1
|
Zhang J, Villalobos LF, Lee J, Zhong M, Elimelech M. Ionophore-Based Molecular Layer-by-Layer Polyamide Membranes for Facilitated Single-Ion Transport. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40359549 DOI: 10.1021/acsami.5c02331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Single-ion-selective membranes are indispensable for efficient ion separations in environmental, energy, and biomedical technologies. Inspired by biological ion channels, this work harnessed the selective and reversible ion binding features of ionophores to fabricate an ultrathin, ionophore-based K+-selective polyamide membrane through molecular layer-by-layer (m-LbL) polymerization with 18-crown-6-functionalized monomers. Compared with Cs+, Li+, and Mg2+, K+ exhibited the highest binding energy to 18-crown-6, facilitating its transport over the competing cations across the sub-10 nm polyamide film in a binary salt mixture. The need for competitive binding for selective K+ transport was further demonstrated through investigations of ion selectivity at varying concentration ratios between K+ and competing cations. Additionally, we extended the Nernst-Planck equation to describe individual ion flux in a binary system, identifying factors that govern ion transport. Our findings demonstrate the potential of selective single-ion transport enabled by preferential ion binding, showing promise for the development of biomimetic ion-selective polymeric membranes.
Collapse
Affiliation(s)
- Junwei Zhang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Luis Francisco Villalobos
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Junwoo Lee
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Mingjiang Zhong
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Menachem Elimelech
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Rice WaTER Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
2
|
Bao S, Ma Z, Yu L, Li Q, Xia J, Song S, Sui K, Zhao Y, Liu X, Gao J. Randomly oriented covalent organic framework membrane for selective Li + sieving from other ions. Nat Commun 2025; 16:3896. [PMID: 40274803 PMCID: PMC12022084 DOI: 10.1038/s41467-025-59188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
Certain biological channels exhibit remarkable selectivity, effectively distinguishing between competing cations. If artificial membranes could achieve similar precision in differentiating competing ions from Li+, it could advance sustainable technologies in lithium extraction. In this study, we present a covalent organic framework (COF) membrane featuring a randomly oriented structure that enables selective separation of major competing ions from Li+. The random orientation results in narrow pores, which impart size-based selectivity among alkaline ions. Additionally, the COF incorporates sulfonic groups that preferentially bind to Na+ and K+, facilitating their transport while retaining Li+. These synergistic mechanisms endow the membrane with a selectivity beyond detection limit for K+ and Na+ over Li+. When driven by an electrical potential, the ion flux through the membrane is enhanced by over an order of magnitude. Notably, the membrane also permits the transport of Mg2+ and Ca2+ while still rejecting Li+, leveraging differences in their ion mobility. This work should advance the design and construction of biomimetic materials for the extraction of valuable species from seawater and other aqueous sources.
Collapse
Affiliation(s)
- Shiwen Bao
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, P. R. China
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, P. R. China
| | - Zhaoyu Ma
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, P. R. China
| | - Lei Yu
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, P. R. China
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, P. R. China
| | - Qi Li
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, P. R. China
| | - Jiaxiang Xia
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, P. R. China
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, P. R. China
| | - Song Song
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, P. R. China
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, P. R. China
| | - Kunyan Sui
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, P. R. China.
| | - Yongye Zhao
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, P. R. China
| | - Xueli Liu
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, P. R. China.
| | - Jun Gao
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, P. R. China.
- Shandong Energy Institute, Qingdao, P. R. China.
| |
Collapse
|
3
|
Jiang D, Hill JP, Henzie J, Nam HN, Phung QM, Zhu L, Wang J, Xia W, Zhao Y, Kang Y, Asahi T, Bu R, Xu X, Yamauchi Y. Selective Electrochemical Capture of Monovalent Cations Using Crown Ether-Functionalized COFs. J Am Chem Soc 2025; 147:12460-12468. [PMID: 40185696 DOI: 10.1021/jacs.4c16346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Electrochemical adsorption offers a promising approach for the separation of monovalent cations, which is an important but challenging subject in separation science. However, progress in this area has been hampered by the lack of suitable materials with effective ion selectivity. In this work, we present the synthesis of covalent organic frameworks (COFs) functionalized with a series of crown ethers (NCx-TAB-COFs, x donate 12, 15, 18, indicating the size of crown ether) for the efficient and highly selective electrochemical capture of monovalent cations. In our design, crown ether moieties act as confinement sites, imparting high selectivity for different monovalent cations depending on the cavity dimensions of the crown ether present. COFs electrodes prepared using the novel crown-COFs exhibit superior performance for the selective sequestration of monovalent (alkali metal) cations. Notably, 18-crown-6 ether-substituted COF (NC18-TAB-COF) shows a remarkable selectivity (14.26) for K+ over Na+ and a substantial Rb+/Na+ selectivity of 22.4. Furthermore, NCx-TAB-COFs maintain their remarkable selectivity and capacity under mixed-cation conditions. Density functional theory calculations and molecular dynamics simulations suggest that the unexpectedly high selectivity for larger cations is likely due to diverse binding modes in conjunction with the porous structure of the COFs. Given their lower dehydration-free energies and smaller hydrodynamic radii, K+, Rb+, and Cs+ more readily permeate the confined channels of COFs. In contrast, Na+ and Li+, with higher dehydration-free energies and hydrodynamic radii, diffuse into the NCx-TAB-COFs structure at a much slower rate and are bound predominantly to the surfaces of the COFs.
Collapse
Affiliation(s)
- Dong Jiang
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jonathan P Hill
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Joel Henzie
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Ho Ngoc Nam
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Quan Manh Phung
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Liyang Zhu
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Jie Wang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Wei Xia
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
| | - Yingji Zhao
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yunqing Kang
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Toru Asahi
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Ran Bu
- State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical, Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, P. R. China
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
4
|
Fu Q, Ma Z, Gao J. Biomimetic ion channels with subnanometer sizes for ion sieving: a mini-review. NANOSCALE 2025; 17:9021-9039. [PMID: 40127218 DOI: 10.1039/d5nr00758e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
The remarkable ion selectivity of biological systems has inspired the development of artificial ion channels with Ångström-scale precision, expanding their potential applications in ion separation, energy conversion, and water purification. This mini-review systematically examines fundamental ion-sieving mechanisms operating at the subnanoscale, highlighting advanced fabrication strategies involving synthetic ion channels on lipid bilayers and solid-state ion channels. We further explore membrane material innovations spanning zero-dimensional nanopores to three-dimensional crystalline frameworks, emphasizing structure-function relationships in channel design. The discussion concludes with critical perspectives on scalability challenges and future research directions, outlining pathways toward next-generation sustainable ion sieving technologies.
Collapse
Affiliation(s)
- Qianqian Fu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China.
| | - Zhaoyu Ma
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China.
| | - Jun Gao
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China.
- Shandong Energy Institute, Qingdao 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| |
Collapse
|
5
|
Yang D, Yang Y, Wong T, Iguodala S, Wang A, Lovell L, Foglia F, Fouquet P, Breakwell C, Fan Z, Wang Y, Britton MM, Williams DR, Shah N, Xu T, McKeown NB, Titirici MM, Jelfs KE, Song Q. Solution-processable polymer membranes with hydrophilic subnanometre pores for sustainable lithium extraction. NATURE WATER 2025; 3:319-333. [PMID: 40144313 PMCID: PMC11932922 DOI: 10.1038/s44221-025-00398-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/30/2025] [Indexed: 03/28/2025]
Abstract
Membrane-based separation processes hold great promise for sustainable extraction of lithium from brines for the rapidly expanding electric vehicle industry and renewable energy storage. However, it remains challenging to develop high-selectivity membranes that can be upscaled for industrial processes. Here we report solution-processable polymer membranes with subnanometre pores with excellent ion separation selectivity in electrodialysis processes for lithium extraction. Polymers of intrinsic microporosity incorporated with hydrophilic functional groups enable fast transport of monovalent alkali cations (Li+, Na+ and K+) while rejecting relatively larger divalent ions such as Mg2+. The polymer of intrinsic microporosity membranes surpasses the performance of most existing membrane materials. Furthermore, the membranes were scaled up and integrated into an electrodialysis stack, demonstrating excellent selectivity in simulated salt-lake brines. This work will inspire the development of selective membranes for a wide range of sustainable separation processes critical for resource recovery and a global circular economy.
Collapse
Affiliation(s)
- Dingchang Yang
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Yijie Yang
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, London, UK
| | - Toby Wong
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Sunshine Iguodala
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Anqi Wang
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Louie Lovell
- School of Chemistry, University of Birmingham, Birmingham, UK
| | - Fabrizia Foglia
- Department of Chemistry, University College London, London, UK
| | | | - Charlotte Breakwell
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, London, UK
| | - Zhiyu Fan
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Yanlin Wang
- Department of Chemical Engineering, Imperial College London, London, UK
| | | | - Daryl R. Williams
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Nilay Shah
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Tongwen Xu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Neil B. McKeown
- EaStCHEM, School of Chemistry, University of Edinburgh, Edinburgh, UK
| | | | - Kim E. Jelfs
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, London, UK
| | - Qilei Song
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
6
|
Irving PR, Sam G, Rane S, Thirumalai N, Marioni N, Geise GM, Freeman BD, Ganesan V. Engineering Lithium-Magnesium Selectivity in Hydrated Polymer Membranes through Polymer Backbone Rigidity. ACS Macro Lett 2025; 14:161-168. [PMID: 39907264 DOI: 10.1021/acsmacrolett.4c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Using computer simulations and experiments, we demonstrate that polymer backbone rigidity can be used to tune selectivities and permeabilities of lithium over magnesium in hydrated polymer membranes. Coarse-grained molecular dynamics (CGMD) simulations suggest a strong dependence of cation diffusion coefficients on polymer segmental dynamics and cation-solvent coordination strength, with water content and backbone dynamics having distinct effects on transport properties. Experimentally, we synthesized 2-hydroxyethyl acrylate-co-ethyl acrylate (HEA-co-EA) and 2-hydroxyethyl methacrylate-co-methyl methacrylate (HEMA-co-MMA) membranes. These polymers have different levels of backbone flexibility while maintaining similar chemistry. LiCl and MgCl2 salt permeabilities and sorption coefficients were measured for membranes with varying water content. Magnesium chloride permeability and diffusion coefficients show a stronger dependence on backbone dynamics than lithium chloride, whereas backbone dynamics has a minor impact on salt sorption. Overall, these factors allow permeability and selectivity of LiCl relative to MgCl2 to be increased simultaneously by increasing both water content and backbone rigidity.
Collapse
Affiliation(s)
- Paul R Irving
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Grace Sam
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Soham Rane
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Nikhil Thirumalai
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Nico Marioni
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Geoffrey M Geise
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Benny D Freeman
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Venkat Ganesan
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
7
|
Tian X, Ye C, Zhang L, Sugumar MK, Zhao Y, McKeown NB, Margadonna S, Tan R. Enhancing Membrane Materials for Efficient Li Recycling and Recovery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2402335. [PMID: 39676484 PMCID: PMC11795731 DOI: 10.1002/adma.202402335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/26/2024] [Indexed: 12/17/2024]
Abstract
Rapid uptake of lithium-centric technology, e.g., electric vehicles and large-scale energy storage, is increasing the demand for efficient technologies for lithium extraction from aqueous sources. Among various lithium-extraction technologies, membrane processes hold great promise due to energy efficiency and flexible operation in a continuous process with potential commercial viability. However, membrane separators face challenges such as the extraction efficiency due to the limited selectivity toward lithium relative to other species. Low selectivity can be ascribed to the uncontrollable selective channels and inefficient exclusion functions. However, recent selectivity enhancements for other membrane applications, such as in gas separation and energy storage, suggest that this may also be possible for lithium extraction. This review article focuses on the innovations in the membrane chemistries based on rational design following separation principles and unveiling the theories behind enhanced selectivity. Furthermore, recent progress in membrane-based lithium extraction technologies is summarized with the emphasis on inorganic, organic, and composite materials. The challenges and opportunities for developing the next generation of selective membranes for lithium recovery are also pointed out.
Collapse
Affiliation(s)
- Xingpeng Tian
- Warwick Electrochemical EngineeringWMGUniversity of WarwickCoventryCV4 7ALUK
- EaStChem School of ChemistryUniversity of EdinburghEdinburghEH9 3FJUK
| | - Chunchun Ye
- EaStChem School of ChemistryUniversity of EdinburghEdinburghEH9 3FJUK
| | - Liyuan Zhang
- School of Metallurgy and EnvironmentCentral South UniversityChangsha410083P. R. China
| | - Manoj K. Sugumar
- Warwick Electrochemical EngineeringWMGUniversity of WarwickCoventryCV4 7ALUK
| | - Yan Zhao
- School of Energy and Power EngineeringJiangsu UniversityZhenjiang212013China
| | - Neil B. McKeown
- EaStChem School of ChemistryUniversity of EdinburghEdinburghEH9 3FJUK
| | - Serena Margadonna
- Department of Chemical EngineeringSwansea UniversitySwanseaSA1 8ENUK
| | - Rui Tan
- Warwick Electrochemical EngineeringWMGUniversity of WarwickCoventryCV4 7ALUK
- Department of Chemical EngineeringSwansea UniversitySwanseaSA1 8ENUK
| |
Collapse
|
8
|
Kong L, Yan G, Hu K, Yu Y, Conte N, Mckenzie KR, Wagner MJ, Boyes SG, Chen H, Liu C, Liu X. Electro-driven direct lithium extraction from geothermal brines to generate battery-grade lithium hydroxide. Nat Commun 2025; 16:806. [PMID: 39827233 PMCID: PMC11743137 DOI: 10.1038/s41467-025-56071-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
As Li-ion batteries are increasingly being deployed in electric vehicles and grid-level energy storage, the demand for Li is growing rapidly. Extracting lithium from alternative aqueous sources such as geothermal brines plays an important role in meeting this demand. Electrochemical intercalation emerges as a promising Li extraction technology due to its ability to offer high selectivity for Li and its avoidance of harsh chemical regenerants. In this work, we design an economically feasible electrochemical process that achieves selective lithium extraction from Salton Sea geothermal brine and purification of lithium chloride using intercalation materials, and conversion to battery grade (>99.5% purity) lithium hydroxide by bipolar membrane electrodialysis. We conduct techno-economic assessments using a parametric model and estimated the levelized cost of LiOH•H2O as 4.6 USD/kg at an electrode lifespan of 0.5 years. The results demonstrate the potential of our technology for electro-driven, chemical-free lithium extraction from alternative sources.
Collapse
Affiliation(s)
- Lingchen Kong
- Department of Civil and Environmental Engineering, The George Washington University, Washington, D.C., USA
| | - Gangbin Yan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Kejia Hu
- Department of Civil and Environmental Engineering, The George Washington University, Washington, D.C., USA
| | - Yongchang Yu
- Department of Civil and Environmental Engineering, The George Washington University, Washington, D.C., USA
| | - Nicole Conte
- Department of Chemistry, The George Washington University, Washington, D.C., USA
| | - Kevin R Mckenzie
- Department of Chemistry, The George Washington University, Washington, D.C., USA
| | - Michael J Wagner
- Department of Chemistry, The George Washington University, Washington, D.C., USA
| | - Stephen G Boyes
- Department of Chemistry, The George Washington University, Washington, D.C., USA
| | - Hanning Chen
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX, USA.
| | - Chong Liu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
| | - Xitong Liu
- Department of Civil and Environmental Engineering, The George Washington University, Washington, D.C., USA.
| |
Collapse
|
9
|
Sakuma R, Hirata K, Lisy JM, Fujii M, Ishiuchi SI. Unbuckling the 18-Crown-6 Ether Belt Around Metal Ions: Forging the Connection to the Condensed Phase. J Am Chem Soc 2025; 147:45-50. [PMID: 39584484 DOI: 10.1021/jacs.4c12036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Crown ethers are central to supramolecular chemistry, recognizing and binding specific ions in solution. The most well-known, 18-Crown-6 (18C6), preferentially captures K+ in an aqueous solution, while gas phase binding of 18C6 with alkali metal ions decreases linearly with an increasing ionic radius. Why the high affinity for Li+ and Na+ in the gas phase is dramatically reduced with hydration remains an open question in understanding the K+ selectivity in the aqueous phase. A combined spectroscopic and computational study of M+18C6(H2O)n=0-3 (M = Li, Na, and K) in the CH stretch region has revealed how stepwise hydration unbuckles the crown ether belt from Li+ and Na+, substantially changing the backbone structure of 18C6. In contrast, the structure of the K+18C6 complex is unbuckled and is unaffected by hydration. Combined with new measurements of the OH stretch, a direct connection is provided between the stepwise hydration of M+18C6 and the selectivity for K+ in an aqueous solution. It demonstrates and validates at the molecular level the application of gas-phase measurements to condensed-phase studies.
Collapse
Affiliation(s)
- Ryu Sakuma
- Department of Chemistry, School of Science, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Keisuke Hirata
- Department of Chemistry, School of Science, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - James M Lisy
- International Research Frontiers Initiative (IRFI), Institute of Innovative Research, Institute of Science Tokyo, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Masaaki Fujii
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- Research and Development Initiative, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
- International Research Frontiers Initiative (IRFI), Institute of Innovative Research, Institute of Science Tokyo, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Shun-Ichi Ishiuchi
- Department of Chemistry, School of Science, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
10
|
Han Y, Yang Y, Ma Y, Liang D, Wen L, Ma J, Wang W. Selective ion channel adsorbents facilitate efficient and low environmental impact extraction of liquid lithium resources. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136335. [PMID: 39522216 DOI: 10.1016/j.jhazmat.2024.136335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/11/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
As lithium is the cornerstone of green energy development, it is crucial to realize a low environmental impact and efficient lithium extraction process. Ion-sieve adsorption is the most widely used method to extract liquid lithium resources, but this method is only efficient under alkaline conditions for H+ and Mg2+ competing adsorption. Conventional methods are often accompanied by the consumption of quantities of alkali, the generation of solid waste, and the acidification of liquid lithium resources. To address these issues, a selective ion-channel adsorbent was constructed. The composition comprises an ion sieve adsorbent and an organic carrier with a zwitterionic quaternary ammonium base group. This group storages OH- in situ, hinders H+ diffusion, slows down Mg2+ diffusion, and accelerates Li+ diffusion by relying on the difference in binding energies, which reduces the competing adsorption and avoids acidification and solid waste generation. The saturated adsorption capacity (21.38 mg/g) and selectivity of the adsorbent are 4.7 and 24 times higher than that of conventional ion-sieve adsorbent under neutral conditions respectively. The dosage of alkali is 1/256 of the traditional method, the effluent remains neutral and no solid waste is generated. This study presents an environmental and effective adsorbent for lithium extraction.
Collapse
Affiliation(s)
- Yu Han
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yan Yang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yuling Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Daxin Liang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Liping Wen
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
11
|
Feng Y, Park Y, Hao S, Fang Z, Terlier T, Zhang X, Qiu C, Zhang S, Chen F, Zhu P, Nguyen Q, Wang H, Biswal SL. Three-chamber electrochemical reactor for selective lithium extraction from brine. Proc Natl Acad Sci U S A 2024; 121:e2410033121. [PMID: 39527732 PMCID: PMC11601325 DOI: 10.1073/pnas.2410033121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Efficient lithium recovery from geothermal brines is crucial for the battery industry. Current electrochemical separation methods struggle with the simultaneous presence of Na+, K+, Mg2+, and Ca2+ because these cations are similar to Li+, making it challenging to separate effectively. We address these challenges with a three-chamber reactor featuring a polymer porous solid electrolyte in the middle layer. This design improves the transference number of Li+ (tLi+) by 2.1 times compared to the two-chamber reactor and also reduces the chlorine evolution reaction, a common side reaction in electrochemical lithium extraction, to only 6.4% in Faradaic Efficiency. Employing a lithium-ion conductive glass ceramic (LICGC) membrane, the reactor achieved high tLi+ of 97.5% in LiOH production from simulated brine, while the concentrations of Na+ K+, Mg2+, and Ca2+ are below the detection limit. Electrochemical experiments and surface analysis elucidated the cation transport mechanism, highlighting the impact of Na+ on Li+ migration at the LICGC interface.
Collapse
Affiliation(s)
- Yuge Feng
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX77005
| | - Yoon Park
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX77005
| | - Shaoyun Hao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX77005
| | - Zhiwei Fang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX77005
| | - Tanguy Terlier
- Secondary Ion Mass Spectrometry laboratory, Shared Equipment Authority, Rice University, Houston, TX77005
| | - Xiao Zhang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX77005
| | - Chang Qiu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX77005
| | - Shoukun Zhang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX77005
| | - Fengyang Chen
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX77005
| | - Peng Zhu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX77005
| | - Quan Nguyen
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX77005
| | - Haotian Wang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX77005
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX77005
- Department of Chemistry, Rice University, Houston, TX77005
- Rice Advanced Material Institute, Rice University, Houston, TX77005
| | - Sibani Lisa Biswal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX77005
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX77005
- Rice Advanced Material Institute, Rice University, Houston, TX77005
| |
Collapse
|
12
|
Gebreslassie G, Desta HG, Dong Y, Zheng X, Zhao M, Lin B. Advanced membrane-based high-value metal recovery from wastewater. WATER RESEARCH 2024; 265:122122. [PMID: 39128331 DOI: 10.1016/j.watres.2024.122122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/13/2024]
Abstract
Considering the circular economy and environmental protection, sustainable recovery of high-value metals from wastewater has become a prominent concern. Unlike conventional methods featuring extensive chemicals or energy consumption, membrane separation technology plays a crucial role in facilitating the sustainable and efficient recovery of valuable metals from wastewater due to its attractive features. In this review, we first briefly summarize the sustainable supply chain and significance of sustainable recovery of aqueous high-value metals. Then, we review the most recent advances and application potential in promising state-of-the-art membrane-based technologies for recovery of high-value metals (silver, gold, rhenium, platinum, ruthenium, palladium, iridium, osmium, and rhodium) from wastewater effluents. In particular, pressure-based membranes, liquid membranes, membrane distillation, forward osmosis, electrodialysis and membrane-based hybrid technologies and their mechanism of high-value metal recovery is thoroughly discussed. Then, engineering application and economic sustainability are also discussed for membrane-based high-value metal recovery. The review finally concludes with a critical and insightful overview of the techno-economic viability and future research direction of membrane technologies for efficient high-value metal recovery from wastewater.
Collapse
Affiliation(s)
- Gebrehiwot Gebreslassie
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China; Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Halefom G Desta
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Yingchao Dong
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Xiangyong Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China.
| | - Min Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China.
| | - Bin Lin
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
13
|
Morishita K, Sachar HS, Duncan TJ, Zhang Z, Marioni N, Herrera A, Asatekin A, Ganesan V. Anion Selectivities in Zwitterion Grafted Nanopores: Effect of Zwitterion Architecture. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57888-57900. [PMID: 39397586 DOI: 10.1021/acsami.4c13034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The separation of ions of similar charge is a crucial challenge in many applications, from water treatment to precious metal recovery. Membranes with cross-linked zwitterionic amphiphilic copolymer (ZAC-X) selective layers, which feature self-assembled, zwitterion-lined nanodomains for permeation, offer unique permselectivity between monovalent anions (e.g., Cl-/F-). This has motivated studies on the mechanisms of transport and selectivity in this family of materials. In this study, we conducted molecular dynamics simulations of aqueous salt solutions within zwitterion-functionalized nanopores to elucidate the influence of dipole orientation of the ZI ligands on anion diffusivities, partitioning, and permeabilities. Our model compares systems with contrasting ZI organization: surface-cation-anion (S-ZI+-ZI-, Motif A) and surface-anion-cation (S-ZI--ZI+, Motif B). Our results reveal that Motif A exhibits less pronounced ion pairing due to a spatial separation in the radial profiles of cations and anions. Motif B demonstrates prominent ion pairing for smaller anions owing to their overlap with cation distributions. Further, our potential of mean force profiles reveals that anion partitioning increases with anion size in both ligand motifs, whereas Motif B exhibits significantly higher partitioning selectivity toward larger anions compared to Motif A. Our results for ion diffusivities show that the self-diffusivities of both anions and cations are lower for Motif B compared to Motif A. Such trends in anion partitioning and diffusivities can be explained by differences in the interactions and steric hindrance experienced by the anionic species in Motifs A and B. Finally, our results for anion permselectivity, obtained by combining partitioning and diffusivity, indicate that partitioning trends dominate over diffusivity trends. Consequently, anion permeability increases with anion size, and ligand Motif B yields much higher permselectivity toward larger anions compared to ligand Motif A.
Collapse
Affiliation(s)
- Kazuya Morishita
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Harnoor Singh Sachar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Tyler J Duncan
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zidan Zhang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nico Marioni
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ashleigh Herrera
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Ayse Asatekin
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
14
|
Han Y, An L, Yang Y, Ma Y, Sun H, Yao J, Zhang T, Wang W. Eliminating the effect of pH: Dual-matrix modulation adsorbent enables efficient lithium extraction from concentrated seawater. WATER RESEARCH 2024; 268:122571. [PMID: 39383802 DOI: 10.1016/j.watres.2024.122571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Lithium ion sieve adsorbents frequently extract liquid lithium resources due to their adsorption effect and cost advantages. However, the adsorption effect is significantly influenced by the ambient pH. The pH effects on the adsorption process can be categorized into two main areas: the competition adsorption of impurity ions and the difference in surface zeta potential. A dual-matrix modulation adsorbent was prepared, comprising a carrier matrix modified with zwitterionic quaternary ammonium bases and an adsorption matrix modified with carboxylation. The zwitterionic quaternary ammonium base groups were employed to mitigate the competitive adsorption of impurity ions by acid-base neutralization. Furthermore, the negative charge of carboxyl groups was employed to diminish the discrepancy in surface zeta potential. The adsorption effect of the ion sieve adsorbent under natural conditions appeared to be significantly enhanced by the dual-matrix modulation, with the saturated adsorption capacity (28 mg/g) and adsorption selectivity (α(Li+/Mg2+)=24.23) being 6.3 and 7.8 times higher than that of the manganese-based adsorbent (HMO) under the same conditions, respectively. Moreover, the adsorption effect was found to be consistent with HMO under alkaline conditions. The results demonstrate that by optimizing the adsorption conditions of the adsorbent, the detrimental impact of pH on the adsorption process of lithium ion sieves can be eliminated.
Collapse
Affiliation(s)
- Yu Han
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Liuqian An
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yan Yang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yuling Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Hongliang Sun
- Yunnan International Joint Laboratory of Bionic Science and Engineering, Kunming, 650223, PR China
| | - Jinxin Yao
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Tao Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
15
|
Fan F, Ren Y, Zhang S, Tang Z, Wang J, Han X, Yang Y, Lu G, Zhang Y, Chen L, Wang Z, Zhang K, Gao J, Zhao J, Cui G, Tang B. A Bioinspired Membrane with Ultrahigh Li +/Na + and Li +/K + Separations Enables Direct Lithium Extraction from Brine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402898. [PMID: 39030996 PMCID: PMC11425256 DOI: 10.1002/advs.202402898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/16/2024] [Indexed: 07/22/2024]
Abstract
Membranes with precise Li+/Na+ and Li+/K+ separations are imperative for lithium extraction from brine to address the lithium supply shortage. However, achieving this goal remains a daunting challenge due to the similar valence, chemical properties, and subtle atomic-scale distinctions among these monovalent cations. Herein, inspired by the strict size-sieving effect of biological ion channels, a membrane is presented based on nonporous crystalline materials featuring structurally rigid, dimensionally confined, and long-range ordered ion channels that exclusively permeate naked Li+ but block Na+ and K+. This naked-Li+-sieving behavior not only enables unprecedented Li+/Na+ and Li+/K+ selectivities up to 2707.4 and 5109.8, respectively, even surpassing the state-of-the-art membranes by at least two orders of magnitude, but also demonstrates impressive Li+/Mg2+ and Li+/Ca2+ separation capabilities. Moreover, this bioinspired membrane has to be utilized for creating a one-step lithium extraction strategy from natural brines rich in Na+, K+, and Mg2+ without utilizing chemicals or creating solid waste, and it simultaneously produces hydrogen. This research has proposed a new type of ion-sieving membrane and also provides an envisioning of the design paradigm and development of advanced membranes, ion separation, and lithium extraction.
Collapse
Affiliation(s)
- Faying Fan
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Yongwen Ren
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Shu Zhang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Zhilei Tang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Jia Wang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Xiaolei Han
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Yuanyuan Yang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Guoli Lu
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Yaojian Zhang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Lin Chen
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Zhe Wang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | | | - Jun Gao
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Jingwen Zhao
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Guanglei Cui
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Bo Tang
- Tang Bo's institution, Laoshan Laboratory, Qingdao, China
| |
Collapse
|
16
|
Liu K, Epsztein R, Lin S, Qu J, Sun M. Ion-Ion Selectivity of Synthetic Membranes with Confined Nanostructures. ACS NANO 2024; 18:21633-21650. [PMID: 39114876 DOI: 10.1021/acsnano.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Synthetic membranes featuring confined nanostructures have emerged as a prominent category of leading materials that can selectively separate target ions from complex water matrices. Further advancements in these membranes will pressingly rely on the ability to elucidate the inherent connection between transmembrane ion permeation behaviors and the ion-selective nanostructures. In this review, we first abstract state-of-the-art nanostructures with a diversity of spatial confinements in current synthetic membranes. Next, the underlying mechanisms that govern ion permeation under the spatial nanoconfinement are analyzed. We then proceed to assess ion-selective membrane materials with a focus on their structural merits that allow ultrahigh selectivity for a wide range of monovalent and divalent ions. We also highlight recent advancements in experimental methodologies for measuring ionic permeability, hydration numbers, and energy barriers to transport. We conclude by putting forth the future research prospects and challenges in the realm of high-performance ion-selective membranes.
Collapse
Affiliation(s)
- Kairui Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Razi Epsztein
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Shihong Lin
- Department of Civil and Environmental Engineering and Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Meng Sun
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
17
|
Kang Y, Wang Y, Zhang H, Wang Z, Zhang X, Wang H. Functionalized 2D membranes for separations at the 1-nm scale. Chem Soc Rev 2024; 53:7939-7959. [PMID: 38984392 DOI: 10.1039/d4cs00272e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The ongoing evolution of two-dimensional (2D) material-based membranes has prompted the realization of mass separations at the 1-nm scale due to their well-defined selective nano- and subnanochannels. Strategic membrane functionalization is further found to be key to augmenting channel accuracy and efficiency in distinguishing ions, gases and molecules within this range and is thus trending as a research focus in energy-, resource-, environment- and pharmaceutical-related applications. In this review, we present the fundamentals underpinning functionalized 2D membranes in various separations, elucidating the critical "method-interaction-property" relationship. Starting with an introduction to various functionalization strategies, we focus our discussion on functionalization-induced channel-species interactions and reveal how they shape the transport- and operation-related features of the membrane in different scenarios. We also highlight the limitations and challenges of current functionalized 2D membranes and outline the necessary breakthroughs needed to apply them as reliable and high-performance separation units across industries in the future.
Collapse
Affiliation(s)
- Yuan Kang
- Department of Chemical and Biological Engineering, Monash University, 3800, Australia.
| | - Yuqi Wang
- School of Materials Science and Engineering, Zhejiang University, 310058, China
| | - Hao Zhang
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St. Lucia, 4072, Australia.
| | - Zhouyou Wang
- Department of Chemical and Biological Engineering, Monash University, 3800, Australia.
| | - Xiwang Zhang
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St. Lucia, 4072, Australia.
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, 3800, Australia.
| |
Collapse
|
18
|
Sisodiya DS, Chattopadhyay A. The photochemical trans → cis and thermal cis → trans isomerization pathways of azobenzo-13-crown ether: A computational study on a strained cyclic azobenzene system. J Chem Phys 2024; 161:034307. [PMID: 39017425 DOI: 10.1063/5.0206946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
The isomerization of azobenzo-13-crown ether can be expected to be hindered due to the polyoxyethylene linkage connecting the 2,2'-positions of azobenzene. The mixed reference spin-flip time-dependent density functional theory results reveal that the planar and rotational minima of the first photo-excited singlet state (S1) of the trans-isomer pass through a barrier (2.5-5.0 kcal/mol) as it goes toward the torsional conical intersection (S0/S1) geometry (
Collapse
Affiliation(s)
- Dilawar Singh Sisodiya
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, K. K. Birla Goa Campus, Zuarinagar, India
| | - Anjan Chattopadhyay
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, K. K. Birla Goa Campus, Zuarinagar, India
| |
Collapse
|
19
|
Xu T, Wu B, Li W, Li Y, Zhu Y, Sheng F, Li Q, Ge L, Li X, Wang H, Xu T. Perfect confinement of crown ethers in MOF membrane for complete dehydration and fast transport of monovalent ions. SCIENCE ADVANCES 2024; 10:eadn0944. [PMID: 38718127 PMCID: PMC11078184 DOI: 10.1126/sciadv.adn0944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
Fast transport of monovalent ions is imperative in selective monovalent ion separation based on membranes. Here, we report the in situ growth of crown ether@UiO-66 membranes at a mild condition, where dibenzo-18-crown-6 (DB18C6) or dibenzo-15-crown-5 is perfectly confined in the UiO-66 cavity. Crown ether@UiO-66 membranes exhibit enhanced monovalent ion transport rates and mono-/divalent ion selectivity, due to the combination of size sieving and interaction screening effects toward the complete monovalent ion dehydration. Specifically, the DB18C6@UiO-66 membrane shows a permeation rate (e.g., K+) of 1.2 mol per square meter per hour and a mono-/divalent ion selectivity (e.g., K+/Mg2+) of 57. Theoretical calculations and simulations illustrate that, presumably, ions are completely dehydrated while transporting through the DB18C6@UiO-66 cavity with a lower energy barrier than that of the UiO-66 cavity. This work provides a strategy to develop efficient ion separation membranes via integrating size sieving and interaction screening and to illuminate the effect of ion dehydration on fast ion transport.
Collapse
Affiliation(s)
- Tingting Xu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Bin Wu
- School of Chemistry and Chemical Engineering, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei 230601, China
| | - Wenmin Li
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yifan Li
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yanran Zhu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Fangmeng Sheng
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Qiuhua Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Liang Ge
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Xingya Li
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Tongwen Xu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
20
|
Sachar HS, Zofchak ES, Marioni N, Zhang Z, Ganesan V. Impact of Confinement and Zwitterionic Ligand Chemistry on Ion-Ion Selectivity of Functionalized Nanopores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9563-9578. [PMID: 38656161 DOI: 10.1021/acs.langmuir.4c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Membranes incorporating zwitterionic chemistries have recently emerged as promising candidates for facilitating challenging ion-ion separations. Transport of ions in such membranes predominantly occurs in hydrated nanopores lined with zwitterionic monomers. To shed light on the physics of ion-ion selectivity underlying such materials, we conducted molecular dynamics simulations of sodium halide transport in model nanopores grafted with sulfobetaine methacrylate molecules. Our results reveal that in both functionalized and unfunctionalized nanopores smaller ions prefer to reside near the pore center, while the larger ions tend to reside near the pore walls. An enhancement in the selective transport of larger anions is observed within the unfunctionalized nanopores relative to that in salt-in-water solutions. Upon functionalization of the nanopores with zwitterions (ZIs), the disparities in the anionic distribution profiles within the pores coupled with differences in the anion-ZI interactions result in a slowdown of larger anions relative to smaller anions. Increasing the ZI grafting density exacerbates these effects, further promoting the selective transport of smaller anions. Our results suggest that selectivity toward large anions can be realized by using nanoporous membranes with ZI content that is high enough to facilitate ion/water partitioning into the pores while preserving the characteristic tendency of the unfunctionalized pores to facilitate faster transport of the larger anions. On the other hand, selectivity toward smaller anions can be achieved by targeting ZI content within the pores that is high enough to significantly slow down the transport of large anions but not high enough to hinder the partitioning of ions/water molecules into the pore due to steric effects.
Collapse
Affiliation(s)
- Harnoor Singh Sachar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712-1589, United States
| | - Everett S Zofchak
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712-1589, United States
| | - Nico Marioni
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712-1589, United States
| | - Zidan Zhang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712-1589, United States
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712-1589, United States
| |
Collapse
|
21
|
Han Y, Ma J, Liu D, Yang Y, Zhang T, Wang M, Liang D, Wen L, Ma J, Wang W. Microenvironment-Modulating Adsorption Enables Highly Efficient Lithium Extraction under Natural pH Conditions. ACS NANO 2024; 18:9071-9081. [PMID: 38470249 DOI: 10.1021/acsnano.3c12978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Ion-sieve adsorbents are effective materials in practical applications for extracting liquid lithium. However, it is greatly suppressed in adsorption capacity and selectivity (Li/Mg) under natural near-neutral conditions of seawater or salt lakes, due to the interference of in situ released H+ and Mg2+ impurity. This paper proposes an adsorbent with a microenvironment-modulating function as a solution. The introduction of quaternary ammonium groups into the carrier accelerates the migration of H+, while preventing the diffusion of Mg2+ by electrostatic repulsion. Besides, it can also prestore OH-, effectively consuming the generated hydrogen ions in situ. Based on the rational design, the alkali consumption of the microenvironment-modulating strategy is dramatically reduced to 1/144 of the traditional alkali-adding method. Additionally, adsorption performance is significantly promoted under natural pH conditions, with a maximum 33 times higher separation factor (selectivity) and 4 times higher adsorption capacity than commercial ion-sieve adsorbents. This development indicates the feasibility of using microenvironment modulation for effective lithium extraction and inspires the development of next-generation high-performance adsorbents.
Collapse
Affiliation(s)
- Yu Han
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Jiaxiang Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Dongqing Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Yan Yang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Tao Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Min Wang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, P. R. China
| | - Daxin Liang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
| | - Liping Wen
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| |
Collapse
|
22
|
Meng QW, Zhu X, Xian W, Wang S, Zhang Z, Zheng L, Dai Z, Yin H, Ma S, Sun Q. Enhancing ion selectivity by tuning solvation abilities of covalent-organic-framework membranes. Proc Natl Acad Sci U S A 2024; 121:e2316716121. [PMID: 38349874 PMCID: PMC10895279 DOI: 10.1073/pnas.2316716121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024] Open
Abstract
Understanding the molecular-level mechanisms involved in transmembrane ion selectivity is essential for optimizing membrane separation performance. In this study, we reveal our observations regarding the transmembrane behavior of Li+ and Mg2+ ions as a response to the changing pore solvation abilities of the covalent-organic-framework (COF) membranes. These abilities were manipulated by adjusting the lengths of the oligoether segments attached to the pore channels. Through comparative experiments, we were able to unravel the relationships between pore solvation ability and various ion transport properties, such as partitioning, conduction, and selectivity. We also emphasize the significance of the competition between Li+ and Mg2+ with the solvating segments in modulating selectivity. We found that increasing the length of the oligoether chain facilitated ion transport; however, it was the COF membrane with oligoether chains containing two ethylene oxide units that exhibited the most pronounced discrepancy in transmembrane energy barrier between Li+ and Mg2+, resulting in the highest separation factor among all the evaluated membranes. Remarkably, under electro-driven binary-salt conditions, this specific COF membrane achieved an exceptional Li+/Mg2+ selectivity of up to 1352, making it one of the most effective membranes available for Li+/Mg2+ separation. The insights gained from this study significantly contribute to advancing our understanding of selective ion transport within confined nanospaces and provide valuable design principles for developing highly selective COF membranes.
Collapse
Affiliation(s)
- Qing-Wei Meng
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Xincheng Zhu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Weipeng Xian
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Sai Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Zhengqing Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin300387, China
| | - Liping Zheng
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou310018, China
| | - Zhifeng Dai
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou310018, China
| | - Hong Yin
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, TX76201
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| |
Collapse
|
23
|
Ye T, Gao H, Li Q, Liu N, Liu X, Jiang L, Gao J. Highly Selective Lithium Transport through Crown Ether Pillared Angstrom Channels. Angew Chem Int Ed Engl 2024; 63:e202316161. [PMID: 38165062 DOI: 10.1002/anie.202316161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/03/2024]
Abstract
Biological ion channels use the synergistic effects of various strategies to realize highly selective ion sieving. For example, potassium channels use functional groups and angstrom-sized pores to discriminate rival ions and enrich target ions. Inspired by this, we constructed a layered crystal pillared by crown ether that incorporates these strategies to realize high Li+ selectivity. The pillared channels and crown ether have an angstrom-scale size. The crown ether specifically allows the low-barrier transport of Li+ . The channels attract and enrich Li+ ions by up to orders of magnitude. As a result, our material sieves Li+ out of various common ions such as Na+ , K+ , Ca2+ , Mg2+ and Al3+ . Moreover, by spontaneously enriching Li+ ions, it realizes an effective Li+ /Na+ selectivity of 1422 in artificial seawater where the Li+ concentration is merely 25 μM. We expect this work to spark technologies for the extraction of lithium and other dilute metal ions.
Collapse
Affiliation(s)
- Tingyan Ye
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Hongfei Gao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Qi Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Nannan Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325027, P. R. China
| | - Xueli Liu
- College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao, 266071, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jun Gao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao, 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R. China
| |
Collapse
|
24
|
Dischinger S, Miller DJ, Vermaas DA, Kingsbury RS. Unifying the Conversation: Membrane Separation Performance in Energy, Water, and Industrial Applications. ACS ES&T ENGINEERING 2024; 4:277-289. [PMID: 38357245 PMCID: PMC10862477 DOI: 10.1021/acsestengg.3c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024]
Abstract
Dense polymer membranes enable a diverse range of separations and clean energy technologies, including gas separation, water treatment, and renewable fuel production or conversion. The transport of small molecular and ionic solutes in the majority of these membranes is described by the same solution-diffusion mechanism, yet a comparison of membrane separation performance across applications is rare. A better understanding of how structure-property relationships and driving forces compare among applications would drive innovation in membrane development by identifying opportunities for cross-disciplinary knowledge transfer. Here, we aim to inspire such cross-pollination by evaluating the selectivity and electrochemical driving forces for 29 separations across nine different applications using a common framework grounded in the physicochemical characteristics of the permeating and rejected solutes. Our analysis shows that highly selective membranes usually exhibit high solute rejection, rather than fast solute permeation, and often exploit contrasts in the size and charge of solutes rather than a nonelectrostatic chemical property, polarizability. We also highlight the power of selective driving forces (e.g., the fact that applied electric potential acts on charged solutes but not on neutral ones) to enable effective separation processes, even when the membrane itself has poor selectivity. We conclude by proposing several research opportunities that are likely to impact multiple areas of membrane science. The high-level perspective of membrane separation across fields presented herein aims to promote cross-pollination and innovation by enabling comparisons of solute transport and driving forces among membrane separation applications.
Collapse
Affiliation(s)
- Sarah
M. Dischinger
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Daniel J. Miller
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - David A. Vermaas
- Department
of Chemical Engineering, Delft University
of Technology, 2629HZ Delft, The
Netherlands
| | - Ryan S. Kingsbury
- Energy
Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Civil and Environmental Engineering and the Andlinger Center for
Energy and the Environment, Princeton University, Princeton, New Jersey 08540, United States
| |
Collapse
|
25
|
Oh KH, Kim H, Nam KW. Effect of Crown Ether Additives on the Enhanced Performance of Metallic Bipolar Plates for Proton Exchange Membrane Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5725-5734. [PMID: 38270103 DOI: 10.1021/acsami.3c13530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
One of the key components of the fuel cell stack is a metallic bipolar plate (MBP) that plays multiple roles, such as current collector, fuel and oxidant distributor, and mechanical support. However, corrosion and consequent metal elution are major drawbacks of the MBP because they diminish the efficiency and power performance of membrane-electrode assemblies (MEAs). Herein, we show that the crown ether (CE) additive can simultaneously inhibit surface corrosion of the MBP and act as a scavenger for eluted metal ions to alleviate contamination of other components. From the electrochemical measurement, high-resolution imaging, and elemental analysis, we have found that the CE undergoes electrolytic decomposition and makes an efficient protective layer in an in situ manner. This layer prevents direct contact between the MBP and electrolyte as well as the dissolution of metal ions into the electrolyte. In addition, we demonstrate that the CE can improve the recovery protocol of the MEA owing to the formation of host-guest complexes between the CE and metal cations. These results provide key insights into the design of high-performance MBPs for proton-exchange membrane fuel cells.
Collapse
Affiliation(s)
- Keun-Hwan Oh
- Hydrogen Energy Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Heejin Kim
- Division of Analytical Science, Korea Basic Science Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea
| | - Kwan Woo Nam
- Department of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
26
|
Yue S, Nandy A, Kulik HJ. Discovering Molecular Coordination Environment Trends for Selective Ion Binding to Molecular Complexes Using Machine Learning. J Phys Chem B 2023. [PMID: 38038675 DOI: 10.1021/acs.jpcb.3c06416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The design of ion-selective materials with improved separation efficacy and efficiency is paramount, as current technologies fail to meet real-world deployment challenges. Selectivity in these materials can be informed by local ion binding in confined membrane ion channels. In this study, we utilize a data-driven approach to investigate design features in small molecular complexes coordinating ions as simplified models of ion channels. We curate a data set of 563 alkali metal coordinating molecular complexes (i.e., with Li+, Na+, or K+) from the Cambridge Structural Database and calculate differential ion binding energies using density functional theory. Using this information, we probe when and why structures favor exchange with alternate ions. Our analysis reveals that energetic preferences are related to ion size but are largely due to chemical interactions rather than structural reorganization. We identify unique trends in the selectivity for Li+ over other alkali ions, including the presence of N coordination atoms, planar coordination geometry, and small coordinating ring sizes. We use machine learning models to identify the key contributions of both geometric and electronic features in predicting selective ion binding. These physical insights offer preliminary guidance into the design of optimal membranes for ion selectivity.
Collapse
Affiliation(s)
- Shuwen Yue
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
27
|
Sachar HS, Zhang Z, Marioni N, Zofchak ES, Ganesan V. Role of Dielectric Drag in Circumventing the Solubility-Diffusivity Trade-off in Zwitterionic Copolymer Membranes. ACS Macro Lett 2023; 12:1293-1297. [PMID: 37695823 DOI: 10.1021/acsmacrolett.3c00420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Recent experiments have revealed that random zwitterionic amphiphilic copolymer (r-ZAC) membranes exhibit excellent Cl-/F- permselectivity circumventing the solubility-diffusivity trade-off. We conducted molecular dynamics simulations to investigate the origin of the experimental results on the transport of sodium halides in r-ZAC membranes. Our results indicate that the enhancement of Cl-/F- diffusivity selectivity in r-ZAC membranes (relative to that in bulk water) stems from the increase in dielectric drag dominating over the increase in Stokes drag, zwitterionic group-induced steric hindrance, and ion-polymer interactions. The importance of dielectric drag is further demonstrated by showing that reduction in ionic charges leads to a complete reversal of the diffusivity selectivity trends. We conclude that leveraging the impact of hydrophilic nanoconfinement on the dynamics of water can be utilized as a strategy to simultaneously augment solubility selectivity and diffusivity selectivity for separations, wherein the flux of the larger ionic species is desired over that of the smaller.
Collapse
Affiliation(s)
- Harnoor Singh Sachar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, Texas 78712-1589, United States
| | - Zidan Zhang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, Texas 78712-1589, United States
| | - Nico Marioni
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, Texas 78712-1589, United States
| | - Everett S Zofchak
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, Texas 78712-1589, United States
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, Texas 78712-1589, United States
| |
Collapse
|
28
|
Yang L, Tu Y, Li H, Zhan W, Hu H, Wei Y, Chen C, Liu K, Shao P, Li M, Yang G, Luo X. Fluorine-Rich Supramolecular Nano-Container Crosslinked Hydrogel for Lithium Extraction with Super-High Capacity and Extreme Selectivity. Angew Chem Int Ed Engl 2023; 62:e202308702. [PMID: 37471502 DOI: 10.1002/anie.202308702] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
Extraction and recovery of lithium from reserves play a critical role in the sustainable development of energy due to the explosive growth of the lithium-battery market. However, the low efficiency of extraction and recovery seriously threatens the sustainability of lithium supply. In this contribution, we fabricate a novel mechanically robust fluorine-rich hydrogel, showing highly efficient Li+ extraction from Li-containing solutions. The hydrogel was facilely fabricated by simple one-pot polymerization of supramolecular nanosheets of fluorinated monomers, acrylic acid and a small amount of chemical crosslinkers. The hydrogel exhibits a remarkable lithium adsorption capacity (Qm Li+ =122.3 mg g-1 ) and can be reused. Moreover, it can exclusively extract lithium ions from multiple co-existing metal ions. Notably, the separation of Li+ /Na+ in actual wastewater is achieved with a surprising separation factor of 153.72. The detailed characterizations as well as calculation showed that the specific coordination of Li-F plays a central role for both of the striking recovery capability and selectivity for Li+ . Furthermore, an artificial device was constructed, displaying high efficiency of extracting lithium in various complex actual lithium-containing wastewater. This work provides a new and promising avenue for the efficient extraction and recovery of lithium resource from complex lithium-containing solutions.
Collapse
Affiliation(s)
- Liming Yang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yunyun Tu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Hongyu Li
- Biomass Molecular Engineering Center and Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Wanli Zhan
- Biomass Molecular Engineering Center and Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Huiqin Hu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yun Wei
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Changli Chen
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Ketao Liu
- Biomass Molecular Engineering Center and Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Min Li
- Department of Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Guang Yang
- Biomass Molecular Engineering Center and Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Xubiao Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| |
Collapse
|
29
|
Miller DM, Abels K, Guo J, Williams KS, Liu MJ, Tarpeh WA. Electrochemical Wastewater Refining: A Vision for Circular Chemical Manufacturing. J Am Chem Soc 2023; 145:19422-19439. [PMID: 37642501 DOI: 10.1021/jacs.3c01142] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Wastewater is an underleveraged resource; it contains pollutants that can be transformed into valuable high-purity products. Innovations in chemistry and chemical engineering will play critical roles in valorizing wastewater to remediate environmental pollution, provide equitable access to chemical resources and services, and secure critical materials from diminishing feedstock availability. This perspective envisions electrochemical wastewater refining─the use of electrochemical processes to tune and recover specific products from wastewaters─as the necessary framework to accelerate wastewater-based electrochemistry to widespread practice. We define and prescribe a use-informed approach that simultaneously serves specific wastewater-pollutant-product triads and uncovers a mechanistic understanding generalizable to broad use cases. We use this approach to evaluate research needs in specific case studies of electrocatalysis, stoichiometric electrochemical conversions, and electrochemical separations. Finally, we provide rationale and guidance for intentionally expanding the electrochemical wastewater refining product portfolio. Wastewater refining will require a coordinated effort from multiple expertise areas to meet the urgent need of extracting maximal value from complex, variable, diverse, and abundant wastewater resources.
Collapse
Affiliation(s)
- Dean M Miller
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Kristen Abels
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jinyu Guo
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Kindle S Williams
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Matthew J Liu
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - William A Tarpeh
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
30
|
González-Pérez R, Adams S, Dowling AW, Phillip WA, Whitmer JK. Thermodynamics of Li +-Crown Ether Interactions in Aqueous Solvent. J Phys Chem A 2023. [PMID: 37196205 DOI: 10.1021/acs.jpca.3c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Lithium ion-based batteries are ubiquitous in modern technology due to applications in personal electronics and high-capacity storage for electric vehicles. Concerns about lithium supply and battery waste have prompted interest in lithium recycling methods. The crown ether 12-crown-4 has been studied for its abilities to form stable complexes with lithium ions (Li+). In this paper, molecular dynamics simulations are applied to examine the binding properties of a 12-crown-4-Li+ system in aqueous solution. It was found that 12-crown-4 did not form stable complexes with Li+ in aqueous solution due to the binding geometry which was prone to interference by surrounding water molecules. In addition, the binding properties of sodium ions (Na+) to 12-crown-4 are examined for comparison. Subsequently, calculations were performed with the crown ethers 15-crown-5 and 18-crown-6 to study their complexation with Li+ as well as Na+. It was determined that binding was unfavorable for both types of ions for all three crown ethers tested, though 15-crown-5 and 18-crown-6 showed a marginally greater affinity for Li+ than 12-crown-4. Metastable minima present in the potential of mean force for Na+ render binding marginally more likely there. We discuss these results in the context of membrane-based applications of crown ethers for Li+ separations.
Collapse
Affiliation(s)
- Ramón González-Pérez
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Stephen Adams
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Alexander W Dowling
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - William A Phillip
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jonathan K Whitmer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
31
|
Marine polysaccharide-based hydrogels for critical materials selective removal and recovery: A review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215054] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
32
|
DuChanois RM, Mazurowski L, Fan H, Verduzco R, Nir O, Elimelech M. Precise Cation Separations with Composite Cation-Exchange Membranes: Role of Base Layer Properties. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6331-6341. [PMID: 37023347 DOI: 10.1021/acs.est.3c00445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Separation of specific ions from water could enable recovery and reuse of essential metals and nutrients, but established membrane technologies lack the high-precision selectivity needed to facilitate a circular resource economy. In this work, we investigate whether the cation/cation selectivity of a composite cation-exchange membrane (CEM), or a thin polymer selective layer on top of a CEM, may be limited by the mass transfer resistance of the underlying CEM. In our analysis, we utilize a layer-by-layer technique to modify CEMs with a thin polymer selective layer (∼50 nm) that has previously shown high selectivity toward copper over similarly sized metals. While these composite membranes have a CuCl2/MgCl2 selectivity up to 33 times larger than unmodified CEMs in diffusion dialysis, our estimates suggest that eliminating resistance from the underlying CEM could further increase selectivity twofold. In contrast, the CEM base layer has a smaller effect on the selectivity of these composite membranes in electrodialysis, although these effects could become more pronounced for ultrathin or highly conductive selective layers. Our results highlight that base layer resistance prevents selectivity factors from being comparable across diffusion dialysis and electrodialysis, and CEMs with low resistance are necessary for providing highly precise separations with composite CEMs.
Collapse
Affiliation(s)
- Ryan M DuChanois
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, Texas 77005, United States
| | - Lauren Mazurowski
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, Texas 77005, United States
| | - Hanqing Fan
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Rafael Verduzco
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Oded Nir
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben Gurion 8499000, Israel
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, Texas 77005, United States
| |
Collapse
|
33
|
Sachar HS, Marioni N, Zofchak ES, Ganesan V. Impact of Ionic Correlations on Selective Salt Transport in Ligand-Functionalized Polymer Membranes. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Harnoor Singh Sachar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712-1589, United States
| | - Nico Marioni
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712-1589, United States
| | - Everett S. Zofchak
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712-1589, United States
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712-1589, United States
| |
Collapse
|
34
|
Nucleophilic Reactions Using Alkali Metal Fluorides Activated by Crown Ethers and Derivatives. Catalysts 2023. [DOI: 10.3390/catal13030479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
We review crown ether-facilitated nucleophilic reactions using metal salts, presenting the studies using kinetic measurements and quantum chemical methods. We focus on the mechanistic features, specifically on the contact ion-pair (CIP) mechanism of metal salts for nucleophilic processes promoted by crown ethers and derivatives. Experimental verification of the CIP form of the metal salt CsF complexed with [18-Crown-6] by H-NMR spectroscopy is described. The use of chiral crown ethers and derivatives for enantioselective nucleophilic processes is also discussed.
Collapse
|
35
|
Wang J, Zhou H, Li S, Wang L. Selective Ion Transport in Two-Dimensional Lamellar Nanochannel Membranes. Angew Chem Int Ed Engl 2023; 62:e202218321. [PMID: 36718075 DOI: 10.1002/anie.202218321] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Precise and ultrafast ion sieving is highly desirable for many applications in environment-, energy-, and resource-related fields. The development of a permselective lamellar membrane constructed from parallel stacked two-dimensional (2D) nanosheets opened a new avenue for the development of next-generation separation technology because of the unprecedented diversity of the designable interior nanochannels. In this Review, we first discuss the construction of homo- and heterolaminar nanoarchitectures from the starting materials to the emerging preparation strategies. We then explore the property-performance relationships, with a particular emphasis on the effects of physical structural features, chemical properties, and external environment stimuli on ion transport behavior under nanoconfinement. We also present existing and potential applications of 2D membranes in desalination, ion recovery, and energy conversion. Finally, we discuss the challenges and outline research directions in this promising field.
Collapse
Affiliation(s)
- Jin Wang
- Key Laboratory of Membrane Separation of Shaanxi Province,Research Institute of Membrane Separation Technology of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710000, China
| | - Huijiao Zhou
- Key Laboratory of Membrane Separation of Shaanxi Province,Research Institute of Membrane Separation Technology of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710000, China
| | - Shangzhen Li
- Key Laboratory of Membrane Separation of Shaanxi Province,Research Institute of Membrane Separation Technology of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710000, China
| | - Lei Wang
- Key Laboratory of Membrane Separation of Shaanxi Province,Research Institute of Membrane Separation Technology of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710000, China
| |
Collapse
|
36
|
Lu J, Jiang G, Zhang H, Qian B, Zhu H, Gu Q, Yan Y, Liu JZ, Freeman BD, Jiang L, Wang H. An artificial sodium-selective subnanochannel. SCIENCE ADVANCES 2023; 9:eabq1369. [PMID: 36706186 PMCID: PMC9882983 DOI: 10.1126/sciadv.abq1369] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Single-ion selectivity with high precision has long been pursued for fundamental bioinspired engineering and applications such as in ion separation and energy conversion. However, it remains a challenge to develop artificial ion channels to achieve single-ion selectivity comparable to their biological analogs, especially for high Na+/K+ selectivity. Here, we report an artificial sodium channel by subnanoconfinement of 4'-aminobenzo-15-crown-5 ethers (15C5s) into ~6-Å-sized metal-organic framework subnanochannel (MOFSNC). The resulting 15C5-MOFSNC shows an unprecedented Na+/K+ selectivity of tens to 102 and Na+/Li+ selectivity of 103 under multicomponent permeation conditions, comparable to biological sodium channels. A co-ion-responsive single-file transport mechanism in 15C-MOFSNC is proposed for the preferential transport of Na+ over K+ due to the synergetic effects of size exclusion, charge selectivity, local hydrophobicity, and preferential binding with functional groups. This study provides an alternative strategy for developing potential single-ion selective channels and membranes for many applications.
Collapse
Affiliation(s)
- Jun Lu
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Gengping Jiang
- Department of Applied Physics, College of Science, Wuhan University of Science and Technology, Wuhan 430072, China
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Binbin Qian
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Haijin Zhu
- Institute for Frontier Materials, Deakin University Waurn Ponds Campus, Geelong, Victoria 3216, Australia
| | - Qinfen Gu
- ANSTO, Australian Synchrotron, 800 Blackburn Rd., Clayton, Victoria 3168, Australia
| | - Yuan Yan
- Department of Mechanical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jefferson Zhe Liu
- Department of Mechanical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Benny D. Freeman
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Lei Jiang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
37
|
Pan X, Wang Q, Ma Z, Qin Y, Lu X, Jin W, Zhu Y. Assisting Role of Water Molecules in Ionic Recognition by 18-Crown-6 Ether in Aqueous Solutions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
38
|
Kim H, Koo B. Lithium sensors based on photophysical changes of 1-aza-12-crown-4 naphthalene derivatives synthesized via Buchwald-Hartwig amination. RSC Adv 2022; 12:31976-31984. [PMID: 36380950 PMCID: PMC9641676 DOI: 10.1039/d2ra05746h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
Lithium detection is of great significance in many applications. Lithium-sensing compounds with high selectivity are scarce and, if any, complicated to synthesize. We herein report a novel yet simple compound that can detect lithium ions in an organic solvent through changes in absorbance and fluorescence. Naphthalene functionalized with 1-aza-12-crown-4 (1) was synthesized via one step from commercially available 1-bromonaphthalene through Buchwald-Hartwig amination. In order to obtain a structure-property relationship, we also synthesized two other compounds that are structurally similar to 1, wherein the compounds 2 and 3 include an imide moiety (an electron acceptor) and do not include a 1-aza-12-crown-4 unit, respectively. Upon the addition of lithium ions, compound 1 displayed a clear isosbestic point in the absorption spectra and a new peak in the fluorescence spectra, whereas the compounds 2 and 3 indicated miniscule and no spectroscopic changes, respectively. 1H NMR titration studies and the calculated optimized geometry from density functional theory (DFT) indicated the lithium binding on the aza-crown. The calculated limit of detection (LOD) was 21 μM. The lithium detection with 1 is selective among other alkali metals (Na+, K+, and Cs+). DFT calculation indicated that the lone pair electrons in the nitrogen atom of 1 is delocalized yet available to bind lithium, whereas the nitrogen lone pair electrons of 2 showed significant intramolecular charge transfer to the imide acceptor, resulting in a high dipole moment, and thus were unavailable to bind lithium. This work elucidates the key design parameters for future lithium sensors.
Collapse
Affiliation(s)
- Haneul Kim
- Department of Polymer Science and Engineering, Dankook University Yongin Gyeonggi 16890 Republic of Korea
| | - Byungjin Koo
- Department of Polymer Science and Engineering, Dankook University Yongin Gyeonggi 16890 Republic of Korea
| |
Collapse
|
39
|
Tuning charge density in tethered electrolyte active-layer membranes for enhanced ion-ion selectivity. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Polyamide nanofiltration membranes with rigid–flexible microstructures for high-efficiency Mg2+/Li+ separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Sulfonated polymer coating enhances selective removal of calcium in membrane capacitive deionization. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Zhu Q, Liu Y, Zuo P, Dong Y, Yang Z, Xu T. An isoporous ion exchange membrane for selective Na+ transport. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
43
|
Baudino L, Santos C, Pirri CF, La Mantia F, Lamberti A. Recent Advances in the Lithium Recovery from Water Resources: From Passive to Electrochemical Methods. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201380. [PMID: 35896956 PMCID: PMC9507372 DOI: 10.1002/advs.202201380] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/14/2022] [Indexed: 06/15/2023]
Abstract
The ever-increasing amount of batteries used in today's society has led to an increase in the demand of lithium in the last few decades. While mining resources of this element have been steadily exploited and are rapidly depleting, water resources constitute an interesting reservoir just out of reach of current technologies. Several techniques are being explored and novel materials engineered. While evaporation is very time-consuming and has large footprints, ion sieves and supramolecular systems can be suitably tailored and even integrated into membrane and electrochemical techniques. This review gives a comprehensive overview of the available solutions to recover lithium from water resources both by passive and electrically enhanced techniques. Accordingly, this work aims to provide in a single document a rational comparison of outstanding strategies to remove lithium from aqueous sources. To this end, practical figures of merit of both main groups of techniques are provided. An absence of a common experimental protocol and the resulting variability of data and experimental methods are identified. The need for a shared methodology and a common agreement to report performance metrics are underlined.
Collapse
Affiliation(s)
- Luisa Baudino
- DISAT Dipartimento di Scienza Applicata e TecnologiaPolitecnico di Torinocorso Duca degli Abruzzi 24Torino10129Italy
- Istituto Italiano di TecnologiaCenter for Sustainable Future TechnologiesVia Livorno 60Torino10144Italy
| | - Cleis Santos
- Energiespeicher‐ und EnergiewandlersystemeUniversität BremenBibliothekstraße 128359BremenGermany
| | - Candido F. Pirri
- DISAT Dipartimento di Scienza Applicata e TecnologiaPolitecnico di Torinocorso Duca degli Abruzzi 24Torino10129Italy
- Istituto Italiano di TecnologiaCenter for Sustainable Future TechnologiesVia Livorno 60Torino10144Italy
| | - Fabio La Mantia
- Energiespeicher‐ und EnergiewandlersystemeUniversität BremenBibliothekstraße 128359BremenGermany
| | - Andrea Lamberti
- DISAT Dipartimento di Scienza Applicata e TecnologiaPolitecnico di Torinocorso Duca degli Abruzzi 24Torino10129Italy
- Istituto Italiano di TecnologiaCenter for Sustainable Future TechnologiesVia Livorno 60Torino10144Italy
| |
Collapse
|
44
|
Wang Z, Xu C, Fu Q, Nair S. Transport Properties of Graphene Oxide Nanofiltration Membranes: Electrokinetic Modeling and Experimental Validation. AIChE J 2022. [DOI: 10.1002/aic.17865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhongzhen Wang
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology Atlanta GA USA
- Renewable Bioproducts Institute Georgia Institute of Technology Atlanta GA USA
| | - Chunyan Xu
- School of Civil and Environmental Engineering Georgia Institute of Technology Atlanta GA USA
| | - Qiang Fu
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology Atlanta GA USA
- Renewable Bioproducts Institute Georgia Institute of Technology Atlanta GA USA
| | - Sankar Nair
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology Atlanta GA USA
- Renewable Bioproducts Institute Georgia Institute of Technology Atlanta GA USA
| |
Collapse
|
45
|
Sachar HS, Zofchak ES, Marioni N, Zhang Z, Kadulkar S, Duncan TJ, Freeman BD, Ganesan V. Impact of Cation–Ligand Interactions on the Permselectivity of Ligand-Functionalized Polymer Membranes in Single and Mixed Salt Systems. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Harnoor Singh Sachar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712-1589, United States
| | - Everett S. Zofchak
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712-1589, United States
| | - Nico Marioni
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712-1589, United States
| | - Zidan Zhang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712-1589, United States
| | - Sanket Kadulkar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712-1589, United States
| | - Tyler J. Duncan
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712-1589, United States
| | - Benny D. Freeman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712-1589, United States
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712-1589, United States
| |
Collapse
|
46
|
Davenport MN, Bentley CL, Brennecke JF, Freeman BD. Ethylene and ethane transport properties of hydrogen-stable Ag+-based facilitated transport membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Heiranian M, DuChanois RM, Ritt CL, Violet C, Elimelech M. Molecular Simulations to Elucidate Transport Phenomena in Polymeric Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3313-3323. [PMID: 35235312 DOI: 10.1021/acs.est.2c00440] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite decades of dominance in separation technology, progress in the design and development of high-performance polymer-based membranes has been incremental. Recent advances in materials science and chemical synthesis provide opportunities for molecular-level design of next-generation membrane materials. Such designs necessitate a fundamental understanding of transport and separation mechanisms at the molecular scale. Molecular simulations are important tools that could lead to the development of fundamental structure-property-performance relationships for advancing membrane design. In this Perspective, we assess the application and capability of molecular simulations to understand the mechanisms of ion and water transport across polymeric membranes. Additionally, we discuss the reliability of molecular models in mimicking the structure and chemistry of nanochannels and transport pathways in polymeric membranes. We conclude by providing research directions for resolving key knowledge gaps related to transport phenomena in polymeric membranes and for the construction of structure-property-performance relationships for the design of next-generation membranes.
Collapse
Affiliation(s)
- Mohammad Heiranian
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Ryan M DuChanois
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Cody L Ritt
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Camille Violet
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| |
Collapse
|
48
|
DuChanois RM, Heiranian M, Yang J, Porter CJ, Li Q, Zhang X, Verduzco R, Elimelech M. Designing polymeric membranes with coordination chemistry for high-precision ion separations. SCIENCE ADVANCES 2022; 8:eabm9436. [PMID: 35245114 PMCID: PMC8896795 DOI: 10.1126/sciadv.abm9436] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/11/2022] [Indexed: 05/30/2023]
Abstract
State-of-the-art polymeric membranes are unable to perform the high-precision ion separations needed for technologies essential to a circular economy and clean energy future. Coordinative interactions are a mechanism to increase sorption of a target species into a membrane, but the effects of these interactions on membrane permeability and selectivity are poorly understood. We use a multilayered polymer membrane to assess how ion-membrane binding energies affect membrane permeability of similarly sized cations: Cu2+, Ni2+, Zn2+, Co2+, and Mg2+. We report that metals with higher binding energy to iminodiacetate groups of the polymer more selectively permeate through the membrane in multisalt solutions than single-salt solutions. In contrast, weaker binding species are precluded from diffusing into the polymer membrane, which leads to passage proportional to binding energy and independent of membrane thickness. Our findings demonstrate that selectivity of polymeric membranes can markedly increase by tailoring ion-membrane binding energy and minimizing membrane thickness.
Collapse
Affiliation(s)
- Ryan M. DuChanois
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, TX 77005, USA
| | - Mohammad Heiranian
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Jason Yang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Cassandra J. Porter
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Qilin Li
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, TX 77005, USA
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
- Department of Materials Science and Nano Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
- Department of Chemical and Biomolecular Engineering, Materials Science and NanoEngineering, Rice University, Houston, TX 77005, USA
| | - Xuan Zhang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Rafael Verduzco
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, TX 77005, USA
- Department of Chemical and Biomolecular Engineering, Materials Science and NanoEngineering, Rice University, Houston, TX 77005, USA
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, TX 77005, USA
| |
Collapse
|
49
|
Zofchak ES, Zhang Z, Marioni N, Duncan TJ, Sachar HS, Chamseddine A, Freeman BD, Ganesan V. Cation–Ligand Interactions Dictate Salt Partitioning and Diffusivity in Ligand-Functionalized Polymer Membranes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Everett S. Zofchak
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Zidan Zhang
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Nico Marioni
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Tyler J. Duncan
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Harnoor S. Sachar
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Alyssa Chamseddine
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Benny D. Freeman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
50
|
Zhang H, Li X, Hou J, Jiang L, Wang H. Angstrom-scale ion channels towards single-ion selectivity. Chem Soc Rev 2022; 51:2224-2254. [PMID: 35225300 DOI: 10.1039/d1cs00582k] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Artificial ion channels with ion permeability and selectivity comparable to their biological counterparts are highly desired for efficient separation, biosensing, and energy conversion technologies. In the past two decades, both nanoscale and sub-nanoscale ion channels have been successfully fabricated to mimic biological ion channels. Although nanoscale ion channels have achieved intelligent gating and rectification properties, they cannot realize high ion selectivity, especially single-ion selectivity. Artificial angstrom-sized ion channels with narrow pore sizes <1 nm and well-defined pore structures mimicking biological channels have accomplished high ion conductivity and single-ion selectivity. This review comprehensively summarizes the research progress in the rational design and synthesis of artificial subnanometer-sized ion channels with zero-dimensional to three-dimensional pore structures. Then we discuss cation/anion, mono-/di-valent cation, mono-/di-valent anion, and single-ion selectivities of the synthetic ion channels and highlight their potential applications in high-efficiency ion separation, energy conversion, and biological therapeutics. The gaps of single-ion selectivity between artificial and natural channels and the connections between ion selectivity and permeability of synthetic ion channels are covered. Finally, the challenges that need to be addressed in this research field and the perspective of angstrom-scale ion channels are discussed.
Collapse
Affiliation(s)
- Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Xingya Li
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China.
| | - Jue Hou
- Manufacturing, CSIRO, Clayton, Victoria 3168, Australia
| | - Lei Jiang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|