1
|
Miliano C, Dong Y, Proffit M, Corvalan N, Natividad LA, Gregus AM, Buczynski MW. Chronic intermittent ethanol produces nociception through endocannabinoid-independent mechanisms in mice. Neuropharmacology 2025:110502. [PMID: 40360036 DOI: 10.1016/j.neuropharm.2025.110502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/18/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025]
Abstract
Alcohol use disorder (AUD) affects millions of people and represents a significant health and economic burden. Pain is a frequently under-treated aspect of hyperkatifeia during alcohol withdrawal, yet to date no drugs have received FDA approval for the treatment of this indication in AUD patients. This study aims to evaluate the potential of targeting bioactive lipid signaling pathways as a therapeutic approach for treating alcohol withdrawal-related pain hypersensitivity. We utilized a chronic intermittent ethanol (CIE) vapor exposure model in C57BL/6J mice of both sexes to establish alcohol dependence and demonstrated that CIE produced robust tactile allodynia and thermal hyperalgesia during withdrawal that was independent of prior blood alcohol levels. Next, we evaluated four drugs for their efficacy in reversing tactile allodynia during abstinence from CIE using a cross-over treatment design that included FDA-approved naltrexone as well as commercially available inhibitors targeting the inflammatory lipid signaling enzymes fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), and 15-Lipoxygenase (LOX). None of these compounds produced significant therapeutic benefit in reversing established CIE-induced tactile allodynia, despite attenuating pain-like behaviors at these doses in other chronic pain models. Additionally, we assessed plasma endocannabinoid levels in both sexes during withdrawal. We found that there was an inherent sex difference in the endogenous anti-inflammatory endocannabinoid tone in naive mice and that CIE treatment affected endocannabinoids levels in female mice only. These findings underscore the need to better understand the underlying causes of AUD-induced allodynia and to develop novel therapeutic approaches to mitigate pain hypersensitivity in AUD patients.
Collapse
Affiliation(s)
- C Miliano
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - Y Dong
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - M Proffit
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - N Corvalan
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - L A Natividad
- College of Pharmacy, Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, Texas, USA
| | - A M Gregus
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061.
| | - M W Buczynski
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061.
| |
Collapse
|
2
|
Zhang L, Li Y, Gao W, Li Z, Wu T, Lang C, Rui L, Zhang W. Deficiency of neuronal LGR4 increases energy expenditure and inhibits food intake via hypothalamic leptin signaling. EMBO Rep 2025; 26:2098-2120. [PMID: 40069508 PMCID: PMC12018946 DOI: 10.1038/s44319-025-00398-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/18/2024] [Accepted: 01/24/2025] [Indexed: 04/25/2025] Open
Abstract
The metabolic effects of leucine-rich repeat-containing G protein-coupled receptor 4 (LGR4) remain largely unknown. Here, we showed that knockdown of Lgr4 in nestin progenitor or Sp1 mature neurons reduced high fat diet (HFD)-induced obesity by increasing energy expenditure and inhibiting food intake. Deficiency of LGR4 in AgRP neurons increased energy expenditure, and inhibited food intake, leading to alterations in glucose and lipid metabolism. Knock-down of Lgr4 in Sf1 neurons enhanced energy expenditure, reduced adiposity, and improved glucose and lipid metabolism. The metabolic benefits of neuronal LGR4 occurred via improvement of leptin signaling in AgRP and Sf1 neurons. Knockdown of Lgr4 in nestin, Sp1, AgRP or Sf1 neurons decreased hypothalamic levels of SOCS-3, and increased phosphorylation of STAT3. These alterations were associated with a significant reduction in the hypothalamic levels of β-catenin. Inhibition of β-catenin signaling by Dkk1 significantly attenuated the decrement of phospho-STAT3 and concurrent increase of SOCS-3 induced by Rspondin 3, an endogenous ligand for LGR4. Our results thus demonstrate that hypothalamic LGR4 may promote energy conversation by increasing food intake and decreasing energy expenditure. Deficiency of neuronal LGR4 improves hypothalamic leptin sensitivity via suppression of β-catenin signaling.
Collapse
Affiliation(s)
- Liping Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Yuan Li
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Wenbin Gao
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Ziru Li
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Tong Wu
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Chunhui Lang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Liangyou Rui
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA.
| | - Weizhen Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
Chan M, Ogawa S. GPR139, an Ancient Receptor and an Emerging Target for Neuropsychiatric and Behavioral Disorders. Mol Neurobiol 2025:10.1007/s12035-025-04828-2. [PMID: 40102345 DOI: 10.1007/s12035-025-04828-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 03/09/2025] [Indexed: 03/20/2025]
Abstract
GPR139 is an orphan G-protein-coupled receptor that is predominantly expressed in several midbrain regions, e.g., the habenula, striatum, and hypothalamus. GPR139 gene is highly conserved across vertebrate phylogenetic taxa, suggesting its fundamental importance in neurophysiology. Evidence from both animal studies and human genetic association studies has demonstrated that dysregulation of GPR139 expression and function is linked to aberrant behaviors, cognitive deficits, alterations in sleep and alertness, and substance abuse and withdrawal. Animal knockout models suggest that GPR139 plays an anti-opioid role by modulating the signaling activity of the μ-opioid receptor (MOR), as well as the intensity of withdrawal symptoms and nociception in behavioral paradigms. Modulation of GPR139 activity by surrogate agonists such as TAK-041 and JNJ-63533054 has shown promising results in experimental models; however, the use of TAK-041 in clinical trials has produced heterogeneous effects and has not met the intended primary endpoint. Here, we highlight current in vitro and in vivo studies of GPR139, its potential physiological roles, and therapeutic potential in the pathophysiology of neuropsychiatric and behavioral disorders. This review aims to focus on the current knowledge gaps to facilitate future studies that will contribute to the understanding of GPR139 as a therapeutic target for neuropsychiatric and behavioral disorders.
Collapse
Affiliation(s)
- Minyu Chan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Satoshi Ogawa
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
4
|
Wang B, Yu Y, Li J, Xiong Y, Zhang X, Wan Y, Zheng R, Zhang C. Hypothalamic GABAergic neurons: their roles in health and metabolic diseases. Front Endocrinol (Lausanne) 2025; 16:1551741. [PMID: 40130157 PMCID: PMC11930815 DOI: 10.3389/fendo.2025.1551741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/19/2025] [Indexed: 03/26/2025] Open
Abstract
Hypothalamic GABAergic neurons are important in regulating metabolic homeostasis and energy balance. Serving as critical integrators of catabolic and anabolic processes, these neurons orchestrate a broad spectrum of metabolic functions, including feeding, nutrient metabolism, fluid homeostasis, basal metabolism, thermoregulation, and circadian rhythms. Recent advances in neuroscience have facilitated a deeper exploration of the role of hypothalamic GABAergic neurons in metabolic regulation. Emerging research has uncovered key mechanisms through which these neurons modulate energy balance and maintain metabolic balance. These findings not only enhance our understanding of obesity and related metabolic disorders but also underscore the link between hypothalamic dysfunction and prevalent metabolic diseases such as obesity and type 2 diabetes. This review summarizes the latest advancements in our understanding of the role of hypothalamic GABAergic neurons in metabolic regulation. It aims to elucidate the neural and molecular mechanisms underlying hypothalamic control of metabolism, offering new perspectives for the diagnosis and treatment of metabolic disorders.
Collapse
Affiliation(s)
- Bingwei Wang
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
- Nucleic Acid Medicine, Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
| | - Yang Yu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
- Nucleic Acid Medicine, Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Juan Li
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Xiong
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
| | - Xin Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
- Nucleic Acid Medicine, Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
- Beijing Life Science Academy, Beijing, China
| | - Chunxiang Zhang
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
- Nucleic Acid Medicine, Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Yu H, Feng N, Zhong W, Han Y, Cheng Y, Zhang Z, Wang Y, Gao P, Huang R, Zhang C, Liu Z, Dong J, He Z, Lai H, Shen Z, Zhai Q. Nmnat2 deficiency in the arcuate nucleus or paraventricular nucleus induces Sarm1-independent neuron loss and liraglutide-reversible obesity. FASEB J 2025; 39:e70400. [PMID: 39964232 DOI: 10.1096/fj.202402546r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/08/2025] [Accepted: 02/06/2025] [Indexed: 05/10/2025]
Abstract
Nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2) plays an important role in maintaining axon integrity, and the arcuate nucleus (ARC), and paraventricular nucleus (PVN) are crucial nuclei in the control of energy balance. However, the effect of Nmnat2 deficiency in ARC and PVN is still unclear. Nmnat2 loxP/loxP or Nmnat2 loxP/loxP , Sarm1 -/- mice were bilaterally injected with AAV-CMV-GFP-Cre once into the ARC, PVN, or lateral parabrachial nucleus (LPBN) to obtain Nmnat2 ARC-/- , Nmnat2 PVN-/- , Nmnat2 LPBN-/- , Nmnat2 ARC-/- , SKO, Nmnat2 PVN-/- , SKO, or Nmnat2 LPBN-/- , SKO mice. Syn1-Cre mice were bilaterally injected with AAV-EF1a-flex-taCasp3-TEVp once into the ARC or PVN to specifically induce neuron loss. Metabolic changes were measured in the mice intraperitoneally injected with or without liraglutide, a glucagon-like peptide-1 (GLP-1) analog. Neuron loss and neuron activation were monitored by immunofluorescence. Deletion of Nmnat2 in ARC or PVN of mice leads to neuron loss, increased food intake, and obesity in a Sarm1-independent manner. Intraperitoneal injection of liraglutide activates neurons in PVN and LPBN, and attenuates hyperphagia and obesity induced by Nmnat2 deletion or apoptosis of Syn1-positive neurons in ARC or PVN, but has no significant effect on neuron loss. Nmnat2 deficiency in LPBN leads to death within 2 weeks, which can be markedly rescued by Sarm1 deficiency. These data show that deletion of Nmnat2 in ARC or PVN in adult mice leads to Sarm1-independent neuron loss, and liraglutide-reversible hyperphagia and obesity. These findings also elucidate the integrated role of ARC or PVN for downregulating food intake, the requirement of LPBN for survival, and the ARC- or PVN-independent effect of GLP-1 on food intake.
Collapse
Affiliation(s)
- Huimin Yu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ning Feng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wuling Zhong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yumo Han
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yalan Cheng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhentong Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yingqi Wang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Peidong Gao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rui Huang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Cong Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zongyang Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jieya Dong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhishui He
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hejin Lai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ziru Shen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiwei Zhai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
6
|
Zhang M, Wang Q, Wang Y. Brain endocannabinoid control of metabolic and non-metabolic feeding behaviors. Neurochem Int 2025; 183:105921. [PMID: 39708909 DOI: 10.1016/j.neuint.2024.105921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/27/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
The central endocannabinoid (eCB) system in brain shows a crucial role in the regulation of feeding behaviors, influencing both metabolic and non-metabolic mechanisms of appetite control, which has been paid much attention. Although there are already many review articles discussing eCB modulation of feeding behaviors, our paper attempts to summarize the recent advancements through synapses, circuits, and network in brain. Our focus is on the dual role of eCB signalling in regulating metabolic energy balance and hedonic reward-related feeding. In the context of metabolic regulation of feeding behaviors, eCBs affect the hypothalamic circuits that balance hunger and satiety through signal integration related to energy status and nutrient availability. Dysregulation of this system can contribute to metabolic disorders such as obesity and anorexia. In non-metabolic feeding, the eCB system influences the hedonic aspects of eating by modulating reward pathways, including the mesolimbic system and the olfactory bulb, critical for motivating food intake and processing sensory cues. This review also explores therapeutic strategies targeting the eCB system, including cannabinoid receptor antagonists and eCB hydrolase enzyme inhibitors, which hold promise for treating conditions associated with appetite dysregulation and eating disorders. By synthesizing recent findings, we aim to highlight the intricate mechanisms through which the eCB system affects feeding behavior and to propose future directions for research and therapeutic intervention in the realm of appetite control and eating disorders.
Collapse
Affiliation(s)
- Maoxing Zhang
- Basic School of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 260071, China
| | - Qingyu Wang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Ying Wang
- Basic School of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 260071, China.
| |
Collapse
|
7
|
Rodríguez Rondón AV, Welling MS, van den Akker ELT, van Rossum EFC, Boon EMJ, van Haelst MM, Delhanty PJD, Visser JA. MC4R Variants Modulate α-MSH and Setmelanotide Induced Cellular Signaling at Multiple Levels. J Clin Endocrinol Metab 2024; 109:2452-2466. [PMID: 38567654 PMCID: PMC11403317 DOI: 10.1210/clinem/dgae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/10/2024] [Indexed: 04/04/2024]
Abstract
CONTEXT The melanocortin-4 receptor (MC4R) plays an important role in body weight regulation. Pathogenic MC4R variants are the most common cause of monogenic obesity. OBJECTIVE We have identified 17 MC4R variants in adult and pediatric patients with obesity. Here we aimed to functionally characterize these variants by analyzing 4 different aspects of MC4R signaling. In addition, we aimed to analyze the effect of setmelanotide, a potent MC4R agonist, on these MC4R variants. MATERIALS AND METHODS Cell surface expression and α-melanocyte stimulating hormone (α-MSH)- or setmelanotide-induced cAMP response, β-arrestin-2 recruitment, and ERK activation were measured in cells expressing either wild type or variant MC4R. RESULTS We found a large heterogeneity in the function of these variants. We identified variants with a loss of response for all studied MC4R signaling, variants with no cAMP accumulation or ERK activation but normal β-arrestin-2 recruitment, and variants with normal cAMP accumulation and ERK activation but decreased β-arrestin-2 recruitment, indicating disrupted desensitization and signaling mechanisms. Setmelanotide displayed a greater potency and similar efficacy as α-MSH and induced significantly increased maximal cAMP responses of several variants compared to α-MSH. Despite the heterogeneity in functional response, there was no apparent difference in the obesity phenotype in our patients. CONCLUSION We show that these obesity-associated MC4R variants affect MC4R signaling differently yet lead to a comparable clinical phenotype. Our results demonstrate the clinical importance of assessing the effect of MC4R variants on a range of molecular signaling mechanisms to determine their association with obesity, which may aid in improving personalized treatment.
Collapse
Affiliation(s)
- Alejandra V Rodríguez Rondón
- Obesity Center CGG and Expertise Center Genetic Obesity, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Mila S Welling
- Obesity Center CGG and Expertise Center Genetic Obesity, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Department of Pediatrics, Division of Endocrinology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Erica L T van den Akker
- Obesity Center CGG and Expertise Center Genetic Obesity, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Department of Pediatrics, Division of Endocrinology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Elisabeth F C van Rossum
- Obesity Center CGG and Expertise Center Genetic Obesity, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Elles M J Boon
- Department of Human Genetics, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Mieke M van Haelst
- Department of Human Genetics, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Patric J D Delhanty
- Obesity Center CGG and Expertise Center Genetic Obesity, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Jenny A Visser
- Obesity Center CGG and Expertise Center Genetic Obesity, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
8
|
Wang Y, Fang N, Wang Y, Geng Y, Li Y. Activating MC4R Promotes Functional Recovery by Repressing Oxidative Stress-Mediated AIM2 Activation Post-spinal Cord Injury. Mol Neurobiol 2024; 61:6101-6118. [PMID: 38277117 DOI: 10.1007/s12035-024-03936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
Spinal cord injury (SCI) is a destructive neurological trauma that induces permanent sensory and motor impairment as well as a deficit in autonomic physiological function. Melanocortin receptor 4 (MC4R) is a G protein-linked receptor that is extensively expressed in the neural system and contributes to inhibiting inflammation, regulating mitochondrial function, and inducing programmed cell death. However, the effect of MC4R in the modulation of oxidative stress and whether this mechanism is related to the role of absent in melanoma 2 (AIM2) in SCI are not confirmed yet. In the current study, we demonstrated that MC4R is significantly increased in the neurons of spinal cords after trauma and oxidative stimulation of cells. Further, activation of MC4R by RO27-3225 effectively improved functional recovery, inhibited AIM2 activation, maintained mitochondrial homeostasis, repressed oxidative stress, and prevented Drp1 translocation to the mitochondria. Meanwhile, treating Drp1 inhibitors would be beneficial in reducing AIM2 activation, and activating AIM2 could abolish the protective effect of MC4R on neuron homeostasis. In conclusion, we demonstrated that MC4R protects against neural injury through a novel process by inhibiting mitochondrial dysfunction, oxidative stress, as well as AIM2 activation, which may serve as an available candidate for SCI therapy.
Collapse
Affiliation(s)
- Yongli Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Orthopaedics, Huzhou Central Hospital, Huzhou Basic and Clinical Translation of Orthopaedics Key Laboratory, Huzhou, Zhejiang, China
| | - Nongtao Fang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yikang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
9
|
Wu S, Wang J, Xu Y, Zhang Z, Jin X, Liang Y, Ge Y, Zhan H, Peng L, Luo D, Li M, Bi W, Guan Q, He Z. Energy deficiency promotes rhythmic foraging behavior by activating neurons in paraventricular hypothalamic nucleus. Front Nutr 2023; 10:1278906. [PMID: 37899828 PMCID: PMC10600490 DOI: 10.3389/fnut.2023.1278906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Background Dysregulation of feeding behavior leads to a variety of pathological manifestations ranging from obesity to anorexia. The foraging behavior of animals affected by food deficiency is not fully understood. Methods Home-Cage system was used to monitor the behaviors. Immunohistochemical staining was used to monitor the trend of neuronal activity. Chemogenetic approach was used to modify neuronal activity. Results We described here a unique mouse model of foraging behavior and unveiled that food deprivation significantly increases the general activities of mice with a daily rhythmic pattern, particularly foraging behavior. The increased foraging behavior is potentiated by food cues (mouthfeel, odor, size, and shape) and energy deficit, rather than macronutrient protein, carbohydrate, and fat. Notably, energy deficiency increases nocturnal neuronal activity in paraventricular hypothalamic nucleus (PVH), accompanying a similar change in rhythmic foraging behavior. Activating neuronal activity in PVH enhances the amplitude of foraging behavior in mice. Conversely, inactivating neuronal activity in PVH decreases the amplitude of foraging behavior and impairs the rhythm of foraging behavior. Discussion These results illustrate that energy status and food cues regulate the rhythmic foraging behavior via PVH neuronal activity. Understanding foraging behavior provides insights into the underlying mechanism of eating-related disorders.
Collapse
Affiliation(s)
- Shanshan Wu
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jing Wang
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yang Xu
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zicheng Zhang
- School of Information Management, Nanjing University, Nanjing, Jiangsu, China
| | - Xinchen Jin
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yixiao Liang
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yueping Ge
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Huidong Zhan
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Li Peng
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Dandan Luo
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mengzhu Li
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wenkai Bi
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qingbo Guan
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhao He
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
10
|
Liu H, Li X, Li P, Hai R, Li J, Fan Q, Wang X, Chen Y, Cao X, Zhang X, Gao R, Wang K, Du C. Glutamatergic melanocortin-4 receptor neurons regulate body weight. FASEB J 2023; 37:e22920. [PMID: 37078546 DOI: 10.1096/fj.202201786r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/22/2023] [Accepted: 03/30/2023] [Indexed: 04/21/2023]
Abstract
The locus coeruleus (LC), enriched in vesicular glutamate transporter 2 (VGlut2) neurons, is a potential homeostasis-regulating hub. However, the identity of melanocortin-4 receptor (MC4R) neurons in the paraventricular nucleus (PVN) of the hypothalamus, PVNVGlut2::MC4R and LCVGlut2::MC4R regulation of body weight, and axonal projections of LCVGlut2 neurons remain unclear. Conditional knockout of MC4R in chimeric mice was used to confirm the effects of VGlut2. Interscapular brown adipose tissue was injected with pseudorabies virus to study the central nervous system projections. We mapped the LCVGlut2 circuitry. Based on the Cre-LoxP recombination system, specific knockdown of MC4R in VGlut2 neurons resulted in weight gain in chimeric mice. Adeno-associated virus-mediated knockdown of MC4R expression in the PVN and LC had potential superimposed effects on weight gain, demonstrating the importance of VGlut2 neurons. Unlike these wide-ranging efferent projections, the PVN, hypothalamic arcuate nucleus, supraoptic nucleus of the lateral olfactory tegmental nuclei, and nucleus tractus solitarius send excitatory projections to LCVGlut2 neurons. The PVN → LC glutamatergic MC4R long-term neural circuit positively affected weight management and could help treat obesity.
Collapse
Affiliation(s)
- Haodong Liu
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaojing Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Penghui Li
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Rihan Hai
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou, China
| | - Jiacheng Li
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Qi Fan
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Xing Wang
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yujie Chen
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou, China
| | - Xiaojuan Cao
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou, China
| | - Xiaoyu Zhang
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou, China
| | - Ruifeng Gao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Kun Wang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
- Key Laboratory of Crop Cultivation Physiology and Green Production in Hebei Province, Shijiazhuang, China
| | - Chenguang Du
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou, China
| |
Collapse
|
11
|
Markov DD, Dolotov OV, Grivennikov IA. The Melanocortin System: A Promising Target for the Development of New Antidepressant Drugs. Int J Mol Sci 2023; 24:ijms24076664. [PMID: 37047638 PMCID: PMC10094937 DOI: 10.3390/ijms24076664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Major depression is one of the most prevalent mental disorders, causing significant human suffering and socioeconomic loss. Since conventional antidepressants are not sufficiently effective, there is an urgent need to develop new antidepressant medications. Despite marked advances in the neurobiology of depression, the etiology and pathophysiology of this disease remain poorly understood. Classical and newer hypotheses of depression suggest that an imbalance of brain monoamines, dysregulation of the hypothalamic-pituitary-adrenal axis (HPAA) and immune system, or impaired hippocampal neurogenesis and neurotrophic factors pathways are cause of depression. It is assumed that conventional antidepressants improve these closely related disturbances. The purpose of this review was to discuss the possibility of affecting these disturbances by targeting the melanocortin system, which includes adrenocorticotropic hormone-activated receptors and their peptide ligands (melanocortins). The melanocortin system is involved in the regulation of various processes in the brain and periphery. Melanocortins, including peripherally administered non-corticotropic agonists, regulate HPAA activity, exhibit anti-inflammatory effects, stimulate the levels of neurotrophic factors, and enhance hippocampal neurogenesis and neurotransmission. Therefore, endogenous melanocortins and their analogs are able to complexly affect the functioning of those body’s systems that are closely related to depression and the effects of antidepressants, thereby demonstrating a promising antidepressant potential.
Collapse
Affiliation(s)
- Dmitrii D. Markov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Oleg V. Dolotov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Igor A. Grivennikov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|
12
|
Scheyer A, Yasmin F, Naskar S, Patel S. Endocannabinoids at the synapse and beyond: implications for neuropsychiatric disease pathophysiology and treatment. Neuropsychopharmacology 2023; 48:37-53. [PMID: 36100658 PMCID: PMC9700791 DOI: 10.1038/s41386-022-01438-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/09/2022]
Abstract
Endocannabinoids (eCBs) are lipid neuromodulators that suppress neurotransmitter release, reduce postsynaptic excitability, activate astrocyte signaling, and control cellular respiration. Here, we describe canonical and emerging eCB signaling modes and aim to link adaptations in these signaling systems to pathological states. Adaptations in eCB signaling systems have been identified in a variety of biobehavioral and physiological process relevant to neuropsychiatric disease states including stress-related disorders, epilepsy, developmental disorders, obesity, and substance use disorders. These insights have enhanced our understanding of the pathophysiology of neurological and psychiatric disorders and are contributing to the ongoing development of eCB-targeting therapeutics. We suggest future studies aimed at illuminating how adaptations in canonical as well as emerging cellular and synaptic modes of eCB signaling contribute to disease pathophysiology or resilience could further advance these novel treatment approaches.
Collapse
Affiliation(s)
| | - Farhana Yasmin
- Northwestern Center for Psychiatric Neuroscience, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Saptarnab Naskar
- Northwestern Center for Psychiatric Neuroscience, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sachin Patel
- Northwestern Center for Psychiatric Neuroscience, Chicago, IL, USA.
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|