1
|
Dai S, Li B, Wu Q, Han S, Zhao Q, Wang Y, Zhang Y, Gao Y. Pan-cancer analysis reveals BAF complexes as immune-related biomarkers and validation in triple-negative breast cancer. Life Sci 2025; 372:123607. [PMID: 40194763 DOI: 10.1016/j.lfs.2025.123607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/11/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
AIMS BAF complexes (BAFs), ATP-dependent regulators of chromatin structure, play a significant role in cancer progression. This pan-cancer study aimed to decode the potential of specific BAFs in the pathology, immunity, and therapy of targeted cancers. MATERIALS AND METHODS Data were retrieved from The Cancer Genome Atlas, Gene Expression Omnibus, and IMvigor210 databases and were analyzed for expression patterns, prognostic value, mutational signatures, biological pathways, tumor immune microenvironment (TIME) remodeling, and therapeutic resistance of BAFs. Experimental validation was also conducted. KEY FINDINGS BAFs exhibit abnormal expression in various human cancers. The BAFs model and nomogram (based on multiple variables) were developed as prognostic tools. BAFs regulate the TIME and influence the response to anti-PD-L1 therapy, particularly through ACTL6A, as observed in RNA sequencing and single-cell RNA sequencing datasets (high-resolution gene expression data at the single-cell level). ACTLA6 is a major adverse gene in the prognostic model. Patients with high ACTL6A expression showed significantly worse overall survival (hazard ratio = 1.32, 95 % CI: 1.26-1.39, p < 0.001). ACTL6A expression escalates with breast cancer (BRCA) malignancy, particularly in triple-negative BRCA (TNBC), and correlates with immune checkpoint expression while playing a crucial role in promoting cancer metastasis in TNBC. SIGNIFICANCE Our findings first emphasize the significance of a novel BAFs model for patient prognosis and corroborate the considerable role of BAFs as immune-related biomarkers in pan-cancer progression. ACTL6A has a dual role as an immune-related biomarker and potential therapeutic target in TNBC, deepening our comprehension of its function as an oncogene.
Collapse
Affiliation(s)
- Shuying Dai
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Department of Geriatrics, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China
| | - Bei Li
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Department of Geriatrics, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China
| | - Qingqian Wu
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Department of Geriatrics, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China
| | - Shuang Han
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Department of Geriatrics, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China; School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| | - Qingwen Zhao
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China.
| | - Yule Wang
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Department of Geriatrics, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China
| | - Yingjuan Zhang
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Department of Geriatrics, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China
| | - Yue Gao
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Department of Geriatrics, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China.
| |
Collapse
|
2
|
Chu Y, Nie Q, Zhou X, Yang J, Fang J, Zhang J. Berberrubine as a novel TrxR inhibitor enhances cisplatin sensitivity in the treatment of non-small cell lung cancer. Bioorg Chem 2025; 158:108329. [PMID: 40056602 DOI: 10.1016/j.bioorg.2025.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
Thioredoxin reductase (TrxR, TXNRD) is an essential enzyme implicated in the processes of cancer development and progression, positioning it as a promising target for cancer therapeutics. In this study, we employed target-based structural screening to identify berberrubine (BRB), a natural product characterized by an unprecedented isoquinoline scaffold that differs from known TrxR inhibitors. Our findings demonstrate that BRB serves as an effective inhibitor of TrxR, both in the context of the purified enzyme and within cancer cells. Since TrxR is highly expressed in non-small cell lung cancer (NSCLC) and is linked to patient prognosis and drug resistance, our results demonstrate, for the first time, that BRB can enhance the sensitivity of cisplatin to impede the proliferation of A549 cells, which was further confirmed in a xenograft model. The primary reason for cisplatin resistance in NSCLC is the DNA repair mechanism of apoptotic tumor cells. Our subsequent mechanistic investigation discovered that BRB selectively inhibits TrxR and impairs the biologically functional thioredoxin, which ultimately inhibits DNA synthesis and repair in cancer cells. Inhibition of TrxR by BRB led to a significant ROS accumulation in A549 cells, which contributed to oxidative stress-mediated apoptosis when used in combination with cisplatin. Our results conclude that BRB is a novel chemical entity of TrxR inhibitor that can increase the effectiveness of cisplatin in slowing down the growth of NSCLC both in vitro and in vivo. This provides a new perspective on the potential application of the combination of the two in the treatment of NSCLC.
Collapse
Affiliation(s)
- Yajun Chu
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Qiuying Nie
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiedong Zhou
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Junwei Yang
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.; School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China..
| | - Junmin Zhang
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China..
| |
Collapse
|
3
|
Fu G, Zhao Y, Mao C, Liu Y. Enhancing nano-immunotherapy of cancer through cGAS-STING pathway modulation. Biomater Sci 2025; 13:2235-2260. [PMID: 40111213 DOI: 10.1039/d4bm01532k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a critical role in cancer immunotherapy due to the secretion of multiple pro-inflammatory cytokines and chemokines. Numerous cGAS-STING agonists have been developed for preclinical and clinical trials in tumor immunity. However, several obstacles, such as agonist molecules requiring multiple doses, rapid degradation and poor targeting, weaken STING activation at the tumor site. The advancement of nanotechnology provides an optimized platform for the clinical application of STING agonists. In this review, we summarize events of cGAS-STING pathway activation, the dilemma of delivering STING agonists, and recent advances in the nano-delivery of cGAS-STING agonist formulations for enhancing tumor immunity. Furthermore, we address the future challenges associated with STING-based therapies and offer insights to guide subsequent clinical applications.
Collapse
Affiliation(s)
- Gaohong Fu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.
| | - Yanan Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.
| | - Chengqiong Mao
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510180, P. R. China
| | - Yang Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| |
Collapse
|
4
|
Hao F, Zhang Y, Hou J, Zhao B. Chromatin remodeling and cancer: the critical influence of the SWI/SNF complex. Epigenetics Chromatin 2025; 18:22. [PMID: 40269969 PMCID: PMC12016160 DOI: 10.1186/s13072-025-00590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/15/2025] [Indexed: 04/25/2025] Open
Abstract
The SWI/SNF complex was first identified in yeast and named after studies of mutants critical for the mating-type switch (SWI) and sucrose non-fermenting (SNF) pathways.The SWI/SNF complex plays a pivotal role in regulating gene expression by altering chromatin structure to promote or suppress the expression of specific genes, maintain stem cell pluripotency, and participate in various biological processes. Mutations in the SWI/SNF complex are highly prevalent in various human cancers, significantly impacting tumor suppressive or oncogenic functions and influencing tumor initiation and progression. This review focuses on the mechanisms by which ARID1A/ARID1B, PBRM1, SMARCB1, and SMARCA2/SMARCA4 contribute to cancer, the immunoregulatory roles of the SWI/SNF complex, its involvement in DNA repair pathways, synthetic lethality, and applications in precision oncology.
Collapse
Affiliation(s)
- Fengxiang Hao
- Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, 030001, China
| | - Ying Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, 030001, China
| | - Jiayi Hou
- Department of Clinical Laboratory, Shanxi Provincial Academy of Traditional Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Bin Zhao
- Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, 030001, China.
| |
Collapse
|
5
|
Wei W, Zhang Y, Li Y, Huang J, Kang F, Tan S, Lin L, Lu X, Wei H, Wang N. Hypoxia-induced PRPF19 modulates TPT1 alternative splicing to facilitate cisplatin resistance in high-grade serous ovarian cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167721. [PMID: 39983558 DOI: 10.1016/j.bbadis.2025.167721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/11/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
High-grade Serous Ovarian Cancer (HGSOC) is the most common and lethal subtype of ovarian cancer, and chemoresistance is a significant obstacle to its prognosis. The DNA damage response is one of the important mechanisms contributing to chemoresistance. Pre-mRNA processing factor 19 (PRPF19) is essential in DNA damage repair as it can recruit DNA repair proteins. However, the functional role of PRPF19 in HGSOC, especially in chemoresistance, has not been investigated. Herein, we demonstrated that PRPF19 was highly expressed in HGSOC and was associated with poor prognosis. Knockdown of PRPF19 inhibited HGSOC cell proliferation and tumor growth in vivo. In cisplatin-resistant HGSOC cell lines, we observed that knockdown of PRPF19 enhanced cell sensitivity to cisplatin. Mechanistically, PRPF19 silencing induced DNA damage in HGSOC cells, leading to DNA double-strand breaks and ɣH2AX nuclear lesion formation. In addition, mRNA-seq analysis revealed that overexpression of PRPF19 modulates alternative splicing of TPT1, thereby upregulating its expression. Notably, we found that PRPF19 was upregulated under hypoxia. Further examination revealed that hypoxia-inducible factor (HIF)-1α bound to PRPF19 and upregulated PRPF19 expression. In conclusion, these findings suggest that PRPF19 exerts a tumor-promoting effect in HGSOC and may be a novel target for overcoming chemoresistance.
Collapse
Affiliation(s)
- Wei Wei
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Yang Zhang
- Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Yibing Li
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Jiazhen Huang
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Fuli Kang
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Shuang Tan
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Lin Lin
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Xiaohang Lu
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Heng Wei
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, PR China
| | - Ning Wang
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China.
| |
Collapse
|
6
|
Khan Y, Hussain MS, Ramalingam PS, Fatima R, Maqbool M, Ashique S, Khan NU, Bisht AS, Gupta G. Exploring extracellular RNA as drivers of chemotherapy resistance in cancer. Mol Biol Rep 2025; 52:142. [PMID: 39836259 DOI: 10.1007/s11033-025-10263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Chemotherapy resistance (CR) represents one of the most important barriers to effective oncological therapy and often leads to ineffective intervention and unfavorable clinical prognosis. Emerging studies have emphasized the vital significance of extracellular RNA (exRNA) in influencing CR. This thorough assessment intends to explore the multifaceted contributions of exRNA, such as exosomal RNA, microRNAs, long non-coding RNAs, and circular RNAs, to CR in cancer. We discuss the mechanisms by which exRNA facilitates drug resistance, such as modulating gene expression, influencing the tumor microenvironment, and facilitating intercellular communication. Furthermore, we examine the potential of exRNA as prognostic factor for determining oncology treatment efficacy and their emerging role as therapeutic targets. Diagnostic and prognostic applications of exRNA biomarkers are considered, alongside current methodologies for their detection and quantification. Additionally, we review recent advances in exRNA-targeted therapies, highlighting ongoing clinical trials and therapeutic strategies aimed at overcoming chemoresistance. Despite the promise of exRNA research, several challenges remain, including technical limitations and the biological complexity of exRNA networks. This review underscores the importance of continued investigation into exRNA biology and its therapeutic potential, which in the future may provide new avenues for cancer treatment and tailored medical strategies. By elucidating the role of exRNA in CR, this article aims to provide a comprehensive resource for researchers and clinicians seeking to improve the effectiveness of carcinoma management approaches.
Collapse
Affiliation(s)
- Yumna Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, PO Box 25130, Pakistan
| | - Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India.
| | - Prasanna Srinivasan Ramalingam
- Protein Engineering Lab, School of Biosciences and Technology, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India
| | - Rabab Fatima
- Department of Chemistry, Energy Acres, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Mudasir Maqbool
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Jammu, Srinagar, Kashmir, 190006, India
| | - Sumel Ashique
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, PO Box 25130, Pakistan
| | - Ajay Singh Bisht
- School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand, 248001, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| |
Collapse
|
7
|
Qiao X, Xue R, Li S, Li J, Ji C. Expression of LASS2 Can be Regulated by Dihydroartemisinin to Regulate Cisplatin Chemosensitivity in Bladder Cancer Cells. Curr Pharm Biotechnol 2025; 26:525-538. [PMID: 38757331 DOI: 10.2174/0113892010305651240514100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION The aim of this study was to investigate the potential of dihydroartemisinin to augment the efficacy of cisplatin chemotherapy through the modulation of LASS2 expression. METHODS TCMSP, CTR-DB, TCGA-BLC, and other databases were used to analyze the possibility of LASS2 as the target gene of dihydroartemisinin. Cell experiments revealed the synergistic effect of DDP and DHA. Animal experiments showed that DHA inhibited the growth of DDP-treated mice. In addition, WB, real-time PCR, and immunohistochemical analysis showed that DHA enhanced LASS2 (CERS2) expression in bladder cancer cells and DDP-treated mice. RESULTS LASS2 is associated with cisplatin chemosensitivity.LASS2 expression levels are different between BLC tissues and normal tissues. COX analysis showed that patients with high LASS2 expression had a higher cumulative overall survival rate than those with low LASS2 expression. The Sankey plot showed that LASS2 expression is lower in BLC tissues with more advanced stage and distant metastasis. The docking score of DHA and LASS2 reached the maximum value of -5.5259, indicating that DHA had a strong binding affinity with LASS2 targets. CCK8 assay showed that the most effective concentration ratio of DHA to DDP was 2.5 μg/ml + 10μg/ml. In vivo experiments showed that DHA inhibited tumor growth in cisplatin-treated mice. In addition, WB, RT-qPCR, and immunohistochemical analysis showed that DHA was able to enhance LASS2 expression in BLC cells and DDP-treated mice. CONCLUSION The upregulation of LASS2 (CERS2) expression in bladder cancer cells by DHA has been found to enhance cisplatin chemosensitivity.
Collapse
Affiliation(s)
- Xuhua Qiao
- Affiliated Hospital of Panzhihua University, Panzhihua Hospital of Chinese and Western Combination, Urology Basic and Clinical Research Team of Affiliated Hospital of Panzhihua University, Urology Research and Innovation Platform of Panzhihua City, Panzhihua, Sichuan 617000, P.R. China
| | - Rongbo Xue
- Affiliated Hospital of Panzhihua University, Panzhihua Hospital of Chinese and Western Combination, Urology Basic and Clinical Research Team of Affiliated Hospital of Panzhihua University, Urology Research and Innovation Platform of Panzhihua City, Panzhihua, Sichuan 617000, P.R. China
| | - Shijie Li
- Affiliated Hospital of Panzhihua University, Panzhihua Hospital of Chinese and Western Combination, Urology Basic and Clinical Research Team of Affiliated Hospital of Panzhihua University, Urology Research and Innovation Platform of Panzhihua City, Panzhihua, Sichuan 617000, P.R. China
| | - Jun Li
- Affiliated Hospital of Panzhihua University, Panzhihua Hospital of Chinese and Western Combination, Urology Basic and Clinical Research Team of Affiliated Hospital of Panzhihua University, Urology Research and Innovation Platform of Panzhihua City, Panzhihua, Sichuan 617000, P.R. China
| | - Chundong Ji
- Affiliated Hospital of Panzhihua University, Panzhihua Hospital of Chinese and Western Combination, Urology Basic and Clinical Research Team of Affiliated Hospital of Panzhihua University, Urology Research and Innovation Platform of Panzhihua City, Panzhihua, Sichuan 617000, P.R. China
| |
Collapse
|
8
|
de Bakker T, Maes A, Dragan T, Martinive P, Penninckx S, Van Gestel D. Strategies to Overcome Intrinsic and Acquired Resistance to Chemoradiotherapy in Head and Neck Cancer. Cells 2024; 14:18. [PMID: 39791719 PMCID: PMC11719474 DOI: 10.3390/cells14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
Definitive chemoradiotherapy (CRT) is a cornerstone of treatment for locoregionally advanced head and neck cancer (HNC). Research is ongoing on how to improve the tumor response to treatment and limit normal tissue toxicity. A major limitation in that regard is the growing occurrence of intrinsic or acquired treatment resistance in advanced cases. In this review, we will discuss how overexpression of efflux pumps, perturbation of apoptosis-related factors, increased expression of antioxidants, glucose metabolism, metallotheionein expression, increased DNA repair, cancer stem cells, epithelial-mesenchymal transition, non-coding RNA and the tumour microenvironment contribute towards resistance of HNC to chemotherapy and/or radiotherapy. These mechanisms have been investigated for years and been exploited for therapeutic gain in resistant patients, paving the way to the development of new promising drugs. Since in vitro studies on resistance requires a suitable model, we will also summarize published techniques and treatment schedules that have been shown to generate acquired resistance to chemo- and/or radiotherapy that most closely mimics the clinical scenario.
Collapse
Affiliation(s)
- Tycho de Bakker
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Anouk Maes
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Tatiana Dragan
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Philippe Martinive
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Sébastien Penninckx
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Dirk Van Gestel
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| |
Collapse
|
9
|
Zhong C, Wang J, Peng H, Lu J, Long Z, Lin Z, Chen G, Cai C, Cheng S, Chen Z, Zhang L, Zhong W, Mo R, Mao X. GG-NER's role in androgen receptor signaling inhibitor response for advanced prostate cancer. Cell Commun Signal 2024; 22:600. [PMID: 39696559 DOI: 10.1186/s12964-024-01977-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Advanced prostate cancer (PCa) often initially responds to androgen receptor signaling inhibitors (ARSI) but frequently develops resistance, driven by tumor heterogeneity and therapeutic pressure. Addressing the clinical challenge of identifying non-responsive patients and discovering new therapeutic targets is urgently needed. METHODS We utilized single-sample gene set enrichment analysis (ssGSEA) to elucidate the influence of the GG-NER pathway on ARSI response in PCa. We then constructed and validated a prognostic model based on this pathway using LASSO regression, Kaplan-Meier analysis, Cox regression, and ROC analysis. Additionally, we mapped tumor mutations to delineate the mutational landscapes across different risk groups and explored functional pathways through GO, KEGG, and GSEA analyses. The impact of the GG-NER pathway on enzalutamide sensitivity and DNA repair in PCa was further validated through CCK-8 assays, colony formation assays, in vivo experiments, and immunofluorescence. RESULTS ssGSEA indicated a trend of GG-NER pathway upregulation in patients with poor ARSI response. The GG-NER characteristic gene score (NECGS) identified a high-risk group with diminished ARSI response, serving as an independent prognostic indicator with strong predictive power. This high-risk group exhibited elevated TP53 mutation frequencies and significant enrichment in key pathways such as ribosome and mitochondrial functions, as well as MYC and E2F signaling. Experimental validation confirmed that targeting the GG-NER pathway or its key gene, ACTL6A, significantly reduces enzalutamide resistance in resistant cell lines and increases γH2AX expression. CONCLUSION NECGS effectively predicts ARSI response in PCa, and our comprehensive analysis underscores the critical role of the GG-NER pathway in enzalutamide resistance, positioning ACTL6A as a potential therapeutic target for PCa.
Collapse
Affiliation(s)
- Chuanfan Zhong
- Department of Urology, Zhujiang Hospital, Southern Medical University, 510282, Guangzhou, Guangdong, China
- Department of Urology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), 523059, Dongguan, Guangdong, China
| | - Jiaxing Wang
- Department of Urology, Zhujiang Hospital, Southern Medical University, 510282, Guangzhou, Guangdong, China
| | - Hangyang Peng
- Department of Urology, Zhujiang Hospital, Southern Medical University, 510282, Guangzhou, Guangdong, China
| | - Jianming Lu
- Department of Andrology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China.
| | - Zining Long
- Department of Urology, Zhujiang Hospital, Southern Medical University, 510282, Guangzhou, Guangdong, China
| | - Zhuoyuan Lin
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guo Chen
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Chao Cai
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shilong Cheng
- Department of Urology, Zhujiang Hospital, Southern Medical University, 510282, Guangzhou, Guangdong, China
| | - Zhongjie Chen
- Department of Urology, Zhujiang Hospital, Southern Medical University, 510282, Guangzhou, Guangdong, China
| | - Le Zhang
- Institute for Integrative Genome Biology, University of California, Riverside, California, United States
| | - Weibo Zhong
- Department of Urology, Zhujiang Hospital, Southern Medical University, 510282, Guangzhou, Guangdong, China.
| | - Rujun Mo
- Department of Urology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), 523059, Dongguan, Guangdong, China.
| | - Xiangming Mao
- Department of Urology, Zhujiang Hospital, Southern Medical University, 510282, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Pigg HC, Alley KR, Griffin CR, Moon CH, Kraske SJ, DeRose VJ. The unique Pt(II)-induced nucleolar stress response and its deviation from DNA damage response pathways. J Biol Chem 2024; 300:107858. [PMID: 39374783 PMCID: PMC11612370 DOI: 10.1016/j.jbc.2024.107858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 10/09/2024] Open
Abstract
The mechanisms of action for the platinum compounds cisplatin and oxaliplatin have yet to be fully elucidated, despite the worldwide use of these drugs. Recent studies suggest that the two compounds may be working through different mechanisms, with cisplatin inducing cell death via the DNA damage response (DDR) and oxaliplatin utilizing a nucleolar stress-based cell death pathway. While cisplatin-induced DDR has been subject to much research, the mechanisms for oxaliplatin's influence on the nucleolus are not well understood. Prior work has outlined structural parameters for Pt(II) derivatives capable of nucleolar stress induction. In this work, we gain insight into the nucleolar stress response induced by these Pt(II) derivatives by investigating potential correlations between this unique pathway and DDR. Key findings from this study indicate that Pt(II)-induced nucleolar stress occurs when DDR is inhibited and works independently of the ATM/ATR-dependent DDR pathway. We also determine that Pt(II)-induced stress may be linked to the G1 cell cycle phase, as cisplatin can induce nucleolar stress when cell cycle inhibition occurs at the G1/S checkpoint. Finally, we compare Pt(II)-induced nucleolar stress with other small-molecule nucleolar stress-inducing compounds Actinomycin D, BMH-21, and CX-5461 and find that Pt(II) compounds cause irreversible nucleolar stress, whereas the reversibility of nucleolar stress induced by small-molecules varies. Taken together, these findings contribute to a better understanding of Pt(II)-induced nucleolar stress, its deviation from ATM/ATR-dependent DDR, and the possible influence of cell cycle on the ability of Pt(II) compounds to cause nucleolar stress.
Collapse
Affiliation(s)
- Hannah C Pigg
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA
| | - Katelyn R Alley
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA
| | | | - Caleb H Moon
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA
| | - Sarah J Kraske
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA
| | - Victoria J DeRose
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA.
| |
Collapse
|
11
|
Jiang C, Shen C, Ni M, Huang L, Hu H, Dai Q, Zhao H, Zhu Z. Molecular mechanisms of cisplatin resistance in ovarian cancer. Genes Dis 2024; 11:101063. [PMID: 39224110 PMCID: PMC11367050 DOI: 10.1016/j.gendis.2023.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 09/04/2024] Open
Abstract
Ovarian cancer is one of the most common malignant tumors of the female reproductive system. The majority of patients with advanced ovarian cancer are mainly treated with cisplatin-based chemotherapy. As the most widely used first-line anti-neoplastic drug, cisplatin produces therapeutic effects through multiple mechanisms. However, during clinical treatment, cisplatin resistance has gradually emerged, representing a challenge for patient outcome improvement. The mechanism of cisplatin resistance, while known to be complex and involve many processes, remains unclear. We hope to provide a new direction for pre-clinical and clinical studies through this review on the mechanism of ovarian cancer cisplatin resistance and methods to overcome drug resistance.
Collapse
Affiliation(s)
- Chenying Jiang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Chenjun Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Maowei Ni
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310005, China
| | - Lili Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Hongtao Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Qinhui Dai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Huajun Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Zhihui Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| |
Collapse
|
12
|
Bellot GL, Liu D, Fivaz M, Yadav SK, Kaur C, Pervaiz S. Lanthanide conjugate Pr-MPO elicits anti-cancer activity by targeting lysosomal machinery and inducing zinc-dependent cataplerosis. Cell Commun Signal 2024; 22:509. [PMID: 39427179 PMCID: PMC11490180 DOI: 10.1186/s12964-024-01883-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
Acquired drug resistance is a major challenge in the management of cancer, which underscores the need for discovery and development of novel therapeutic strategies. We report here the mechanism of the anti-cancer activity of a small coordinate complex composed of the rare earth metal praseodymium (Pr) and mercaptopyridine oxide (MPO; pyrithione). Exposure of cancer cells to relatively low concentrations of the conjugate Pr-MPO (5 µM) significantly impairs cell survival in a p53-independent manner and irrespective of the drug resistant phenotype. Mechanistically, Pr-MPO-induced cell death is caspase-independent, not inhibitable by necrostatin, but associated with the appearance of autophagy markers. However, further analysis revealed incomplete autophagic flux, thus suggesting altered integrity of lysosomal machinery. Supporting the lysosomal targeting activity are data demonstrating increased lysosomal Ca2+ accumulation and alkalinization, which coincides with cytosolic acidification (drop in pHc from 7.75 to 7.00). In parallel, an increase in lysosomal activity of glycosidase alpha acid (GAA), involved in passive glycogen breakdown, correlates with rapid depletion of glucose stores upon Pr-MPO treatment. This is associated with swift cataplerosis of TCA cycle intermediates, loss of NAD+/NADH and increase in pyruvate dehydrogenase (PDH) activity to compensate for pyruvate loss. Addition of exogenous pyruvate rescued cell survival. Notably, lysosomal impairment and metabolic catastrophe triggered by Pr-MPO are suggestive of Zn2+-mediated cytotoxicity, which is confirmed by the ability of Zn2+ chelator TPEN to block Pr-MPO-mediated anti-tumor activity. Together, these results highlight the ability of the small molecule lanthanide conjugate to target the cells' waste clearing machinery as well as mitochondrial metabolism for Zn2+-mediated execution of cancer cells, which could have therapeutic potential against cancers with high metabolic activity.
Collapse
Affiliation(s)
- Gregory Lucien Bellot
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore
| | - Dan Liu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore
- Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), NUS, Singapore, Singapore
| | - Marc Fivaz
- Program in Neuroscience and Behavioral Disorders. Duke-NUS Medical School, Singapore, Singapore
- Present address: reMYND NV. Bio-Incubator, Leuven, Belgium
| | - Sanjiv K Yadav
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore
| | - Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore.
- Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), NUS, Singapore, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore, Singapore.
- National University Cancer Institute, National University Health System, Singapore, Singapore.
| |
Collapse
|
13
|
Kim HR, Hong JK, Kim Y, Choi JY. HEBP2 affects sensitivity to cisplatin and BCNU but not to paclitaxel in MDA-MB-231 breast cancer cells. Toxicol Res 2024; 40:561-569. [PMID: 39345749 PMCID: PMC11436541 DOI: 10.1007/s43188-024-00249-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 10/01/2024] Open
Abstract
Breast cancer has the highest incidence of all cancer types in women. Triple-negative breast cancer (TNBC) accounts for 15% of all breast cancer cases and is the most aggressive type, with a poor prognosis and limited treatment. Treatment failure in patients is largely due to resistance to chemotherapy. In this study, we aimed to identify the novel factors contributing to chemoresistance in TNBC using cisplatin and 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). We found that transactivation of the heme-binding protein 2 (HEBP2) gene was common in surviving colonies of cells after exposure to two types of chemotherapeutic agents, namely cisplatin and BCNU, from genome-scale transcriptional activation library screening in the TNBC cell line MDA-MB-231. Analysis of a public database (Proteogenomic Landscape of Breast Cancer, CPTAC) indicated that HEBP2 mRNA expression was elevated in TNBC tissues compared to that in non-TNBC tissues. HEBP2 facilitates necrotic cell death under oxidative stress; however, it is not yet known whether HEBP2 affects cancer cell survival following chemotherapy. Therefore, we investigated the effects of HEBP2 expression on the sensitivity to cisplatin and BCNU in MDA-MB-231 cells. Overexpression of HEBP2 significantly enhanced the viability of MDA-MB-231 cells in response to cisplatin and BCNU, but not methyl methanesulfonate (MMS) and paclitaxel. In contrast, CRISPR/Cas9-mediated HEBP2-knockout greatly reduced cell viability in response to cisplatin and BCNU, but not to MMS and paclitaxel, in MDA-MB-231 cells. Moreover, the exogenous introduction of HEBP2 restored the resistance of HEBP2-deficient cells to cisplatin and BCNU to wild-type levels. These findings suggest that HEBP2 may play a significant role in resistance to cisplatin and BCNU, which induce intrastrand and interstrand DNA crosslinks, but not to monoalkylating or microtubule-stabilizing agents in TNBC cells. The possibility exists that HEBP2 serves as a biomarker for predicting response or a therapeutic target for overcoming resistance to platinum-based and alkylating anticancer agents in TNBC.
Collapse
Affiliation(s)
- Hye Rim Kim
- Department of Pharmacology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419 Republic of Korea
| | - Jin-Kyung Hong
- Department of Pharmacology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419 Republic of Korea
| | - Yongsub Kim
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505 Republic of Korea
| | - Jeong-Yun Choi
- Department of Pharmacology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419 Republic of Korea
| |
Collapse
|
14
|
Abu Sailik F, Emerald BS, Ansari SA. Opening and changing: mammalian SWI/SNF complexes in organ development and carcinogenesis. Open Biol 2024; 14:240039. [PMID: 39471843 PMCID: PMC11521604 DOI: 10.1098/rsob.240039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/04/2024] [Accepted: 09/18/2024] [Indexed: 11/01/2024] Open
Abstract
The switch/sucrose non-fermentable (SWI/SNF) subfamily are evolutionarily conserved, ATP-dependent chromatin-remodelling complexes that alter nucleosome position and regulate a spectrum of nuclear processes, including gene expression, DNA replication, DNA damage repair, genome stability and tumour suppression. These complexes, through their ATP-dependent chromatin remodelling, contribute to the dynamic regulation of genetic information and the maintenance of cellular processes essential for normal cellular function and overall genomic integrity. Mutations in SWI/SNF subunits are detected in 25% of human malignancies, indicating that efficient functioning of this complex is required to prevent tumourigenesis in diverse tissues. During development, SWI/SNF subunits help establish and maintain gene expression patterns essential for proper cellular identity and function, including maintenance of lineage-specific enhancers. Moreover, specific molecular signatures associated with SWI/SNF mutations, including disruption of SWI/SNF activity at enhancers, evasion of G0 cell cycle arrest, induction of cellular plasticity through pro-oncogene activation and Polycomb group (PcG) complex antagonism, are linked to the initiation and progression of carcinogenesis. Here, we review the molecular insights into the aetiology of human malignancies driven by disruption of the SWI/SNF complex and correlate these mechanisms to their developmental functions. Finally, we discuss the therapeutic potential of targeting SWI/SNF subunits in cancer.
Collapse
Affiliation(s)
- Fadia Abu Sailik
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- ASPIRE Precision Medicine Research Institute Abu Dhabi (PMRI-AD), United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Suraiya Anjum Ansari
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- ASPIRE Precision Medicine Research Institute Abu Dhabi (PMRI-AD), United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| |
Collapse
|
15
|
Jermy BR, Khan F, Ravinayagam V, Almessiere M, Slimani Y, Hassan M, Homeida A, Al-Suhaimi E, Baykal A. Multifunctional CoCe/silica and CoMnCe/silica spinel ferrite nanocomposite: in vitro and in vivo evaluation for cancer therapy. NANO-STRUCTURES & NANO-OBJECTS 2024; 39:101251. [DOI: 10.1016/j.nanoso.2024.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
|
16
|
Zou T, Liu JY, Liu ZQ, Xiao D, Chen J. The Role of ADCY1 in Regulating the Sensitivity of Platinum-Based Chemotherapy in NSCLC. Pharmaceuticals (Basel) 2024; 17:1118. [PMID: 39338283 PMCID: PMC11434658 DOI: 10.3390/ph17091118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Lung cancer has the highest fatality rate among malignant tumors in the world. Finding new biomarkers of drug resistance is of great importance in the prognosis of lung cancer patients. We found that the polymorphisms of Adenylate Cyclase 1 (ADCY1) are significantly associated with platinum-based chemotherapy resistance in lung cancer patients in our previous research. In this study, we wanted to identify the mechanism of ADCY1 affecting platinum resistance. We used an MTT assay to find if the expression of ADCY1 is associated with the sensitivity of cisplatin in A549, H1299, and A549-DDP cells. Then, we performed CCK-8 tests to detect the absorbance of these cells stimulated by ADCY1, which can discover the cell proliferation that is affected by ADCY1. We investigated cell apoptosis and cell cycles regulated by ADCY1 through the flow cytometry assay. RNA sequencing was used to find the downstream genes affected by ADCY1 which may be associated with drug resistance in lung cancer patients. ADCY1 has higher expression in lung cancer cells than in normal cells. ADCY1 can affect cisplatin resistance in lung cancer cells by regulating cell proliferation, cell apoptosis, and the cell cycle. It may control cell apoptosis by regulating the classical apoptosis biomarkers Bax and Bcl2. Our study showed that ADCY1 may be a new biomarker in the prognosis of lung cancer patients. Much work remains to be carried out to clarify the mechanism in this important emerging field.
Collapse
Affiliation(s)
- Ting Zou
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China;
- Hunan Key Laboratory of Pharmacogenetics, Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China;
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jun-Yan Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Zhao-Qian Liu
- Hunan Key Laboratory of Pharmacogenetics, Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China;
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Di Xiao
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China;
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Juan Chen
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China;
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
17
|
Honer MA, Ferman BI, Gray ZH, Bondarenko EA, Whetstine JR. Epigenetic modulators provide a path to understanding disease and therapeutic opportunity. Genes Dev 2024; 38:473-503. [PMID: 38914477 PMCID: PMC11293403 DOI: 10.1101/gad.351444.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The discovery of epigenetic modulators (writers, erasers, readers, and remodelers) has shed light on previously underappreciated biological mechanisms that promote diseases. With these insights, novel biomarkers and innovative combination therapies can be used to address challenging and difficult to treat disease states. This review highlights key mechanisms that epigenetic writers, erasers, readers, and remodelers control, as well as their connection with disease states and recent advances in associated epigenetic therapies.
Collapse
Affiliation(s)
- Madison A Honer
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Benjamin I Ferman
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Zach H Gray
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Elena A Bondarenko
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA;
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| |
Collapse
|
18
|
Liu Y, Liu Y, Li Y, Wang T, Li B, Kong X, Li C. High expression of ACTL6A leads to poor prognosis of oral squamous cell carcinoma patients through promoting malignant progression. Head Neck 2024; 46:1450-1467. [PMID: 38523407 DOI: 10.1002/hed.27742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/22/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024] Open
Abstract
OBJECTIVE The aim was to research ACTL6A's role in oral squamous cell carcinoma (OSCC). METHODS OSCC and normal samples were obtained from patients and public databases. GSEA was performed. CIBERSORT was utilized to analyze immune landscape. Kaplan-Meier survival analysis and multivariate Cox regression analysis were conducted. After knocking down ACTL6A, we performed MTT assay, transwell assays, and flow cytometry to detect the impact of knockdown. RESULTS ACTL6A expressed higher in OSCC samples than normal samples. The CNV and mutation rate of TP53 was higher in ACTL6A high-expression group. TFs E2F7 and TP63 and miRNA hsa-mir-381 were significantly related to ACTL6A. ACTL6A could influence immune microenvironment of OSCC. Knockdown of ACTL6A inhibited OSCC cells' proliferation, migration, and invasion. ACTL6A was able to predict OSCC prognosis independently. CONCLUSION ACTL6A expressed higher in OSCC than normal samples and it could be used as an independent prognostic marker in OSCC patients.
Collapse
Affiliation(s)
- Yi Liu
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China
- Department of Stomatology, Tianjin First Central Hospital, Tianjin, China
| | - Yisha Liu
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China
| | - Ying Li
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China
| | - Tong Wang
- Department of Stomatology, Tianjin First Central Hospital, Tianjin, China
| | - Bolong Li
- Department of Stomatology, Tianjin First Central Hospital, Tianjin, China
| | - Xianchen Kong
- Department of Stomatology, Tianjin First Central Hospital, Tianjin, China
| | - Changyi Li
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
19
|
Eid RA, Mamdouh F, Abdulsahib WK, Alshaya DS, Al-Salmi FA, Ali Alghamdi M, Jafri I, Fayad E, Alsharif G, Zaki MSA, Alshehri MA, Noreldin AE, Alaa Eldeen M. ACTL6A: unraveling its prognostic impact and paving the way for targeted therapeutics in carcinogenesis. Front Mol Biosci 2024; 11:1387919. [PMID: 38872915 PMCID: PMC11170035 DOI: 10.3389/fmolb.2024.1387919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/29/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction: Increased Actin-like 6A (ACTL6A) expression is associated with various cancers, but its comprehensive investigation across different malignancies is lacking. We aimed to analyze ACTL6A as a potential oncogene and therapeutic target using bioinformatics tools. Methods: We comprehensively analyzed ACTL6A expression profiles across human malignancies, focusing on correlations with tumor grade, stage, metastasis, and patient survival. Genetic alterations were examined, and the epigenetic landscape of ACTL6A was assessed using rigorous methods. The impact of ACTL6A on immune cell infiltration in the tumor microenvironment was evaluated, along with molecular docking studies and machine learning models. Results: Our analysis revealed elevated ACTL6A expression in various tumors, correlating with poor prognostic indicators such as tumor grade, stage, metastasis, and patient survival. Genetic mutations and epigenetic modifications were identified, along with associations with immune cell infiltration and key cellular pathways. Machine learning models demonstrated ACTL6A's potential for cancer detection. Discussion: ACTL6A emerges as a promising diagnostic and therapeutic target in cancer, with implications for prognosis and therapy. Our study provides comprehensive insights into its carcinogenic actions, highlighting its potential as both a prognostic indicator and a target for anti-cancer therapy. This integrative approach enhances our understanding of ACTL6A's role in cancer pathogenesis and treatment.
Collapse
Affiliation(s)
- Refaat A. Eid
- Pathology Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Farag Mamdouh
- Biotechnology Division, Zoology Department, Faculty of Science, Benha University, Banha, Egypt
| | - Waleed K. Abdulsahib
- Pharmacology and Toxicology Department, College of Pharmacy, Al Farahidi University, Baghdad, Iraq
| | - Dalal Sulaiman Alshaya
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fawziah A. Al-Salmi
- Biology Department, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Maha Ali Alghamdi
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Ibrahim Jafri
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Ghadi Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- Department of Biomedical Research, King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | | | - Mohammed A. Alshehri
- Department of Child Health, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ahmed E. Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Muhammad Alaa Eldeen
- Cell Biology, Histology and Genetics Division, Zoology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
20
|
Chen B, Ren C, Ouyang Z, Xu J, Xu K, Li Y, Guo H, Bai X, Tian M, Xu X, Wang Y, Li H, Bo X, Chen H. Stratifying TAD boundaries pinpoints focal genomic regions of regulation, damage, and repair. Brief Bioinform 2024; 25:bbae306. [PMID: 38935071 PMCID: PMC11210073 DOI: 10.1093/bib/bbae306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/01/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Advances in chromatin mapping have exposed the complex chromatin hierarchical organization in mammals, including topologically associating domains (TADs) and their substructures, yet the functional implications of this hierarchy in gene regulation and disease progression are not fully elucidated. Our study delves into the phenomenon of shared TAD boundaries, which are pivotal in maintaining the hierarchical chromatin structure and regulating gene activity. By integrating high-resolution Hi-C data, chromatin accessibility, and DNA double-strand breaks (DSBs) data from various cell lines, we systematically explore the complex regulatory landscape at high-level TAD boundaries. Our findings indicate that these boundaries are not only key architectural elements but also vibrant hubs, enriched with functionally crucial genes and complex transcription factor binding site-clustered regions. Moreover, they exhibit a pronounced enrichment of DSBs, suggesting a nuanced interplay between transcriptional regulation and genomic stability. Our research provides novel insights into the intricate relationship between the 3D genome structure, gene regulation, and DNA repair mechanisms, highlighting the role of shared TAD boundaries in maintaining genomic integrity and resilience against perturbations. The implications of our findings extend to understanding the complexities of genomic diseases and open new avenues for therapeutic interventions targeting the structural and functional integrity of TAD boundaries.
Collapse
Affiliation(s)
- Bijia Chen
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Chao Ren
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Zhangyi Ouyang
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Jingxuan Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Kang Xu
- School of Software, Shandong University, Jinan 250101, China
| | - Yaru Li
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Hejiang Guo
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Xuemei Bai
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Mengge Tian
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xiang Xu
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Yuyang Wang
- College of Computer and Data Science, Fuzhou University, Fuzhou 350108, China
| | - Hao Li
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Xiaochen Bo
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Hebing Chen
- Academy of Military Medical Sciences, Beijing 100850, China
| |
Collapse
|
21
|
Zhang Q, Chen C, Zou X, Wu W, Di Y, Li N, Fu A. Iron promotes ovarian cancer malignancy and advances platinum resistance by enhancing DNA repair via FTH1/FTL/POLQ/RAD51 axis. Cell Death Dis 2024; 15:329. [PMID: 38740757 PMCID: PMC11091064 DOI: 10.1038/s41419-024-06688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Iron is crucial for cell DNA synthesis and repair, but an excess of free iron can lead to oxidative stress and subsequent cell death. Although several studies suggest that cancer cells display characteristics of 'Iron addiction', an ongoing debate surrounds the question of whether iron can influence the malignant properties of ovarian cancer. In the current study, we initially found iron levels increase during spheroid formation. Furthermore, iron supplementation can promote cancer cell survival, cancer spheroid growth, and migration; vice versa, iron chelators inhibit this process. Notably, iron reduces the sensitivity of ovarian cancer cells to platinum as well. Mechanistically, iron downregulates DNA homologous recombination (HR) inhibitor polymerase theta (POLQ) and relieves its antagonism against the HR repair enzyme RAD51, thereby promoting DNA damage repair to resist chemotherapy-induced damage. Additionally, iron tightly regulated by ferritin (FTH1/FTL) which is indispensable for iron-triggered DNA repair. Finally, we discovered that iron chelators combined with platinum exhibit a synergistic inhibitory effect on ovarian cancer in vitro and in vivo. Our findings affirm the pro-cancer role of iron in ovarian cancer and reveal that iron advances platinum resistance by promoting DNA damage repair through FTH1/FTL/POLQ/RAD51 pathway. Our findings highlight the significance of iron depletion therapy, revealing a promising avenue for advancing ovarian cancer treatment.
Collapse
Affiliation(s)
- Qingyu Zhang
- Laboratory of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
| | - Caiyun Chen
- Laboratory of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Xinxin Zou
- Laboratory of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Weifeng Wu
- Laboratory of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Yunbo Di
- Laboratory of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Ning Li
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, 524023, China.
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
| | - Aizhen Fu
- Laboratory of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
| |
Collapse
|
22
|
Magarifuchi N, Iwasaki T, Katayama Y, Tomonaga T, Nakashima M, Narutomi F, Kato K, Oda Y. Gene amplification of chromatin remodeling factor SMARCC2 and low protein expression of ACTL6A are unfavorable factors in ovarian high‑grade serous carcinoma. Oncol Lett 2024; 27:196. [PMID: 38516682 PMCID: PMC10955683 DOI: 10.3892/ol.2024.14329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/23/2024] [Indexed: 03/23/2024] Open
Abstract
Ovarian high-grade serous carcinoma (OHGSC) is the most common type of ovarian cancer worldwide. Genome sequencing has identified mutations in chromatin remodeling factors (CRFs) in gynecological cancer, such as clear cell carcinoma, endometrioid carcinoma and endometrial serous carcinoma. However, to the best of our knowledge, the association between CRFs and OHGSC remains unexplored. The present study aimed to investigate the clinicopathological and molecular characteristics of CRF dysfunction in OHGSC. CRF alterations were analyzed through numerous methods, including the analysis of public next-generation sequencing (NGS) data from 585 ovarian serous carcinoma cases from The Cancer Genome Atlas (TCGA), immunohistochemistry (IHC), and DNA copy number assays, which were performed on 203 surgically resected OHGSC samples. In the public NGS dataset, the most frequent genetic alteration was actin-like protein 6A (ACTL6A) amplification at 19.5%. Switch/sucrose non-fermentable related, matrix associated, actin dependent regulator of chromatin subfamily c member 2 (SMARCC2) amplification (3.1%) was associated with significantly decreased overall survival (OS). In addition, chromodomain-helicase-DNA-binding protein 4 (CHD4) amplification (5.7%) exhibited unfavorable outcome trends, although not statistically significant. IHC revealed the protein expression loss of ARID1A (2.5%), SMARCA2 (2.5%) and SMARCA4 (3.9%). The protein expression levels of ACTL6A, SMARCC2 and CHD4 were evaluated using H-score. Patients with low protein expression levels of ACTL6A showed a significantly decreased OS. Copy number gain or gene amplification was demonstrated in ACTL6A (66.2%) and SMARCC2 (33.5%), while shallow deletion or deep deletion was demonstrated in CHD4 (70.7%). However, there was no statistically significant difference in protein levels of these CRFs, between the different copy number alterations (CNAs). Overall, OHGSC exhibited CNAs and protein loss, indicating possible gene alterations in CRFs. Moreover, there was a significant association between the protein expression levels of ACTL6A and poor prognosis. Based on these findings, it is suggested that CRFs could serve as prognostic markers for OHGSC.
Collapse
Affiliation(s)
- Naomi Magarifuchi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
- Department of Gynecology and Obstetrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Takeshi Iwasaki
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Yoshihiro Katayama
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
- Department of Gynecology and Obstetrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Takumi Tomonaga
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Miya Nakashima
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
- Department of Gynecology and Obstetrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Fumiya Narutomi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Kiyoko Kato
- Department of Gynecology and Obstetrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| |
Collapse
|
23
|
Li X, Luo S, Fu W, Huang M, Huang X, Kang S, Zhang J, Wang Q, Song C. Discovery of a proliferation essential gene signature and actin-like 6A as potential biomarkers for predicting prognosis and neoadjuvant chemotherapy response in triple-positive breast cancer. Cancer 2024; 130:1435-1448. [PMID: 38358781 DOI: 10.1002/cncr.35228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/27/2023] [Accepted: 12/26/2023] [Indexed: 02/16/2024]
Abstract
BACKGROUND Patients with triple-positive breast cancer (TPBC) have a higher risk of recurrence and lower survival rates than patients with other luminal breast cancers. However, there are few studies on the predictive biomarkers of prognosis and treatment responses in TPBC. METHODS Proliferation essential genes (PEGs) were acquired from clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas9) technology, and cohorts of patients with TPBC were obtained from public databases and our cohort. To develop a TPBC-PEG signature, Cox regression and least absolute shrinkage and selection operator regression analyses were applied. Functional analyses were performed with gene set enrichment analysis. The relationship between candidate genes and neoadjuvant chemotherapy (NACT) sensitivity was explored via real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC) on the basis of clinical samples. RESULTS Among 900 TPBC-PEGs, 437 showed significant differential expression between TPBC and normal tissues. Three prognostic PEGs (actin-like 6A [ACTL6A], chaperonin containing TCP1 subunit 2 [CCT2], and threonyl-TRNA synthetase [TARS]) were identified and used to construct the PEG signature. Patients with high PEG signature scores exhibited a worse overall survival and lower sensitivity to NACT than patients with low PEG signature scores. RT-qPCR results indicated that ACTL6A and CCT2 expression were significantly upregulated in patients who lacked sensitivity to NACT. IHC results showed that the ACTL6A protein was highly expressed in patients with NACT resistance and nonpathological complete responses. CONCLUSIONS This efficient PEG signature prognostic model can predict the outcomes of TPBC. Furthermore, ACTL6A expression level was associated with the response to NACT, and could serve as an important factor in predicting prognosis and drug sensitivity of patients with TPBC.
Collapse
Affiliation(s)
- Xiaofen Li
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Shiping Luo
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Wenfen Fu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Mingyao Huang
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Xiewei Huang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Shaohong Kang
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Jie Zhang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Qingshui Wang
- The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Chuangui Song
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| |
Collapse
|
24
|
Feng Y, An Q, Zhao Z, Wu M, Yang C, Liang W, Xu X, Jiang T, Zhang G. Beta-elemene: A phytochemical with promise as a drug candidate for tumor therapy and adjuvant tumor therapy. Biomed Pharmacother 2024; 172:116266. [PMID: 38350368 DOI: 10.1016/j.biopha.2024.116266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND β-Elemene (IUPAC name: (1 S,2 S,4 R)-1-ethenyl-1-methyl-2,4-bis(prop-1-en-2-yl) cyclohexane), is a natural compound found in turmeric root. Studies have demonstrated its diverse biological functions, including its anti-tumor properties, which have been extensively investigated. However, these have not yet been reviewed. The aim of this review was to provide a comprehensive summary of β-elemene research, with respect to disease treatment. METHODS β-Elemene-related articles were found in PubMed, ScienceDirect, and Google Scholar databases to systematically summarize its structure, pharmacokinetics, metabolism, and pharmacological activity. We also searched the Traditional Chinese Medicine System Pharmacology database for therapeutic targets of β-elemene. We further combined these targets with the relevant literature for KEGG and GO analyses. RESULTS Studies on the molecular mechanisms underlying β-elemene activity indicate that it regulates multiple pathways, including STAT3, MAPKs, Cyclin-dependent kinase 1/cyclin B, Notch, PI3K/AKT, reactive oxygen species, METTL3, PTEN, p53, FAK, MMP, TGF-β/Smad signaling. Through these molecular pathways, β-elemene has been implicated in tumor cell proliferation, apoptosis, migration, and invasion and improving the immune microenvironment. Additionally, β-elemene increases chemotherapeutic drug sensitivity and reverses resistance by inhibiting DNA damage repair and regulating pathways including CTR1, pak1, ERK1/2, ABC transporter protein, Prx-1 and ERCC-1. Nonetheless, owing to its lipophilicity and low bioavailability, additional structural modifications could improve the efficacy of this drug. CONCLUSION β-Elemene exhibits low toxicity with good safety, inhibiting various tumor types via diverse mechanisms in vivo and in vitro. When combined with chemotherapeutic drugs, it enhances efficacy, reduces toxicity, and improves tumor killing. Thus, β-elemene has vast potential for research and development.
Collapse
Affiliation(s)
- Yewen Feng
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China
| | - Qingwen An
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China
| | - Zhengqi Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China
| | - Mengting Wu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China
| | - Chuqi Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China
| | - WeiYu Liang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China
| | - Xuefei Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China
| | - Tao Jiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China.
| | - Guangji Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China.
| |
Collapse
|
25
|
Ren Y, Ju Q, Zhang J, Gu W, Du J. MiR-302a-3p reduces cisplatin resistance of esophageal squamous cell carcinoma cells by targeting EphA2. J Chemother 2024; 36:72-81. [PMID: 37198946 DOI: 10.1080/1120009x.2023.2213490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 04/22/2023] [Indexed: 05/19/2023]
Abstract
Platinum-based chemotherapy is a common clinical treatment for esophageal squamous cell carcinoma (ESCC), and chemoresistance is a major leading reason for cancer treatment failure. MiR-302a-3p is involved in the development of many diseases. Here, we investigated the role of miR-302a-3p in the cisplatin resistance of ESCC cells and explored its potential mechanism via molecular techniques. The expression of miR-302a-3p was significantly reduced, while the expressions of EphA2 were increased in ESCC tumor tissues and cells. EphA2 was one target gene of miR-302a-3p, and was negatively regulated by miR-302a-3p. By regulating EphA2, miR-302a-3p reduced the viability and promoted the apoptosis of ECA109 cells treated with cisplatin, suggesting that miR-302a-3p could enhance the sensitivity of ECA109 cells to cisplatin treatment by targeting EphA2. MiR-302a-3p plays an important role in reducing cisplatin resistance by inhibiting EphA2, suggesting that it may be a promising therapeutic strategy for cisplatin resistance in ESCC in the future.
Collapse
Affiliation(s)
- Yali Ren
- Department of Pharmacy, Nantong Health College of Jiangsu Province, Nantong, Jiangsu, China
| | - Qianqian Ju
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jinlin Zhang
- Department of Pharmacy, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu, China
| | - Wei Gu
- Department of Pharmacy, Nantong Health College of Jiangsu Province, Nantong, Jiangsu, China
| | - Jin Du
- Department of Cardiothoracic Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
26
|
Lumpp T, Stößer S, Fischer F, Hartwig A, Köberle B. Role of Epigenetics for the Efficacy of Cisplatin. Int J Mol Sci 2024; 25:1130. [PMID: 38256203 PMCID: PMC10816946 DOI: 10.3390/ijms25021130] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The clinical utility of the chemotherapeutic agent cisplatin is restricted by cancer drug resistance, which is either intrinsic to the tumor or acquired during therapy. Epigenetics is increasingly recognized as a factor contributing to cisplatin resistance and hence influences drug efficacy and clinical outcomes. In particular, epigenetics regulates gene expression without changing the DNA sequence. Common types of epigenetic modifications linked to chemoresistance are DNA methylation, histone modification, and non-coding RNAs. This review provides an overview of the current findings of various epigenetic modifications related to cisplatin efficacy in cell lines in vitro and in clinical tumor samples. Furthermore, it discusses whether epigenetic alterations might be used as predictors of the platinum agent response in order to prevent avoidable side effects in patients with resistant malignancies. In addition, epigenetic targeting therapies are described as a possible strategy to render cancer cells more susceptible to platinum drugs.
Collapse
Affiliation(s)
| | | | | | | | - Beate Köberle
- Department Food Chemistry and Toxicology, Institute of Applied Biosciences, Karlsruhe Institute of Technology, Adenauerring 20a, 76131 Karlsruhe, Germany; (T.L.); (S.S.); (F.F.); (A.H.)
| |
Collapse
|
27
|
Gao L, Li L, Zhang D, Qiu J, Qian J, Liu H. TAPI-1 Exhibits Anti-tumor Efficacy in Human Esophageal Squamous Cell Carcinoma Cells via Suppression of NF-κB Signaling Pathway. Dig Dis Sci 2024; 69:81-94. [PMID: 38007701 PMCID: PMC10787672 DOI: 10.1007/s10620-023-08181-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/02/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND TNF-α processing inhibitor-1 (TAPI-1) is a known metalloproteinase inhibitor with potential anti-inflammatory effects. However, its anti-cancer effects on esophageal squamous cell carcinoma (ESCC) have not been uncovered. AIM In the present study, the effects of TAPI-1 on ESCC cell viability, migration, invasion, and cisplatin resistance and the underlying molecular mechanisms were investigated in TE-1 and Eca109 cells. METHODS To this end, TE-1 and Eca109 cells were exposed to TAPI-1 for indicated time intervals. Cell viability was assessed using cell counting kit-8 assay and apoptosis was evaluated using flow cytometry assay. Migration and invasion were assessed using Transwell assays. Gene expressions were analyzed using quantitative reverse transcription polymerase chain reaction. The activation of NF-κB signaling pathway was elucidated via Western blot and chromatin immunoprecipitation assay. RESULTS We observed that higher doses (10, 20 μM) of TAPI-1 inhibited ESCC cell viability, while a lower dose (5 μM) of TAPI-1 inhibited ESCC cell migration and invasion and enhanced the chemosensitivity of ESCC cells to cisplatin. Moreover, TAPI-1 suppressed the activation of NF-κB signaling and the target genes expression in the stage of transcription initiation. Furthermore, blocking NF-κB signaling in advance could abolish all the effects of TAPI-1 on ESCC cells. CONCLUSION Overall, these results indicated that TAPI-1 impairs ESCC cell viability, migration, and invasion and facilitates cisplatin-induced apoptosis via suppression of NF-κB signaling pathway. TAPI-1 may serve as a potential adjuvant agent with cisplatin for ESCC therapy.
Collapse
Affiliation(s)
- Lin Gao
- Medical Research Center, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, People's Republic of China
| | - Li Li
- Department of Pathology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Shengli Road No. 666, Nantong, 226001, Jiangsu, People's Republic of China
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, People's Republic of China
| | - Jianwei Qiu
- Department of Gastroenterology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, People's Republic of China
| | - Junbo Qian
- Department of Gastroenterology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, People's Republic of China
| | - Hongbin Liu
- Department of Pathology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Shengli Road No. 666, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
28
|
Li J, Hu H, He J, Hu Y, Liu M, Cao B, Chen D, Ye X, Zhang J, Zhang Z, Long W, Lian H, Chen D, Chen L, Yang L, Zhang Z. Effective sequential combined therapy with carboplatin and a CDC7 inhibitor in ovarian cancer. Transl Oncol 2024; 39:101825. [PMID: 37992591 PMCID: PMC10687335 DOI: 10.1016/j.tranon.2023.101825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/27/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND The enhancement of DNA damage repair is one of the important mechanisms of platinum resistance. Protein cell division cycle 7 (CDC7) is a conserved serine/threonine kinase that plays important roles in the initiation of DNA replication and is associated with chemotherapy resistance in ovarian cancer. However, whether the CDC7 inhibitor XL413 has antitumor activity against ovarian cancer and its relationship with chemosensitivity remain poorly elucidated. METHODS We evaluated the antitumor effects of carboplatin combined with XL413 for ovarian cancer in vitro and in vivo. Cell viability inhibition, colony formation and apoptosis were assessed. The molecules related to DNA repair and damage were investigated. The antitumor effects of carboplatin combined with XL413 were also evaluated in SKOV-3 and OVCAR-3 xenografts in subcutaneous and intraperitoneal tumor models. RESULTS Sequential administration of XL413 after carboplatin (CBP) prevented cellular proliferation and promoted apoptosis in ovarian cancer (OC) cells. Compared with the CBP group, the expression level of RAD51 was significantly decreased and the expression level of γH2AX was significantly increased in the sequential combination treatment group. The equential combination treatment could significantly inhibit tumor growth in the subcutaneous and intraperitoneal tumor models, with the expression of RAD51 and Ki67 significantly decreased and the expression of γH2AX increased. CONCLUSIONS Sequential administration of CDC7 inhibitor XL413 after carboplatin can enhance the chemotherapeutic effect of carboplatin on ovarian cancer cells. The mechanism may be that CDC7 inhibitor XL413 increases the accumulation of chemotherapy-induced DNA damage by inhibiting homologous recombination repair activity.
Collapse
Affiliation(s)
- Junping Li
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, China
| | - Hong Hu
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, China
| | - Jinping He
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yuling Hu
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Manting Liu
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Bihui Cao
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Dongni Chen
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Xiaodie Ye
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Jian Zhang
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Zhiru Zhang
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Wen Long
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Hui Lian
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Deji Chen
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Likun Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510200, China.
| | - Lili Yang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Zhenfeng Zhang
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
29
|
Kuan FC, Li JM, Huang YC, Chang SF, Shi CS. Therapeutic Potential of Regorafenib in Cisplatin-Resistant Bladder Cancer with High Epithelial-Mesenchymal Transition and Stemness Properties. Int J Mol Sci 2023; 24:17610. [PMID: 38139437 PMCID: PMC10743903 DOI: 10.3390/ijms242417610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
Bladder cancer is becoming one of the most common malignancies across the world. Although treatment strategy has been continuously improved, which has led to cisplatin-based chemotherapy becoming the standard medication, cancer recurrence and metastasis still occur in a high proportion of patients because of drug resistance. The high efficacy of regorafenib, a broad-spectrum kinase inhibitor, has been evidenced in treating a variety of advanced cancers. Hence, this study investigated whether regorafenib could also effectively antagonize the survival of cisplatin-resistant bladder cancer and elucidate the underlying mechanism. Two types of cisplatin-resistant bladder cancer cells, T24R1 and T24R2, were isolated from T24 cisplatin-sensitive bladder cancer cells. These cells were characterized, and T24R1- and T24R2-xenografted tumor mice were created to examine the therapeutic efficacy of regorafenib. T24R1 and T24R2 cells exhibited higher expression levels of epithelial-mesenchymal transition (EMT) and stemness markers compared to the T24 cells, and regorafenib could simultaneously inhibit the viability and the expression of EMT/stemness markers of both T24R1 and T24R2 cells. Moreover, regorafenib could efficiently arrest the cell cycle, promote apoptosis, and block the transmigration/migration capabilities of both types of cells. Finally, regorafenib could significantly antagonize the growth of T24R1- and T24R2-xenografted tumors in mice. These results demonstrated the therapeutic efficacy of regorafenib in cisplatin-resistant bladder cancers. This study, thus, provides more insights into the mechanism of action of regorafenib and demonstrates its great potential in the future treatment of cisplatin-resistant advanced bladder cancer patients.
Collapse
Affiliation(s)
- Feng-Che Kuan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital Chiayi Branch, Chiayi 61363, Taiwan
| | - Jhy-Ming Li
- Department of Animal Science, National Chiayi University, Chiayi 60004, Taiwan;
| | - Yun-Ching Huang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital Chiayi Branch, Chiayi 61363, Taiwan;
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shun-Fu Chang
- Department of Medical Research and Development, Chang Gung Memorial Hospital Chiayi Branch, Chiayi 61363, Taiwan
- Center for General Education, Chiayi Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Chung-Sheng Shi
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital Chiayi Branch, Chiayi 61363, Taiwan
| |
Collapse
|
30
|
Lin FT, Liu K, Garan LAW, Folly-Kossi H, Song Y, Lin SJ, Lin WC. A small-molecule inhibitor of TopBP1 exerts anti-MYC activity and synergy with PARP inhibitors. Proc Natl Acad Sci U S A 2023; 120:e2307793120. [PMID: 37878724 PMCID: PMC10622895 DOI: 10.1073/pnas.2307793120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
We have previously identified TopBP1 (topoisomerase IIβ-binding protein 1) as a promising target for cancer therapy, given its role in the convergence of Rb, PI(3)K/Akt, and p53 pathways. Based on this, we conducted a large-scale molecular docking screening to identify a small-molecule inhibitor that specifically targets the BRCT7/8 domains of TopBP1, which we have named 5D4. Our studies show that 5D4 inhibits TopBP1 interactions with E2F1, mutant p53, and Cancerous Inhibitor of Protein Phosphatase 2A. This leads to the activation of E2F1-mediated apoptosis and the inhibition of mutant p53 gain of function. In addition, 5D4 disrupts the interaction of TopBP1 with MIZ1, which in turn allows MIZ1 to bind to its target gene promoters and repress MYC activity. Moreover, 5D4 inhibits the association of the TopBP1-PLK1 complex and prevents the formation of Rad51 foci. When combined with inhibitors of PARP1/2 or PARP14, 5D4 synergizes to effectively block cancer cell proliferation. Our animal studies have demonstrated the antitumor activity of 5D4 in breast and ovarian cancer xenograft models. Moreover, the effectiveness of 5D4 is further enhanced when combined with a PARP1/2 inhibitor talazoparib. Taken together, our findings strongly support the potential use of TopBP1-BRCT7/8 inhibitors as a targeted cancer therapy.
Collapse
Affiliation(s)
- Fang-Tsyr Lin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX77030
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX77030
| | - Kang Liu
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX77030
| | - Lidija A. Wilhelms Garan
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX77030
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX77030
| | - Helena Folly-Kossi
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX77030
| | - Yongcheng Song
- Department of Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Shwu-Jiuan Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, Taipei Medical University, Taipei11031, Taiwan
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Weei-Chin Lin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX77030
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX77030
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| |
Collapse
|
31
|
Yuan M, Chen T, Jin L, Zhang P, Xie L, Zhou S, Fan L, Wang L, Zhang C, Tang N, Guo L, Xie C, Duo Y, Li L, Shi L. A carrier-free supramolecular nano-twin-drug for overcoming irinotecan-resistance and enhancing efficacy against colorectal cancer. J Nanobiotechnology 2023; 21:393. [PMID: 37898773 PMCID: PMC10612220 DOI: 10.1186/s12951-023-02157-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023] Open
Abstract
Irinotecan (Ir) is commonly employed as a first-line chemotherapeutic treatment for colorectal cancer (CRC). However, tremendous impediments remain to be addressed to surmount drug resistance and ameliorate adverse events. Poly-ADP-Ribose Polymerase (PARP) participates in the maintenance of genome stability and the repair of DNA damage, thus playing a critical role in chemotherapy resistance. In this work, we introduce a novel curative strategy that utilizes nanoparticles (NPs) prepared by dynamic supramolecular co-assembly of Ir and a PARP inhibitor (PARPi) niraparib (Nir) through π-π stacking and hydrogen bond interactions. The Ir and Nir self-assembled Nano-Twin-Drug of (Nir-Ir NPs) could enhance the therapeutic effect on CRC by synergistically inhibiting the DNA damage repair pathway and activating the tumor cell apoptosis process without obvious toxicity. In addition, the Nir-Ir NPs could effectively reverse irinotecan-resistance by inhibiting the expression of multiple resistance protein-1 (MRP-1). Overall, our study underscores the distinctive advantages and potential of Nir-Ir NPs as a complementary strategy to chemotherapy by simultaneously overcoming the Ir resistance and improving the anti-tumor efficacy against CRC.
Collapse
Affiliation(s)
- Miaomiao Yuan
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of pharmacology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong, Sun Yat-sen University, Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Shenzhen, China
| | - Tong Chen
- Department of pharmacology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong, Sun Yat-sen University, Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Shenzhen, China
| | - Lu Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| | - Peng Zhang
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, 47 Youyi Road, Shenzhen, 518001, China.
| | - Luoyijun Xie
- Department of pharmacology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong, Sun Yat-sen University, Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Shenzhen, China
| | - Shuyi Zhou
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lianfeng Fan
- Department of pharmacology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong, Sun Yat-sen University, Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Shenzhen, China
| | - Li Wang
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Cai Zhang
- Department of pharmacology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong, Sun Yat-sen University, Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Shenzhen, China
| | - Ning Tang
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - LiHao Guo
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chengmei Xie
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanhong Duo
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Ling Li
- Department of pharmacology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong, Sun Yat-sen University, Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Shenzhen, China.
| | - Leilei Shi
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
32
|
Martínez-Jiménez F, Movasati A, Brunner SR, Nguyen L, Priestley P, Cuppen E, Van Hoeck A. Pan-cancer whole-genome comparison of primary and metastatic solid tumours. Nature 2023; 618:333-341. [PMID: 37165194 PMCID: PMC10247378 DOI: 10.1038/s41586-023-06054-z] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
Metastatic cancer remains an almost inevitably lethal disease1-3. A better understanding of disease progression and response to therapies therefore remains of utmost importance. Here we characterize the genomic differences between early-stage untreated primary tumours and late-stage treated metastatic tumours using a harmonized pan-cancer analysis (or reanalysis) of two unpaired primary4 and metastatic5 cohorts of 7,108 whole-genome-sequenced tumours. Metastatic tumours in general have a lower intratumour heterogeneity and a conserved karyotype, displaying only a modest increase in mutations, although frequencies of structural variants are elevated overall. Furthermore, highly variable tumour-specific contributions of mutational footprints of endogenous (for example, SBS1 and APOBEC) and exogenous mutational processes (for example, platinum treatment) are present. The majority of cancer types had either moderate genomic differences (for example, lung adenocarcinoma) or highly consistent genomic portraits (for example, ovarian serous carcinoma) when comparing early-stage and late-stage disease. Breast, prostate, thyroid and kidney renal clear cell carcinomas and pancreatic neuroendocrine tumours are clear exceptions to the rule, displaying an extensive transformation of their genomic landscape in advanced stages. Exposure to treatment further scars the tumour genome and introduces an evolutionary bottleneck that selects for known therapy-resistant drivers in approximately half of treated patients. Our data showcase the potential of pan-cancer whole-genome analysis to identify distinctive features of late-stage tumours and provide a valuable resource to further investigate the biological basis of cancer and resistance to therapies.
Collapse
Affiliation(s)
- Francisco Martínez-Jiménez
- Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Hartwig Medical Foundation, Amsterdam, The Netherlands
| | - Ali Movasati
- Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sascha Remy Brunner
- Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Luan Nguyen
- Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- Hartwig Medical Foundation Australia, Sydney, New South Wales, Australia
| | - Peter Priestley
- Hartwig Medical Foundation Australia, Sydney, New South Wales, Australia
| | - Edwin Cuppen
- Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
- Hartwig Medical Foundation, Amsterdam, The Netherlands.
| | - Arne Van Hoeck
- Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
33
|
Lei Z, Tian Q, Teng Q, Wurpel JND, Zeng L, Pan Y, Chen Z. Understanding and targeting resistance mechanisms in cancer. MedComm (Beijing) 2023; 4:e265. [PMID: 37229486 PMCID: PMC10203373 DOI: 10.1002/mco2.265] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 05/27/2023] Open
Abstract
Resistance to cancer therapies has been a commonly observed phenomenon in clinical practice, which is one of the major causes of treatment failure and poor patient survival. The reduced responsiveness of cancer cells is a multifaceted phenomenon that can arise from genetic, epigenetic, and microenvironmental factors. Various mechanisms have been discovered and extensively studied, including drug inactivation, reduced intracellular drug accumulation by reduced uptake or increased efflux, drug target alteration, activation of compensatory pathways for cell survival, regulation of DNA repair and cell death, tumor plasticity, and the regulation from tumor microenvironments (TMEs). To overcome cancer resistance, a variety of strategies have been proposed, which are designed to enhance the effectiveness of cancer treatment or reduce drug resistance. These include identifying biomarkers that can predict drug response and resistance, identifying new targets, developing new targeted drugs, combination therapies targeting multiple signaling pathways, and modulating the TME. The present article focuses on the different mechanisms of drug resistance in cancer and the corresponding tackling approaches with recent updates. Perspectives on polytherapy targeting multiple resistance mechanisms, novel nanoparticle delivery systems, and advanced drug design tools for overcoming resistance are also reviewed.
Collapse
Affiliation(s)
- Zi‐Ning Lei
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Qin Tian
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Qiu‐Xu Teng
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - John N. D. Wurpel
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Leli Zeng
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Yihang Pan
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| |
Collapse
|
34
|
Wang Y, Zhang J, He Y, Pan Z, Zhang X, Liu P, Hu K. The theranostic value of acetylation gene signatures in obstructive sleep apnea derived by machine learning. Comput Biol Med 2023; 161:107058. [PMID: 37244148 DOI: 10.1016/j.compbiomed.2023.107058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/09/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
Epigenetic modifications are implicated in the onset and progression of obstructive sleep apnea (OSA) and its complications through their bidirectional relationship with long-term chronic intermittent hypoxia (IH). However, the exact role of epigenetic acetylation in OSA is unclear. Here we explored the relevance and impact of acetylation-related genes in OSA by identifying molecular subtypes modified by acetylation in OSA patients. Twenty-nine significantly differentially expressed acetylation-related genes were screened in a training dataset (GSE135917). Six common signature genes were identified using the lasso and support vector machine algorithms, with the powerful SHAP algorithm used to judge the importance of each identified feature. DSCC1, ACTL6A, and SHCBP1 were best calibrated and discriminated OSA patients from normal in both training and validation (GSE38792) datasets. Decision curve analysis showed that patients could benefit from a nomogram model developed using these variables. Finally, a consensus clustering approach characterized OSA patients and analyzed the immune signatures of each subgroup. OSA patients were divided into two acetylation patterns (higher acetylation scores in Group B than in Group A) that differed significantly in terms of immune microenvironment infiltration. This is the first study to reveal the expression patterns and key role played by acetylation in OSA, laying the foundation for OSA epitherapy and refined clinical decision-making.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jingyi Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yang He
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhou Pan
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xinyue Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Peijun Liu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
35
|
Du G, Yang R, Qiu J, Xia J. Multifaceted Influence of Histone Deacetylases on DNA Damage Repair: Implications for Hepatocellular Carcinoma. J Clin Transl Hepatol 2023; 11:231-243. [PMID: 36406320 PMCID: PMC9647118 DOI: 10.14218/jcth.2022.00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers and a leading cause of cancer-related mortality worldwide, but its pathogenesis remains largely unknown. Nevertheless, genomic instability has been recognized as one of the facilitating characteristics of cancer hallmarks that expedites the acquisition of genetic diversity. Genomic instability is associated with a greater tendency to accumulate DNA damage and tumor-specific DNA repair defects, which gives rise to gene mutations and chromosomal damage and causes oncogenic transformation and tumor progression. Histone deacetylases (HDACs) have been shown to impair a variety of cellular processes of genome stability, including the regulation of DNA damage and repair, reactive oxygen species generation and elimination, and progression to mitosis. In this review, we provide an overview of the role of HDAC in the different aspects of DNA repair and genome instability in HCC as well as the current progress on the development of HDAC-specific inhibitors as new cancer therapies.
Collapse
Affiliation(s)
- Gan Du
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
- The First Clinical College, Chongqing Medical University, Chongqing, China
| | - Ruizhe Yang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
- The First Clinical College, Chongqing Medical University, Chongqing, China
| | - Jianguo Qiu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Correspondence to: Jie Xia, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, No. 1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China. ORCID: https://orcid.org/0000-0003-4574-9376. Tel/Fax: +86-23-68486780, E-mail: ; Jianguo Qiu, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 You Yi Road, Yuzhong District, Chongqing 400016, China. ORCID: https://orcid.org/0000-0003-4574-9376. Tel: +86-23-68486780, Fax: +86-23-89011016, E-mail:
| | - Jie Xia
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
- Correspondence to: Jie Xia, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, No. 1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China. ORCID: https://orcid.org/0000-0003-4574-9376. Tel/Fax: +86-23-68486780, E-mail: ; Jianguo Qiu, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 You Yi Road, Yuzhong District, Chongqing 400016, China. ORCID: https://orcid.org/0000-0003-4574-9376. Tel: +86-23-68486780, Fax: +86-23-89011016, E-mail:
| |
Collapse
|
36
|
Ovejero-Sánchez M, González-Sarmiento R, Herrero AB. DNA Damage Response Alterations in Ovarian Cancer: From Molecular Mechanisms to Therapeutic Opportunities. Cancers (Basel) 2023; 15:448. [PMID: 36672401 PMCID: PMC9856346 DOI: 10.3390/cancers15020448] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
The DNA damage response (DDR), a set of signaling pathways for DNA damage detection and repair, maintains genomic stability when cells are exposed to endogenous or exogenous DNA-damaging agents. Alterations in these pathways are strongly associated with cancer development, including ovarian cancer (OC), the most lethal gynecologic malignancy. In OC, failures in the DDR have been related not only to the onset but also to progression and chemoresistance. It is known that approximately half of the most frequent subtype, high-grade serous carcinoma (HGSC), exhibit defects in DNA double-strand break (DSB) repair by homologous recombination (HR), and current evidence indicates that probably all HGSCs harbor a defect in at least one DDR pathway. These defects are not restricted to HGSCs; mutations in ARID1A, which are present in 30% of endometrioid OCs and 50% of clear cell (CC) carcinomas, have also been found to confer deficiencies in DNA repair. Moreover, DDR alterations have been described in a variable percentage of the different OC subtypes. Here, we overview the main DNA repair pathways involved in the maintenance of genome stability and their deregulation in OC. We also recapitulate the preclinical and clinical data supporting the potential of targeting the DDR to fight the disease.
Collapse
Affiliation(s)
- María Ovejero-Sánchez
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-Spanish National Research Council, 37007 Salamanca, Spain
| | - Rogelio González-Sarmiento
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-Spanish National Research Council, 37007 Salamanca, Spain
| | - Ana Belén Herrero
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-Spanish National Research Council, 37007 Salamanca, Spain
| |
Collapse
|
37
|
Luo ZD, Wang YF, Zhao YX, Yu LC, Li T, Fan YJ, Zeng SJ, Zhang YL, Zhang Y, Zhang X. Emerging roles of non-coding RNAs in colorectal cancer oxaliplatin resistance and liquid biopsy potential. World J Gastroenterol 2023; 29:1-18. [PMID: 36683709 PMCID: PMC9850945 DOI: 10.3748/wjg.v29.i1.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/11/2022] [Accepted: 11/04/2022] [Indexed: 01/04/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies of the digestive tract, with the annual incidence and mortality increasing consistently. Oxaliplatin-based chemotherapy is a preferred therapeutic regimen for patients with advanced CRC. However, most patients will inevitably develop resistance to oxaliplatin. Many studies have reported that non-coding RNAs (ncRNAs), such as microRNAs, long non-coding RNAs, and circular RNAs, are extensively involved in cancer progression. Moreover, emerging evidence has revealed that ncRNAs mediate chemoresistance to oxaliplatin by transcriptional and post-transcriptional regulation, and by epigenetic modification. In this review, we summarize the mechanisms by which ncRNAs regulate the initiation and development of CRC chemoresistance to oxaliplatin. Furthermore, we investigate the clinical application of ncRNAs as promising biomarkers for liquid CRC biopsy. This review provides new insights into overcoming oxaliplatin resistance in CRC by targeting ncRNAs.
Collapse
Affiliation(s)
- Zheng-Dong Luo
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Yi-Feng Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Yu-Xiao Zhao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Long-Chen Yu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Tian Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Ying-Jing Fan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Shun-Jie Zeng
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Yan-Li Zhang
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan 250012, Shandong Province, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, Shandong Province, China
| |
Collapse
|
38
|
Li C, Yu S, Chen J, Hou Q, Wang S, Qian C, Yin S. Risk stratification based on DNA damage-repair-related signature reflects the microenvironmental feature, metabolic status and therapeutic response of breast cancer. Front Immunol 2023; 14:1127982. [PMID: 37033959 PMCID: PMC10080010 DOI: 10.3389/fimmu.2023.1127982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
DNA damage-repair machinery participates in maintaining genomic integrity and affects tumorigenesis. Molecular signatures based on DNA damage-repair-related genes (DRGs) capable of comprehensively indicating the prognosis, tumor immunometabolic profile and therapeutic responsiveness of breast cancer (BRCA) patients are still lacking. Integrating public datasets and bioinformatics algorithms, we developed a robust prognostic signature based on 27 DRGs. Multiple patient cohorts identified significant differences in various types of survival between high- and low-risk patients stratified by the signature. The signature correlated well with clinicopathological factors and could serve as an independent prognostic indicator for BRCA patients. Furthermore, low-risk tumors were characterized by more infiltrated CD8+ T cells, follicular helper T cells, M1 macrophages, activated NK cells and resting dendritic cells, and fewer M0 and M2 macrophages. The favorable immune infiltration patterns of low-risk tumors were also accompanied by specific metabolic profiles, decreased DNA replication, and enhanced antitumor immunity. Low-risk patients may respond better to immunotherapy, and experience improved outcomes with conventional chemotherapy or targeted medicine. Real-world immunotherapy and chemotherapy cohorts verified the predictive results. Additionally, four small molecule compounds promising to target high-risk tumors were predicted. In vitro experiments confirmed the high expression of GNPNAT1 and MORF4L2 in BRCA tissues and their association with immune cells, and the knockdown of these two DRGs suppressed the proliferation of human BRCA cells. In summary, this DNA damage-repair-related signature performed well in predicting patient prognosis, immunometabolic profiles and therapeutic sensitivity, hopefully contributing to precision medicine and new target discovery of BRCA.
Collapse
Affiliation(s)
| | | | | | | | | | - Cheng Qian
- *Correspondence: Cheng Qian, ; Shulei Yin,
| | - Shulei Yin
- *Correspondence: Cheng Qian, ; Shulei Yin,
| |
Collapse
|
39
|
Vaicekauskaitė I, Sabaliauskaitė R, Lazutka JR, Jarmalaitė S. The Emerging Role of Chromatin Remodeling Complexes in Ovarian Cancer. Int J Mol Sci 2022; 23:ijms232213670. [PMID: 36430148 PMCID: PMC9697406 DOI: 10.3390/ijms232213670] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Ovarian cancer (OC) is the fifth leading cause of women's death from cancers. The high mortality rate is attributed to the late presence of the disease and the lack of modern diagnostic tools, including molecular biomarkers. Moreover, OC is a highly heterogeneous disease, which contributes to early treatment failure. Thus, exploring OC molecular mechanisms could significantly enhance our understanding of the disease and provide new treatment options. Chromatin remodeling complexes (CRCs) are ATP-dependent molecular machines responsible for chromatin reorganization and involved in many DNA-related processes, including transcriptional regulation, replication, and reparation. Dysregulation of chromatin remodeling machinery may be related to cancer development and chemoresistance in OC. Some forms of OC and other gynecologic diseases have been associated with mutations in specific CRC genes. Most notably, ARID1A in endometriosis-related OC, SMARCA4, and SMARCB1 in hypercalcemic type small cell ovarian carcinoma (SCCOHT), ACTL6A, CHRAC1, RSF1 amplification in high-grade serous OC. Here we review the available literature on CRCs' involvement in OC to improve our understanding of its development and investigate CRCs as possible biomarkers and treatment targets for OC.
Collapse
Affiliation(s)
- Ieva Vaicekauskaitė
- Laboratory of Genetic Diagnostic, National Cancer Institute, Santariškių 1, LT-08406 Vilnius, Lithuania
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, LT-10222 Vilnius, Lithuania
| | - Rasa Sabaliauskaitė
- Laboratory of Genetic Diagnostic, National Cancer Institute, Santariškių 1, LT-08406 Vilnius, Lithuania
| | - Juozas Rimantas Lazutka
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, LT-10222 Vilnius, Lithuania
| | - Sonata Jarmalaitė
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, LT-10222 Vilnius, Lithuania
- Laboratory of Clinical Oncology, National Cancer Institute, Santariškių 1, LT-08406 Vilnius, Lithuania
- Correspondence:
| |
Collapse
|
40
|
Contreras-Sanzón E, Prado-Garcia H, Romero-Garcia S, Nuñez-Corona D, Ortiz-Quintero B, Luna-Rivero C, Martínez-Cruz V, Carlos-Reyes Á. Histone deacetylases modulate resistance to the therapy in lung cancer. Front Genet 2022; 13:960263. [PMID: 36263432 PMCID: PMC9574126 DOI: 10.3389/fgene.2022.960263] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/07/2022] [Indexed: 12/07/2022] Open
Abstract
The acetylation status of histones located in both oncogenes and tumor suppressor genes modulate cancer hallmarks. In lung cancer, changes in the acetylation status are associated with increased cell proliferation, tumor growth, migration, invasion, and metastasis. Histone deacetylases (HDACs) are a group of enzymes that take part in the elimination of acetyl groups from histones. Thus, HDACs regulate the acetylation status of histones. Although several therapies are available to treat lung cancer, many of these fail because of the development of tumor resistance. One mechanism of tumor resistance is the aberrant expression of HDACs. Specific anti-cancer therapies modulate HDACs expression, resulting in chromatin remodeling and epigenetic modification of the expression of a variety of genes. Thus, HDACs are promising therapeutic targets to improve the response to anti-cancer treatments. Besides, natural compounds such as phytochemicals have potent antioxidant and chemopreventive activities. Some of these compounds modulate the deregulated activity of HDACs (e.g. curcumin, apigenin, EGCG, resveratrol, and quercetin). These phytochemicals have been shown to inhibit some of the cancer hallmarks through HDAC modulation. The present review discusses the epigenetic mechanisms by which HDACs contribute to carcinogenesis and resistance of lung cancer cells to anticancer therapies.
Collapse
Affiliation(s)
| | - Heriberto Prado-Garcia
- Laboratorio de Onco-Inmunobiologia, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de México, México
| | - Susana Romero-Garcia
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - David Nuñez-Corona
- Posgrado de Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Blanca Ortiz-Quintero
- Departamento de Investigación en Bioquímica, Unidad de Investigación, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de México, México
| | - Cesar Luna-Rivero
- Servicio de Patología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de México, México
| | - Victor Martínez-Cruz
- Laboratorio de Biología Molecular, Instituto Nacional de Pediatría, Ciudad de México, México
| | - Ángeles Carlos-Reyes
- Laboratorio de Onco-Inmunobiologia, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de México, México
- *Correspondence: Ángeles Carlos-Reyes,
| |
Collapse
|
41
|
Wang X, Huang Z, Li L, Wang G, Dong L, Li Q, Yuan J, Li Y. DNA damage repair gene signature model for predicting prognosis and chemotherapy outcomes in lung squamous cell carcinoma. BMC Cancer 2022; 22:866. [PMID: 35941578 PMCID: PMC9361681 DOI: 10.1186/s12885-022-09954-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lung squamous cell carcinoma (LUSC) is prone to metastasis and likely to develop resistance to chemotherapeutic drugs. DNA repair has been reported to be involved in the progression and chemoresistance of LUSC. However, the relationship between LUSC patient prognosis and DNA damage repair genes is still unclear. METHODS The clinical information of LUSC patients and tumour gene expression level data were downloaded from the TCGA database. Unsupervised clustering and Cox regression were performed to obtain molecular subtypes and prognosis-related significant genes based on a list including 150 DNA damage repair genes downloaded from the GSEA database. The coefficients determined by the multivariate Cox regression analysis and the expression level of prognosis-related DNA damage repair genes were employed to calculate the risk score, which divided LUSC patients into two groups: the high-risk group and the low-risk group. Immune viability, overall survival, and anticarcinogen sensitivity analyses of the two groups of LUSC patients were performed by Kaplan-Meier analysis with the log rank test, ssGSEA and the pRRophetic package in R software. A time-dependent ROC curve was applied to compare the survival prediction ability of the risk score, which was used to construct a survival prediction model by multivariate Cox regression. The prediction model was used to build a nomogram, the discriminative ability of which was confirmed by C-index assessment, and its calibration was validated by calibration curve analysis. Differentially expressed DNA damage repair genes in LUSC patient tissues were retrieved by the Wilcoxon test and validated by qRT-PCR and IHC. RESULT LUSC patients were separated into two clusters based on molecular subtypes, of which Cluster 2 was associated with worse overall survival. A prognostic prediction model for LUSC patients was constructed and validated, and a risk score calculated based on the expression levels of ten DNA damage repair genes was employed. The clinical utility was evaluated by drug sensitivity and immune filtration analyses. Thirteen-one genes were upregulated in LUSC patient samples, and we selected the top four genes that were validated by RT-PCR and IHC. CONCLUSION We established a novel prognostic model based on DNA damage repair gene expression that can be used to predict therapeutic efficacy in LUSC patients.
Collapse
Affiliation(s)
- Xinshu Wang
- Jinzhou Medical University, Shanghai East Hospital, 200120, Shanghai, China
| | - Zhiyuan Huang
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Lei Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Guangxue Wang
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Lin Dong
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.,Department of Cardiothoracic Surgery, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qinchuan Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.,Department of Cardiothoracic Surgery, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jian Yuan
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China. .,Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, 200120, China. .,Ji'an Hospital, Shanghai East Hospital, Ji'an, 343000, China.
| | - Yunhui Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
42
|
Ma DB, Liu XY, Jia H, Zhang Y, Jiang Q, Sun H, Li X, Sun F, Chai Y, Feng F, Liu L. A Novel Small-Molecule Inhibitor of SREBP-1 Based on Natural Product Monomers Upregulates the Sensitivity of Lung Squamous Cell Carcinoma Cells to Antitumor Drugs. Front Pharmacol 2022; 13:895744. [PMID: 35662712 PMCID: PMC9157598 DOI: 10.3389/fphar.2022.895744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/26/2022] [Indexed: 12/16/2022] Open
Abstract
The transcription factor, sterol regulatory element binding protein 1 (SREBP-1), plays important roles in modulating the proliferation, metastasis, or resistance to antitumor agents by promoting cellular lipid metabolism and related cellular glucose-uptake/Warburg Effect. However, the underlying mechanism of SREBP-1 regulating the proliferation or drug-resistance in lung squamous cell carcinoma (LUSC) and the therapeutic strategies targeted to SREBP-1 in LUSC remain unclear. In this study, SREBP-1 was highly expressed in LUSC tissues, compared with the paired non-tumor tissues (the para-tumor tissues). A novel small-molecule inhibitor of SREBP-1, MSI-1 (Ma’s inhibitor of SREBP-1), based on natural product monomers, was identified by screening the database of natural products. Treatment with MSI-1 suppressed the activation of SREBP-1-related pathways and the Warburg effect of LUSC cells, as indicated by decreased glucose uptake or glycolysis. Moreover, treatment of MSI-1 enhanced the sensitivity of LUSC cells to antitumor agents. The specificity of MSI-1 on SREBP-1 was confirmed by molecular docking and point-mutation of SPEBP-1. Therefore, MSI-1 improved our understanding of SREBP-1 and provided additional options for the treatment of LUSC.
Collapse
Affiliation(s)
- De-Bin Ma
- Department of Respiratory and Critical Care Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Xing-Yu Liu
- Department of General Internal Medicine, Central Medical Branch of PLA General Hospital, Beijing, China
| | - Hui Jia
- School of Traditional Chinese Medicine, Shenyang Medical College, Shenyang, China
| | - Yingshi Zhang
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Qiyu Jiang
- Institute of Infectious Diseases, Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huiwei Sun
- Institute of Infectious Diseases, Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaojuan Li
- Institute of Infectious Diseases, Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fang Sun
- Institute of Infectious Diseases, Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yantao Chai
- Department of Clinical Laboratory, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fan Feng
- Department of Clinical Laboratory, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lei Liu
- Department of Respiratory and Critical Care Medicine, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
43
|
Liu YY, Zhao RF, Liu C, Zhou J, Yang L, Li L. MiR-320b and miR-320d as Biomarkers to Predict and Participate in the Formation of Platinum Resistance in Ovarian Cancer Patients. Front Oncol 2022; 12:881496. [PMID: 35592674 PMCID: PMC9110861 DOI: 10.3389/fonc.2022.881496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/06/2022] [Indexed: 12/24/2022] Open
Abstract
Patients with ovarian cancer who receive platinum-based chemotherapy typically develop platinum resistance, which leads to tumor recurrence and mortality. Therefore, finding the underlying mechanisms and biomarkers is critical. A total of 51 platinum-resistant and 70 platinum-sensitive ovarian cancer patients were enrolled in this study. We examined the GSE131978 dataset in the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus database for differentially expressed long non-coding RNAs and messenger RNAs (mRNAs) between platinum-resistant and platinum-sensitive patients and completed a microRNA chip analysis. After filtering by Pearson correlation analysis, the competitive endogenous RNA (ceRNA) networks were subsequently constructed. Then, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology enrichment analyses about mRNAs in ceRNA networks were accomplished. More crucially, we demonstrated the differentially expressed microRNAs using quantitative real-time PCR and fluorescence in situ hybridization. The feasibility of microRNAs as biomarkers to predict platinum resistance and tumor recurrence was assessed using the receiver operating characteristic curve and survival analysis. MiR-320b and miR-320d exhibited high area under the curve values of 0.757 and 0.702, respectively. In our study, ceRNA networks including miR-320b and miR-320d probably provided novel insights for platinum resistance in ovarian cancer patients.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China.,Department of Gynecology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ren-Feng Zhao
- Department of Gynecology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Chao Liu
- Department of Gynecology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jie Zhou
- Department of Gynecology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Liu Yang
- Department of Gynecology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Li Li
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| |
Collapse
|
44
|
Identification of an Immune Gene-Based Cisplatin Response Model and CD27 as a Therapeutic Target against Cisplatin Resistance for Ovarian Cancer. J Immunol Res 2022; 2022:4379216. [PMID: 35647204 PMCID: PMC9133897 DOI: 10.1155/2022/4379216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Objective. Evidence demonstrates that the immune microenvironment is extensively associated with chemotherapy response of ovarian cancer (OV). Herein, this study is aimed at establishing a cisplatin response prediction model for OV on the basis of immune genes. Methods. The expression profiles of cisplatin-sensitive and cisplatin-resistant OV specimens were integrated from multiple public datasets. The abundance scores of 22 immune cells were estimated with CIBERSORT algorithm. Differentially expressed immune genes (DEGs) were determined between cisplatin-sensitive and cisplatin-resistant groups. Thereafter, a cisplatin response model was constructed based on prognostic DEGs with logistic regression analysis. The prediction performance was validated in independent cohorts. The possible relationships between the model and immunotherapy were then assessed. Results. Treg scores were significantly decreased in cisplatin-resistant than cisplatin-sensitive OV specimens, with the opposite results for naïve B cells and activated dendritic cells. Fourteen prognostic DEGs were identified and used to develop a cisplatin-response model. The response scores, estimated by the model, showed favorable performance in discriminating cisplatin-response and nonresponse samples. The response scores also presented significantly negative correlations with three well-known cisplatin-resistant pathways and a positive correlation with the expression of CD274 (PD-L1). Moreover, the decreased CD27 expression was observed in cisplatin-resistant groups, and OV specimens with higher CD27 expressions were more sensitive to cisplatin treatment. Conclusion. Altogether, our findings proposed a cisplatin response prediction model and identified CD27 that might be involved in cisplatin resistance. Further investigations suggested that CD27 could be a promising immunotherapeutic target for cisplatin-resistant subset of OV.
Collapse
|
45
|
ACTL6A deficiency induces apoptosis through impairing DNA replication and inhibiting the ATR-Chk1 signaling in glioblastoma cells. Biochem Biophys Res Commun 2022; 599:148-155. [PMID: 35182941 DOI: 10.1016/j.bbrc.2022.01.124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 11/23/2022]
Abstract
Actin-like 6A (ACTL6A) is a core subunit of the SWI/SNF chromatin remodeling complex and is highly expressed in several types of human cancers including glioblastoma. Recent studies verified that ACTL6A regulates the proliferation, differentiation, and migration of cancer cells. In this study, we identified ACTL6A as an important regulator of DNA replication. ACTL6A knockdown could impair the DNA replication initiation in glioblastoma cells. The regulation of DNA replication by ACTL6A was mediated through regulating the expression of the CDC45-MCM-GINS (CMG) complex genes. Further investigation revealed that ACTL6A transcriptionally regulates MCM5 expression. Furthermore, ACTL6A knockdown induced DNA damage and diminished the activity of the ATR-Chk1 pathway, which ultimately led glioblastoma cells to apoptosis and death. Taken together, our findings highlight the critical role of ACTL6A in DNA replication and ATR-Chk1 pathway, and reveal a potential target for therapeutic intervention in glioblastoma.
Collapse
|
46
|
Zhang Z, Guo H, Zhang H. Upregulated Expression of Actin-Like 6A is a Risk Factor Affecting the Prognosis of Pancreatic Cancer. Cancer Manag Res 2022; 13:9467-9475. [PMID: 35002324 PMCID: PMC8722579 DOI: 10.2147/cmar.s342745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Actin-like 6A (ACTL6A), a regulatory subunit of the ATP-dependent chromatin-remodeling complex SWI/SNF, acts as an oncogenic factor. This study is aimed at evaluating the correlation between ACTL6A expression and clinicopathological parameters in pancreatic cancer (PC) patients. Methods The differences of Actl6a mRNA expression between PC tissues and normal pancreatic tissues were analyzed in public databases, and ACTL6A expression was then determined and confirmed in 60 paired tissue specimens using immunohistochemistry staining. The association analysis between ACTL6A expression and the clinicopathological characteristics was analyzed, as well as Kaplan–Meier survival analysis. Univariate and multivariate Cox analyses were performed to identify the prognostic factors in the overall survival (OS) of patients with PC. Results The mRNA expression of Actl6a showed significantly higher in PC compared to normal controls (p < 0.05) from public databases. The score of immunohistochemistry staining further confirmed that ACTL6A expression was significantly upregulated in PC tissues (p < 0.001) through immunohistochemistry staining. High ACTL6A expression was associated with lymphovascular space invasion of PC. Kaplan–Meier analysis revealed that the high expression of ACTL6A was markedly associated with poor OS. Moreover, univariate and multivariate analysis demonstrated that ACTL6A acted as an independent risk factor for PC prognosis. Conclusion ACTL6A is upregulated in PC and acts as a risk factor for poor prognosis in patients with PC, and therefore clinicians could around it design preventive measures and individualized treatment to improve mortality in patients with PC.
Collapse
Affiliation(s)
- Zhong Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Haochun Guo
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Haijun Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
47
|
Zhou Y, Xia W, Liu C, Ye S, Wang L, Liu R. A DNA and Mitochondria Dual-targeted Photosensitizer for Two-Photon Excited Bioimaging and Photodynamic Therapy. Biomater Sci 2022; 10:1742-1751. [DOI: 10.1039/d1bm01969d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The biological substrates and organelle multi-targeted photosensitizers for ultra-efficient cancer treatment through photodynamic therapy (PDT) are highly desirable. Herein, a multiple pyridinium anchored photosensitizer containing the triphenylamine unit, TPA-2PI has...
Collapse
|
48
|
Šimoničová K, Janotka Ľ, Kavcová H, Sulová Z, Breier A, Messingerova L. Different mechanisms of drug resistance to hypomethylating agents in the treatment of myelodysplastic syndromes and acute myeloid leukemia. Drug Resist Updat 2022; 61:100805. [DOI: 10.1016/j.drup.2022.100805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 12/11/2022]
|
49
|
miR-651-3p Enhances the Sensitivity of Hepatocellular Carcinoma to Cisplatin via Targeting ATG3-Mediated Cell Autophagy. JOURNAL OF ONCOLOGY 2021; 2021:5391977. [PMID: 34457004 PMCID: PMC8390158 DOI: 10.1155/2021/5391977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022]
Abstract
Drug resistance is a major challenge for hepatocellular carcinoma (HCC) treatment in a clinic, which limits the therapeutic effect of the chemotherapeutic drugs, including cisplatin (CDDP), in this disease. Mounting evidence has identified that miRNAs dysfunction is related to the resistance of tumor cells to CDDP, and miR-651-3p has been identified as a tumor inhibitor to suppress the progression of multiple tumors. However, the role of miR-651-3p in HCC remains unclear. In this study, the relative expression of miR-651-3p in HCC tissues and cell lines were measured, and the functions of miR-651-3p were also observed by CCK-8 assay, flow cytometry assay, and Western blot. Moreover, the downstream target of miR-651-3p was predicted and verified via TargetScan and dual-luciferase reporter assay, and its functions were also investigated. The results showed that miR-651-3p was significantly downregulated in HCC tissues and cell lines, and the decreased miR-651-3p was also observed in CDDP-induced cells. miR-651-3p upregulation could effectively inhibit the proliferation and induce the apoptosis of R-HepG2. It was also found that ATG3 was a downstream target of miR-651-3p, and ATG3 was highly upregulated in HCC tissues. Moreover, the upregulated ATG3 could partly reverse the effects of miR-651-3p on R-HepG2. Besides, miR-651-3p involved the autophagy pathway of the HCC cells via targeting ATG3. In conclusion, miR-651-3p could regulate the autophagy to enhance the sensitivity of HepG2 cells to CDDP via targeting ATG3.
Collapse
|
50
|
Wang Q, Cao Z, Wei Y, Zhang J, Cheng Z. Potential Role of SWI/SNF Complex Subunit Actin-Like Protein 6A in Cervical Cancer. Front Oncol 2021; 11:724832. [PMID: 34395295 PMCID: PMC8358818 DOI: 10.3389/fonc.2021.724832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
SWI/SNF complex subunit Actin-like protein 6A (ACTL6A) has been regarded as an oncogene, regulating the proliferation, migration and invasion of cancer cells. However, the expression pattern and biological role of ACTL6A in cervical cancer have not been reported. In this study, the mRNA expression and protein level of ACTL6A in cervical cancer samples were determined by public database and immunohistochemical (IHC) analysis. The effects of ACTL6A on cervical cancer cells were investigated via MTT, colony-formation assay, tumor xenografts and flow cytometry. Gene set enrichment analysis (GSEA) was used to explore the potential mechanism of ACTL6A in regulating tumorigenesis of cervical cancer. The results revealed that ACTL6A was markedly upregulated in cervical cancer tissues. Silencing ACTL6A expression resulted in decreased cervical cancer cell proliferation, colony formation and tumorigenesis in vitro and in vivo. Furthermore, we demonstrated that knockdown of ACTL6A induced cell cycle arrest at G1 phase, ACTL6A-mediated proliferation and cell cycle progression were c-Myc dependent. Our study provides the role of ACTL6A in cervical oncogenesis and reveals a potential target for therapeutic intervention in this cancer type.
Collapse
Affiliation(s)
- Qingying Wang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zuozeng Cao
- Department of Obstetrics and Gynecology, Xinhua Hospital Chongming Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingze Wei
- Department of Pathology, Nantong Tumor Hospital, Nantong, China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongping Cheng
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|