1
|
Hou S, Zuo W, Fang Q, Lu P, Tao B, Xie M, Hu G, Zhou J, Feng LW, Huang W. Modulation on Transconductance and Switching Speed of Vertical Organic Electrochemical Transistors via Structure Engineering. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5176-5183. [PMID: 39780512 DOI: 10.1021/acsami.4c17931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Vertical organic electrochemical transistors (vOECTs) have received widespread attention in bioelectronics, wearable, and neuromorphic electronics due to their high transconductance (gm), low driving voltage, and biocompatibility. As key parameters of vOECTs, gm and switching speed (or transient time, τ) are vital for achieving satisfying performance in various practical applications. Here we employ vOECTs with varying top electrode widths for effective gm and switching speed modulation. It is found that both gm and τ increase linearly (from 60.0 to 105.8 mS and from 1.15 to 1.60 ms, respectively) with the increasing top electrode width (from 40 to 120 μm). This result indicates that it is challenging to simultaneously obtain both high gm and short τ. Consequently, grid-like top electrodes are employed, which are composed of small electrodes arranged with certain intervals, where ions can be injected from the gap of electrodes instead of the side of a single large electrode, leading to both high gm (202 mS) and short τ (0.797 ms). In addition, the grid-like electrode-based vOECTs successfully achieve electrocardiogram (ECG) and electrooculogram (EOG) monitoring with high signal quality. This work provides an ingenious design of the top electrodes in vOECTs and promotes further optimization of device performance, increasing gm while enabling high-frequency operation.
Collapse
Affiliation(s)
- Sihui Hou
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wei Zuo
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qizhou Fang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Pengchen Lu
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Baining Tao
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Miao Xie
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Guohong Hu
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jinhao Zhou
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Liang-Wen Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Wei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
2
|
Desbiolles B, Hanna J, Ausilio R, Leccardi MA, Yu Y, Sarkar D. Organic electro-scattering antenna: Wireless and multisite probing of electrical potentials with high spatial resolution. SCIENCE ADVANCES 2024; 10:eadr8380. [PMID: 39705344 DOI: 10.1126/sciadv.adr8380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/18/2024] [Indexed: 12/22/2024]
Abstract
Monitoring electrical potentials with high recording site density and micrometer spatial resolution in liquid is critical in biosensing. Organic electronic materials have driven remarkable advances in the field because of their unique material properties, yet limitations in spatial resolution and recording density remain. Here, we introduce organic electro-scattering antennas (OCEANs) for wireless, light-based probing of electrical signals with micrometer spatial resolution, potentially from thousands of sites. The technology relies on the unique dependence of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate light scattering properties to its doping level. Electro-optic characteristics of individual antennas varying in diameters and operating voltages were systematically characterized in saline solution. Signal-to-noise ratios up to 48 were achieved in response to 100-mV stimuli, with 2.5-mV detection limits. OCEANs demonstrated millisecond time constants and exceptional long-term stability, enabling continuous recordings over 10 hours. By offering spatial resolution of 5 μm and a recording density of 4 × 106 cm-2, OCEANs unlock new readout capabilities, potentially accelerating fundamental and clinical research.
Collapse
Affiliation(s)
- Benoit Desbiolles
- Nano-Cybernetic Biotrek, Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jad Hanna
- Nano-Cybernetic Biotrek, Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Raphael Ausilio
- Nano-Cybernetic Biotrek, Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marta Airaghi Leccardi
- Nano-Cybernetic Biotrek, Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Deblina Sarkar
- Nano-Cybernetic Biotrek, Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Zhao Q, Gribkova E, Shen Y, Cui J, Naughton N, Liu L, Seo J, Tong B, Gazzola M, Gillette R, Zhao H. Highly stretchable and customizable microneedle electrode arrays for intramuscular electromyography. SCIENCE ADVANCES 2024; 10:eadn7202. [PMID: 38691612 PMCID: PMC11062587 DOI: 10.1126/sciadv.adn7202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/29/2024] [Indexed: 05/03/2024]
Abstract
Stretchable three-dimensional (3D) penetrating microelectrode arrays have potential utility in various fields, including neuroscience, tissue engineering, and wearable bioelectronics. These 3D microelectrode arrays can penetrate and conform to dynamically deforming tissues, thereby facilitating targeted sensing and stimulation of interior regions in a minimally invasive manner. However, fabricating custom stretchable 3D microelectrode arrays presents material integration and patterning challenges. In this study, we present the design, fabrication, and applications of stretchable microneedle electrode arrays (SMNEAs) for sensing local intramuscular electromyography signals ex vivo. We use a unique hybrid fabrication scheme based on laser micromachining, microfabrication, and transfer printing to enable scalable fabrication of individually addressable SMNEA with high device stretchability (60 to 90%). The electrode geometries and recording regions, impedance, array layout, and length distribution are highly customizable. We demonstrate the use of SMNEAs as bioelectronic interfaces in recording intramuscular electromyography from various muscle groups in the buccal mass of Aplysia.
Collapse
Affiliation(s)
- Qinai Zhao
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, USA
- Center for Advanced Manufacturing, University of Southern California, Los Angeles, CA, USA
| | - Ekaterina Gribkova
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yiyang Shen
- Center for Advanced Manufacturing, University of Southern California, Los Angeles, CA, USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Jilai Cui
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Noel Naughton
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Liangshu Liu
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, USA
- Center for Advanced Manufacturing, University of Southern California, Los Angeles, CA, USA
| | - Jaemin Seo
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, USA
- Center for Advanced Manufacturing, University of Southern California, Los Angeles, CA, USA
| | - Baixin Tong
- Center for Advanced Manufacturing, University of Southern California, Los Angeles, CA, USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Mattia Gazzola
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rhanor Gillette
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hangbo Zhao
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, USA
- Center for Advanced Manufacturing, University of Southern California, Los Angeles, CA, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Zhang P, Zhu B, Du P, Travas-Sejdic J. Electrochemical and Electrical Biosensors for Wearable and Implantable Electronics Based on Conducting Polymers and Carbon-Based Materials. Chem Rev 2024; 124:722-767. [PMID: 38157565 DOI: 10.1021/acs.chemrev.3c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Bioelectronic devices are designed to translate biological information into electrical signals and vice versa, thereby bridging the gap between the living biological world and electronic systems. Among different types of bioelectronics devices, wearable and implantable biosensors are particularly important as they offer access to the physiological and biochemical activities of tissues and organs, which is significant in diagnosing and researching various medical conditions. Organic conducting and semiconducting materials, including conducting polymers (CPs) and graphene and carbon nanotubes (CNTs), are some of the most promising candidates for wearable and implantable biosensors. Their unique electrical, electrochemical, and mechanical properties bring new possibilities to bioelectronics that could not be realized by utilizing metals- or silicon-based analogues. The use of organic- and carbon-based conductors in the development of wearable and implantable biosensors has emerged as a rapidly growing research field, with remarkable progress being made in recent years. The use of such materials addresses the issue of mismatched properties between biological tissues and electronic devices, as well as the improvement in the accuracy and fidelity of the transferred information. In this review, we highlight the most recent advances in this field and provide insights into organic and carbon-based (semi)conducting materials' properties and relate these to their applications in wearable/implantable biosensors. We also provide a perspective on the promising potential and exciting future developments of wearable/implantable biosensors.
Collapse
Affiliation(s)
- Peikai Zhang
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand
| | - Bicheng Zhu
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand
| | - Jadranka Travas-Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
5
|
Uguz I, Ohayon D, Arslan V, Sheelamanthula R, Griggs S, Hama A, Stanton JW, McCulloch I, Inal S, Shepard KL. Flexible switch matrix addressable electrode arrays with organic electrochemical transistor and pn diode technology. Nat Commun 2024; 15:533. [PMID: 38225257 PMCID: PMC10789794 DOI: 10.1038/s41467-023-44024-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/28/2023] [Indexed: 01/17/2024] Open
Abstract
Due to their effective ionic-to-electronic signal conversion and mechanical flexibility, organic neural implants hold considerable promise for biocompatible neural interfaces. Current approaches are, however, primarily limited to passive electrodes due to a lack of circuit components to realize complex active circuits at the front-end. Here, we introduce a p-n organic electrochemical diode using complementary p- and n-type conducting polymer films embedded in a 15-μm -diameter vertical stack. Leveraging the efficient motion of encapsulated cations inside this polymer stack and the opposite doping mechanisms of the constituent polymers, we demonstrate high current rectification ratios ([Formula: see text]) and fast switching speeds (230 μs). We integrate p-n organic electrochemical diodes with organic electrochemical transistors in the front-end pixel of a recording array. This configuration facilitates the access of organic electrochemical transistor output currents within a large network operating in the same electrolyte, while minimizing crosstalk from neighboring elements due to minimized reverse-biased leakage. Furthermore, we use these devices to fabricate time-division-multiplexed amplifier arrays. Lastly, we show that, when fabricated in a shank format, this technology enables the multiplexing of amplified local field potentials directly in the active recording pixel (26-μm diameter) in a minimally invasive form factor with shank cross-sectional dimensions of only 50×8 [Formula: see text].
Collapse
Affiliation(s)
- Ilke Uguz
- Electrical Engineering Department, Columbia University, New York, 10027, NY, USA.
| | - David Ohayon
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Volkan Arslan
- Electrical Engineering Department, Columbia University, New York, 10027, NY, USA
| | | | - Sophie Griggs
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Adel Hama
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - John William Stanton
- Electrical Engineering Department, Columbia University, New York, 10027, NY, USA
| | - Iain McCulloch
- Physical Science and Engineering Division, KAUST, Thuwal, 23955-6900, Saudi Arabia
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Kenneth L Shepard
- Electrical Engineering Department, Columbia University, New York, 10027, NY, USA
| |
Collapse
|
6
|
Yao Y, Huang W, Chen J, Liu X, Bai L, Chen W, Cheng Y, Ping J, Marks TJ, Facchetti A. Flexible and Stretchable Organic Electrochemical Transistors for Physiological Sensing Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209906. [PMID: 36808773 DOI: 10.1002/adma.202209906] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Flexible and stretchable bioelectronics provides a biocompatible interface between electronics and biological systems and has received tremendous attention for in situ monitoring of various biological systems. Considerable progress in organic electronics has made organic semiconductors, as well as other organic electronic materials, ideal candidates for developing wearable, implantable, and biocompatible electronic circuits due to their potential mechanical compliance and biocompatibility. Organic electrochemical transistors (OECTs), as an emerging class of organic electronic building blocks, exhibit significant advantages in biological sensing due to the ionic nature at the basis of the switching behavior, low driving voltage (<1 V), and high transconductance (in millisiemens range). During the past few years, significant progress in constructing flexible/stretchable OECTs (FSOECTs) for both biochemical and bioelectrical sensors has been reported. In this regard, to summarize major research accomplishments in this emerging field, this review first discusses structure and critical features of FSOECTs, including working principles, materials, and architectural engineering. Next, a wide spectrum of relevant physiological sensing applications, where FSOECTs are the key components, are summarized. Last, major challenges and opportunities for further advancing FSOECT physiological sensors are discussed.
Collapse
Affiliation(s)
- Yao Yao
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
| | - Wei Huang
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, P. R. China
| | - Jianhua Chen
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
| | - Xiaoxue Liu
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Libing Bai
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, P. R. China
| | - Wei Chen
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Yuhua Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, P. R. China
| | - Jianfeng Ping
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden
| |
Collapse
|
7
|
Li N, Li Y, Cheng Z, Liu Y, Dai Y, Kang S, Li S, Shan N, Wai S, Ziaja A, Wang Y, Strzalka J, Liu W, Zhang C, Gu X, Hubbell JA, Tian B, Wang S. Bioadhesive polymer semiconductors and transistors for intimate biointerfaces. Science 2023; 381:686-693. [PMID: 37561870 PMCID: PMC10768720 DOI: 10.1126/science.adg8758] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/14/2023] [Indexed: 08/12/2023]
Abstract
The use of bioelectronic devices relies on direct contact with soft biotissues. For transistor-type bioelectronic devices, the semiconductors that need to have direct interfacing with biotissues for effective signal transduction do not adhere well with wet tissues, thereby limiting the stability and conformability at the interface. We report a bioadhesive polymer semiconductor through a double-network structure formed by a bioadhesive brush polymer and a redox-active semiconducting polymer. The resulting semiconducting film can form rapid and strong adhesion with wet tissue surfaces together with high charge-carrier mobility of ~1 square centimeter per volt per second, high stretchability, and good biocompatibility. Further fabrication of a fully bioadhesive transistor sensor enabled us to produce high-quality and stable electrophysiological recordings on an isolated rat heart and in vivo rat muscles.
Collapse
Affiliation(s)
- Nan Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Yang Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Zhe Cheng
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Youdi Liu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Yahao Dai
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Seounghun Kang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Songsong Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Naisong Shan
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Shinya Wai
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Aidan Ziaja
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Yunfei Wang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Joseph Strzalka
- X-Ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Wei Liu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Cheng Zhang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Xiaodan Gu
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Jeffrey A. Hubbell
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
- Committee on Immunology, The University of Chicago, Chicago, IL, 60637, USA
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Bozhi Tian
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Sihong Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
- Nanoscience and Technology Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, 60439, USA
| |
Collapse
|
8
|
Matsuura K, Shimizu T. Cardiac cell sheet engineering for regenerative medicine and tissue modeling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:179-197. [PMID: 37678971 DOI: 10.1016/bs.pmbts.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Stem cell biology and tissue engineering are essential techniques for cardiac tissue construction. We have succeeded in fabricating human cardiac tissue using the mass production technology of human iPS cell-derived cardiomyocytes and cell sheet engineering, and we are developing regenerative medicine and tissue models to apply this tissue to heart disease research. Cardiac tissue fabrication and tissue functional evaluation technologies for contractile and electrophysiological function are indispensable, which lead to the functional improvement of bioengineered human cardiac tissue.
Collapse
Affiliation(s)
- Katsuhisa Matsuura
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University.
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University
| |
Collapse
|
9
|
Wu M, Yao K, Huang N, Li H, Zhou J, Shi R, Li J, Huang X, Li J, Jia H, Gao Z, Wong TH, Li D, Hou S, Liu Y, Zhang S, Song E, Yu J, Yu X. Ultrathin, Soft, Bioresorbable Organic Electrochemical Transistors for Transient Spatiotemporal Mapping of Brain Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300504. [PMID: 36825679 PMCID: PMC10190644 DOI: 10.1002/advs.202300504] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Indexed: 05/18/2023]
Abstract
A critical challenge lies in the development of the next-generation neural interface, in mechanically tissue-compatible fashion, that offer accurate, transient recording electrophysiological (EP) information and autonomous degradation after stable operation. Here, an ultrathin, lightweight, soft and multichannel neural interface is presented based on organic-electrochemical-transistor-(OECT)-based network, with capabilities of continuous high-fidelity mapping of neural signals and biosafety active degrading after performing functions. Such platform yields a high spatiotemporal resolution of 1.42 ms and 20 µm, with signal-to-noise ratio up to ≈37 dB. The implantable OECT arrays can well establish stable functional neural interfaces, designed as fully biodegradable electronic platforms in vivo. Demonstrated applications of such OECT implants include real-time monitoring of electrical activities from the cortical surface of rats under various conditions (e.g., narcosis, epileptic seizure, and electric stimuli) and electrocorticography mapping from 100 channels. This technology offers general applicability in neural interfaces, with great potential utility in treatment/diagnosis of neurological disorders.
Collapse
Affiliation(s)
- Mengge Wu
- State Key Laboratory of Electronic Thin Films and Integrated DevicesSchool of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of China (UESTC)Chengdu610054P. R. China
- Department of Biomedical EngineeringCity University of Hong KongHong KongP. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and PerceptionInstitute of OptoelectronicsFudan UniversityShanghai200433P. R. China
| | - Kuanming Yao
- Department of Biomedical EngineeringCity University of Hong KongHong KongP. R. China
| | - Ningge Huang
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and PerceptionInstitute of OptoelectronicsFudan UniversityShanghai200433P. R. China
| | - Hu Li
- Department of Biomedical EngineeringCity University of Hong KongHong KongP. R. China
| | - Jingkun Zhou
- Department of Biomedical EngineeringCity University of Hong KongHong KongP. R. China
- Hong Kong Center for Cerebra‐Cardiovascular Health EngineeringHong Kong Science ParkNew TerritoriesHong KongP. R. China
| | - Rui Shi
- Department of Biomedical EngineeringCity University of Hong KongHong KongP. R. China
| | - Jiyu Li
- Department of Biomedical EngineeringCity University of Hong KongHong KongP. R. China
- Hong Kong Center for Cerebra‐Cardiovascular Health EngineeringHong Kong Science ParkNew TerritoriesHong KongP. R. China
| | - Xingcan Huang
- Department of Biomedical EngineeringCity University of Hong KongHong KongP. R. China
| | - Jian Li
- Department of Biomedical EngineeringCity University of Hong KongHong KongP. R. China
- Hong Kong Center for Cerebra‐Cardiovascular Health EngineeringHong Kong Science ParkNew TerritoriesHong KongP. R. China
| | - Huiling Jia
- Department of Biomedical EngineeringCity University of Hong KongHong KongP. R. China
- Hong Kong Center for Cerebra‐Cardiovascular Health EngineeringHong Kong Science ParkNew TerritoriesHong KongP. R. China
| | - Zhan Gao
- Department of Biomedical EngineeringCity University of Hong KongHong KongP. R. China
| | - Tsz Hung Wong
- Department of Biomedical EngineeringCity University of Hong KongHong KongP. R. China
| | - Dengfeng Li
- Department of Biomedical EngineeringCity University of Hong KongHong KongP. R. China
- Hong Kong Center for Cerebra‐Cardiovascular Health EngineeringHong Kong Science ParkNew TerritoriesHong KongP. R. China
| | - Sihui Hou
- State Key Laboratory of Electronic Thin Films and Integrated DevicesSchool of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of China (UESTC)Chengdu610054P. R. China
- Department of Biomedical EngineeringCity University of Hong KongHong KongP. R. China
| | - Yiming Liu
- Department of Biomedical EngineeringCity University of Hong KongHong KongP. R. China
| | - Shiming Zhang
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong KongSARP. R. China
| | - Enming Song
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and PerceptionInstitute of OptoelectronicsFudan UniversityShanghai200433P. R. China
| | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated DevicesSchool of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of China (UESTC)Chengdu610054P. R. China
| | - Xinge Yu
- Department of Biomedical EngineeringCity University of Hong KongHong KongP. R. China
- Hong Kong Center for Cerebra‐Cardiovascular Health EngineeringHong Kong Science ParkNew TerritoriesHong KongP. R. China
| |
Collapse
|
10
|
Lu MJ, Li CJ, Ban R, Chen FZ, Hu J, Gao G, Zhou H, Lin P, Zhao WW. Tuning the Surface Molecular Charge of Organic Photoelectrochemical Transistors with Significantly Improved Signal Resolution: A General Strategy toward Sensitive Bioanalysis. ACS Sens 2022; 7:2788-2794. [PMID: 36069701 DOI: 10.1021/acssensors.2c01493] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nature makes use of molecular charges to operate specific biological synthesis and reactions. Targeting advanced opto-bioelectronic sensors, organic photoelectrochemical transistors (OPECTs), taking advantage of the light fuel substituting an external gate potential, is now debuting and expected to serve as a universal platform for studying the rich light-biomatter interplay for new bioanalytics. Given the ubiquity of charged biomolecules in nature, molecular charge manipulation should underpin a generic route for innovative OPECT regulation and operation, which nevertheless has remained unachieved. Herein, this work manifests the biological tuning of surface charge toward the OPECT biosensor, which was exemplified by a light-sensitive CdS quantum dot (QD) gate electrode interfaced by a smart DNA superstructure with adenosine triphosphate (ATP) responsiveness. Highly negative-charged supramolecular DNA concatemers were self-assembled via sequential hybridization, and the ATP-triggered disassembly of the DNA concatemers would cause a tandem change of the effective gate voltage and transfer characteristics with significantly improved resolution. The present opto-bioelectronic device translates the events of charged molecules into amplified electrical signals and outlines a generic format for the future exploitation of rich biological tunability and light-biomatter interplay for innovative bioanalytics and beyond.
Collapse
Affiliation(s)
- Meng-Jiao Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China.,School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, China
| | - Cheng-Jun Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Rui Ban
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China.,School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, China
| | - Feng-Zao Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ge Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong Zhou
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|