1
|
Hu X, He J, Gai J. Genome-wide locus-allele comparison reveals differential evolution dynamics from annual wild to landrace and released cultivar soybeans. THE PLANT GENOME 2025; 18:e70037. [PMID: 40369723 PMCID: PMC12078872 DOI: 10.1002/tpg2.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/27/2025] [Accepted: 03/14/2025] [Indexed: 05/16/2025]
Abstract
Previous studies on population evolution relied primarily on allele frequency analysis using molecular markers or genome sequence segments, like selective sweeps. With the sequencing technique developed, we suggest the genome-wide locus-allele comparison to detect the genomic structure variation among populations. Its key point lies in taking SNP linkage disequilibrium block as uniform genomic marker for genome-wide gene and inter-gene regions to meet the requirement of multiple alleles in natural populations. A sample composed of 750 annual wild accessions (WAs), landraces (LRs), and released cultivars (RCs) of soybean from southern, northern, and northeastern China eco-regions (SC, NC, and NEC, respectively) were analyzed for their evolution dynamics involving four evolutionary processes (WA→LR→RC, WASC→WANC→WANEC, LRSC→LRNC→LRNEC, and LRSC→RCSC/LRNC→RCNC/LRNEC→RCNEC). Our major finding was the discovery of allele and locus zero/one variation between/among ancestor-filial populations involving a large part of the whole population alleles and loci, 25.10% and 18.62% in domestication and modern breeding stages, respectively, which was not detected by selective sweeps. The essence of population evolution is the allele zero/one changes based on ordinary allele frequency changes, which causes the locus zero/one changes. The allele/locus zero/one variation happened more often when their frequency was at 0.0-0.3 and 0.8-0.99 in the previous stage generation, respectively. The WA and LR geographic evolution are different processes due to different combination of allele/locus zero/one changes by natural versus artificial selection pressures. Compared to per-year allele exclusion, the rate of per-year allele emergence is relatively stable in domestication and modern breeding (2.75E-5 vs. 1.34E-5 and 1.42E-3 vs. 1.10E-5), respectively.
Collapse
Affiliation(s)
- Xinyang Hu
- Soybean Research Institute, Zhongshan Biological Breeding Laboratory (ZSBBL), MARA National Center for Soybean Improvement & MARA Key Laboratory of Biology and Genetic Improvement of Soybean, State Innovation Platform for Integrated Production and Education in Soybean Bio‐Breeding, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Jianbo He
- Soybean Research Institute, Zhongshan Biological Breeding Laboratory (ZSBBL), MARA National Center for Soybean Improvement & MARA Key Laboratory of Biology and Genetic Improvement of Soybean, State Innovation Platform for Integrated Production and Education in Soybean Bio‐Breeding, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Junyi Gai
- Soybean Research Institute, Zhongshan Biological Breeding Laboratory (ZSBBL), MARA National Center for Soybean Improvement & MARA Key Laboratory of Biology and Genetic Improvement of Soybean, State Innovation Platform for Integrated Production and Education in Soybean Bio‐Breeding, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
2
|
López ME, Ozerov M, Pukk L, Noreikiene K, Gross R, Vasemägi A. Dynamic Outlier Slicing Allows Broader Exploration of Adaptive Divergence: A Comparison of Individual Genome and Pool-Seq Data Linked to Humic Adaptation in Perch. Mol Ecol 2025; 34:e17659. [PMID: 39846218 DOI: 10.1111/mec.17659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/15/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025]
Abstract
How genetic variation contributes to adaptation at different environments is a central focus in evolutionary biology. However, most free-living species still lack a comprehensive understanding of the primary molecular mechanisms of adaptation. Here, we characterised the targets of selection associated with drastically different aquatic environments-humic and clear water-in the common freshwater fish, Eurasian perch (Perca fluviatilis). By using whole-genome sequencing (WGS) on a large population dataset (n = 42 populations) and analysing 873,788 SNPs, our primary aim was to uncover novel and confirm known footprints of selection. We compared individual and pooled WGS, and developed a novel approach, termed dynamic outlier slicing, to assess how the choice of outlier-calling stringency influences functional and Gene Ontology (GO) enrichment. By integrating genome-environment association (GEA) analysis with allele frequency-based approaches, we estimated composite selection signals (CSS) and identified 2679 outlier SNPs distributed across 324 genomic regions, involving 468 genes. Dynamic outlier slicing identified robust enrichment signals in five annotation categories (upstream, downstream, synonymous, 5'UTR and 3'UTR) highlighting the crucial role of regulatory elements in adaptive evolution. Furthermore, GO analyses revealed strong enrichment of molecular functions associated with gated channel activity, transmembrane transporter activity and ion channel activity, emphasising the importance of osmoregulation and ion balance maintenance. Our findings demonstrate that despite substantial random drift and divergence, WGS of high number of population pools enabled the identification of strong selection signals associated with adaptation to both humic and clear water environments, providing robust evidence of widespread adaptation. We anticipate that the dynamic outlier slicing method we developed will enable a more thorough exploration of adaptive divergence across a diverse range of species.
Collapse
Affiliation(s)
- María-Eugenia López
- Institute of Freshwater Research, Department of Aquatic Resources (SLU Aqua), Swedish University of Agricultural Sciences, Drottningholm, Sweden
| | | | - Lilian Pukk
- Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| | - Kristina Noreikiene
- Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Riho Gross
- Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| | - Anti Vasemägi
- Institute of Freshwater Research, Department of Aquatic Resources (SLU Aqua), Swedish University of Agricultural Sciences, Drottningholm, Sweden
- Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
3
|
Tan M, Park L, Chou E, Hoesel M, Toh L, Suzuki Y. Polycomb group proteins confer robustness to aposematic coloration in the milkweed bug, Oncopeltus fasciatus. Proc Biol Sci 2024; 291:20240713. [PMID: 39106954 PMCID: PMC11303025 DOI: 10.1098/rspb.2024.0713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/03/2024] [Accepted: 07/10/2024] [Indexed: 08/09/2024] Open
Abstract
Aposematic coloration offers an opportunity to explore the molecular mechanisms underlying canalization. In this study, the role of epigenetic regulation underlying robustness was explored in the aposematic coloration of the milkweed bug, Oncopeltus fasciatus. Polycomb (Pc) and Enhancer of zeste (E(z)), which encode components of the Polycomb repressive complex 1 (PRC1) and PRC2, respectively, and jing, which encodes a component of the PRC2.2 subcomplex, were knocked down in the fourth instar of O. fasciatus. Knockdown of these genes led to alterations in scutellar morphology and melanization. In particular, when Pc was knocked down, the adults developed a highly melanized abdomen, head and forewings at all temperatures examined. In contrast, the E(z) and jing knockdown led to increased plasticity of the dorsal forewing melanization across different temperatures. Moreover, jing knockdown adults exhibited increased plasticity in the dorsal melanization of the head and the thorax. These observations demonstrate that histone modifiers may play a key role during the process of canalization to confer robustness in the aposematic coloration.
Collapse
Affiliation(s)
- Marie Tan
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA02481, USA
| | - Laura Park
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA02481, USA
| | - Elizabeth Chou
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA02481, USA
| | - Madeline Hoesel
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA02481, USA
| | - Lyanna Toh
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA02481, USA
| | - Yuichiro Suzuki
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA02481, USA
| |
Collapse
|
4
|
Fu Q, Zhou J, Luan S, Dai P, Lyu D, Chen B, Luo K, Kong J, Meng X. Analysis of Elimination Effects of Inbreeding on Genotype Frequency in Larval Stages of Chinese Shrimp. BIOLOGY 2024; 13:268. [PMID: 38666880 PMCID: PMC11047943 DOI: 10.3390/biology13040268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Marine animals possess genomes of considerable complexity and heterozygosity. Their unique reproductive system, characterized by high fecundity and substantial early mortality rates, increases the risk of inbreeding, potentially leading to severe inbreeding depression during various larval developmental stages. In this study, we established a set of inbred families of Fenneropenaeus chinensis, with an inbreeding coefficient of 0.25, and investigated elimination patterns and the manifestations of inbreeding depression during major larval developmental stages. Reduced-representation genome sequencing was utilized to explore the genotype frequency characteristics across two typical elimination stages. The results revealed notable mortality in hatching and metamorphosis into mysis and post-larvae stages. Inbreeding depression was also evident during these developmental stages, with depression rates of 24.36%, 29.23%, and 45.28%. Segregation analysis of SNPs indicated an important role of gametic selection before hatching, accounting for 45.95% of deviation in the zoea stage. During the zygotic selection phase of larval development, homozygote deficiency and heterozygote excess were the main selection types. Summation of the two types explained 82.31% and 89.91% of zygotic selection in the mysis and post-larvae stage, respectively. The overall distortion ratio decreased from 22.37% to 12.86% in the late developmental stage. A total of 783 loci were identified through selective sweep analysis. We also found the types of distortion at the same locus could change after the post-larvae stage. The predominant shifts included a transition of gametic selection toward normal segregation and other forms of distortion to heterozygous excess. This may be attributed to high-intensity selection on deleterious alleles and genetic hitchhiking effects. Following larval elimination, a greater proportion of heterozygous individuals were preserved. We detected an increase in genetic diversity parameters such as expected heterozygosity, observed heterozygosity, and polymorphic information content in the post-larvae stage. These findings suggest the presence of numerous recessive deleterious alleles and their linkage and suggest a major role of the partial dominance hypothesis. The results provide valuable insights into the mechanisms of inbreeding depression in marine animals and offer guidance for formulating breeding strategies in shrimp populations.
Collapse
Affiliation(s)
- Qiang Fu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.F.); (J.Z.); (S.L.); (P.D.); (D.L.); (B.C.); (K.L.); (J.K.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jingxin Zhou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.F.); (J.Z.); (S.L.); (P.D.); (D.L.); (B.C.); (K.L.); (J.K.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Sheng Luan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.F.); (J.Z.); (S.L.); (P.D.); (D.L.); (B.C.); (K.L.); (J.K.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Ping Dai
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.F.); (J.Z.); (S.L.); (P.D.); (D.L.); (B.C.); (K.L.); (J.K.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Ding Lyu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.F.); (J.Z.); (S.L.); (P.D.); (D.L.); (B.C.); (K.L.); (J.K.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Baolong Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.F.); (J.Z.); (S.L.); (P.D.); (D.L.); (B.C.); (K.L.); (J.K.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Kun Luo
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.F.); (J.Z.); (S.L.); (P.D.); (D.L.); (B.C.); (K.L.); (J.K.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jie Kong
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.F.); (J.Z.); (S.L.); (P.D.); (D.L.); (B.C.); (K.L.); (J.K.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xianhong Meng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.F.); (J.Z.); (S.L.); (P.D.); (D.L.); (B.C.); (K.L.); (J.K.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
5
|
Panigrahi M, Rajawat D, Nayak SS, Ghildiyal K, Sharma A, Jain K, Lei C, Bhushan B, Mishra BP, Dutt T. Landmarks in the history of selective sweeps. Anim Genet 2023; 54:667-688. [PMID: 37710403 DOI: 10.1111/age.13355] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
Half a century ago, a seminal article on the hitchhiking effect by Smith and Haigh inaugurated the concept of the selection signature. Selective sweeps are characterised by the rapid spread of an advantageous genetic variant through a population and hence play an important role in shaping evolution and research on genetic diversity. The process by which a beneficial allele arises and becomes fixed in a population, leading to a increase in the frequency of other linked alleles, is known as genetic hitchhiking or genetic draft. Kimura's neutral theory and hitchhiking theory are complementary, with Kimura's neutral evolution as the 'null model' and positive selection as the 'signal'. Both are widely accepted in evolution, especially with genomics enabling precise measurements. Significant advances in genomic technologies, such as next-generation sequencing, high-density SNP arrays and powerful bioinformatics tools, have made it possible to systematically investigate selection signatures in a variety of species. Although the history of selection signatures is relatively recent, progress has been made in the last two decades, owing to the increasing availability of large-scale genomic data and the development of computational methods. In this review, we embark on a journey through the history of research on selective sweeps, ranging from early theoretical work to recent empirical studies that utilise genomic data.
Collapse
Affiliation(s)
- Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | | | - Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Karan Jain
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Bishnu Prasad Mishra
- Division of Animal Biotechnology, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
6
|
Soni V, Johri P, Jensen JD. Evaluating power to detect recurrent selective sweeps under increasingly realistic evolutionary null models. Evolution 2023; 77:2113-2127. [PMID: 37395482 PMCID: PMC10547124 DOI: 10.1093/evolut/qpad120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023]
Abstract
The detection of selective sweeps from population genomic data often relies on the premise that the beneficial mutations in question have fixed very near the sampling time. As it has been previously shown that the power to detect a selective sweep is strongly dependent on the time since fixation as well as the strength of selection, it is naturally the case that strong, recent sweeps leave the strongest signatures. However, the biological reality is that beneficial mutations enter populations at a rate, one that partially determines the mean wait time between sweep events and hence their age distribution. An important question thus remains about the power to detect recurrent selective sweeps when they are modeled by a realistic mutation rate and as part of a realistic distribution of fitness effects, as opposed to a single, recent, isolated event on a purely neutral background as is more commonly modeled. Here we use forward-in-time simulations to study the performance of commonly used sweep statistics, within the context of more realistic evolutionary baseline models incorporating purifying and background selection, population size change, and mutation and recombination rate heterogeneity. Results demonstrate the important interplay of these processes, necessitating caution when interpreting selection scans; specifically, false-positive rates are in excess of true-positive across much of the evaluated parameter space, and selective sweeps are often undetectable unless the strength of selection is exceptionally strong.
Collapse
Affiliation(s)
- Vivak Soni
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Parul Johri
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Jeffrey D Jensen
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
7
|
Soni V, Johri P, Jensen JD. Evaluating power to detect recurrent selective sweeps under increasingly realistic evolutionary null models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545166. [PMID: 37398347 PMCID: PMC10312679 DOI: 10.1101/2023.06.15.545166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The detection of selective sweeps from population genomic data often relies on the premise that the beneficial mutations in question have fixed very near the sampling time. As it has been previously shown that the power to detect a selective sweep is strongly dependent on the time since fixation as well as the strength of selection, it is naturally the case that strong, recent sweeps leave the strongest signatures. However, the biological reality is that beneficial mutations enter populations at a rate, one that partially determines the mean wait time between sweep events and hence their age distribution. An important question thus remains about the power to detect recurrent selective sweeps when they are modelled by a realistic mutation rate and as part of a realistic distribution of fitness effects (DFE), as opposed to a single, recent, isolated event on a purely neutral background as is more commonly modelled. Here we use forward-in-time simulations to study the performance of commonly used sweep statistics, within the context of more realistic evolutionary baseline models incorporating purifying and background selection, population size change, and mutation and recombination rate heterogeneity. Results demonstrate the important interplay of these processes, necessitating caution when interpreting selection scans; specifically, false positive rates are in excess of true positive across much of the evaluated parameter space, and selective sweeps are often undetectable unless the strength of selection is exceptionally strong. Teaser Text Outlier-based genomic scans have proven a popular approach for identifying loci that have potentially experienced recent positive selection. However, it has previously been shown that an evolutionarily appropriate baseline model that incorporates non-equilibrium population histories, purifying and background selection, and variation in mutation and recombination rates is necessary to reduce often extreme false positive rates when performing genomic scans. Here we evaluate the power to detect recurrent selective sweeps using common SFS-based and haplotype-based methods under these increasingly realistic models. We find that while these appropriate evolutionary baselines are essential to reduce false positive rates, the power to accurately detect recurrent selective sweeps is generally low across much of the biologically relevant parameter space.
Collapse
Affiliation(s)
- Vivak Soni
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Parul Johri
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Present address: Department of Biology, Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | | |
Collapse
|
8
|
Ranathunge C, Chimahusky ME, Welch ME. A comparative study of population genetic structure reveals patterns consistent with selection at functional microsatellites in common sunflower. Mol Genet Genomics 2022; 297:1329-1342. [PMID: 35786764 DOI: 10.1007/s00438-022-01920-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/16/2022] [Indexed: 10/17/2022]
Abstract
Microsatellites, also known as short tandem repeats (STRs), have long been considered non-functional, neutrally evolving regions of the genome. Recent findings suggest that they can function as drivers of rapid adaptive evolution. Previous work on the common sunflower identified 479 transcribed microsatellites where allele length significantly correlates with gene expression (eSTRs) in a stepwise manner. Here, a population genetic approach is used to test whether eSTR allele length variation is under selection. Genotypic variation among and within populations at 13 eSTRs was compared with that at 19 anonymous microsatellites in 672 individuals from 17 natural populations of sunflower from across a cline running from Saskatchewan to Oklahoma (distance of approximately 1600 km). Expected heterozygosity, allelic richness, and allelic diversity were significantly lower at eSTRs, a pattern consistent with higher relative rates of purifying selection. Further, an analysis of variation in microsatellite allele lengths (lnRV), and heterozygosities (lnRH), indicate recent selective sweeps at the eSTRs. Mean microsatellite allele lengths at four eSTRs within populations are significantly correlated with latitude consistent with the predictions of the tuning-knob model which predicts stepwise relationships between microsatellite allele length and phenotypes. This finding suggests that shorter or longer alleles at eSTRs may be favored in climatic extremes. Collectively, our results imply that eSTRs are likely under selection and that they may be playing a role in facilitating local adaptation across a well-defined cline in the common sunflower.
Collapse
Affiliation(s)
- Chathurani Ranathunge
- Department of Biological Sciences, Mississippi State University, Starkville, MS, 39762, USA.
- School of Health Professions, Eastern Virginia Medical School, Norfolk, VA, 23507, USA.
| | - Melody E Chimahusky
- Department of Biological Sciences, Mississippi State University, Starkville, MS, 39762, USA
| | - Mark E Welch
- Department of Biological Sciences, Mississippi State University, Starkville, MS, 39762, USA
| |
Collapse
|
9
|
Johri P, Charlesworth B, Howell EK, Lynch M, Jensen JD. Revisiting the notion of deleterious sweeps. Genetics 2021; 219:iyab094. [PMID: 34125884 PMCID: PMC9101445 DOI: 10.1093/genetics/iyab094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/08/2021] [Indexed: 11/14/2022] Open
Abstract
It has previously been shown that, conditional on its fixation, the time to fixation of a semi-dominant deleterious autosomal mutation in a randomly mating population is the same as that of an advantageous mutation. This result implies that deleterious mutations could generate selective sweep-like effects. Although their fixation probabilities greatly differ, the much larger input of deleterious relative to beneficial mutations suggests that this phenomenon could be important. We here examine how the fixation of mildly deleterious mutations affects levels and patterns of polymorphism at linked sites-both in the presence and absence of interference amongst deleterious mutations-and how this class of sites may contribute to divergence between-populations and species. We find that, while deleterious fixations are unlikely to represent a significant proportion of outliers in polymorphism-based genomic scans within populations, minor shifts in the frequencies of deleterious mutations can influence the proportions of private variants and the value of FST after a recent population split. As sites subject to deleterious mutations are necessarily found in functional genomic regions, interpretations in terms of recurrent positive selection may require reconsideration.
Collapse
Affiliation(s)
- Parul Johri
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Emma K Howell
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Michael Lynch
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Jeffrey D Jensen
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
10
|
Ramnarine TJS, Grath S, Parsch J. Natural variation in the transcriptional response of Drosophila melanogaster to oxidative stress. G3-GENES GENOMES GENETICS 2021; 12:6409858. [PMID: 34747443 PMCID: PMC8727983 DOI: 10.1093/g3journal/jkab366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022]
Abstract
Broadly distributed species must cope with diverse and changing environmental conditions, including various forms of stress. Cosmopolitan populations of Drosophila melanogaster are more tolerant to oxidative stress than those from the species’ ancestral range in sub-Saharan Africa, and the degree of tolerance is associated with an insertion/deletion polymorphism in the 3′ untranslated region of the Metallothionein A (MtnA) gene that varies clinally in frequency. We examined oxidative stress tolerance and the transcriptional response to oxidative stress in cosmopolitan and sub-Saharan African populations of D. melanogaster, including paired samples with allelic differences at the MtnA locus. We found that the effect of the MtnA polymorphism on oxidative stress tolerance was dependent on the genomic background, with the deletion allele increasing tolerance only in a northern, temperate population. Genes that were differentially expressed under oxidative stress included MtnA and other metallothioneins, as well as those involved in glutathione metabolism and other genes known to be part of the oxidative stress response or the general stress response. A gene coexpression analysis revealed further genes and pathways that respond to oxidative stress including those involved in additional metabolic processes, autophagy, and apoptosis. There was a significant overlap among the genes induced by oxidative and cold stress, which suggests a shared response pathway to these two stresses. Interestingly, the MtnA deletion was associated with consistent changes in the expression of many genes across all genomic backgrounds, regardless of the expression level of the MtnA gene itself. We hypothesize that this is an indirect effect driven by the loss of microRNA binding sites within the MtnA 3′ untranslated region.
Collapse
Affiliation(s)
- Timothy J S Ramnarine
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität (LMU) München, Planegg-Martinsried 82152, Germany
| | - Sonja Grath
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität (LMU) München, Planegg-Martinsried 82152, Germany
| | - John Parsch
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität (LMU) München, Planegg-Martinsried 82152, Germany
| |
Collapse
|
11
|
Gibert JM, Peronnet F. The Paramount Role of Drosophila melanogaster in the Study of Epigenetics: From Simple Phenotypes to Molecular Dissection and Higher-Order Genome Organization. INSECTS 2021; 12:884. [PMID: 34680653 PMCID: PMC8537509 DOI: 10.3390/insects12100884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 01/06/2023]
Abstract
Drosophila melanogaster has played a paramount role in epigenetics, the study of changes in gene function inherited through mitosis or meiosis that are not due to changes in the DNA sequence. By analyzing simple phenotypes, such as the bristle position or cuticle pigmentation, as read-outs of regulatory processes, the identification of mutated genes led to the discovery of major chromatin regulators. These are often conserved in distantly related organisms such as vertebrates or even plants. Many of them deposit, recognize, or erase post-translational modifications on histones (histone marks). Others are members of chromatin remodeling complexes that move, eject, or exchange nucleosomes. We review the role of D. melanogaster research in three epigenetic fields: Heterochromatin formation and maintenance, the repression of transposable elements by piRNAs, and the regulation of gene expression by the antagonistic Polycomb and Trithorax complexes. We then describe how genetic tools available in D. melanogaster allowed to examine the role of histone marks and show that some histone marks are dispensable for gene regulation, whereas others play essential roles. Next, we describe how D. melanogaster has been particularly important in defining chromatin types, higher-order chromatin structures, and their dynamic changes during development. Lastly, we discuss the role of epigenetics in a changing environment.
Collapse
Affiliation(s)
- Jean-Michel Gibert
- Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biologie du Développement (LBD), Institut de Biologie Paris Seine (IBPS), Sorbonne Université, 75005 Paris, France
| | - Frédérique Peronnet
- Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biologie du Développement (LBD), Institut de Biologie Paris Seine (IBPS), Sorbonne Université, 75005 Paris, France
| |
Collapse
|
12
|
Lian Q, Fu Q, Xu Y, Hu Z, Zheng J, Zhang A, He Y, Wang C, Xu C, Chen B, Garcia-Mas J, Zhao G, Wang H. QTLs and candidate genes analyses for fruit size under domestication and differentiation in melon (Cucumis melo L.) based on high resolution maps. BMC PLANT BIOLOGY 2021; 21:126. [PMID: 33658004 PMCID: PMC7931605 DOI: 10.1186/s12870-021-02904-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Melon is a very important horticultural crop produced worldwide with high phenotypic diversity. Fruit size is among the most important domestication and differentiation traits in melon. The molecular mechanisms of fruit size in melon are largely unknown. RESULTS Two high-density genetic maps were constructed by whole-genome resequencing with two F2 segregating populations (WAP and MAP) derived from two crosses (cultivated agrestis × wild agrestis and cultivated melo × cultivated agrestis). We obtained 1,871,671 and 1,976,589 high quality SNPs that show differences between parents in WAP and MAP. A total of 5138 and 5839 recombination events generated 954 bins in WAP and 1027 bins in MAP with the average size of 321.3 Kb and 301.4 Kb respectively. All bins were mapped onto 12 linkage groups in WAP and MAP. The total lengths of two linkage maps were 904.4 cM (WAP) and 874.5 cM (MAP), covering 86.6% and 87.4% of the melon genome. Two loci for fruit size were identified on chromosome 11 in WAP and chromosome 5 in MAP, respectively. An auxin response factor and a YABBY transcription factor were inferred to be the candidate genes for both loci. CONCLUSION The high-resolution genetic maps and QTLs analyses for fruit size described here will provide a better understanding the genetic basis of domestication and differentiation, and provide a valuable tool for map-based cloning and molecular marker assisted breeding.
Collapse
Affiliation(s)
- Qun Lian
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Qiushi Fu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Yongyang Xu
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Zhicheng Hu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Jing Zheng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Aiai Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Yuhua He
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Changsheng Wang
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 200000, China
| | - Chuanqiang Xu
- Shenyang Agricultural University, College of Horticulture, Shenyang, 110866, China
| | - Benxue Chen
- Design Gollege, Zhoukou Normal University, Zhoukou, 466000, China
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
| | - Guangwei Zhao
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| | - Huaisong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| |
Collapse
|
13
|
Segregation distortion: high genetic load suggested by a Chinese shrimp family under high-intensity selection. Sci Rep 2020; 10:21820. [PMID: 33311524 PMCID: PMC7732831 DOI: 10.1038/s41598-020-78389-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 11/17/2020] [Indexed: 11/09/2022] Open
Abstract
Segregation distortion is a common phenomenon found in most genetic mapping studies and is an important resource to dissect the mechanism of action in gene loci that cause deviation. Marine animals possess high genetic diversity and genomic heterozygosity, they therefore are ideal model organisms to study segregation distortion induced by selection. In the present study, we constructed a full-sib family of Fenneropenaeus chinensis and exerted high-intensity selection on 10,000 incipient progenies. 2b-RAD method was employed in remaining 273 individuals to develop genome-wide SNPs for segregating analysis and 41,612 SNPs were developed. 50.77% of 32,229 high-quality representative markers deviated from the expected Mendelian ratio. Results showed that most of these distorted markers (91.57%) were influenced at zygotic level. Heterozygote excess (53.07%) and homozygous deletions (41.96%) may both play an important role, sum of which explained 95.03% of distortion after fertilization. However, further results identified highly probable linkage among deleterious alleles, which may account for a considerable portion of heterozygote excess rather than single locus with heterozygote advantage. Results of this study support a major role of deleterious alleles in genetic load, thus in favor of partial dominance hypothesis. It would also offer necessary recommendations for the formulation of breeding strategy in shrimps.
Collapse
|
14
|
Harris RB, Jensen JD. Considering Genomic Scans for Selection as Coalescent Model Choice. Genome Biol Evol 2020; 12:871-877. [PMID: 32396636 PMCID: PMC7313662 DOI: 10.1093/gbe/evaa093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
First inspired by the seminal work of Lewontin and Krakauer (1973. Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics 74(1):175-195.) and Maynard Smith and Haigh (1974. The hitch-hiking effect of a favourable gene. Genet Res. 23(1):23-35.), genomic scans for positive selection remain a widely utilized tool in modern population genomic analysis. Yet, the relative frequency and genomic impact of selective sweeps have remained a contentious point in the field for decades, largely owing to an inability to accurately identify their presence and quantify their effects-with current methodologies generally being characterized by low true-positive rates and/or high false-positive rates under many realistic demographic models. Most of these approaches are based on Wright-Fisher assumptions and the Kingman coalescent and generally rely on detecting outlier regions which do not conform to these neutral expectations. However, previous theoretical results have demonstrated that selective sweeps are well characterized by an alternative class of model known as the multiple-merger coalescent. Taken together, this suggests the possibility of not simply identifying regions which reject the Kingman, but rather explicitly testing the relative fit of a genomic window to the multiple-merger coalescent. We describe the advantages of such an approach, which owe to the branching structure differentiating selective and neutral models, and demonstrate improved power under certain demographic scenarios relative to a commonly used approach. However, regions of the demographic parameter space continue to exist in which neither this approach nor existing methodologies have sufficient power to detect selective sweeps.
Collapse
|
15
|
Abstract
For almost 20 years, many inference methods have been developed to detect selective sweeps and localize the targets of directional selection in the genome. These methods are based on population genetic models that describe the effect of a beneficial allele (e.g., a new mutation) on linked neutral variation (driven by directional selection from a single copy to fixation). Here, I discuss these models, ranging from selective sweeps in a panmictic population of constant size to evolutionary traffic when simultaneous sweeps at multiple loci interfere, and emphasize the important role of demography and population structure in data analysis. In the past 10 years, soft sweeps that may arise after an environmental change from directional selection on standing variation have become a focus of population genetic research. In contrast to selective sweeps, they are caused by beneficial alleles that were neutrally segregating in a population before the environmental change or were present at a mutation-selection balance in appreciable frequency.
Collapse
|
16
|
Ramnarine TJS, Glaser-Schmitt A, Catalán A, Parsch J. Population Genetic and Functional Analysis of a cis-Regulatory Polymorphism in the DrosophilamelanogasterMetallothionein A gene. Genes (Basel) 2019; 10:E147. [PMID: 30769915 PMCID: PMC6410240 DOI: 10.3390/genes10020147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 12/24/2022] Open
Abstract
Although gene expression can vary extensively within and among populations, the genetic basis of this variation and the evolutionary forces that maintain it are largely unknown. In Drosophilamelanogaster, a 49-bp insertion/deletion (indel) polymorphism in the Metallothionein A (MtnA) gene is associated with variation in MtnA expression and oxidative stress tolerance. To better understand the functional and evolutionary significance of this polymorphism, we investigated it in several worldwide populations. In a German population, the deletion was present at a high and stable frequency over multiple seasons and years, and was associated with increased MtnA expression. There was, however, no evidence that the polymorphism was maintained by overdominant, seasonally fluctuating, or sexually antagonistic selection. The deletion was rare in a population from the species' ancestral range in sub-Saharan Africa and is likely the result of non-African admixture, suggesting that it spread to high frequency following the species' out-of-Africa expansion. Using data from a North American population, we found that the deletion was associated with MtnA expression and tolerance to oxidative stress induced by menadione sodium bisulfite. Our results are consistent with the deletion being selectively favored in temperate populations due to the increased MtnA expression and oxidative stress tolerance that it confers.
Collapse
Affiliation(s)
- Timothy J S Ramnarine
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany.
| | - Amanda Glaser-Schmitt
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany.
| | - Ana Catalán
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany.
- Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 14-18 75236, Uppsala, Sweden.
| | - John Parsch
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
17
|
Id-Lahoucine S, Molina A, Cánovas A, Casellas J. Screening for epistatic selection signatures: A simulation study. Sci Rep 2019; 9:1026. [PMID: 30705409 PMCID: PMC6355851 DOI: 10.1038/s41598-019-38689-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/07/2019] [Indexed: 11/23/2022] Open
Abstract
Detecting combinations of alleles that diverged between subpopulations via selection signature statistics can contribute to decipher the phenomenon of epistasis. This research focused on the simulation of genomic data from subpopulations under divergent epistatic selection (ES). We used D’IS2 and FST statistics in pairs of loci to scan the whole-genome. The results showed the ability to identify loci under additive-by-additive ES (ESaa) by reporting large statistical departures between subpopulations with a high level of divergence, while it did not show the same advantage in the other types of ES. Despite this, limitations such as the difficulty to distinguish between the quasi-complete fixation of one locus by ESaa from other events were observed. However, D’IS2 can detect loci under ESaa by defining a minimum boundary for the minor allele frequency on a multiple subpopulation analysis where ES only takes place in one subset. Even so, the major limitation was distinguishing between ES and single-locus selection (SS); therefore, we can conclude that divergent locus can be also a result of ES. The test conditions with D-statistics of both Ohta (1982a, 1982b) and Black and Krafsur (1985) did not provide evidence to differentiate ES in our simulation framework of isolated subpopulations.
Collapse
Affiliation(s)
- S Id-Lahoucine
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, N1G 2W1, ON, Canada. .,Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - A Molina
- Departamento de Genética, Universidad de Córdoba, 14071, Córdoba, Spain
| | - A Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, N1G 2W1, ON, Canada
| | - J Casellas
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
18
|
Mortimer TD, Annis DS, O’Neill MB, Bohr LL, Smith TM, Poinar HN, Mosher DF, Pepperell CS. Adaptation in a Fibronectin Binding Autolysin of Staphylococcus saprophyticus. mSphere 2017; 2:e00511-17. [PMID: 29202045 PMCID: PMC5705806 DOI: 10.1128/msphere.00511-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022] Open
Abstract
Human-pathogenic bacteria are found in a variety of niches, including free-living, zoonotic, and microbiome environments. Identifying bacterial adaptations that enable invasive disease is an important means of gaining insight into the molecular basis of pathogenesis and understanding pathogen emergence. Staphylococcus saprophyticus, a leading cause of urinary tract infections, can be found in the environment, food, animals, and the human microbiome. We identified a selective sweep in the gene encoding the Aas adhesin, a key virulence factor that binds host fibronectin. We hypothesize that the mutation under selection (aas_2206A>C) facilitates colonization of the urinary tract, an environment where bacteria are subject to strong shearing forces. The mutation appears to have enabled emergence and expansion of a human-pathogenic lineage of S. saprophyticus. These results demonstrate the power of evolutionary genomic approaches in discovering the genetic basis of virulence and emphasize the pleiotropy and adaptability of bacteria occupying diverse niches. IMPORTANCEStaphylococcus saprophyticus is an important cause of urinary tract infections (UTI) in women; such UTI are common, can be severe, and are associated with significant impacts to public health. In addition to being a cause of human UTI, S. saprophyticus can be found in the environment, in food, and associated with animals. After discovering that UTI strains of S. saprophyticus are for the most part closely related to each other, we sought to determine whether these strains are specially adapted to cause disease in humans. We found evidence suggesting that a mutation in the gene aas is advantageous in the context of human infection. We hypothesize that the mutation allows S. saprophyticus to survive better in the human urinary tract. These results show how bacteria found in the environment can evolve to cause disease.
Collapse
Affiliation(s)
- Tatum D. Mortimer
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Douglas S. Annis
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Mary B. O’Neill
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Lindsey L. Bohr
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Tracy M. Smith
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Medicine, Division of Infectious Diseases, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Hendrik N. Poinar
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, Ontario, Canada
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Deane F. Mosher
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Caitlin S. Pepperell
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Medicine, Division of Infectious Diseases, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
19
|
González J, Martínez J, Makalowski W. Lack of population differentiation patterns of previously identified putatively adaptive transposable element insertions at microgeographic scales. Biol Direct 2015; 10:50. [PMID: 26463587 PMCID: PMC4605094 DOI: 10.1186/s13062-015-0075-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/14/2015] [Indexed: 11/18/2022] Open
Abstract
Background Transposable elements (TEs) play an important role in genome function and evolution. It has been shown that TEs are a considerable source of adaptive changes in the genome of Drosophila melanogaster. Specifically, footprints of selection at the DNA level, the presence of population differentiation patterns across environmental gradients, and detailed mechanistic and fitness analyses of a few candidate adaptive TEs pointed to the role of TEs in environmental adaptation. However, whether the population differentiation patterns observed at large geographic scales can be replicated at a microgeographic scale has never been assessed before. Results In this work, we explored the population patterns of putatively adaptive TEs at a micro-spatial scale level. We compared the frequencies of TEs, previously identified as putatively adaptive and putatively neutral, in populations collected in opposite slopes of the Evolution Canyon at Mt. Carmel in Israel separated by 200 m on average. However, the differentiation patterns previously observed across large geographic distances (2000–2200 km) were not replicated at the microscale level of the Evolution Canyon populations. Conclusion TE insertions previously associated with D. melanogaster environmental adaptation at a macro scale level do not play such a role at the microscale level of the Evolution Canyon populations. However, these results do not exclude a role of TEs in microgeographic adaptation because the dataset analyzed in this work is restricted to TEs identified in a single North American strain and as such is highly biased and incomplete. Reviewers This article was reviewed by Eugene Koonin, Limsoon Wong and Fyodor Kondrashov.
Collapse
Affiliation(s)
- Josefa González
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain.
| | - Jose Martínez
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain.
| | | |
Collapse
|
20
|
Voigt S, Laurent S, Litovchenko M, Stephan W. Positive Selection at the Polyhomeotic Locus Led to Decreased Thermosensitivity of Gene Expression in Temperate Drosophila melanogaster. Genetics 2015; 200:591-9. [PMID: 25855066 PMCID: PMC4492382 DOI: 10.1534/genetics.115.177030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/02/2015] [Indexed: 01/22/2023] Open
Abstract
Drosophila melanogaster as a cosmopolitan species has successfully adapted to a wide range of different environments. Variation in temperature is one important environmental factor that influences the distribution of species in nature. In particular for insects, which are mostly ectotherms, ambient temperature plays a major role in their ability to colonize new habitats. Chromatin-based gene regulation is known to be sensitive to temperature. Ambient temperature leads to changes in the activation of genes regulated in this manner. One such regulatory system is the Polycomb group (PcG) whose target genes are more expressed at lower temperatures than at higher ones. Therefore, a greater range in ambient temperature in temperate environments may lead to greater variability (plasticity) in the expression of these genes. This might have detrimental effects, such that positive selection acts to lower the degree of the expression plasticity. We provide evidence for this process in a genomic region that harbors two PcG-regulated genes, polyhomeotic proximal (ph-p) and CG3835. We found a signature of positive selection in this gene region in European populations of D. melanogaster and investigated the region by means of reporter gene assays. The target of selection is located in the intergenic fragment between the two genes. It overlaps with the promoters of both genes and an experimentally validated Polycomb response element (PRE). This fragment harbors five sequence variants that are highly differentiated between European and African populations. The African alleles confer a temperature-induced plasticity in gene expression, which is typical for PcG-mediated gene regulation, whereas thermosensitivity is reduced for the European alleles.
Collapse
Affiliation(s)
- Susanne Voigt
- Section of Evolutionary Biology, Department of Biology II, University of Munich, 82152 Planegg-Martinsried, Germany
| | - Stefan Laurent
- Section of Evolutionary Biology, Department of Biology II, University of Munich, 82152 Planegg-Martinsried, Germany
| | - Maria Litovchenko
- Section of Evolutionary Biology, Department of Biology II, University of Munich, 82152 Planegg-Martinsried, Germany
| | - Wolfgang Stephan
- Section of Evolutionary Biology, Department of Biology II, University of Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
21
|
Weetman D, Mitchell SN, Wilding CS, Birks DP, Yawson AE, Essandoh J, Mawejje HD, Djogbenou LS, Steen K, Rippon EJ, Clarkson CS, Field SG, Rigden DJ, Donnelly MJ. Contemporary evolution of resistance at the major insecticide target site gene Ace-1 by mutation and copy number variation in the malaria mosquito Anopheles gambiae. Mol Ecol 2015; 24:2656-72. [PMID: 25865270 PMCID: PMC4447564 DOI: 10.1111/mec.13197] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 12/27/2022]
Abstract
Functionally constrained genes are ideal insecticide targets because disruption is often fatal, and resistance mutations are typically costly. Synaptic acetylcholinesterase (AChE) is an essential neurotransmission enzyme targeted by insecticides used increasingly in malaria control. In Anopheles and Culex mosquitoes, a glycine–serine substitution at codon 119 of the Ace-1 gene confers both resistance and fitness costs, especially for 119S/S homozygotes. G119S in Anopheles gambiae from Accra (Ghana) is strongly associated with resistance, and, despite expectations of cost, resistant 119S alleles are increasing significantly in frequency. Sequencing of Accra females detected only a single Ace-1 119S haplotype, whereas 119G diversity was high overall but very low at non-synonymous sites, evidence of strong purifying selection driven by functional constraint. Flanking microsatellites showed reduced diversity, elevated linkage disequilibrium and high differentiation of 119S, relative to 119G homozygotes across up to two megabases of the genome. Yet these signals of selection were inconsistent and sometimes weak tens of kilobases from Ace-1. This unexpected finding is attributable to apparently ubiquitous amplification of 119S alleles as part of a large copy number variant (CNV) far exceeding the size of the Ace-1 gene, whereas 119G alleles were unduplicated. Ace-1 CNV was detectable in archived samples collected when the 119S allele was rare in Ghana. Multicopy amplification of resistant alleles has not been observed previously and is likely to underpin the recent increase in 119S frequency. The large CNV compromised localization of the strong selective sweep around Ace-1, emphasizing the need to integrate CNV analysis into genome scans for selection.
Collapse
Affiliation(s)
- David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Sara N Mitchell
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Craig S Wilding
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK
| | - Daniel P Birks
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Alexander E Yawson
- Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Kwabenya, Accra, Ghana.,Department of Molecular Biology and Biotechnology, University of Cape Coast, Cape Coast, Ghana
| | - John Essandoh
- Department of Wildlife and Entomology, University of Cape Coast, Cape Coast, Ghana
| | | | - Luc S Djogbenou
- Institut Regional de Sante Publique de Ouidah, Ouidah, Benin.,Universite d'Abomey-Calavi, Cotonou, Benin
| | - Keith Steen
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Emily J Rippon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Christopher S Clarkson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Stuart G Field
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, USA
| | - Daniel J Rigden
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK.,Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| |
Collapse
|
22
|
Gutiérrez-Gil B, Arranz JJ, Wiener P. An interpretive review of selective sweep studies in Bos taurus cattle populations: identification of unique and shared selection signals across breeds. Front Genet 2015; 6:167. [PMID: 26029239 PMCID: PMC4429627 DOI: 10.3389/fgene.2015.00167] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/13/2015] [Indexed: 12/11/2022] Open
Abstract
This review compiles the results of 21 genomic studies of European Bos taurus breeds and thus provides a general picture of the selection signatures in taurine cattle identified by genome-wide selection-mapping scans. By performing a comprehensive summary of the results reported in the literature, we compiled a list of 1049 selection sweeps described across 37 cattle breeds (17 beef breeds, 14 dairy breeds, and 6 dual-purpose breeds), and four different beef-vs.-dairy comparisons, which we subsequently grouped into core selective sweep (CSS) regions, defined as consecutive signals within 1 Mb of each other. We defined a total of 409 CSSs across the 29 bovine autosomes, 232 (57%) of which were associated with a single-breed (Single-breed CSSs), 134 CSSs (33%) were associated with a limited number of breeds (Two-to-Four-breed CSSs) and 39 CSSs (9%) were associated with five or more breeds (Multi-breed CSSs). For each CSS, we performed a candidate gene survey that identified 291 genes within the CSS intervals (from the total list of 5183 BioMart-extracted genes) linked to dairy and meat production, stature, and coat color traits. A complementary functional enrichment analysis of the CSS positional candidates highlighted other genes related to pathways underlying behavior, immune response, and reproductive traits. The Single-breed CSSs revealed an over-representation of genes related to dairy and beef production, this was further supported by over-representation of production-related pathway terms in these regions based on a functional enrichment analysis. Overall, this review provides a comparative map of the selection sweeps reported in European cattle breeds and presents for the first time a characterization of the selection sweeps that are found in individual breeds. Based on their uniqueness, these breed-specific signals could be considered as “divergence signals,” which may be useful in characterizing and protecting livestock genetic diversity.
Collapse
Affiliation(s)
| | - Juan J Arranz
- Departamento de Producción Animal, Universidad de León León, Spain
| | - Pamela Wiener
- Division of Genetics and Genomics, Roslin Institute and R(D)SVS, University of Edinburgh Midlothian, UK
| |
Collapse
|
23
|
Yan S, Sun D, Sun G. Genetic divergence in domesticated and non-domesticated gene regions of barley chromosomes. PLoS One 2015; 10:e0121106. [PMID: 25812037 PMCID: PMC4374956 DOI: 10.1371/journal.pone.0121106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/11/2015] [Indexed: 11/18/2022] Open
Abstract
Little is known about the genetic divergence in the chromosomal regions with domesticated and non-domesticated genes. The objective of our study is to examine the effect of natural selection on shaping genetic diversity of chromosome region with domesticated and non-domesticated genes in barley using 110 SSR markers. Comparison of the genetic diversity loss between wild and cultivated barley for each chromosome showed that chromosome 5H had the highest divergence of 35.29%, followed by 3H, 7H, 4H, 2H, 6H. Diversity ratio was calculated as (diversity of wild type – diversity of cultivated type)/diversity of wild type×100%. It was found that diversity ratios of the domesticated regions on 5H, 1H and 7H were higher than those of non-domesticated regions. Diversity ratio of the domesticated region on 2H and 4H is similar to that of non-domesticated region. However, diversity ratio of the domesticated region on 3H is lower than that of non-domesticated region. Averaged diversity among six chromosomes in domesticated region was 33.73% difference between wild and cultivated barley, and was 27.56% difference in the non-domesticated region. The outcome of this study advances our understanding of the evolution of crop chromosomes.
Collapse
Affiliation(s)
- Songxian Yan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- * E-mail: (DS); . (GS)
| | - Genlou Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Biology, Saint Mary’s University, Halifax, Nova Scotia, B3H 3C3, Canada
- * E-mail: (DS); . (GS)
| |
Collapse
|
24
|
Poh YP, Domingues VS, Hoekstra HE, Jensen JD. On the prospect of identifying adaptive loci in recently bottlenecked populations. PLoS One 2014; 9:e110579. [PMID: 25383711 PMCID: PMC4226487 DOI: 10.1371/journal.pone.0110579] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/16/2014] [Indexed: 12/14/2022] Open
Abstract
Identifying adaptively important loci in recently bottlenecked populations – be it natural selection acting on a population following the colonization of novel habitats in the wild, or artificial selection during the domestication of a breed – remains a major challenge. Here we report the results of a simulation study examining the performance of available population-genetic tools for identifying genomic regions under selection. To illustrate our findings, we examined the interplay between selection and demography in two species of Peromyscus mice, for which we have independent evidence of selection acting on phenotype as well as functional evidence identifying the underlying genotype. With this unusual information, we tested whether population-genetic-based approaches could have been utilized to identify the adaptive locus. Contrary to published claims, we conclude that the use of the background site frequency spectrum as a null model is largely ineffective in bottlenecked populations. Results are quantified both for site frequency spectrum and linkage disequilibrium-based predictions, and are found to hold true across a large parameter space that encompasses many species and populations currently under study. These results suggest that the genomic footprint left by selection on both new and standing variation in strongly bottlenecked populations will be difficult, if not impossible, to find using current approaches.
Collapse
Affiliation(s)
- Yu-Ping Poh
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United States of America
- Howard Hughes Medical Institute, Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States of America
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- * E-mail:
| | - Vera S. Domingues
- Howard Hughes Medical Institute, Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States of America
| | - Hopi E. Hoekstra
- Howard Hughes Medical Institute, Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States of America
| | - Jeffrey D. Jensen
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United States of America
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
25
|
Wang X, Wang H, Long Y, Li D, Yin Y, Tian J, Chen L, Liu L, Zhao W, Zhao Y, Yu L, Li M. Identification of QTLs associated with oil content in a high-oil Brassica napus cultivar and construction of a high-density consensus map for QTLs comparison in B. napus. PLoS One 2013; 8:e80569. [PMID: 24312482 PMCID: PMC3846612 DOI: 10.1371/journal.pone.0080569] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/04/2013] [Indexed: 01/15/2023] Open
Abstract
Increasing seed oil content is one of the most important goals in breeding of rapeseed (B. napus L.). To dissect the genetic basis of oil content in B. napus, a large and new double haploid (DH) population containing 348 lines was obtained from a cross between 'KenC-8' and 'N53-2', two varieties with >10% difference in seed oil content, and this population was named the KN DH population. A genetic linkage map consisting of 403 markers was constructed, which covered a total length of 1783.9 cM with an average marker interval of 4.4 cM. The KN DH population was phenotyped in eight natural environments and subjected to quantitative trait loci (QTL) analysis for oil content. A total of 63 identified QTLs explaining 2.64-17.88% of the phenotypic variation were identified, and these QTLs were further integrated into 24 consensus QTLs located on 11 chromosomes using meta-analysis. A high-density consensus map with 1335 marker loci was constructed by combining the KN DH map with seven other published maps based on the common markers. Of the 24 consensus QTLs in the KN DH population, 14 were new QTLs including five new QTLs in A genome and nine in C genome. The analysis revealed that a larger population with significant differences in oil content gave a higher power detecting new QTLs for oil content, and the construction of the consensus map provided a new clue for comparing the QTLs detected in different populations. These findings enriched our knowledge of QTLs for oil content and should be a potential in marker-assisted breeding of B. napus.
Collapse
Affiliation(s)
- Xiaodong Wang
- Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Wang
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Dali, China
| | - Yan Long
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Dianrong Li
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Dali, China
| | - Yongtai Yin
- Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jianhua Tian
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Dali, China
| | - Li Chen
- Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Liezhao Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Weiguo Zhao
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Dali, China
| | - Yajun Zhao
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Dali, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Maoteng Li
- Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Glaser-Schmitt A, Catalán A, Parsch J. Adaptive divergence of a transcriptional enhancer between populations of Drosophila melanogaster. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130024. [PMID: 24218636 DOI: 10.1098/rstb.2013.0024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As species colonize new habitats they must adapt to the local environment. Much of this adaptation is thought to occur at the regulatory level; however, the relationships among genetic polymorphism, expression variation and adaptation are poorly understood. Drosophila melanogaster, which expanded from an ancestral range in sub-Saharan Africa around 15 000 years ago, represents an excellent model system for studying regulatory evolution. Here, we focus on the gene CG9509, which differs in expression between an African and a European population of D. melanogaster. The expression difference is caused by variation within a transcriptional enhancer adjacent to the CG9509 coding sequence. Patterns of sequence variation indicate that this enhancer was the target of recent positive selection, suggesting that the expression difference is adaptive. Analysis of the CG9509 enhancer in new population samples from Europe, Asia, northern Africa and sub-Saharan Africa revealed that sequence polymorphism is greatly reduced outside the ancestral range. A derived haplotype absent in sub-Saharan Africa is at high frequency in all other populations. These observations are consistent with a selective sweep accompanying the range expansion of the species. The new data help identify the sequence changes responsible for the difference in enhancer activity.
Collapse
Affiliation(s)
- Amanda Glaser-Schmitt
- Department of Biology II, University of Munich (LMU), , Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | | | | |
Collapse
|
27
|
Living on a volcano's edge: genetic isolation of an extremophile terrestrial metazoan. Heredity (Edinb) 2013; 112:132-42. [PMID: 24045291 DOI: 10.1038/hdy.2013.84] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 02/05/2023] Open
Abstract
Communities of organisms inhabiting extreme terrestrial environments provide a unique opportunity to study evolutionary forces that drive population structure and genetic diversity under the combined challenges posed by multiple geogenic stressors. High abundance of an invasive pantropical earthworm (and the absence of indigenous lumbricid species) in the Furnas geothermal field (Sao Miguel Island, Azores) indicates its remarkable tolerance to high soil temperature, exceptionally high carbon dioxide and low oxygen levels, and elevated metal bioavailability, conditions which are lethal for the majority of terrestrial metazoans. Mitochondrial and nuclear markers were used to analyze the relationship between populations living inside and outside the geothermal field. Results showed that Pontoscolex corethrurus (Annelida, Oligochaeta, Glossoscolecidae) to be a genetically heterogeneous complex within the Sao Miguel landscape and is probably differentiated into cryptic species. The population exposed to the hostile soil conditions within the volcanic caldera possesses the lowest within-population mitochondrial diversity but an unexpectedly high degree of nuclear variability with several loci evidencing positive selection, parameters indicative of a genetically unique population only distantly related to conspecifics living outside the caldera. In conclusion, P. corethrurus inhabiting active volcanic soil is a discrete extremophile population that has evolved by tolerating a mixture of non-anthropogenic chemical and physical stressors.
Collapse
|
28
|
Schoville SD, Bonin A, François O, Lobreaux S, Melodelima C, Manel S. Adaptive Genetic Variation on the Landscape: Methods and Cases. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2012. [DOI: 10.1146/annurev-ecolsys-110411-160248] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sean D. Schoville
- Laboratoire TIMC-IMAG, UMR-CNRS 5525, Université Joseph Fourier, 38041 Grenoble, France; ,
- Laboratoire d'Ecologie Alpine, UMR-CNRS 5553, Université Joseph Fourier, 38041 Grenoble, France; , , ,
| | - Aurélie Bonin
- Laboratoire d'Ecologie Alpine, UMR-CNRS 5553, Université Joseph Fourier, 38041 Grenoble, France; , , ,
| | - Olivier François
- Laboratoire TIMC-IMAG, UMR-CNRS 5525, Université Joseph Fourier, 38041 Grenoble, France; ,
| | - Stéphane Lobreaux
- Laboratoire d'Ecologie Alpine, UMR-CNRS 5553, Université Joseph Fourier, 38041 Grenoble, France; , , ,
| | - Christelle Melodelima
- Laboratoire d'Ecologie Alpine, UMR-CNRS 5553, Université Joseph Fourier, 38041 Grenoble, France; , , ,
| | - Stéphanie Manel
- Laboratoire d'Ecologie Alpine, UMR-CNRS 5553, Université Joseph Fourier, 38041 Grenoble, France; , , ,
- Laboratoire Population Environnement et Développement, UMR-IRD 151, Université Aix-Marseille, 13331 Marseille, France
| |
Collapse
|
29
|
Reuveni E, Giuliani A. A novel multi-scale modeling approach to infer whole genome divergence. Evol Bioinform Online 2012. [PMID: 23189028 PMCID: PMC3503470 DOI: 10.4137/ebo.s10194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We propose a novel and simple approach to elucidate genomic patterns of divergence using principal component analysis (PCA). We applied this methodology to the metric space generated by M. musculus genome-wide SNPs. Distance profiles were computed between M. musculus and its closely related species, M. spretus, which was used as external reference. While the speciation dynamics were apparent in the first principal component, the within M. musculus differentiation dimensions gave rise to three minor components. We were unable to obtain a clear divergence signature discriminating laboratory strains, suggesting a stronger effect of genetic drift. These results were at odds with wild strains which exhibit defined deterministic signals of divergence. Finally, we were able to rank novel and previously known genes according to their likelihood to be under selective pressure. In conclusion, we posit PCA as a robust methodology to unravel diverging DNA regions without any a priori forcing.
Collapse
Affiliation(s)
- Eli Reuveni
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), via Ramarini 32, 00015 Monterotondo, Italy
| | | |
Collapse
|
30
|
Catalán A, Hutter S, Parsch J. Population and sex differences in Drosophila melanogaster brain gene expression. BMC Genomics 2012; 13:654. [PMID: 23170910 PMCID: PMC3527002 DOI: 10.1186/1471-2164-13-654] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/16/2012] [Indexed: 01/07/2023] Open
Abstract
Background Changes in gene regulation are thought to be crucial for the adaptation of organisms to their environment. Transcriptome analyses can be used to identify candidate genes for ecological adaptation, but can be complicated by variation in gene expression between tissues, sexes, or individuals. Here we use high-throughput RNA sequencing of a single Drosophila melanogaster tissue to detect brain-specific differences in gene expression between the sexes and between two populations, one from the ancestral species range in sub-Saharan Africa and one from the recently colonized species range in Europe. Results Relatively few genes (<100) displayed sexually dimorphic expression in the brain, but there was an enrichment of sex-biased genes, especially male-biased genes, on the X chromosome. Over 340 genes differed in brain expression between flies from the African and European populations, with the inter-population divergence being highly correlated between males and females. The differentially expressed genes included those involved in stress response, olfaction, and detoxification. Expression differences were associated with transposable element insertions at two genes implicated in insecticide resistance (Cyp6g1 and CHKov1). Conclusions Analysis of the brain transcriptome revealed many genes differing in expression between populations that were not detected in previous studies using whole flies. There was little evidence for sex-specific regulatory adaptation in the brain, as most expression differences between populations were observed in both males and females. The enrichment of genes with sexually dimorphic expression on the X chromosome is consistent with dosage compensation mechanisms affecting sex-biased expression in somatic tissues.
Collapse
Affiliation(s)
- Ana Catalán
- Department of Biology II, University of Munich (LMU), Grosshaderner Str. 2, Planegg-Martinsried 82152, Germany
| | | | | |
Collapse
|
31
|
Inferences of demography and selection in an African population of Drosophila melanogaster. Genetics 2012; 193:215-28. [PMID: 23105013 DOI: 10.1534/genetics.112.145318] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It remains a central problem in population genetics to infer the past action of natural selection, and these inferences pose a challenge because demographic events will also substantially affect patterns of polymorphism and divergence. Thus it is imperative to explicitly model the underlying demographic history of the population whenever making inferences about natural selection. In light of the considerable interest in adaptation in African populations of Drosophila melanogaster, which are considered ancestral to the species, we generated a large polymorphism data set representing 2.1 Mb from each of 20 individuals from a Ugandan population of D. melanogaster. In contrast to previous inferences of a simple population expansion in eastern Africa, our demographic modeling of this ancestral population reveals a strong signature of a population bottleneck followed by population expansion, which has significant implications for future demographic modeling of derived populations of this species. Taking this more complex underlying demographic history into account, we also estimate a mean X-linked region-wide rate of adaptation of 6 × 10(-11)/site/generation and a mean selection coefficient of beneficial mutations of 0.0009. These inferences regarding the rate and strength of selection are largely consistent with most other estimates from D. melanogaster and indicate a relatively high rate of adaptation driven by weakly beneficial mutations.
Collapse
|
32
|
Zhou L, Zeng Y, Hu G, Pan Y, Yang S, You A, Zhang H, Li J, Li Z. Characterization and identification of cold tolerant near-isogenic lines in rice. BREEDING SCIENCE 2012; 62:196-201. [PMID: 23136531 PMCID: PMC3405969 DOI: 10.1270/jsbbs.62.196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 01/11/2012] [Indexed: 05/03/2023]
Abstract
To exploit the genetic mechanism of cold tolerance in rice, cold tolerant near-isogenic lines (NILs) were developed by backcrossing Kunmingxiaobaigu (KMXBG), reported to be the most cold-tolerant variety at the booting stage, as donor, with the cold sensitive Japanese commercial japonica variety, Towada. Comparisons of cold tolerance-related traits between five BC(6)F(5) NILs and recurrent parent Towada under cold treatment and normal temperatures at the booting stage showed that the differences between the NILs and Towada were significant only for spikelet fertility-related traits. Analyses of cold tolerance in the NILs at the budding (germination), seedling and booting stages indicated both correlated effects and differences. Lines 1913-4 and 1916-1 showed strong and stable tolerance at all three stages. Whole genome marker screening showed that the proportion of genetic background recovery was more than 98%. Seventeen markers from KMXBG were introgressed in two or more NILs, and cold tolerance genes were possibly present in these marker regions. The NILs should be excellent materials for both rice improvement and map-based cloning of cold tolerance QTLs.
Collapse
Affiliation(s)
- Lei Zhou
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yawen Zeng
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Guanglong Hu
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
| | - Yinghua Pan
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Shuming Yang
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Aiqing You
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Hongliang Zhang
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jinjie Li
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zichao Li
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
- Corresponding author (e-mail: )
| |
Collapse
|
33
|
Zhang WB, Qiu PC, Jiang HW, Liu CY, Xin DW, Li CD, Hu GH, Chen QS. Dissection of genetic overlap of drought and low-temperature tolerance QTLs at the germination stage using backcross introgression lines in soybean. Mol Biol Rep 2012; 39:6087-94. [PMID: 22207180 DOI: 10.1007/s11033-011-1423-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
Abstract
Northeast of China is the main soybean production area, drought and low-temperature tolerance are both main factors involved in reducing soybean yield and limiting planting regions, the most effective way to solve this problem is to breed cultivars with drought and low-temperature tolerance. A set of the BC(2)F(3) lines was constructed with Hongfeng 11 as recurrent parent and Harosoy as donor parent, and screened in drought and low-temperature condition at the germination stage. Related QTLs were obtained by Chi-test and ANOVA analysis with genotypic and phenotypic data. Eighteen QTLs of drought tolerance and 23 QTLs of low-temperature tolerance were detected. Among them, 12 QTLs were correlated with both drought and low-temperature tolerance, which showed a partial genetic overlap between drought and low-temperature tolerance at the germination stage in soybean. Among the 12 genetic overlap QTLs, Satt253, Satt513, Satt693, Satt240, Satt323, and Satt255 were detected by at least one method for both drought and low-temperature tolerance. Satt557, Satt452, Sat_331, Satt338, Satt271, and Satt588 were detected by only one analysis method. The QTLs detected above were significant loci for drought or low-temperature tolerance in soybean. This will play an important role in MAS for development of both drought and low-temperature tolerance variety.
Collapse
Affiliation(s)
- Wen Bo Zhang
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
The role of background selection in shaping patterns of molecular evolution and variation: evidence from variability on the Drosophila X chromosome. Genetics 2012; 191:233-46. [PMID: 22377629 DOI: 10.1534/genetics.111.138073] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the putatively ancestral population of Drosophila melanogaster, the ratio of silent DNA sequence diversity for X-linked loci to that for autosomal loci is approximately one, instead of the expected "null" value of 3/4. One possible explanation is that background selection (the hitchhiking effect of deleterious mutations) is more effective on the autosomes than on the X chromosome, because of the lack of crossing over in male Drosophila. The expected effects of background selection on neutral variability at sites in the middle of an X chromosome or an autosomal arm were calculated for different models of chromosome organization and methods of approximation, using current estimates of the deleterious mutation rate and distributions of the fitness effects of deleterious mutations. The robustness of the results to different distributions of fitness effects, dominance coefficients, mutation rates, mapping functions, and chromosome size was investigated. The predicted ratio of X-linked to autosomal variability is relatively insensitive to these variables, except for the mutation rate and map length. Provided that the deleterious mutation rate per genome is sufficiently large, it seems likely that background selection can account for the observed X to autosome ratio of variability in the ancestral population of D. melanogaster. The fact that this ratio is much less than one in D. pseudoobscura is also consistent with the model's predictions, since this species has a high rate of crossing over. The results suggest that background selection may play a major role in shaping patterns of molecular evolution and variation.
Collapse
|
35
|
Abstract
We develop a coalescent-based simulation tool to generate patterns of single nucleotide polymorphisms (SNPs) in a wide region encompassing both the original and duplicated genes. Selection on the new duplicated copy and interlocus gene conversion between the two copies are incorporated. This simulation enables us to explore how selection on duplicated copies affects the pattern of SNPs. The fixation of an advantageous duplicated copy causes a strong reduction in polymorphism not only in the duplicated copy but also in its flanking regions, which is a typical signature of a selective sweep by positive selection. After fixation, polymorphism gradually increases by accumulating neutral mutations and eventually reaches the equilibrium value if there is no gene conversion. When gene conversion is active, the number of SNPs in the duplicated copy quickly increases by transferring SNPs from the original copy; therefore, the time when we can recognize the signature of selection is decreased. Because this effect of gene conversion is restricted only to the duplicated region, more power to detect selection is expected if a flanking region to the duplicated copy is used.
Collapse
|
36
|
Weber CC, Pink CJ, Hurst LD. Late-replicating domains have higher divergence and diversity in Drosophila melanogaster. Mol Biol Evol 2011; 29:873-82. [PMID: 22046001 DOI: 10.1093/molbev/msr265] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Several reports from mammals indicate that an increase in the mutation rate in late-replicating regions may, in part, be responsible for the observed genomic heterogeneity in neutral substitution rates and levels of diversity, although the mechanisms for this remain poorly understood. Recent evidence also suggests that late replication is associated with high mutability in yeast. This then raises the question as to whether a similar effect is operating across all eukaryotes. Limited evidence from one chromosome arm in Drosophila melanogaster suggests the opposite pattern, with regions overlapping early-firing origins showing increased levels of diversity and divergence. Given the availability of genome-wide replication timing profiles for D. melanogaster, we now return to this issue. Consistent with what is seen in other taxa, we find that divergence at synonymous sites in exon cores, as well as divergence at putatively unconstrained intronic sites, is elevated in late-replicating regions. Analysis of genes with low codon usage bias suggests a ∼30% difference in mutation rate between the earliest and the latest replicating sequence. Intronic sequence suggests a more modest difference. We additionally show that an increase in diversity in late-replicating sequences is not owing to replication timing covarying with the local recombination rate. If anything, the effects of recombination mask the impact of replication timing. We conclude that, contrary to prior reports and consistent with what is seen in mammals and yeast, there is indeed a relationship between rates of nucleotide divergence and diversity and replication timing that is consistent with an increase in the mutation rate during late S-phase in D. melanogaster. It is therefore plausible that such an effect might be common among eukaryotes. The result may have implications for the inference of positive selection.
Collapse
Affiliation(s)
- Claudia C Weber
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | | |
Collapse
|
37
|
Verspoor RL, Haddrill PR. Genetic diversity, population structure and Wolbachia infection status in a worldwide sample of Drosophila melanogaster and D. simulans populations. PLoS One 2011; 6:e26318. [PMID: 22022599 PMCID: PMC3192181 DOI: 10.1371/journal.pone.0026318] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/23/2011] [Indexed: 12/03/2022] Open
Abstract
Drosophila melanogaster and its close relatives have been extremely important model species in the development of population genetic models that serve to explain patterns of diversity in natural populations, a major goal of evolutionary biology. A detailed picture of the evolutionary history of these species is beginning to emerge, as the relative importance of forces including demographic changes and natural selection is established. A continuing aim is to characterise levels of genetic diversity in a large number of populations of these species, covering a wide geographic area. We have used collections from five previously un-sampled wild populations of D. melanogaster and two of D. simulans, across three continents. We estimated levels of genetic diversity within, and divergence between, these populations, and looked for evidence of genetic structure both between ancestral and derived populations, and amongst derived populations. We also investigated the prevalence of infection with the bacterial endosymbiont Wolbachia. We found that D. melanogaster populations from Sub-Saharan Africa are the most diverse, and that divergence is highest between these and non-Sub-Saharan populations. There is strong evidence for structuring of populations between Sub-Saharan Africa and the rest of the world, and some evidence for weak structure amongst derived populations. Populations from Sub-Saharan Africa also differ in the prevalence of Wolbachia infection, with very low levels of infection compared to populations from the rest of the world.
Collapse
Affiliation(s)
- Rudi L. Verspoor
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Penelope R. Haddrill
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Xie X, Molina J, Hernandez R, Reynolds A, Boyko AR, Bustamante CD, Purugganan MD. Levels and patterns of nucleotide variation in domestication QTL regions on rice chromosome 3 suggest lineage-specific selection. PLoS One 2011; 6:e20670. [PMID: 21674010 PMCID: PMC3108957 DOI: 10.1371/journal.pone.0020670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 05/08/2011] [Indexed: 02/03/2023] Open
Abstract
Oryza sativa or Asian cultivated rice is one of the major cereal grass species domesticated for human food use during the Neolithic. Domestication of this species from the wild grass Oryza rufipogon was accompanied by changes in several traits, including seed shattering, percent seed set, tillering, grain weight, and flowering time. Quantitative trait locus (QTL) mapping has identified three genomic regions in chromosome 3 that appear to be associated with these traits. We would like to study whether these regions show signatures of selection and whether the same genetic basis underlies the domestication of different rice varieties. Fragments of 88 genes spanning these three genomic regions were sequenced from multiple accessions of two major varietal groups in O. sativa--indica and tropical japonica--as well as the ancestral wild rice species O. rufipogon. In tropical japonica, the levels of nucleotide variation in these three QTL regions are significantly lower compared to genome-wide levels, and coalescent simulations based on a complex demographic model of rice domestication indicate that these patterns are consistent with selection. In contrast, there is no significant reduction in nucleotide diversity in the homologous regions in indica rice. These results suggest that there are differences in the genetic and selective basis for domestication between these two Asian rice varietal groups.
Collapse
Affiliation(s)
- Xianfa Xie
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America.
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Selection mapping applies the population genetics theory of hitchhiking to the localization of genomic regions containing genes under selection. This approach predicts that neutral loci linked to genes under positive selection will have reduced diversity due to their shared history with a selected locus, and thus, genome scans of diversity levels can be used to identify regions containing selected loci. Most previous approaches to this problem ignore the spatial genomic pattern of diversity expected under selection. The regression-based approach advocated in this paper takes into account the expected pattern of decreasing genetic diversity with increased proximity to a selected locus. Simulated data are used to examine the patterns of diversity under different scenarios, in order to assess the power of a regression-based approach to the identification of regions under selection. Application of this method to both simulated and empirical data demonstrates its potential to detect selection. In contrast to some other methods, the regression approach described in this paper can be applied to any marker type. Results also suggest that this approach may give more precise estimates of the location of the selected locus than alternative methods, although the power is slightly lower in some cases.
Collapse
Affiliation(s)
- Pamela Wiener
- Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, UK.
| | | |
Collapse
|
40
|
Abstract
SummaryPopulation genomics is the study of the amount and causes of genome-wide variability in natural populations, a topic that has been under discussion since Darwin. This paper first briefly reviews the early development of molecular approaches to the subject: the pioneering unbiased surveys of genetic variability at multiple loci by means of gel electrophoresis and restriction enzyme mapping. The results of surveys of levels of genome-wide variability using DNA resequencing studies are then discussed. Studies of the extent to which variability for different classes of variants (non-synonymous, synonymous and non-coding) are affected by natural selection, or other directional forces such as biased gene conversion, are also described. Finally, the effects of deleterious mutations on population fitness and the possible role of Hill–Robertson interference in shaping patterns of sequence variability are discussed.
Collapse
|
41
|
Pandey RV, Kofler R, Orozco-terWengel P, Nolte V, Schlötterer C. PoPoolation DB: a user-friendly web-based database for the retrieval of natural polymorphisms in Drosophila. BMC Genet 2011; 12:27. [PMID: 21366916 PMCID: PMC3060855 DOI: 10.1186/1471-2156-12-27] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 03/02/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The enormous potential of natural variation for the functional characterization of genes has been neglected for a long time. Only since recently, functional geneticists are starting to account for natural variation in their analyses. With the new sequencing technologies it has become feasible to collect sequence information for multiple individuals on a genomic scale. In particular sequencing pooled DNA samples has been shown to provide a cost-effective approach for characterizing variation in natural populations. While a range of software tools have been developed for mapping these reads onto a reference genome and extracting SNPs, linking this information to population genetic estimators and functional information still poses a major challenge to many researchers. RESULTS We developed PoPoolation DB a user-friendly integrated database. Popoolation DB links variation in natural populations with functional information, allowing a wide range of researchers to take advantage of population genetic data. PoPoolation DB provides the user with population genetic parameters (Watterson's θ or Tajima's π), Tajima's D, SNPs, allele frequencies and indels in regions of interest. The database can be queried by gene name, chromosomal position, or a user-provided query sequence or GTF file. We anticipate that PoPoolation DB will be a highly versatile tool for functional geneticists as well as evolutionary biologists. CONCLUSIONS PoPoolation DB, available at http://www.popoolation.at/pgt, provides an integrated platform for researchers to investigate natural polymorphism and associated functional annotations from UCSC and Flybase genome browsers, population genetic estimators and RNA-seq information.
Collapse
Affiliation(s)
- Ram Vinay Pandey
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, Vienna, Austria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, Vienna, Austria
| | | | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, Vienna, Austria
| | - Christian Schlötterer
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, Vienna, Austria
| |
Collapse
|
42
|
Müller L, Hutter S, Stamboliyska R, Saminadin-Peter SS, Stephan W, Parsch J. Population transcriptomics of Drosophila melanogaster females. BMC Genomics 2011; 12:81. [PMID: 21276238 PMCID: PMC3040150 DOI: 10.1186/1471-2164-12-81] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 01/28/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Variation at the level of gene expression is abundant in natural populations and is thought to contribute to the adaptive divergence of populations and species. Gene expression also differs considerably between males and females. Here we report a microarray analysis of gene expression variation among females of 16 Drosophila melanogaster strains derived from natural populations, including eight strains from the putative ancestral range in sub-Saharan Africa and eight strains from Europe. Gene expression variation among males of the same strains was reported previously. RESULTS We detected relatively low levels of expression polymorphism within populations, but much higher expression divergence between populations. A total of 569 genes showed a significant expression difference between the African and European populations at a false discovery rate of 5%. Genes with significant over-expression in Europe included the insecticide resistance gene Cyp6g1, as well as genes involved in proteolysis and olfaction. Genes with functions in carbohydrate metabolism and vision were significantly over-expressed in the African population. There was little overlap between genes expressed differently between populations in females and males. CONCLUSIONS Our results suggest that adaptive changes in gene expression have accompanied the out-of-Africa migration of D. melanogaster. Comparison of female and male expression data indicates that the vast majority of genes differing in expression between populations do so in only one sex and suggests that most regulatory adaptation has been sex-specific.
Collapse
Affiliation(s)
- Lena Müller
- Department of Biology II, University of Munich (LMU), 82152 Planegg-Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Gibert JM, Karch F, Schlötterer C. Segregating variation in the polycomb group gene cramped alters the effect of temperature on multiple traits. PLoS Genet 2011; 7:e1001280. [PMID: 21283785 PMCID: PMC3024266 DOI: 10.1371/journal.pgen.1001280] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 12/17/2010] [Indexed: 11/19/2022] Open
Abstract
The phenotype produced by a given genotype can be strongly modulated by environmental conditions. Therefore, natural populations continuously adapt to environment heterogeneity to maintain optimal phenotypes. It generates a high genetic variation in environment-sensitive gene networks, which is thought to facilitate evolution. Here we analyze the chromatin regulator crm, identified as a candidate for adaptation of Drosophila melanogaster to northern latitudes. We show that crm contributes to environmental canalization. In particular, crm modulates the effect of temperature on a genomic region encoding Hedgehog and Wingless signaling effectors. crm affects this region through both constitutive heterochromatin and Polycomb silencing. Furthermore, we show that crm European and African natural variants shift the reaction norms of plastic traits. Interestingly, traits modulated by crm natural variants can differ markedly between Drosophila species, suggesting that temperature adaptation facilitates their evolution.
Collapse
Affiliation(s)
- Jean-Michel Gibert
- Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland.
| | | | | |
Collapse
|
44
|
Bally P, Grandaubert J, Rouxel T, Balesdent MH. FONZIE: An optimized pipeline for minisatellite marker discovery and primer design from large sequence data sets. BMC Res Notes 2010; 3:322. [PMID: 21114810 PMCID: PMC3002364 DOI: 10.1186/1756-0500-3-322] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 11/29/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Micro-and minisatellites are among the most powerful genetic markers known to date. They have been used as tools for a large number of applications ranging from gene mapping to phylogenetic studies and isolate typing. However, identifying micro-and minisatellite markers on large sequence data sets is often a laborious process. RESULTS FONZIE was designed to successively 1) perform a search for markers via the external software Tandem Repeat Finder, 2) exclude user-defined specific genomic regions, 3) screen for the size and the percent matches of each relevant marker found by Tandem Repeat Finder, 4) evaluate marker specificity (i.e., occurrence of the marker as a single copy in the genome) using BLAST2.0, 5) design minisatellite primer pairs via the external software Primer3, and 6) check the specificity of each final PCR product by BLAST. A final file returns to users all the results required to amplify markers. A biological validation of the approach was performed using the whole genome sequence of the phytopathogenic fungus Leptosphaeria maculans, showing that more than 90% of the minisatellite primer pairs generated by the pipeline amplified a PCR product, 44.8% of which showed agarose-gel resolvable polymorphism between isolates. Segregation analyses confirmed that the polymorphic minisatellites corresponded to single-locus markers. CONCLUSION FONZIE is a stand-alone and user-friendly application developed to minimize tedious manual operations, reduce errors, and speed up the search for efficient minisatellite and microsatellite markers departing from whole-genome sequence data. This pipeline facilitates the integration of data and provides a set of specific primer sequences for PCR amplification of single-locus markers. FONZIE is freely downloadable at: http://www.versailles-grignon.inra.fr/bioger/equipes/leptosphaeria_maculans/outils_d_analyses/fonzie.
Collapse
Affiliation(s)
- Pascal Bally
- Institut National de la Recherche Agronomique, UMR 1290 BIOGER, BP 01, Avenue Lucien Brétignières, 78850 Thiverval-Grignon, France.
| | | | | | | |
Collapse
|
45
|
Genetic hitchhiking associated with life history divergence and colonization of North America in the European corn borer moth. Genetica 2010; 139:565-73. [PMID: 21104111 DOI: 10.1007/s10709-010-9514-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 10/24/2010] [Indexed: 12/30/2022]
Abstract
A primary goal for evolutionary biology is to reveal the genetic basis for adaptive evolution and reproductive isolation. Using Z and E pheromone strains the European corn borer (ECB) moth, I address this problem through multilocus analyses of DNA polymorphism. I find that the locus Triose phosphate isomerase (Tpi) is a statistically significant outlier in coalescent simulations of demographic histories of population divergence, including strict allopatric isolation, restricted migration, secondary contact, and population growth or decline. This result corroborates a previous QTL study that identified the Tpi chromosomal region as a repository for gene(s) contributing to divergence in life history. Patterns of nucleotide polymorphism at Tpi suggest a recent selective sweep and genetic hitchhiking associated with colonization of North America from Europe ~200 generations ago. These results indicate that gene genealogies initially diverge during speciation because of selective sweeps, but differential introgression may play a role in the maintenance of differentiation for sympatric populations.
Collapse
|
46
|
Mariac C, Jehin L, Saïdou AA, Thuillet AC, Couderc M, Sire P, Jugdé H, Adam H, Bezançon G, Pham JL, Vigouroux Y. Genetic basis of pearl millet adaptation along an environmental gradient investigated by a combination of genome scan and association mapping. Mol Ecol 2010; 20:80-91. [PMID: 21050293 DOI: 10.1111/j.1365-294x.2010.04893.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Identifying the molecular bases of adaptation is a key issue in evolutionary biology. Genome scan is an efficient approach for identifying important molecular variation involved in adaptation. Association mapping also offers an opportunity to gain insight into genotype-phenotype relationships. Using these two approaches coupled with environmental data should help to come up with a refined picture of the evolutionary process underlying adaptation. In this study, we first conducted a selection scan analysis on a transcription factor gene family. We focused on the MADS-box gene family, a gene family which plays a crucial role in vegetative and flower development. Twenty-one pearl millet populations were sampled along an environmental gradient in West Africa. We identified one gene, i.e. PgMADS11, using Bayesian analysis to detect selection signatures. Polymorphism at this gene was also associated with flowering time variation in an association mapping framework. Finally, we found that PgMADS11 allele frequencies were closely associated with annual rainfall. Overall, we determined an efficient way to detect functional polymorphisms associated with climate variation in non-model plants by combining genome scan and association mapping. These results should help monitor the impact of recent climatic changes on plant adaptation.
Collapse
Affiliation(s)
- Cédric Mariac
- Institut de Recherche pour le Développement, UMR DIAPC IRD/INRA/Université de Montpellier II/Sup-Agro, BP64501, 34394 Montpellier, Cedex 5, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Terauchi R, Yoshida K. Towards population genomics of effector-effector target interactions. THE NEW PHYTOLOGIST 2010; 187:929-39. [PMID: 20707855 DOI: 10.1111/j.1469-8137.2010.03408.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pathogen-plant host coevolutionary interactions exert strong natural selection on both organisms, specifically on the genes coding for effectors (pathogens), as well as on those coding for effector targets and R proteins (plant hosts). Natural selection leaves behind DNA sequence signatures on such genes and on linked genomic regions. These signatures can readily be detected by studying the patterns of intraspecies polymorphisms and interspecies divergence of the DNA sequences. Recent developments in DNA sequencing technology have made whole-genome studies on patterns of DNA polymorphisms : divergence possible. This type of analysis, called 'population genomics', appears to be powerful enough to identify novel effector-effector target genes. Here, we provide an overview of the statistical tools used for population genomics and their applications. This is followed by a brief review of evolutionary studies on plant genes involved in host-pathogen interactions. Finally we provide an example from our study on Magnaporthe oryzae.
Collapse
Affiliation(s)
- Ryohei Terauchi
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan.
| | | |
Collapse
|
48
|
Gross BL, Olsen KM. Genetic perspectives on crop domestication. TRENDS IN PLANT SCIENCE 2010; 15:529-37. [PMID: 20541451 PMCID: PMC2939243 DOI: 10.1016/j.tplants.2010.05.008] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 05/12/2010] [Accepted: 05/17/2010] [Indexed: 05/17/2023]
Abstract
The process of crop domestication has long been a topic of active research for biologists, anthropologists and others. Genetic data have proved a powerful resource for drawing inferences on questions regarding the geographical origins of crops, the numbers of independent domestication events for a given crop species, the specific molecular changes underlying domestication traits, and the nature of artificial selection during domestication and subsequent crop improvement. We would argue that these genetic inferences are fundamentally compatible with recent archaeological data that support a view of domestication as a geographically diffuse, gradual process. In this review, we summarize methodologies ranging from quantitative trait locus mapping to resequencing used in genetic analyses of crop evolution. We also highlight recent major insights regarding the timing and spatial patterning of crop domestication and the distinct genetic underpinnings of domestication, diversification and improvement traits.
Collapse
Affiliation(s)
- Briana L Gross
- Washington University in St. Louis, Department of Biology, Campus Box 1137, 1 Brookings Drive, St. Louis, MO 63130-4899, USA
| | | |
Collapse
|
49
|
Rand DM, Weinreich DM, Lerman D, Folk D, Gilchrist GW. Three selections are better than one: clinal variation of thermal QTL from independent selection experiments in Drosophila. Evolution 2010; 64:2921-34. [PMID: 20497214 DOI: 10.1111/j.1558-5646.2010.01039.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We report the results of two independent selection experiments that have exposed distinct populations of Drosophila melanogaster to different forms of thermal selection. A recombinant population derived from Arvin California and Zimbabwe isofemale lines was exposed to laboratory natural selection at two temperatures (T(AZ): 18°C and 28°C). Microsatellite mapping identified quantitative trait loci (QTL) on the X-chromosome between the replicate "Hot" and "Cold" populations. In a separate experiment, disruptive selection was imposed on an outbred California population for the "knockdown" temperature (T(KD)) in a thermal column. Microsatellite mapping of the "High" and "Low" populations also uncovered primarily X-linked QTL. Notably, a marker in the shaggy locus at band 3A was significantly differentiated in both experiments. Finer scale mapping of the 3A region has narrowed the QTL to the shaggy gene region, which contains several candidate genes that function in circadian rhythms. The same allele that was increased in frequency in the High T(KD) populations is significantly clinal in North America and is more common at the warm end of the cline (Florida vs. Maine; however, the cline was not apparent in Australia). Together, these studies show that independent selection experiments can uncover the same target of selection and that evolution in the laboratory can recapitulate putatively adaptive clinal variation in nature.
Collapse
Affiliation(s)
- David M Rand
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912, USA.
| | | | | | | | | |
Collapse
|
50
|
|