1
|
Villa S, Jafri Q, Lazzari-Dean JR, Sangha M, Olsson N, Lefebvre AEYT, Fitzgerald ME, Jackson K, Chen Z, Feng BY, Nile AH, Stokoe D, Bersuker K. BiDAC-dependent degradation of plasma membrane proteins by the endolysosomal system. Nat Commun 2025; 16:4345. [PMID: 40346034 PMCID: PMC12064649 DOI: 10.1038/s41467-025-59627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 04/25/2025] [Indexed: 05/11/2025] Open
Abstract
The discovery of bifunctional degradation activating compounds (BiDACs) has led to the development of a new class of drugs that promote the clearance of their protein targets. BiDAC-induced ubiquitination is generally believed to direct cytosolic and nuclear proteins to proteolytic destruction by proteasomes. However, pathways that govern the degradation of other classes of BiDAC targets, such as integral membrane and intraorganellar proteins, have not been investigated in depth. In this study we use morphological profiling and CRISPR/Cas9 genetic screens to investigate the mechanisms by which BiDACs induce the degradation of plasma membrane receptor tyrosine kinases (RTKs) EGFR and Her2. We find that BiDAC-dependent ubiquitination triggers the trafficking of RTKs from the plasma membrane to lysosomes for degradation. Notably, functional proteasomes are required for endocytosis of RTKs upstream of the lysosome. Additionally, our screen uncovers a non-canonical function of the lysosome-associated arginine/lysine transporter PQLC2 in EGFR degradation. Our data show that BiDACs can target proteins to proteolytic machinery other than the proteasome and motivate further investigation of mechanisms that govern the degradation of diverse classes of BiDAC targets.
Collapse
Affiliation(s)
- Sammy Villa
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Qumber Jafri
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | - Manjot Sangha
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Niclas Olsson
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | | | | - Zhenghao Chen
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Brian Y Feng
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Aaron H Nile
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - David Stokoe
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | |
Collapse
|
2
|
Xia R, Peng HF, Zhang X, Zhang HS. Comprehensive review of amino acid transporters as therapeutic targets. Int J Biol Macromol 2024; 260:129646. [PMID: 38272411 DOI: 10.1016/j.ijbiomac.2024.129646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
The solute carrier (SLC) family, with more than 400 membrane-bound proteins, facilitates the transport of a wide array of substrates such as nutrients, ions, metabolites, and drugs across biological membranes. Amino acid transporters (AATs) are membrane transport proteins that mediate transfer of amino acids into and out of cells or cellular organelles. AATs participate in many important physiological functions including nutrient supply, metabolic transformation, energy homeostasis, redox regulation, and neurological regulation. Several AATs have been found to significantly impact the progression of human malignancies, and dysregulation of AATs results in metabolic reprogramming affecting tumor growth and progression. However, current clinical therapies that directly target AATs have not been developed. The purpose of this review is to highlight the structural and functional diversity of AATs, the molecular mechanisms in human diseases such as tumors, kidney diseases, and emerging therapeutic strategies for targeting AATs.
Collapse
Affiliation(s)
- Ran Xia
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Hai-Feng Peng
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Xing Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Hong-Sheng Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China.
| |
Collapse
|
3
|
Tang D, Zheng K, Zhu J, Jin X, Bao H, Jiang L, Li H, Wang Y, Lu Y, Liu J, Liu H, Tang C, Feng S, Dong X, Xu L, Yin Y, Dang S, Wei X, Ren H, Dong B, Dai L, Cheng W, Wan M, Li Z, Chen J, Li H, Kong E, Wang K, Lu K, Qi S. ALS-linked C9orf72-SMCR8 complex is a negative regulator of primary ciliogenesis. Proc Natl Acad Sci U S A 2023; 120:e2220496120. [PMID: 38064514 PMCID: PMC10723147 DOI: 10.1073/pnas.2220496120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 10/25/2023] [Indexed: 12/17/2023] Open
Abstract
Massive GGGGCC (G4C2) repeat expansion in C9orf72 and the resulting loss of C9orf72 function are the key features of ~50% of inherited amyotrophic lateral sclerosis and frontotemporal dementia cases. However, the biological function of C9orf72 remains unclear. We previously found that C9orf72 can form a stable GTPase activating protein (GAP) complex with SMCR8 (Smith-Magenis chromosome region 8). Herein, we report that the C9orf72-SMCR8 complex is a major negative regulator of primary ciliogenesis, abnormalities in which lead to ciliopathies. Mechanistically, the C9orf72-SMCR8 complex suppresses the primary cilium as a RAB8A GAP. Moreover, based on biochemical analysis, we found that C9orf72 is the RAB8A binding subunit and that SMCR8 is the GAP subunit in the complex. We further found that the C9orf72-SMCR8 complex suppressed the primary cilium in multiple tissues from mice, including but not limited to the brain, kidney, and spleen. Importantly, cells with C9orf72 or SMCR8 knocked out were more sensitive to hedgehog signaling. These results reveal the unexpected impact of C9orf72 on primary ciliogenesis and elucidate the pathogenesis of diseases caused by the loss of C9orf72 function.
Collapse
Affiliation(s)
- Dan Tang
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, and National Collaborative Innovation Center, Chengdu610041, People’s Republic of China
| | - Kaixuan Zheng
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, and National Collaborative Innovation Center, Chengdu610041, People’s Republic of China
| | - Jiangli Zhu
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, and National Collaborative Innovation Center, Chengdu610041, People’s Republic of China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang453000, People’s Republic of China
| | - Xi Jin
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, and National Collaborative Innovation Center, Chengdu610041, People’s Republic of China
| | - Hui Bao
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, and National Collaborative Innovation Center, Chengdu610041, People’s Republic of China
| | - Lan Jiang
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, and National Collaborative Innovation Center, Chengdu610041, People’s Republic of China
| | - Huihui Li
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, and National Collaborative Innovation Center, Chengdu610041, People’s Republic of China
| | - Yichang Wang
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, and National Collaborative Innovation Center, Chengdu610041, People’s Republic of China
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Ying Lu
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, and National Collaborative Innovation Center, Chengdu610041, People’s Republic of China
| | - Jiaming Liu
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, and National Collaborative Innovation Center, Chengdu610041, People’s Republic of China
| | - Hang Liu
- Division of Life Science, Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, People’s Republic of China
- HKUST-Shenzhen Research Institute, Nanshan, Shenzhen518057, People’s Republic of China
| | - Chengbing Tang
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, and National Collaborative Innovation Center, Chengdu610041, People’s Republic of China
| | - Shijian Feng
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, and National Collaborative Innovation Center, Chengdu610041, People’s Republic of China
| | - Xiuju Dong
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, and National Collaborative Innovation Center, Chengdu610041, People’s Republic of China
| | - Liangting Xu
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, and National Collaborative Innovation Center, Chengdu610041, People’s Republic of China
| | - Yike Yin
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, and National Collaborative Innovation Center, Chengdu610041, People’s Republic of China
| | - Shangyu Dang
- Division of Life Science, Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, People’s Republic of China
- HKUST-Shenzhen Research Institute, Nanshan, Shenzhen518057, People’s Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Haiyan Ren
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, and National Collaborative Innovation Center, Chengdu610041, People’s Republic of China
| | - Biao Dong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
- Sichuan Real & Best Biotech Co., Ltd., Chengdu610219, People’s Republic of China
| | - Lunzhi Dai
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, and National Collaborative Innovation Center, Chengdu610041, People’s Republic of China
| | - Wei Cheng
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, and National Collaborative Innovation Center, Chengdu610041, People’s Republic of China
| | - Meihua Wan
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, and National Collaborative Innovation Center, Chengdu610041, People’s Republic of China
| | - Zhonghan Li
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, and National Collaborative Innovation Center, Chengdu610041, People’s Republic of China
| | - Jing Chen
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, and National Collaborative Innovation Center, Chengdu610041, People’s Republic of China
| | - Hong Li
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, and National Collaborative Innovation Center, Chengdu610041, People’s Republic of China
| | - Eryan Kong
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang453000, People’s Republic of China
| | - Kunjie Wang
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, and National Collaborative Innovation Center, Chengdu610041, People’s Republic of China
| | - Kefeng Lu
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, and National Collaborative Innovation Center, Chengdu610041, People’s Republic of China
| | - Shiqian Qi
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, and National Collaborative Innovation Center, Chengdu610041, People’s Republic of China
- National Health Commission Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| |
Collapse
|
4
|
Wang Y, Kinoshita T. The role of lipid scramblases in regulating lipid distributions at cellular membranes. Biochem Soc Trans 2023; 51:1857-1869. [PMID: 37767549 DOI: 10.1042/bst20221455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Glycerophospholipids, sphingolipids and cholesterol assemble into lipid bilayers that form the scaffold of cellular membranes, in which proteins are embedded. Membrane composition and membrane protein profiles differ between plasma and intracellular membranes and between the two leaflets of a membrane. Lipid distributions between two leaflets are mediated by lipid translocases, including flippases and scramblases. Flippases use ATP to catalyze the inward movement of specific lipids between leaflets. In contrast, bidirectional flip-flop movements of lipids across the membrane are mediated by scramblases in an ATP-independent manner. Scramblases have been implicated in disrupting the lipid asymmetry of the plasma membrane, protein glycosylation, autophagosome biogenesis, lipoprotein secretion, lipid droplet formation and communications between organelles. Although scramblases in plasma membranes were identified over 10 years ago, most progress about scramblases localized in intracellular membranes has been made in the last few years. Herein, we review the role of scramblases in regulating lipid distributions in cellular membranes, focusing primarily on intracellular membrane-localized scramblases.
Collapse
Affiliation(s)
- Yicheng Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Taroh Kinoshita
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
5
|
The role of lysosomes in metabolic and autoimmune diseases. Nat Rev Nephrol 2023; 19:366-383. [PMID: 36894628 DOI: 10.1038/s41581-023-00692-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 03/11/2023]
Abstract
Lysosomes are catabolic organelles that contribute to the degradation of intracellular constituents through autophagy and of extracellular components through endocytosis, phagocytosis and macropinocytosis. They also have roles in secretory mechanisms, the generation of extracellular vesicles and certain cell death pathways. These functions make lysosomes central organelles in cell homeostasis, metabolic regulation and responses to environment changes including nutrient stresses, endoplasmic reticulum stress and defects in proteostasis. Lysosomes also have important roles in inflammation, antigen presentation and the maintenance of long-lived immune cells. Their functions are tightly regulated by transcriptional modulation via TFEB and TFE3, as well as by major signalling pathways that lead to activation of mTORC1 and mTORC2, lysosome motility and fusion with other compartments. Lysosome dysfunction and alterations in autophagy processes have been identified in a wide variety of diseases, including autoimmune, metabolic and kidney diseases. Deregulation of autophagy can contribute to inflammation, and lysosomal defects in immune cells and/or kidney cells have been reported in inflammatory and autoimmune pathologies with kidney involvement. Defects in lysosomal activity have also been identified in several pathologies with disturbances in proteostasis, including autoimmune and metabolic diseases such as Parkinson disease, diabetes mellitus and lysosomal storage diseases. Targeting lysosomes is therefore a potential therapeutic strategy to regulate inflammation and metabolism in a variety of pathologies.
Collapse
|
6
|
Jansen RM, Hurley JH. Longin domain GAP complexes in nutrient signalling, membrane traffic and neurodegeneration. FEBS Lett 2023; 597:750-761. [PMID: 36367440 PMCID: PMC10050129 DOI: 10.1002/1873-3468.14538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Small GTPases act as molecular switches and control numerous cellular processes by their binding and hydrolysis of guanosine triphosphate (GTP). The activity of small GTPases is coordinated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). Recent structural and functional studies have characterized a subset of GAPs whose catalytic units consist of longin domains. Longin domain containing GAPs regulate small GTPases that facilitate nutrient signalling, autophagy, vesicular trafficking and lysosome homeostasis. All known examples in this GAP family function as part of larger multiprotein complexes. The three characterized mammalian protein complexes in this class are FLCN:FNIP, GATOR1 and C9orf72:SMCR8. Each complex carries out a unique cellular function by regulating distinct small GTPases. In this article, we explore the roles of longin domain GAPs in nutrient sensing, membrane dynamic, vesicular trafficking and disease. Through a structural lens, we examine the mechanism of each longin domain GAP and highlight potential therapeutic applications.
Collapse
Affiliation(s)
- Rachel M. Jansen
- Department of Molecular and Cell Biology, University of California Berkeley; Berkeley CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - James H. Hurley
- Department of Molecular and Cell Biology, University of California Berkeley; Berkeley CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
7
|
Deciphering genetic causes for sex differences in human health through drug metabolism and transporter genes. Nat Commun 2023; 14:175. [PMID: 36635277 PMCID: PMC9837057 DOI: 10.1038/s41467-023-35808-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Sex differences have been widely observed in human health. However, little is known about the underlying mechanism behind these observed sex differences. We hypothesize that sex-differentiated genetic effects are contributors of these phenotypic differences. Focusing on a collection of drug metabolism enzymes and transporters (DMET) genes, we discover sex-differentiated genetic regulatory mechanisms between these genes and human complex traits. Here, we show that sex-differentiated genetic effects were present at genome-level and at DMET gene regions for many human complex traits. These sex-differentiated regulatory mechanisms are reflected in the levels of gene expression and endogenous serum biomarkers. Through Mendelian Randomization analysis, we identify putative sex-differentiated causal effects in each sex separately. Furthermore, we identify and validate sex differential gene expression of a subset of DMET genes in human liver samples. We observe higher protein abundance and enzyme activity of CYP1A2 in male-derived liver microsomes, which leads to higher level of an active metabolite formation of clozapine, a commonly prescribed antipsychotic drug. Taken together, our results demonstrate the presence of sex-differentiated genetic effects on DMET gene regulation, which manifest in various phenotypic traits including disease risks and drug responses.
Collapse
|
8
|
Guo X, Schmiege P, Assafa TE, Wang R, Xu Y, Donnelly L, Fine M, Ni X, Jiang J, Millhauser G, Feng L, Li X. Structure and mechanism of human cystine exporter cystinosin. Cell 2022; 185:3739-3752.e18. [PMID: 36113465 PMCID: PMC9530027 DOI: 10.1016/j.cell.2022.08.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/18/2022] [Accepted: 08/17/2022] [Indexed: 01/26/2023]
Abstract
Lysosomal amino acid efflux by proton-driven transporters is essential for lysosomal homeostasis, amino acid recycling, mTOR signaling, and maintaining lysosomal pH. To unravel the mechanisms of these transporters, we focus on cystinosin, a prototypical lysosomal amino acid transporter that exports cystine to the cytosol, where its reduction to cysteine supplies this limiting amino acid for diverse fundamental processes and controlling nutrient adaptation. Cystinosin mutations cause cystinosis, a devastating lysosomal storage disease. Here, we present structures of human cystinosin in lumen-open, cytosol-open, and cystine-bound states, which uncover the cystine recognition mechanism and capture the key conformational states of the transport cycle. Our structures, along with functional studies and double electron-electron resonance spectroscopic investigations, reveal the molecular basis for the transporter's conformational transitions and protonation switch, show conformation-dependent Ragulator-Rag complex engagement, and demonstrate an unexpected activation mechanism. These findings provide molecular insights into lysosomal amino acid efflux and a potential therapeutic strategy.
Collapse
Affiliation(s)
- Xue Guo
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Philip Schmiege
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tufa E Assafa
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95060, USA
| | - Rong Wang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yan Xu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Linda Donnelly
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael Fine
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaodan Ni
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiansen Jiang
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Glenn Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95060, USA.
| | - Liang Feng
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
9
|
Structural basis for proton coupled cystine transport by cystinosin. Nat Commun 2022; 13:4845. [PMID: 35977944 PMCID: PMC9385667 DOI: 10.1038/s41467-022-32589-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
Amino acid transporters play a key role controlling the flow of nutrients across the lysosomal membrane and regulating metabolism in the cell. Mutations in the gene encoding the transporter cystinosin result in cystinosis, an autosomal recessive metabolic disorder characterised by the accumulation of cystine crystals in the lysosome. Cystinosin is a member of the PQ-loop family of solute carrier (SLC) transporters and uses the proton gradient to drive cystine export into the cytoplasm. However, the molecular basis for cystinosin function remains elusive, hampering efforts to develop novel treatments for cystinosis and understand the mechanisms of ion driven transport in the PQ-loop family. To address these questions, we present the crystal structures of cystinosin from Arabidopsis thaliana in both apo and cystine bound states. Using a combination of in vitro and in vivo based assays, we establish a mechanism for cystine recognition and proton coupled transport. Mutational mapping and functional characterisation of human cystinosin further provide a framework for understanding the molecular impact of disease-causing mutations. Mutations in CTNS, the lysosomal cystine-proton symporter, cause cystinosis. Here authors report crystal structures of CTNS from Arabidopsis thaliana in complex with cystine, and establish the mode of ligand recognition and mechanism for proton-coupled cystine export from the lysosome.
Collapse
|
10
|
Baxter LL, Watkins-Chow DE, Johnson NL, Farhat NY, Platt FM, Dale RK, Porter FD, Pavan WJ, Rodriguez-Gil JL. Correlation of age of onset and clinical severity in Niemann-Pick disease type C1 with lysosomal abnormalities and gene expression. Sci Rep 2022; 12:2162. [PMID: 35140266 PMCID: PMC8828765 DOI: 10.1038/s41598-022-06112-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/18/2022] [Indexed: 11/08/2022] Open
Abstract
Niemann-Pick disease type C1 (NPC1) is a rare, prematurely fatal lysosomal storage disorder which exhibits highly variable severity and disease progression as well as a wide-ranging age of onset, from perinatal stages to adulthood. This heterogeneity has made it difficult to obtain prompt diagnosis and to predict disease course. In addition, small NPC1 patient sample sizes have been a limiting factor in acquiring genome-wide transcriptome data. In this study, primary fibroblasts from an extensive cohort of 41 NPC1 patients were used to validate our previous findings that the lysosomal quantitative probe LysoTracker can be used as a predictor for age of onset and disease severity. We also examined the correlation between these clinical parameters and RNA expression data from primary fibroblasts and identified a set of genes that were significantly associated with lysosomal defects or age of onset, in particular neurological symptom onset. Hierarchical clustering showed that these genes exhibited distinct expression patterns among patient subgroups. This study is the first to collect transcriptomic data on such a large scale in correlation with clinical and cellular phenotypes, providing a rich genomic resource to address NPC1 clinical heterogeneity and discover potential biomarkers, disease modifiers, or therapeutic targets.
Collapse
Affiliation(s)
- Laura L Baxter
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dawn E Watkins-Chow
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas L Johnson
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Nicole Y Farhat
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Forbes D Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - William J Pavan
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jorge L Rodriguez-Gil
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
- Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
11
|
Picking the arginine lock on PQLC2 cycling. Proc Natl Acad Sci U S A 2021; 118:2112682118. [PMID: 34453010 DOI: 10.1073/pnas.2112682118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Arginine-selective modulation of the lysosomal transporter PQLC2 through a gate-tuning mechanism. Proc Natl Acad Sci U S A 2021; 118:2025315118. [PMID: 34344826 PMCID: PMC8364130 DOI: 10.1073/pnas.2025315118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Lysosomes degrade and recycle cell components and integrate environmental and intracellular cues to regulate cell growth, metabolism, and autophagy. The lysosomal transporter PQLC2 exports cationic amino acids from lysosomes, and under amino acid starvation, it recruits to lysosomes a signaling complex implicated in neurological diseases. In this study, we show that PQLC2 transport activity is uncoupled from the lysosomal pH gradient and other ion gradients and that it is selectively modulated by arginine through a trans-inhibition mechanism. Kinetic modeling suggests that arginine accelerates the closing of its cytosolic gate. We propose a signaling model in which PQLC2 transduces the nutrient status to its cognate complex through opposing effects of lysosomal membrane potential and cytosolic arginine on its conformational state. Lysosomes degrade excess or damaged cellular components and recycle their building blocks through membrane transporters. They also act as nutrient-sensing signaling hubs to coordinate cell responses. The membrane protein PQ-loop repeat-containing protein 2 (PQLC2; “picklock two”) is implicated in both functions, as it exports cationic amino acids from lysosomes and serves as a receptor and amino acid sensor to recruit the C9orf72/SMCR8/WDR41 complex to lysosomes upon nutrient starvation. Its transport activity is essential for drug treatment of the rare disease cystinosis. Here, we quantitatively studied PQLC2 transport activity using electrophysiological and biochemical methods. Charge/substrate ratio, intracellular pH, and reversal potential measurements showed that it operates in a uniporter mode. Thus, PQLC2 is uncoupled from the steep lysosomal proton gradient, unlike many lysosomal transporters, enabling bidirectional cationic amino acid transport across the organelle membrane. Surprisingly, the specific presence of arginine, but not other substrates (lysine, histidine), in the discharge (“trans”) compartment impaired PQLC2 transport. Kinetic modeling of the uniport cycle recapitulated the paradoxical substrate-yet-inhibitor behavior of arginine, assuming that bound arginine facilitates closing of the transporter’s cytosolic gate. Arginine binding may thus tune PQLC2 gating to control its conformation, suggesting a potential mechanism for nutrient signaling by PQLC2 to its interaction partners.
Collapse
|
13
|
Su MY, Fromm SA, Remis J, Toso DB, Hurley JH. Structural basis for the ARF GAP activity and specificity of the C9orf72 complex. Nat Commun 2021; 12:3786. [PMID: 34145292 PMCID: PMC8213707 DOI: 10.1038/s41467-021-24081-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023] Open
Abstract
Mutation of C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontal temporal degeneration (FTD), which is attributed to both a gain and loss of function. C9orf72 forms a complex with SMCR8 and WDR41, which was reported to have GTPase activating protein activity toward ARF proteins, RAB8A, and RAB11A. We determined the cryo-EM structure of ARF1-GDP-BeF3- bound to C9orf72:SMCR8:WDR41. The SMCR8longin and C9orf72longin domains form the binding pocket for ARF1. One face of the C9orf72longin domain holds ARF1 in place, while the SMCR8longin positions the catalytic finger Arg147 in the ARF1 active site. Mutations in interfacial residues of ARF1 and C9orf72 reduced or eliminated GAP activity. RAB8A GAP required ~10-fold higher concentrations of the C9orf72 complex than for ARF1. These data support a specific function for the C9orf72 complex as an ARF GAP. The structure also provides a model for the active forms of the longin domain GAPs of FLCN and NPRL2 that regulate the Rag GTPases of the mTORC1 pathway.
Collapse
Affiliation(s)
- Ming-Yuan Su
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Simon A Fromm
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Imaging Centre, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jonathan Remis
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Daniel B Toso
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - James H Hurley
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA.
| |
Collapse
|
14
|
Plug-and-socket mechanisms in nutrient sensing by lysosomal amino acid transporters. Proc Natl Acad Sci U S A 2021; 118:2102173118. [PMID: 33723009 DOI: 10.1073/pnas.2102173118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|