1
|
Jin X, Deng A, Fan Y, Ma K, Zhao Y, Wang Y, Zheng K, Zhou X, Lu G. Diversity, functionality, and stability: shaping ecosystem multifunctionality in the successional sequences of alpine meadows and alpine steppes on the Qinghai-Tibet Plateau. FRONTIERS IN PLANT SCIENCE 2025; 16:1436439. [PMID: 40182548 PMCID: PMC11966483 DOI: 10.3389/fpls.2025.1436439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025]
Abstract
Recent investigations on the Tibetan Plateau have harnessed advancements in digital ground vegetation surveys, high temporal resolution remote sensing data, and sophisticated cloud computing technologies to delineate successional dynamics between alpine meadows and alpine steppes. However, these efforts have not thoroughly explored how different successional stages affect key ecological parameters, such as species and functional diversity, stability, and ecosystem multifunctionality, which are fundamental to ecosystem resilience and adaptability. Given this gap, we systematically investigate variations in vegetation diversity, functional diversity, and the often-overlooked dimension of community stability across the successional gradient from alpine meadows to alpine steppes. We further identify the primary environmental drivers of these changes and evaluate their collective impact on ecosystem multifunctionality. Our analysis reveals that, as vegetation communities progress from alpine meadows toward alpine steppes, multi-year average precipitation and temperature decline significantly, accompanied by reductions in soil nutrients. These environmental shifts led to decreased species diversity, driven by lower precipitation and reduced soil nitrate-nitrogen levels, as well as community differentiation influenced by declining soil pH and precipitation. Consequently, as species loss and community differentiation intensified, these changes diminished functional diversity and eroded community resilience and resistance, ultimately reducing grassland ecosystem multifunctionality. Using linear mixed-effects model and structural equation modeling, we found that functional diversity is the foremost determinant of ecosystem multifunctionality, followed by species diversity. Surprisingly, community stability also significantly influences ecosystem multifunctionality-a factor rarely highlighted in previous studies. These findings deepen our understanding of the interplay among diversity, functionality, stability, and ecosystem multifunctionality, and support the development of an integrated feedback model linking environmental drivers with ecological attributes in alpine grassland ecosystems.
Collapse
Affiliation(s)
- Xin Jin
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Abby Deng
- Enterprise High School, Redding, CA, United States
| | - Yuejun Fan
- Qinghai Vocational and Technical Institute of Animal Husbandry, Xining, China
| | - Kun Ma
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Yangan Zhao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Yingcheng Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Kaifu Zheng
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Xueli Zhou
- Qinghai Province Grassland Station, Xining, China
| | - Guangxin Lu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| |
Collapse
|
2
|
Bai Y, Peng Y, Zhang D, Yang G, Chen L, Kang L, Zhou W, Wei B, Xie Y, Yang Y. Heating up the roof of the world: tracing the impacts of in-situ warming on carbon cycle in alpine grasslands on the Tibetan Plateau. Natl Sci Rev 2025; 12:nwae371. [PMID: 39872222 PMCID: PMC11771398 DOI: 10.1093/nsr/nwae371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/17/2024] [Accepted: 10/06/2024] [Indexed: 01/30/2025] Open
Abstract
Climate warming may induce substantial changes in the ecosystem carbon cycle, particularly for those climate-sensitive regions, such as alpine grasslands on the Tibetan Plateau. By synthesizing findings from in-situ warming experiments, this review elucidates the mechanisms underlying the impacts of experimental warming on carbon cycle dynamics within these ecosystems. Generally, alterations in vegetation structure and prolonged growing season favor strategies for enhanced ecosystem carbon sequestration under warming conditions. Whilst warming modifies soil microbial communities and their carbon-related functions, its effects on soil carbon release fall behind the increased vegetation carbon uptake. Despite the fact that no significant accumulation of soil carbon stock has been detected upon warming, notable changes in its fractions indicate potential shifts in carbon stability. Future studies should prioritize deep soil carbon dynamics, the interactions of carbon, nitrogen, and phosphorus cycles under warming scenarios, and the underlying biological mechanisms behind these responses. Furthermore, the integration of long-term warming experiments with Earth system models is essential for reducing the uncertainties of model predictions regarding future carbon-climate feedback in these climate-sensitive ecosystems.
Collapse
Affiliation(s)
- Yuxuan Bai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Yunfeng Peng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Dianye Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Guibiao Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Leiyi Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Luyao Kang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Wei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhong Xie
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Fairchild TP, Walter B, Mutter JJ, Griffin JN. Topographic heterogeneity triggers complementary cascades that enhance ecosystem multifunctionality. Ecology 2024; 105:e4434. [PMID: 39354801 DOI: 10.1002/ecy.4434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/18/2024] [Accepted: 07/31/2024] [Indexed: 10/03/2024]
Abstract
Topographic heterogeneity sets the stage for community assembly, but its effects on ecosystem functioning remain poorly understood. Here, we test the hypothesis that topographic heterogeneity underpins multiple cascading species interactions and functional pathways that indirectly control multifunctionality. To do so, we combined experimental manipulation of a form of topographic heterogeneity on rocky shores (holes of various sizes) with a comprehensive assessment of naturally assembled communities and multifunctionality. Structural equation modeling indicated that heterogeneity: (1) enhanced biodiversity by supporting filter feeder richness; (2) triggered a facilitation cascade via reef-forming (polychaete) and biomass-dominant (macroalga) foundation species, which in turn broadly supported functionally diverse epibiotic and understory assemblages; and (3) inhibited a key consumer (limpet). The model supported that these mechanisms exerted complementary positive effects on individual functions (e.g., water filtration, ecosystem metabolism, nutrient uptake) and, in turn, collectively enhanced multifunctionality. Topographic heterogeneity may therefore serve as a cornerstone physical attribute by initiating multiple cascades that propagate through ecological communities via foundation species, ultimately manifesting disproportionate effects on ecosystem multifunctionality.
Collapse
Affiliation(s)
- Tom P Fairchild
- Faculty of Science and Engineering, Wallace Building, Swansea University, Singleton Park Campus, Swansea, UK
| | - Bettina Walter
- Project Seagrass, Unit 1 Garth Drive, Brackla Industrial Estate, Bridgend, UK
| | - Joshua J Mutter
- Faculty of Science and Engineering, Wallace Building, Swansea University, Singleton Park Campus, Swansea, UK
| | - John N Griffin
- Faculty of Science and Engineering, Wallace Building, Swansea University, Singleton Park Campus, Swansea, UK
| |
Collapse
|
4
|
Steger J, Bogi C, Lubinevsky H, Galil BS, Zuschin M, Albano PG. Ecological baselines in the Eastern Mediterranean Sea shifted long before the availability of observational time series. GLOBAL CHANGE BIOLOGY 2024; 30:e17272. [PMID: 38623753 DOI: 10.1111/gcb.17272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 04/17/2024]
Abstract
Native biodiversity loss and invasions by nonindigenous species (NIS) have massively altered ecosystems worldwide, but trajectories of taxonomic and functional reorganization remain poorly understood due to the scarcity of long-term data. Where ecological time series are available, their temporal coverage is often shorter than the history of anthropogenic changes, posing the risk of drawing misleading conclusions on systems' current states and future development. Focusing on the Eastern Mediterranean Sea, a region affected by massive biological invasions and the largest climate change-driven collapse of native marine biodiversity ever documented, we followed the taxonomic and functional evolution of an emerging "novel ecosystem", using a unique dataset on shelled mollusks sampled in 2005-2022 on the Israeli shelf. To quantify the alteration of observed assemblages relative to historical times, we also analyzed decades- to centuries-old ecological baselines reconstructed from radiometrically dated death assemblages, time-averaged accumulations of shells on the seafloor that constitute natural archives of past community states. Against expectations, we found no major loss of native biodiversity in the past two decades, suggesting that its collapse had occurred even earlier than 2005. Instead, assemblage taxonomic and functional richness increased, reflecting the diversification of NIS whose trait structure was, and has remained, different from the native one. The comparison with the death assemblage, however, revealed that modern assemblages are taxonomically and functionally much impoverished compared to historical communities. This implies that NIS did not compensate for the functional loss of native taxa, and that even the most complete observational dataset available for the region represents a shifted baseline that does not reflect the actual magnitude of anthropogenic changes. While highlighting the great value of observational time series, our results call for the integration of multiple information sources on past ecosystem states to better understand patterns of biodiversity loss in the Anthropocene.
Collapse
Affiliation(s)
- Jan Steger
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - Cesare Bogi
- Gruppo Malacologico Livornese, c/o Museo di Storia Naturale del Mediterraneo, Livorno, Italy
| | - Hadas Lubinevsky
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Bella S Galil
- The Steinhardt Museum of Natural History and Israel National Center for Biodiversity Studies, Tel Aviv University, Tel Aviv, Israel
| | - Martin Zuschin
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - Paolo G Albano
- Department of Palaeontology, University of Vienna, Vienna, Austria
- Department of Marine Animal Conservation and Public Engagement, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
5
|
Dee LE, Ferraro PJ, Severen CN, Kimmel KA, Borer ET, Byrnes JEK, Clark AT, Hautier Y, Hector A, Raynaud X, Reich PB, Wright AJ, Arnillas CA, Davies KF, MacDougall A, Mori AS, Smith MD, Adler PB, Bakker JD, Brauman KA, Cowles J, Komatsu K, Knops JMH, McCulley RL, Moore JL, Morgan JW, Ohlert T, Power SA, Sullivan LL, Stevens C, Loreau M. Clarifying the effect of biodiversity on productivity in natural ecosystems with longitudinal data and methods for causal inference. Nat Commun 2023; 14:2607. [PMID: 37147282 PMCID: PMC10163230 DOI: 10.1038/s41467-023-37194-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/03/2023] [Indexed: 05/07/2023] Open
Abstract
Causal effects of biodiversity on ecosystem functions can be estimated using experimental or observational designs - designs that pose a tradeoff between drawing credible causal inferences from correlations and drawing generalizable inferences. Here, we develop a design that reduces this tradeoff and revisits the question of how plant species diversity affects productivity. Our design leverages longitudinal data from 43 grasslands in 11 countries and approaches borrowed from fields outside of ecology to draw causal inferences from observational data. Contrary to many prior studies, we estimate that increases in plot-level species richness caused productivity to decline: a 10% increase in richness decreased productivity by 2.4%, 95% CI [-4.1, -0.74]. This contradiction stems from two sources. First, prior observational studies incompletely control for confounding factors. Second, most experiments plant fewer rare and non-native species than exist in nature. Although increases in native, dominant species increased productivity, increases in rare and non-native species decreased productivity, making the average effect negative in our study. By reducing the tradeoff between experimental and observational designs, our study demonstrates how observational studies can complement prior ecological experiments and inform future ones.
Collapse
Affiliation(s)
- Laura E Dee
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| | - Paul J Ferraro
- Department of Environmental Health and Engineering, Bloomberg School of Public Health & Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Carey Business School, Johns Hopkins University, Baltimore, MD, USA.
| | | | - Kaitlin A Kimmel
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Jarrett E K Byrnes
- Department of Biology, University of Massachusetts Boston, 100 Morissey Blvd, Boston, MA, 02125, USA
| | - Adam Thomas Clark
- Institute of Biology, University of Graz, Holteigasse 6, 8010, Graz, Austria
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Andrew Hector
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Xavier Raynaud
- Sorbonne Université, Université Paris Cité, UPEC, IRD, CNRS, INRA, Institute of Ecology and Environmental Sciences, iEES Paris, Paris, France
| | - Peter B Reich
- Institute for Global Change Biology, and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
- Department of Forest Resources, University of Minnesota, St. Paul, MN, 55108, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Alexandra J Wright
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA, USA
| | - Carlos A Arnillas
- Department of Physical and Environmental Sciences, University of Toronto at Scarborough, Toronto, 1265 Military Trail, ON, M1C 1A4, Canada
| | - Kendi F Davies
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Andrew MacDougall
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Akira S Mori
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8904, Japan
| | - Melinda D Smith
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Peter B Adler
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, 84322, USA
| | - Jonathan D Bakker
- School of Environmental and Forest Sciences, University of Washington, Box 354115, Seattle, WA, 98195-4115, USA
| | - Kate A Brauman
- Global Water Security Center, The University of Alabama, Box 870206, Tuscaloosa, AL, 35487, US
| | - Jane Cowles
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Kimberly Komatsu
- Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA
| | - Johannes M H Knops
- Department of Health and Environmental Sciences, Xián Jiaotong-Liverpool University, Suzhou, China
| | - Rebecca L McCulley
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546-0312, USA
| | - Joslin L Moore
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - John W Morgan
- Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Timothy Ohlert
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Lauren L Sullivan
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Kellogg Biological Station, Michigan State University, Hickory Corners, MI, 49060, USA
| | - Carly Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Michel Loreau
- Theoretical and Experimental Ecology Station, CNRS, 09200, Moulis, France
| |
Collapse
|
6
|
Kou X, Liu H, Chen H, Xu Z, Yu X, Cao X, Liu D, Wen L, Zhuo Y, Wang L. Multifunctionality and maintenance mechanism of wetland ecosystems in the littoral zone of the northern semi-arid region lake driven by environmental factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161956. [PMID: 36737024 DOI: 10.1016/j.scitotenv.2023.161956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The relationship between biodiversity and ecosystem multifunctionality (BEMF) has become an ecological research hot spot in recent years. Changes in biodiversity are non-randomly distributed in space and time in natural ecosystems, and the BEMF relationship is affected by a combination of biotic and abiotic factors. These complex, uncertain relationships are affected by research scale and quantification and measurement indicators. This paper took the Daihai littoral zone wetlands in Inner Mongolia as the research object to reveal the dynamic succession of wetland vegetation and ecosystem function change characteristics and processes during the shrinkage of the lake. The main findings were as follows: the combined effect of aboveground (species and functions) and belowground (bacteria and fungi) diversity was greater than the effect of single components on ecosystem multifunctionality (EMF) (R2 = 80.00 %). Soil salinity (EC) had a direct negative effect on EMF (λ = -0.22), and soil moisture (SM) had a direct positive effect on EMF (λ = 0.19). The results of the hierarchical partitioning analysis showed that plant species richness (Margalef index) was the ideal indicator to explain the EMF and C, N, and P cycling functions in littoral zone wetlands with explanations of 12.25 %, 7.31 %, 7.83 %, and 5.33 %, respectively. The EMF and C and P cycles were mainly affected by bacterial diversity, and the N cycle was mainly affected by fungal abundance in belowground biodiversity. Margalef index and sand content affected EMF through cascading effects of multiple nutrients (FDis, CWMRV, CWMLCC, and bacterial and fungal abundance and diversity) in littoral zone wetlands. This paper provides a reference for exploring the multifunctionality maintenance mechanisms of natural littoral zone wetland ecosystems in the context of global change, and it also provides important theoretical support and basic data for the implementation of ecological restoration in Daihai lake.
Collapse
Affiliation(s)
- Xin Kou
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Huamin Liu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Han Chen
- School of Business Administration and Humanities, Mongolian University of Science & Technology, Ulaanbaatar 46/520, Mongolia
| | - Zhichao Xu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xiaowen Yu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xiaoai Cao
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Dongwei Liu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Lu Wen
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yi Zhuo
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Lixin Wang
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Collaborative Innovation Center for Grassland Ecological Security (Jointly Supported by the Ministry of Education of China and Inner Mongolia Autonomous Region), Hohhot 010021, China; Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Hohhot 010021, China.
| |
Collapse
|
7
|
Deschamps L, Proulx R, Rheault G, Gross N, Watson C, Maire V. Species richness drives selection of individuals within wetlands based on traits related to acquisition and utilization of light. Ecol Evol 2023; 13:e9959. [PMID: 37038518 PMCID: PMC10082176 DOI: 10.1002/ece3.9959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 04/12/2023] Open
Abstract
Selection within natural communities has mainly been studied along large abiotic gradients, while the selection of individuals within populations should occur locally in response to biotic filters. To better leverage the role of the latter, we considered the hierarchal nature of environmental selection for the multiple dimensions of the trait space across biological levels, that is, from the species to the community and the ecosystem levels. We replicated a natural species richness gradient where communities included from two to 16 species within four wetlands (bog, fen, meadow, and marsh) contrasting in plant productivity. We sampled functional traits from individuals in each community and used hierarchical distributional modeling in order to analyze the independent variation of the mean and dispersion of functional trait space at ecosystem, community, and species levels. The plant productivity gradient observed between wetlands led to species turnover and selection of traits related to leaf nutrient conservation/acquisition strategy. Within wetlands, plant species richness drove trait variation across both communities and species. Among communities, variation of species richness correlated with the selection of individuals according to their use of vertical space and leaf adaptations to light conditions. Within species, intraspecific light-related trait variation in response to species richness was associated with stable population density for some species, while others reached low population density in more diverse communities. Within ecosystems, variation in biotic conditions selects individuals along functional dimensions that are independent of those selected across ecosystems. Within-species variations of light-related traits are related to demographic responses, linking biotic selection of individuals within communities to eco-evolutionary dynamics of species.
Collapse
Affiliation(s)
- Lucas Deschamps
- Département des sciences de l'environnementUniversité du Québec à Trois‐RivièresTrois RivièresCanada
| | - Raphaël Proulx
- Département des sciences de l'environnementUniversité du Québec à Trois‐RivièresTrois RivièresCanada
| | - Guillaume Rheault
- Département des sciences de l'environnementUniversité du Québec à Trois‐RivièresTrois RivièresCanada
| | - Nicolas Gross
- Université Clermont Auvergne, INRAE, VetAgro SupUnité Mixte de Recherche Ecosystème PrairialClermont‐FerrandFrance
| | - Christopher Watson
- Département des sciences de l'environnementUniversité du Québec à Trois‐RivièresTrois RivièresCanada
| | - Vincent Maire
- Département des sciences de l'environnementUniversité du Québec à Trois‐RivièresTrois RivièresCanada
| |
Collapse
|
8
|
Niu Y, Schuchardt MA, von Heßberg A, Jentsch A. Stable plant community biomass production despite species richness collapse under simulated extreme climate in the European Alps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161166. [PMID: 36572286 DOI: 10.1016/j.scitotenv.2022.161166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Direct observation of biodiversity loss in response to abrupt climate change can resolve fundamental questions about temporal community dynamics and clarify the controversial debate of biodiversity loss impacts on ecosystem functioning. We tracked local plant species loss and the corresponding change of aboveground biomass of native and non-native species by actively pushing mountain grassland ecosystems beyond their ecological thresholds in a five-year, multisite translocation experiment across the European Alps. Our results show that species loss (ranging from a 73 % to 94 % reduction in species richness) caused by simulated climate extremes (strong warming interacting with drought) did not decrease community biomass. Even without non-native species colonization, the community biomass of native species remained stable during native species richness collapse. Switching our research focus from local extinction in the face of climate change towards the beneficial impacts of persisting native species (in addition to novel plant-plant interactions) might yield insights on transformative opportunities for boosting climate resilience.
Collapse
Affiliation(s)
- Yujie Niu
- Department of Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth 95440, Germany.
| | - Max A Schuchardt
- Department of Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth 95440, Germany.
| | - Andreas von Heßberg
- Department of Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth 95440, Germany.
| | - Anke Jentsch
- Department of Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth 95440, Germany.
| |
Collapse
|
9
|
Wang B, Allison SD. Climate-Driven Legacies in Simulated Microbial Communities Alter Litter Decomposition Rates. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.841824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mechanisms underlying diversity-functioning relationships have been a consistent area of inquiry in biogeochemistry since the 1950s. Though these mechanisms remain unresolved in soil microbiomes, many approaches at varying scales have pointed to the same notion—composition matters. Confronting the methodological challenge arising from the complexity of microbiomes, this study used the model DEMENTpy, a trait-based modeling framework, to explore trait-based drivers of microbiome-dependent litter decomposition. We parameterized DEMENTpy for five sites along a climate gradient in Southern California, United States, and conducted reciprocal transplant simulations analogous to a prior empirical study. The simulations demonstrated climate-dependent legacy effects of microbial communities on plant litter decomposition across the gradient. This result is consistent with the previous empirical study across the same gradient. An analysis of community-level traits further suggests that a 3-way tradeoff among resource acquisition, stress tolerance, and yield strategies influences community assembly. Simulated litter decomposition was predictable with two community traits (indicative of two of the three strategies) plus local environment, regardless of the system state (transient vs. equilibrium). Although more empirical confirmation is still needed, community traits plus local environmental factors (e.g., environment and litter chemistry) may robustly predict litter decomposition across spatial-temporal scales. In conclusion, this study offers a potential trait-based explanation for climate-dependent community effects on litter decomposition with implications for improved understanding of whole-ecosystem functioning across scales.
Collapse
|
10
|
Pan H, Gao H, Peng Z, Chen B, Chen S, Liu Y, Gu J, Wei X, Chen W, Wei G, Jiao S. Aridity Threshold Induces Abrupt Change of Soil Abundant and Rare Bacterial Biogeography in Dryland Ecosystems. mSystems 2022; 7:e0130921. [PMID: 35133186 PMCID: PMC8823291 DOI: 10.1128/msystems.01309-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
Aridity, which is increasing worldwide due to climate change, affects the biodiversity and functions of dryland ecosystems. Whether aridification leads to gradual (or abrupt) and systemic (or specific) changes in the biogeography of abundant and rare microbial species is largely unknown. Here, we investigated stress-adaptive changes (aridity-driven, ranging from 0.65 to 0.94) and biogeographic patterns of abundant and rare bacterial communities in different habitats, including agricultural field, forest, wetland, grassland, and desert, in desert oasis transition zones in northern China. We observed abrupt changes at the breakpoint of aridity values (0.92), characterized by diversity (α-diversity and β-diversity), species coexistence, community assembly processes, and phylogenetic niche conservatism. Specifically, when aridity was <0.92, increasing aridity led to more deterministic assembly and species coexistences for the abundant subcommunity, whereas the reverse was observed for the rare subcommunity. The phylogenetic niche conservatism for both subcommunities increased slowly with aridity. When aridity was >0.92, the systemic responses of abundant and rare taxa changed dramatically in a consistent direction, such that both subcommunities rapidly tended to have a more deterministic assembly, species coexistence, and stronger phylogenetic niche conservatism with increasing aridity. In addition, the change rates of abundant taxa were higher than those of rare taxa, indicating the more sensitive responses of abundant taxa along aridity variation. This finding has important implications for understanding the impact of aridity on the structure and function of abundant and rare soil taxa and how diversity maintenance is associated with soil microbiota responding to global change. The abrupt threshold of soil bacteria found can be used for buffering and for building effective adaptation and mitigation measures aimed at maintaining the capacity of drylands for basic ecosystem functioning. IMPORTANCE Aridity, which is increasing worldwide due to climate change, affects the biodiversity and functions of dryland ecosystems. We provided the first statistical evidence for abrupt changes of species coexistence, ecological processes, and niche conservation of abundant and rare soil bacteria triggered by diversity to abrupt increases in aridity. The abrupt threshold of soil bacterial community response to aridity is spatially heterogeneous at the local scale and should be specified according to local conditions for buffering and for building effective adaptation and mitigation measures aimed at maintaining the capacity of drylands for basic ecosystem functioning.
Collapse
Affiliation(s)
- Haibo Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, People’s Republic of China
| | - Hang Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, People’s Republic of China
| | - Ziheng Peng
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, People’s Republic of China
| | - Beibei Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, People’s Republic of China
| | - Shi Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, People’s Republic of China
| | - Yu Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, People’s Republic of China
| | - Jie Gu
- Interdisciplinary Research Center for Soil Microbial Ecology and Land Sustainable Productivity in Dry Areas, College of Natural Resources and Environment, Northwest A&F University, Yangling, People’s Republic of China
| | - Xiaorong Wei
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, People’s Republic of China
| | - Weimin Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, People’s Republic of China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, People’s Republic of China
| | - Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, People’s Republic of China
| |
Collapse
|
11
|
Trait-based filtering mediates the effects of realistic biodiversity losses on ecosystem functioning. Proc Natl Acad Sci U S A 2021; 118:2022757118. [PMID: 34162704 DOI: 10.1073/pnas.2022757118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biodiversity losses are a major driver of global changes in ecosystem functioning. While most studies of the relationship between biodiversity and ecosystem functioning have examined randomized species losses, trait-based filtering associated with species-specific vulnerability to drivers of diversity loss can strongly influence how ecosystem functioning responds to declining biodiversity. Moreover, the responses of ecosystem functioning to diversity loss may be mediated by environmental variability interacting with the suite of traits remaining in depauperate communities. We do not yet understand how communities resulting from realistic diversity losses (filtered by response traits) influence ecosystem functioning (via effect traits of the remaining community), especially under variable environmental conditions. Here, we directly test how realistic and randomized plant diversity losses influence productivity and invasion resistance across multiple years in a California grassland. Compared with communities based on randomized diversity losses, communities resulting from realistic (drought-driven) species losses had higher invasion resistance under climatic conditions that matched the trait-based filtering they experienced. However, productivity declined more with realistic than with randomized species losses across all years, regardless of climatic conditions. Functional response traits aligned with effect traits for productivity but not for invasion resistance. Our findings illustrate that the effects of biodiversity losses depend not only on the identities of lost species but also on how the traits of remaining species interact with varying environmental conditions. Understanding the consequences of biodiversity change requires studies that evaluate trait-mediated effects of species losses and incorporate the increasingly variable climatic conditions that future communities are expected to experience.
Collapse
|