinetics of different nonmuscle myosin II (NM II) paralogs synergize during contractile force generation. Our aim is to emphasize how protrusion formation, cell adhesion, contraction, and retraction are spatiotemporally integrated during different modes of migration, including chemotaxis and durotaxis. Finally, we hypothesize how different NM II paralogs might tune aspects of migration in vivo, highlighting future research directions.
Collapse
Affiliation(s)
- Kai Weißenbruch
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London, UK
| |
Collapse
|
7
|
Lin Y, Chen X, Lin L, Xu B, Zhu X, Lin X. Sesamolin serves as an MYH14 inhibitor to sensitize endometrial cancer to chemotherapy and endocrine therapy via suppressing MYH9/GSK3β/β-catenin signaling. Cell Mol Biol Lett 2024; 29:63. [PMID: 38698330 PMCID: PMC11067147 DOI: 10.1186/s11658-024-00583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Endometrial cancer (EC) is one of the most common gynecological cancers. Herein, we aimed to define the role of specific myosin family members in EC because this protein family is involved in the progression of various cancers. METHODS Bioinformatics analyses were performed to reveal EC patients' prognosis-associated genes in patients with EC. Furthermore, colony formation, immunofluorescence, cell counting kit 8, wound healing, and transwell assays as well as coimmunoprecipitation, cycloheximide chase, luciferase reporter, and cellular thermal shift assays were performed to functionally and mechanistically analyze human EC samples, cell lines, and a mouse model, respectively. RESULTS Machine learning techniques identified MYH14, a member of the myosin family, as the prognosis-associated gene in patients with EC. Furthermore, bioinformatics analyses based on public databases showed that MYH14 was associated with EC chemoresistance. Moreover, immunohistochemistry validated MYH14 upregulation in EC cases compared with that in normal controls and confirmed that MYH14 was an independent and unfavorable prognostic indicator of EC. MYH14 impaired cell sensitivity to carboplatin, paclitaxel, and progesterone, and increased cell proliferation and metastasis in EC. The mechanistic study showed that MYH14 interacted with MYH9 and impaired GSK3β-mediated β-catenin ubiquitination and degradation, thus facilitating the Wnt/β-catenin signaling pathway and epithelial-mesenchymal transition. Sesamolin, a natural compound extracted from Sesamum indicum (L.), directly targeted MYH14 and attenuated EC progression. Additionally, the compound disrupted the interplay between MYH14 and MYH9 and repressed MYH9-regulated Wnt/β-catenin signaling. The in vivo study further verified sesamolin as a therapeutic drug without side effects. CONCLUSIONS Herein, we identified that EC prognosis-associated MYH14 was independently responsible for poor overall survival time of patients, and it augmented EC progression by activating Wnt/β-catenin signaling. Targeting MYH14 by sesamolin, a cytotoxicity-based approach, can be applied synergistically with chemotherapy and endocrine therapy to eventually mitigate EC development. This study emphasizes MYH14 as a potential target and sesamolin as a valuable natural drug for EC therapy.
Collapse
Affiliation(s)
- Yibin Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian, China
| | - Xiao Chen
- Department of Intensive Care Unit, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Intensive Care Unit, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
| | - Linping Lin
- Hunan Institute of Engineering, Xiangtan, 411100, Hunan, China
| | - Benhua Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Xinquan Road 29, Gulou District, Fuzhou, 350001, Fujian, China.
| | - Xiaofeng Zhu
- Department of Oral Maxillo-Facial Surgery, The First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Taijing District, Fuzhou, 350005, Fujian, China.
- Department of Oral Maxillo-Facial Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| | - Xian Lin
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, No. 1120 Lianhua Road, Futian District, Shenzhen, 518036, Guangdong, China.
- Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China.
| |
Collapse
|
8
|
Faisal SM, Clewner JE, Stack B, Varela ML, Comba A, Abbud G, Motsch S, Castro MG, Lowenstein PR. Spatiotemporal Insights into Glioma Oncostream Dynamics: Unraveling Formation, Stability, and Disassembly Pathways. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309796. [PMID: 38384234 PMCID: PMC11095212 DOI: 10.1002/advs.202309796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Glioblastoma (GBM) remains a challenge in Neuro-oncology, with a poor prognosis showing only a 5% survival rate beyond two years. This is primarily due to its aggressiveness and intra-tumoral heterogeneity, which limits complete surgical resection and reduces the efficacy of existing treatments. The existence of oncostreams-neuropathological structures comprising aligned spindle-like cells from both tumor and non-tumor origins- is discovered earlier. Oncostreams are closely linked to glioma aggressiveness and facilitate the spread into adjacent healthy brain tissue. A unique molecular signature intrinsic to oncostreams, with overexpression of key genes (i.e., COL1A1, ACTA2) that drive the tumor's mesenchymal transition and malignancy is also identified. Pre-clinical studies on genetically engineered mouse models demonstrated that COL1A1 inhibition disrupts oncostreams, modifies TME, reduces mesenchymal gene expression, and extends survival. An in vitro model using GFP+ NPA cells to investigate how various treatments affect oncostream dynamics is developed. Analysis showed that factors such as cell density, morphology, neurotransmitter agonists, calcium chelators, and cytoskeleton-targeting drugs influence oncostream formation. This data illuminate the patterns of glioma migration and suggest anti-invasion strategies that can improve GBM patient outcomes when combined with traditional therapies. This work highlights the potential of targeting oncostreams to control glioma invasion and enhance treatment efficacy.
Collapse
Affiliation(s)
- Syed M. Faisal
- Department of NeurosurgeryUniversity of Michigan Medical SchoolAnn ArborMichigan48108USA
- Department of Cell and Developmental BiologyUniversity of Michigan Medical SchoolAnn ArborMichigan48108USA
- Rogel Cancer CentreUniversity of Michigan Medical SchoolAnn ArborMichigan48108USA
| | - Jarred E. Clewner
- Department of NeurosurgeryUniversity of Michigan Medical SchoolAnn ArborMichigan48108USA
- Department of Cell and Developmental BiologyUniversity of Michigan Medical SchoolAnn ArborMichigan48108USA
- Rogel Cancer CentreUniversity of Michigan Medical SchoolAnn ArborMichigan48108USA
| | - Brooklyn Stack
- Department of NeurosurgeryUniversity of Michigan Medical SchoolAnn ArborMichigan48108USA
- Department of Cell and Developmental BiologyUniversity of Michigan Medical SchoolAnn ArborMichigan48108USA
- Rogel Cancer CentreUniversity of Michigan Medical SchoolAnn ArborMichigan48108USA
| | - Maria L. Varela
- Department of NeurosurgeryUniversity of Michigan Medical SchoolAnn ArborMichigan48108USA
- Department of Cell and Developmental BiologyUniversity of Michigan Medical SchoolAnn ArborMichigan48108USA
- Rogel Cancer CentreUniversity of Michigan Medical SchoolAnn ArborMichigan48108USA
| | - Andrea Comba
- Department of NeurosurgeryUniversity of Michigan Medical SchoolAnn ArborMichigan48108USA
- Department of Cell and Developmental BiologyUniversity of Michigan Medical SchoolAnn ArborMichigan48108USA
- Rogel Cancer CentreUniversity of Michigan Medical SchoolAnn ArborMichigan48108USA
| | - Grace Abbud
- Department of NeurosurgeryUniversity of Michigan Medical SchoolAnn ArborMichigan48108USA
- Department of Cell and Developmental BiologyUniversity of Michigan Medical SchoolAnn ArborMichigan48108USA
- Rogel Cancer CentreUniversity of Michigan Medical SchoolAnn ArborMichigan48108USA
| | - Sebastien Motsch
- Department of Statistics and Mathematical SciencesArizona State UniversityTempeArizona85287USA
| | - Maria G. Castro
- Department of NeurosurgeryUniversity of Michigan Medical SchoolAnn ArborMichigan48108USA
- Department of Cell and Developmental BiologyUniversity of Michigan Medical SchoolAnn ArborMichigan48108USA
- Rogel Cancer CentreUniversity of Michigan Medical SchoolAnn ArborMichigan48108USA
| | - Pedro R. Lowenstein
- Department of NeurosurgeryUniversity of Michigan Medical SchoolAnn ArborMichigan48108USA
- Department of Cell and Developmental BiologyUniversity of Michigan Medical SchoolAnn ArborMichigan48108USA
- Rogel Cancer CentreUniversity of Michigan Medical SchoolAnn ArborMichigan48108USA
- Department of Biomedical EngineeringUniversity of Michigan Medical SchoolAnn ArborMichigan48108USA
| |
Collapse
|
9
|
Wang J, Zhang B, Chen X, Xin Y, Li K, Zhang C, Tang K, Tan Y. Cell mechanics regulate the migration and invasion of hepatocellular carcinoma cells via JNK signaling. Acta Biomater 2024; 176:321-333. [PMID: 38272199 DOI: 10.1016/j.actbio.2024.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Hepatocellular carcinoma (HCC) cells, especially those with metastatic competence, show reduced stiffness compared to the non-malignant counterparts. However, it is still unclear whether and how the mechanics of HCC cells influence their migration and invasion. This study reports that HCC cells with enhanced motility show reduced mechanical stiffness and cytoskeleton, suggesting the inverse correlation between cellular stiffness and motility. Through pharmacologic and genetic approaches, inhibiting actomyosin activity reduces HCC cellular stiffness but promotes their migration and invasion, while activating it increases cell stiffness but impairs cell motility. Actomyosin regulates cell motility through the influence on cellular stiffness. Mechanistically, weakening/strengthening cells inhibits/promotes c-Jun N terminal kinase (JNK) phosphorylation, activation/inhibition of which rescues the effects of cell mechanics on their migration and invasion. Further, HCC cancer stem cells (CSCs) exhibit higher motility but lower stiffness than control cells. Increasing CSC stiffness weakens migration and invasion through the activation of JNK signaling. In conclusion, our findings unveil a new regulatory role of actomyosin-mediated cellular mechanics in tumor cell motility and present new evidence to support that tumor cell softening may be one driving force for HCC metastasis. STATEMENT OF SIGNIFICANCE: Tumor cells progressively become softened during metastasis and low cell stiffness is associated with high metastatic potential. However, it remains unclear whether tumor cell softening is a by-product of or a driving force for tumor progression. This work reports that the stiffness of hepatocellular carcinoma cells is linked to their migration and invasion. Importantly, tumor cell softening promotes migration and invasion, while cell stiffening impairs the mobility. Weakening/strengthening cells inhibits/promotes JNK phosphorylation, activation/inhibition of which rescues the effects of cell mechanics on their migration and invasion ability. Further, stiffening liver cancer stem cells attenuates their motility through activating JNK signaling. In summary, our study uncovers a previously unappreciated role of tumor cell mechanics in migration and invasion and implicates the therapeutic potential of cell mechanics in the mechanotargeting of metastasis.
Collapse
Affiliation(s)
- Junfan Wang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Bai Zhang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Xi Chen
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Cunyu Zhang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Kai Tang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.
| |
Collapse
|
10
|
Shu J, Deng H, Zhang Y, Wu F, He J. Cancer cell response to extrinsic and intrinsic mechanical cue: opportunities for tumor apoptosis strategies. Regen Biomater 2024; 11:rbae016. [PMID: 38476678 PMCID: PMC10932484 DOI: 10.1093/rb/rbae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Increasing studies have revealed the importance of mechanical cues in tumor progression, invasiveness and drug resistance. During malignant transformation, changes manifest in either the mechanical properties of the tissue or the cellular ability to sense and respond to mechanical signals. The major focus of the review is the subtle correlation between mechanical cues and apoptosis in tumor cells from a mechanobiology perspective. To begin, we focus on the intracellular force, examining the mechanical properties of the cell interior, and outlining the role that the cytoskeleton and intracellular organelle-mediated intracellular forces play in tumor cell apoptosis. This article also elucidates the mechanisms by which extracellular forces guide tumor cell mechanosensing, ultimately triggering the activation of the mechanotransduction pathway and impacting tumor cell apoptosis. Finally, a comprehensive examination of the present status of the design and development of anti-cancer materials targeting mechanotransduction is presented, emphasizing the underlying design principles. Furthermore, the article underscores the need to address several unresolved inquiries to enhance our comprehension of cancer therapeutics that target mechanotransduction.
Collapse
Affiliation(s)
- Jun Shu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Huan Deng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Yu Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Fang Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Jing He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
11
|
Kuhn J, Banerjee P, Haye A, Robinson DN, Iglesias PA, Devreotes PN. Complementary Cytoskeletal Feedback Loops Control Signal Transduction Excitability and Cell Polarity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580131. [PMID: 38405988 PMCID: PMC10888828 DOI: 10.1101/2024.02.13.580131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
To move through complex environments, cells must constantly integrate chemical and mechanical cues. Signaling networks, such as those comprising Ras and PI3K, transmit chemical cues to the cytoskeleton, but the cytoskeleton must also relay mechanical information back to those signaling systems. Using novel synthetic tools to acutely control specific elements of the cytoskeleton in Dictyostelium and neutrophils, we delineate feedback mechanisms that alter the signaling network and promote front- or back-states of the cell membrane and cortex. First, increasing branched actin assembly increases Ras/PI3K activation while reducing polymeric actin levels overall decreases activation. Second, reducing myosin II assembly immediately increases Ras/PI3K activation and sensitivity to chemotactic stimuli. Third, inhibiting branched actin alone increases cortical actin assembly and strongly blocks Ras/PI3K activation. This effect is mitigated by reducing filamentous actin levels and in cells lacking myosin II. Finally, increasing actin crosslinking with a controllable activator of cytoskeletal regulator RacE leads to a large decrease in Ras activation both globally and locally. Curiously, RacE activation can trigger cell spreading and protrusion with no detectable activation of branched actin nucleators. Taken together with legacy data that Ras/PI3K promotes branched actin assembly and myosin II disassembly, our results define front- and back-promoting positive feedback loops. We propose that these loops play a crucial role in establishing cell polarity and mediating signal integration by controlling the excitable state of the signal transduction networks in respective regions of the membrane and cortex. This interplay enables cells to navigate intricate topologies like tissues containing other cells, the extracellular matrix, and fluids.
Collapse
Affiliation(s)
- Jonathan Kuhn
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Parijat Banerjee
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD
| | - Andrew Haye
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD
| | | | - Pablo A. Iglesias
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD
| | - Peter N. Devreotes
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
12
|
Banerjee K, Saha S, Das S, Ghosal S, Ghosh I, Basu A, Jana SS. Expression of nonmuscle myosin IIC is regulated by non-canonical binding activity of miRNAs. iScience 2023; 26:108384. [PMID: 38047082 PMCID: PMC10690570 DOI: 10.1016/j.isci.2023.108384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/27/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
The expression of mechanoresponsive nonmuscle myosin II (NMII)C is found to be inducible during tumor progression, but its mechanism is yet to be explored. Here, we report a group of microRNAs (mmu-miR-200a-5p, mmu-miR-532-3p, mmu-miR-680, and mmu-miR-1901) can significantly repress the expression of nonmuscle myosin IIC (NMIIC). Interestingly, these microRNAs have both canonical and non-canonical binding sites at 3/UTR and coding sequence (CDS) of NMIIC's heavy chain (HC) mRNA. Each of the miRNA downregulates NMHC-IIC to a different degree as assessed by dual-luciferase and immunoblot analyses. When we abolish the complementary base pairing at canonical binding site, mmu-miR-532-3p can still bind at non-canonical binding site and form Argonaute2 (AGO2)-miRNA complex to downregulate the expression of NMIIC. Modulating the expression of NMIIC by miR-532-3p in mouse mammary tumor cells, 4T1, increases its tumorigenic potential both in vitro and in vivo. Together, these studies provide the functional role of miRNA's non-canonical binding mediated NMIIC regulation in tumor cells.
Collapse
Affiliation(s)
- Kumarjeet Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Shekhar Saha
- Department of Microbiology, Immunology, and Cancer Biology, Charlottesville, VA, USA
| | - Shaoli Das
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Suman Ghosal
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Indranil Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Abhimanyu Basu
- Department of General Surgery, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Siddhartha S. Jana
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| |
Collapse
|
13
|
Xin Y, Li K, Huang M, Liang C, Siemann D, Wu L, Tan Y, Tang X. Biophysics in tumor growth and progression: from single mechano-sensitive molecules to mechanomedicine. Oncogene 2023; 42:3457-3490. [PMID: 37864030 PMCID: PMC10656290 DOI: 10.1038/s41388-023-02844-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/22/2023]
Abstract
Evidence from physical sciences in oncology increasingly suggests that the interplay between the biophysical tumor microenvironment and genetic regulation has significant impact on tumor progression. Especially, tumor cells and the associated stromal cells not only alter their own cytoskeleton and physical properties but also remodel the microenvironment with anomalous physical properties. Together, these altered mechano-omics of tumor tissues and their constituents fundamentally shift the mechanotransduction paradigms in tumorous and stromal cells and activate oncogenic signaling within the neoplastic niche to facilitate tumor progression. However, current findings on tumor biophysics are limited, scattered, and often contradictory in multiple contexts. Systematic understanding of how biophysical cues influence tumor pathophysiology is still lacking. This review discusses recent different schools of findings in tumor biophysics that have arisen from multi-scale mechanobiology and the cutting-edge technologies. These findings range from the molecular and cellular to the whole tissue level and feature functional crosstalk between mechanotransduction and oncogenic signaling. We highlight the potential of these anomalous physical alterations as new therapeutic targets for cancer mechanomedicine. This framework reconciles opposing opinions in the field, proposes new directions for future cancer research, and conceptualizes novel mechanomedicine landscape to overcome the inherent shortcomings of conventional cancer diagnosis and therapies.
Collapse
Grants
- R35 GM150812 NIGMS NIH HHS
- This work was financially supported by National Natural Science Foundation of China (Project no. 11972316, Y.T.), Shenzhen Science and Technology Innovation Commission (Project no. JCYJ20200109142001798, SGDX2020110309520303, and JCYJ20220531091002006, Y.T.), General Research Fund of Hong Kong Research Grant Council (PolyU 15214320, Y. T.), Health and Medical Research Fund (HMRF18191421, Y.T.), Hong Kong Polytechnic University (1-CD75, 1-ZE2M, and 1-ZVY1, Y.T.), the Cancer Pilot Research Award from UF Health Cancer Center (X. T.), the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM150812 (X. T.), the National Science Foundation under grant number 2308574 (X. T.), the Air Force Office of Scientific Research under award number FA9550-23-1-0393 (X. T.), the University Scholar Program (X. T.), UF Research Opportunity Seed Fund (X. T.), the Gatorade Award (X. T.), and the National Science Foundation REU Site at UF: Engineering for Healthcare (Douglas Spearot and Malisa Sarntinoranont). We are deeply grateful for the insightful discussions with and generous support from all members of Tang (UF)’s and Tan (PolyU)’s laboratories and all staff members of the MAE/BME/ECE/Health Cancer Center at UF and BME at PolyU.
- National Natural Science Foundation of China (National Science Foundation of China)
- Shenzhen Science and Technology Innovation Commission
Collapse
Affiliation(s)
- Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Miao Huang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Chenyu Liang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Dietmar Siemann
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Lizi Wu
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Xin Tang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA.
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
14
|
García-Quintáns N, Sacristán S, Márquez-López C, Sánchez-Ramos C, Martinez-de-Benito F, Siniscalco D, González-Guerra A, Camafeita E, Roche-Molina M, Lytvyn M, Morera D, Guillen MI, Sanguino MA, Sanz-Rosa D, Martín-Pérez D, Garcia R, Bernal JA. MYH10 activation rescues contractile defects in arrhythmogenic cardiomyopathy (ACM). Nat Commun 2023; 14:6461. [PMID: 37833253 PMCID: PMC10575922 DOI: 10.1038/s41467-023-41981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The most prevalent genetic form of inherited arrhythmogenic cardiomyopathy (ACM) is caused by mutations in desmosomal plakophilin-2 (PKP2). By studying pathogenic deletion mutations in the desmosomal protein PKP2, here we identify a general mechanism by which PKP2 delocalization restricts actomyosin network organization and cardiac sarcomeric contraction in this untreatable disease. Computational modeling of PKP2 variants reveals that the carboxy-terminal (CT) domain is required for N-terminal domain stabilization, which determines PKP2 cortical localization and function. In mutant PKP2 cells the expression of the interacting protein MYH10 rescues actomyosin disorganization. Conversely, dominant-negative MYH10 mutant expression mimics the pathogenic CT-deletion PKP2 mutant causing actin network abnormalities and right ventricle systolic dysfunction. A chemical activator of non-muscle myosins, 4-hydroxyacetophenone (4-HAP), also restores normal contractility. Our findings demonstrate that activation of MYH10 corrects the deleterious effect of PKP2 mutant over systolic cardiac contraction, with potential implications for ACM therapy.
Collapse
Affiliation(s)
| | - Silvia Sacristán
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | | | - Fernando Martinez-de-Benito
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - David Siniscalco
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain
| | | | - Emilio Camafeita
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Marta Roche-Molina
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Mariya Lytvyn
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - David Morera
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María I Guillen
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María A Sanguino
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - David Sanz-Rosa
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Universidad Europea, Madrid, Spain
| | | | - Ricardo Garcia
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain
| | - Juan A Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
15
|
Chen X, Xu Z, Tang K, Hu G, Du P, Wang J, Zhang C, Xin Y, Li K, Zhang Q, Hu J, Zhang Z, Yang M, Wang G, Tan Y. The Mechanics of Tumor Cells Dictate Malignancy via Cytoskeleton-Mediated APC/Wnt/β-Catenin Signaling. RESEARCH (WASHINGTON, D.C.) 2023; 6:0224. [PMID: 37746658 PMCID: PMC10513157 DOI: 10.34133/research.0224] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/20/2023] [Indexed: 09/26/2023]
Abstract
Tumor cells progressively remodel cytoskeletal structures and reduce cellular stiffness during tumor progression, implicating the correlation between cell mechanics and malignancy. However, the roles of tumor cell cytoskeleton and the mechanics in tumor progression remain incompletely understood. We report that softening/stiffening tumor cells by targeting actomyosin promotes/suppresses self-renewal in vitro and tumorigenic potential in vivo. Weakening/strengthening actin cytoskeleton impairs/reinforces the interaction between adenomatous polyposis coli (APC) and β-catenin, which facilitates β-catenin nuclear/cytoplasmic localization. Nuclear β-catenin binds to the promoter of Oct4, which enhances its transcription that is crucial in sustaining self-renewal and malignancy. These results demonstrate that the mechanics of tumor cells dictate self-renewal through cytoskeleton-APC-Wnt/β-catenin-Oct4 signaling, which are correlated with tumor differentiation and patient survival. This study unveils an uncovered regulatory role of cell mechanics in self-renewal and malignancy, and identifies tumor cell mechanics as a hallmark not only for cancer diagnosis but also for mechanotargeting.
Collapse
Affiliation(s)
- Xi Chen
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
- Research Institute of Smart Ageing,
The Hong Kong Polytechnic University, Hong Kong, China
- Department of Biomedical Engineering,
The Hong Kong Polytechnic University, Hong Kong, China
| | - Zichen Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants,
Bioengineering College of Chongqing University, Chongqing, 400030, China
- Department of Biomedical Engineering,
The Hong Kong Polytechnic University, Hong Kong, China
| | - Kai Tang
- Department of Biomedical Engineering,
The Hong Kong Polytechnic University, Hong Kong, China
| | - Guanshuo Hu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
- Research Institute of Smart Ageing,
The Hong Kong Polytechnic University, Hong Kong, China
- Department of Biomedical Engineering,
The Hong Kong Polytechnic University, Hong Kong, China
| | - Pengyu Du
- Department of Biomedical Engineering,
The Hong Kong Polytechnic University, Hong Kong, China
| | - Junfang Wang
- Department of Biomedical Engineering,
The Hong Kong Polytechnic University, Hong Kong, China
| | - Cunyu Zhang
- Research Institute of Smart Ageing,
The Hong Kong Polytechnic University, Hong Kong, China
- Department of Biomedical Engineering,
The Hong Kong Polytechnic University, Hong Kong, China
| | - Ying Xin
- Department of Biomedical Engineering,
The Hong Kong Polytechnic University, Hong Kong, China
| | - Keming Li
- Department of Biomedical Engineering,
The Hong Kong Polytechnic University, Hong Kong, China
| | - Qiantang Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants,
Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Jianjun Hu
- Department of Pathology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, China
| | - Zhuxue Zhang
- Department of Pathology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, China
| | - Mo Yang
- Department of Biomedical Engineering,
The Hong Kong Polytechnic University, Hong Kong, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants,
Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
- Research Institute of Smart Ageing,
The Hong Kong Polytechnic University, Hong Kong, China
- Department of Biomedical Engineering,
The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
16
|
Šuráňová M, Ďuriš M, Štenglová Netíková I, Brábek J, Horák T, Jůzová V, Chmelík R, Veselý P. Primary assessment of medicines for expected migrastatic potential with holographic incoherent quantitative phase imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:2689-2708. [PMID: 37342686 PMCID: PMC10278600 DOI: 10.1364/boe.488630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 06/23/2023]
Abstract
Solid tumor metastases cause most cancer-related deaths. The prevention of their occurrence misses suitable anti-metastases medicines newly labeled as migrastatics. The first indication of migrastatics potential is based on an inhibition of in vitro enhanced migration of tumor cell lines. Therefore, we decided to develop a rapid test for qualifying the expected migrastatic potential of some drugs for repurposing. The chosen Q-PHASE holographic microscope provides reliable multifield time-lapse recording and simultaneous analysis of the cell morphology, migration, and growth. The results of the pilot assessment of the migrastatic potential exerted by the chosen medicines on selected cell lines are presented.
Collapse
Affiliation(s)
- Markéta Šuráňová
- Institute of Physical Engineering (IPE), Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Miroslav Ďuriš
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Irena Štenglová Netíková
- General University Hospital in Prague, Department of Clinical Pharmacology and Pharmacy, Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, and Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Laboratory of Cancer Cell Invasion, Charles University, Prague, Czech Republic
| | - Tomáš Horák
- Institute of Physical Engineering (IPE), Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Veronika Jůzová
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Radim Chmelík
- Institute of Physical Engineering (IPE), Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Pavel Veselý
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
17
|
Lu L, Wang X, Zhou L, Liu Q, Zhang G, Xue B, Hu C, Shen X, Sun X, Yan Y, Wang J, Yuan Q. Establishing biosynthetic pathway for the production of p-hydroxyacetophenone and its glucoside in Escherichia coli. Metab Eng 2023; 76:110-119. [PMID: 36746296 DOI: 10.1016/j.ymben.2023.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/10/2023] [Accepted: 02/03/2023] [Indexed: 02/05/2023]
Abstract
p-Hydroxyacetophenone (p-HAP) and its glucoside picein are plant-derived natural products that have been extensively used in chemical, pharmaceutical and cosmetic industries owing to their antioxidant, antibacterial and antiseptic activities. However, the natural biosynthetic pathways for p-HAP and picein have yet been resolved so far, limiting their biosynthesis in microorganisms. In this study, we design and construct a biosynthetic pathway for de novo production of p-HAP and picein from glucose in E. coli. First, screening and characterizing pathway enzymes enable us to successfully establish functional biosynthetic pathway for p-HAP production. Then, the rate-limiting step in the pathway caused by a reversible alcohol dehydrogenase is completely eliminated by modulating intracellular redox cofactors. Subsequent host strain engineering via systematic increase of precursor supplies enables production enhancement of p-HAP with a titer of 1445.3 mg/L under fed-batch conditions. Finally, a novel p-HAP glucosyltransferase capable of generating picein from p-HAP is identified and characterized from a series of glycosyltransferases. On this basis, de novo biosynthesis of picein from glucose is achieved with a titer of 210.7 mg/L under fed-batch conditions. This work not only demonstrates a microbial platform for p-HAP and picein synthesis, but also represents a generalizable pathway design strategy to produce value-added compounds.
Collapse
Affiliation(s)
- Liangyu Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaolei Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lei Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qiyuan Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guanghao Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bingqing Xue
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chenyu Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yajun Yan
- College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
18
|
Tran PT, Sutera P, Phillips RM, Deek MP, Chmura S. From Idea to Clinical Practice: A Brief History of Oligometastatic Disease. Int J Radiat Oncol Biol Phys 2022; 114:576-580. [DOI: 10.1016/j.ijrobp.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/03/2022] [Indexed: 10/31/2022]
|
19
|
Nguyen LTS, Jacob MAC, Parajón E, Robinson DN. Cancer as a biophysical disease: Targeting the mechanical-adaptability program. Biophys J 2022; 121:3573-3585. [PMID: 35505610 PMCID: PMC9617128 DOI: 10.1016/j.bpj.2022.04.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022] Open
Abstract
With the number of cancer cases projected to significantly increase over time, researchers are currently exploring "nontraditional" research fields in the pursuit of novel therapeutics. One emerging area that is steadily gathering interest revolves around cellular mechanical machinery. When looking broadly at the physical properties of cancer, it has been debated whether a cancer could be defined as either stiffer or softer across cancer types. With numerous articles supporting both sides, the evidence instead suggests that cancer is not particularly regimented. Instead, cancer is highly adaptable, allowing it to endure the constantly changing microenvironments cancer cells encounter, such as tumor compression and the shear forces in the vascular system and body. What allows cancer cells to achieve this adaptability are the particular proteins that make up the mechanical network, leading to a particular mechanical program of the cancer cell. Coincidentally, some of these proteins, such as myosin II, α-actinins, filamins, and actin, have either altered expression in cancer and/or some type of direct involvement in cancer progression. For this reason, targeting the mechanical system as a therapeutic strategy may lead to more efficacious treatments in the future. However, targeting the mechanical program is far from trivial. As involved as the mechanical program is in cancer development and metastasis, it also helps drive many other key cellular processes, such as cell division, cell adhesion, metabolism, and motility. Therefore, anti-cancer treatments targeting the mechanical program must take great care to avoid potential side effects. Here, we introduce the potential of targeting the mechanical program while also providing its challenges and shortcomings as a strategy for cancer treatment.
Collapse
Affiliation(s)
- Ly T S Nguyen
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Mark Allan C Jacob
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Eleana Parajón
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
20
|
Biomechanics of cancer stem cells. Essays Biochem 2022; 66:359-369. [PMID: 35942932 DOI: 10.1042/ebc20220014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 12/27/2022]
Abstract
Cancer stem cells (CSCs) have been believed to be one driving force for tumor progression and drug resistance. Despite the significance of biochemical signaling in malignancy, highly malignant tumor cells or CSCs exhibit lower cellular stiffness than weakly malignant cells or non-CSCs, which are softer than their healthy counterparts, suggesting the inverse correlation between cell stiffness and malignancy. Recent years have witnessed the rapid accumulation of evidence illustrating the reciprocity between cell cytoskeleton/mechanics and CSC functions and the potential of cellular stiffness for specific targeting of CSCs. However, a systematic understanding of tumor cell mechanics and their role in CSCs and tumor progression is still lacking. The present review summarizes the recent progress in the alterations of tumor cell cytoskeleton and stiffness at different stages of tumor progression and recapitulates the relationship between cellular stiffness and CSC functions. The altered cell mechanics may mediate the mechanoadaptive responses that possibly empower CSCs to survive and thrive during metastasis. Furthermore, we highlight the possible impact of tumor cell mechanics on CSC malignancy, which may potentiate low cell stiffness as a mechanical marker for CSC targeting.
Collapse
|
21
|
Angstadt S, Zhu Q, Jaffee EM, Robinson DN, Anders RA. Pancreatic Ductal Adenocarcinoma Cortical Mechanics and Clinical Implications. Front Oncol 2022; 12:809179. [PMID: 35174086 PMCID: PMC8843014 DOI: 10.3389/fonc.2022.809179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/05/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers due to low therapeutic response rates and poor prognoses. Majority of patients present with symptoms post metastatic spread, which contributes to its overall lethality as the 4th leading cause of cancer-related deaths. Therapeutic approaches thus far target only one or two of the cancer specific hallmarks, such as high proliferation rate, apoptotic evasion, or immune evasion. Recent genomic discoveries reveal that genetic heterogeneity, early micrometastases, and an immunosuppressive tumor microenvironment contribute to the inefficacy of current standard treatments and specific molecular-targeted therapies. To effectively combat cancers like PDAC, we need an innovative approach that can simultaneously impact the multiple hallmarks driving cancer progression. Here, we present the mechanical properties generated by the cell’s cortical cytoskeleton, with a spotlight on PDAC, as an ideal therapeutic target that can concurrently attack multiple systems driving cancer. We start with an introduction to cancer cell mechanics and PDAC followed by a compilation of studies connecting the cortical cytoskeleton and mechanical properties to proliferation, metastasis, immune cell interactions, cancer cell stemness, and/or metabolism. We further elaborate on the implications of these findings in disease progression, therapeutic resistance, and clinical relapse. Manipulation of the cancer cell’s mechanical system has already been shown to prevent metastasis in preclinical models, but it has greater potential for target exploration since it is a foundational property of the cell that regulates various oncogenic behaviors.
Collapse
Affiliation(s)
- Shantel Angstadt
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Qingfeng Zhu
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Elizabeth M. Jaffee
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Douglas N. Robinson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Douglas N. Robinson, ; Robert A. Anders,
| | - Robert A. Anders
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Douglas N. Robinson, ; Robert A. Anders,
| |
Collapse
|
22
|
Changes in the expression and functional activities of Myosin II isoforms in human hyperplastic prostate. Clin Sci (Lond) 2021; 135:167-183. [PMID: 33393635 DOI: 10.1042/cs20201283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/05/2020] [Accepted: 01/04/2021] [Indexed: 01/21/2023]
Abstract
Benign prostatic hyperplasia (BPH) is a common disease among aging males with the etiology remaining unclear. We recently found myosin II was abundantly expressed in rat and cultured human prostate cells with permissive roles in the dynamic and static components. The present study aimed to explore the expression and functional activities of myosin II isoforms including smooth muscle (SM) myosin II (SMM II) and non-muscle myosin II (NMM II) in the hyperplastic prostate. Human prostate cell lines and tissues from normal human and BPH patients were used. Hematoxylin and Eosin (H&E), Masson's trichrome, immunohistochemical staining, in vitro organ bath, RT-polymerase chain reaction (PCR) and Western-blotting were performed. We further created cell models with NMM II isoforms silenced and proliferation, cycle, and apoptosis of prostate cells were determined by cell counting kit-8 (CCK-8) assay and flow cytometry. Hyperplastic prostate SM expressed more SM1 and LC17b isoforms compared with their alternatively spliced counterparts, favoring a slower more tonic-type contraction and greater force generation. For BPH group, blebbistatin (BLEB, a selective myosin II inhibitor), exhibited a stronger effect on relaxing phenylephrine (PE) pre-contracted prostate strips and inhibiting PE-induced contraction. Additionally, NMMHC-A and NMMHC-B were up-regulated in hyperplastic prostate with no change in NMMHC-C. Knockdown of NMMHC-A or NMMHC-B inhibited prostate cell proliferation and induced apoptosis, with no changes in cell cycle. Our novel data demonstrate that expression and functional activities of myosin II isoforms are altered in human hyperplastic prostate, suggesting a new pathological mechanism for BPH. Thus, the myosin II system may provide potential new therapeutic targets for BPH/lower urinary tract symptoms (LUTS).
Collapse
|
23
|
Barvitenko N, Aslam M, Lawen A, Saldanha C, Skverchinskaya E, Uras G, Manca A, Pantaleo A. Two Motors and One Spring: Hypothetic Roles of Non-Muscle Myosin II and Submembrane Actin-Based Cytoskeleton in Cell Volume Sensing. Int J Mol Sci 2021; 22:7967. [PMID: 34360739 PMCID: PMC8347689 DOI: 10.3390/ijms22157967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Changes in plasma membrane curvature and intracellular ionic strength are two key features of cell volume perturbations. In this hypothesis we present a model of the responsible molecular apparatus which is assembled of two molecular motors [non-muscle myosin II (NMMII) and protrusive actin polymerization], a spring [a complex between the plasma membrane (PM) and the submembrane actin-based cytoskeleton (smACSK) which behaves like a viscoelastic solid] and the associated signaling proteins. We hypothesize that this apparatus senses changes in both the plasma membrane curvature and the ionic strength and in turn activates signaling pathways responsible for regulatory volume increase (RVI) and regulatory volume decrease (RVD). During cell volume changes hydrostatic pressure (HP) changes drive alterations in the cell membrane curvature. HP difference has opposite directions in swelling versus shrinkage, thus allowing distinction between them. By analogy with actomyosin contractility that appears to sense stiffness of the extracellular matrix we propose that NMMII and actin polymerization can actively probe the transmembrane gradient in HP. Furthermore, NMMII and protein-protein interactions in the actin cortex are sensitive to ionic strength. Emerging data on direct binding to and regulating activities of transmembrane mechanosensors by NMMII and actin cortex provide routes for signal transduction from transmembrane mechanosensors to cell volume regulatory mechanisms.
Collapse
Affiliation(s)
| | - Muhammad Aslam
- Department of Internal Medicine I, Experimental Cardiology, Justus Liebig University, 35392 Giessen, Germany;
| | - Alfons Lawen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia;
| | - Carlota Saldanha
- Institute of Biochemistry, Institute of Molecular Medicine, Faculty of Medicine University of Lisbon, 1649-028 Lisboa, Portugal;
| | | | - Giuseppe Uras
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London NW3 2PF, UK;
| | - Alessia Manca
- Department of Biomedical Science, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy;
| | - Antonella Pantaleo
- Department of Biomedical Science, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy;
| |
Collapse
|
24
|
Naydenov NG, Lechuga S, Huang EH, Ivanov AI. Myosin Motors: Novel Regulators and Therapeutic Targets in Colorectal Cancer. Cancers (Basel) 2021; 13:741. [PMID: 33670106 PMCID: PMC7916823 DOI: 10.3390/cancers13040741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) remains the third most common cause of cancer and the second most common cause of cancer deaths worldwide. Clinicians are largely faced with advanced and metastatic disease for which few interventions are available. One poorly understood aspect of CRC involves altered organization of the actin cytoskeleton, especially at the metastatic stage of the disease. Myosin motors are crucial regulators of actin cytoskeletal architecture and remodeling. They act as mechanosensors of the tumor environments and control key cellular processes linked to oncogenesis, including cell division, extracellular matrix adhesion and tissue invasion. Different myosins play either oncogenic or tumor suppressor roles in breast, lung and prostate cancer; however, little is known about their functions in CRC. This review focuses on the functional roles of myosins in colon cancer development. We discuss the most studied class of myosins, class II (conventional) myosins, as well as several classes (I, V, VI, X and XVIII) of unconventional myosins that have been linked to CRC development. Altered expression and mutations of these motors in clinical tumor samples and their roles in CRC growth and metastasis are described. We also evaluate the potential of using small molecular modulators of myosin activity to develop novel anticancer therapies.
Collapse
Affiliation(s)
- Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| | - Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| | - Emina H. Huang
- Departments of Cancer Biology and Colorectal Surgery, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| |
Collapse
|
25
|
Gutiontov SI, Pitroda SP, Tran PT, Weichselbaum RR. (Oligo)metastasis as a Spectrum of Disease. Cancer Res 2021; 81:2577-2583. [PMID: 33452011 DOI: 10.1158/0008-5472.can-20-3337] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/25/2020] [Accepted: 01/08/2021] [Indexed: 11/16/2022]
Abstract
Cancer metastasis is the leading cause of cancer-related mortality, and most patients with metastases from solid tumors have historically been considered incurable. Here, we discuss the evolution of our understanding of the oligometastatic state with an emphasis on the view that cancer metastasis represents a spectrum of disease. We highlight several recently published prospective clinical trials demonstrating improvements in cancer-specific outcomes with the utilization of metastasis-directed local therapies. We discuss biological aspects of oligometastases, including genetic, epigenetic, and immune determinants of the metastatic spectrum. Finally, we propose future considerations regarding clinical trial design for patients with oligometastatic disease.
Collapse
Affiliation(s)
- Stanley I Gutiontov
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois
| | - Sean P Pitroda
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois.
| |
Collapse
|
26
|
Parajón E, Surcel A, Robinson DN. The mechanobiome: a goldmine for cancer therapeutics. Am J Physiol Cell Physiol 2020; 320:C306-C323. [PMID: 33175572 DOI: 10.1152/ajpcell.00409.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer progression is dependent on heightened mechanical adaptation, both for the cells' ability to change shape and to interact with varying mechanical environments. This type of adaptation is dependent on mechanoresponsive proteins that sense and respond to mechanical stress, as well as their regulators. Mechanoresponsive proteins are part of the mechanobiome, which is the larger network that constitutes the cell's mechanical systems that are also highly integrated with many other cellular systems, such as gene expression, metabolism, and signaling. Despite the altered expression patterns of key mechanobiome proteins across many different cancer types, pharmaceutical targeting of these proteins has been overlooked. Here, we review the biochemistry of key mechanoresponsive proteins, specifically nonmuscle myosin II, α-actinins, and filamins, as well as the partnering proteins 14-3-3 and CLP36. We also examined a wide range of data sets to assess how gene and protein expression levels of these proteins are altered across many different cancer types. Finally, we determined the potential of targeting these proteins to mitigate invasion or metastasis and suggest that the mechanobiome is a goldmine of opportunity for anticancer drug discovery and development.
Collapse
Affiliation(s)
- Eleana Parajón
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexandra Surcel
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|