1
|
Ren H, Pu Q, Yang X, Kashyap S, Liu S. Regulatory mechanisms of nitrogen homeostasis in insect growth and development. INSECT SCIENCE 2025. [PMID: 40287858 DOI: 10.1111/1744-7917.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
Nitrogen is an essential element for the synthesis of proteins, nucleic acids, and various other critical biological molecules in insects. The maintenance of nitrogen homeostasis in insects is achieved through a balance of dietary intake, metabolic conversion, and excretion. Insects primarily acquire nitrogen from their diet, which is subsequently metabolized into amino acids, proteins, and other vital biomolecules following digestion and absorption. Excess nitrogen is excreted in forms such as uric acid, allantoin, allantoic acid, urea, and ammonia. Disruptions in nitrogen regulation can result in ammonia toxicity and abnormal production or excretion of nitrogenous metabolites, including uric acid, ultimately impairing insect development and survival. This review examines the mechanisms underlying nitrogen homeostasis in insects, with a focus on the intricate regulatory roles of carbohydrate metabolism, amino acid metabolism, uric acid metabolism, urea and polyamine metabolism, ammonia transport pathways, and symbiotic interactions. By elucidating these processes, this review aims to enhance our understanding of insect nutritional metabolism and developmental biology, while offering novel perspectives for the development of more effective pest management strategies.
Collapse
Affiliation(s)
- Houming Ren
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Qian Pu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Xiaolin Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Symphony Kashyap
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Wang X, Chu R, Li S, Xu S, Lv J, Bu S, Sun Y, Shen B, Zhou D. Knockdown of the adipokinetic hormone receptor inhibits the reproduction of female Culex pipiens pallens (Diptera: Culicidae) by downregulating L-homoserine and serotonin levels. INSECT SCIENCE 2025. [PMID: 40287930 DOI: 10.1111/1744-7917.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/01/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025]
Abstract
The adipokinetic hormone (AKH) receptor, interacting with AKH, regulates the metabolism of amino acids, carbohydrates, and lipids. The AKH receptor is abundant in mosquito primary and secondary sexual organs; however, the exact role of the AKH receptor in mosquito reproductive processes and the specific mechanisms involved are unclear. Among different tissues of adult female mosquitoes (Culex pipiens pallens), the ovaries and fat body showed high expression of the AKH receptor gene. Silencing this gene led to anti-reproductive effects, including abnormal ovarian morphology, reduced follicle number, and a decreased egg-laying count. Meanwhile, decreased yolk accumulation and iron deposition in the ovaries during the vitellogenesis phase were observed, accompanied by reduced expression levels of the vitellogenin-A1 precursor gene and transferrin gene. Liquid chromatography-mass spectrometry analysis revealed a decrease in L-homoserine and serotonin levels following AKH receptor gene knockdown, and supplementation with the above 2 metabolites partly rescued the anti-reproductive phenotype and increased the expression of the vitellogenin-A1 precursor gene and transferrin gene in the AKH receptor gene knockdown mosquitoes. Consistent with the gene knockdown results, Relugolix, an inhibitor of this receptor, likewise affected egg production. Herein, we revealed evidence for the function and potential mechanism of the AKH receptor during female mosquito reproduction, possibly offering an alternative method to control mosquitoes.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pathogen Biology, Key Laboratory for Pathogen Infection and Control of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Ruixin Chu
- Department of Pathogen Biology, Key Laboratory for Pathogen Infection and Control of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Siyao Li
- The Second School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Shiyao Xu
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jingwen Lv
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Siwei Bu
- Department of Pathogen Biology, Key Laboratory for Pathogen Infection and Control of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Yan Sun
- Department of Pathogen Biology, Key Laboratory for Pathogen Infection and Control of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Bo Shen
- Department of Pathogen Biology, Key Laboratory for Pathogen Infection and Control of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Dan Zhou
- Department of Pathogen Biology, Key Laboratory for Pathogen Infection and Control of Jiangsu Province, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Kong W, Li T, Li Y, Zhang L, Xie J, Liu X. Transgenic Cotton Expressing ds AgCYP6CY3 Significantly Delays the Growth and Development of Aphis gossypii by Inhibiting Its Glycolysis and TCA Cycle. Int J Mol Sci 2024; 26:264. [PMID: 39796120 PMCID: PMC11720249 DOI: 10.3390/ijms26010264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
In our previous research, we found that CYP6CY3 not only participates in the detoxification metabolism of neonicotinoid insecticides in cotton aphid but also affects their growth and development. However, how does transgenic cotton expressing dsAgCYP6CY3 affect the growth and development of cotton aphid? In this study, we combined transcriptome and metabolome to analyze how to inhibit the growth and development of cotton aphid treated with transgenic cotton expressing dsAgCYP6CY3-P1 (TG cotton). The results suggested that a total of 509 differentially expressed genes (DEGs) were identified based on the DESeq method, and a total of 431 differential metabolites (DAMs) were discovered using UPLC-MS in the metabolic analysis. Additionally, multiple DEGs and DAMs of glycolytic and The tricarboxylic acid (TCA) cycle pathways were significantly down-regulated. Pyruvate carboxylase (PC), citrate synthase (CS), malate dehydrogenase (MDH) enzyme activities and pyruvate content were reduced in cotton aphid treated with TG cotton. In addition, TG cotton could significantly decrease the total sugar content from the body and honeydew in cotton aphid. The above results indicated that TG cotton inhibited glycolysis and the TCA cycle, and this inhibition is consistent with previous studies showing that cotton aphid fed on TG cotton showed significantly reduced body length and weight as well as delayed molting. These findings provide a new strategy for reducing the transmission of viruses by cotton aphid honeydew, preventing fungal growth, mitigating impacts on normal photosynthesis and improving cotton quality.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoning Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (W.K.); (T.L.); (Y.L.); (L.Z.); (J.X.)
| |
Collapse
|
4
|
Zhao W, Liu P, Saunders TR, Zhu J. Juvenile hormone induces phosphorylation of insulin/insulin-like growth factor signaling proteins in previtellogenic Aedes aegypti mosquitoes. INSECT SCIENCE 2024. [PMID: 39663731 DOI: 10.1111/1744-7917.13482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024]
Abstract
Juvenile hormone (JH) plays a pivotal role in regulating post-emergence development and metabolism in previtellogenic female Aedes aegypti mosquitoes. In contrast, yolk protein precursor production and egg maturation after a blood meal are regulated by the steroid hormone 20-hydroxyecdysone, the insulin-like growth factor (IGF)/insulin signaling (IIS) pathway, and the mammalian target of rapamycin (mTOR) pathway. The role of IIS/mTOR signaling in female adults prior to blood feeding has not been thoroughly investigated. In this study, we identified a significant increase in the phosphorylation of key effector proteins in the IIS/mTOR signaling pathway, including eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), ribosomal protein S6 kinase (S6K) and forkhead box protein O1 (FoxO1), in previtellogenic females. In vitro fat body culture experiments suggest that JH induces these phosphorylations through rapid nongenomic signaling mediated by the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mTOR network. RNA interference experiments demonstrated that activation of IIS/mTOR signaling in previtellogenic females modulate metabolic gene expression, promoting the accumulation of energy reserves (glycogen and triglycerides), which influence mosquito fecundity. Additionally, depletion of either the insulin receptor (InR) or the JH receptor Methoprene-tolerant (Met) in adult mosquitoes abolished the phosphorylation of these proteins, indicating that both receptors are involved in JH-induced membrane-initiated signal transduction. Although the precise mechanisms remain unclear, this study uncovers a novel function of the IIS/mTOR pathway in adult mosquitoes before blood feeding, as well as a new mode of JH action through its crosstalk with the IIS pathway.
Collapse
Affiliation(s)
- Wenhao Zhao
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Pengcheng Liu
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
- Laboratory of Bio-Interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Thomas R Saunders
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Jinsong Zhu
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
5
|
Feng S, Wang D, Qin Q, Chen K, Zhang W, He Y. Functions of Insulin-like Peptide Genes ( CsILP1 and CsILP2) in Female Reproduction of the Predatory Ladybird Coccinella septempunctata (Coleoptera: Coccinellidae). INSECTS 2024; 15:981. [PMID: 39769583 PMCID: PMC11677109 DOI: 10.3390/insects15120981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Insulin-like peptides (ILPs) are important peptide hormones in insects, particularly involved in regulating physiological processes such as growth, development, and reproduction. However, the specific roles of ILPs in the reproduction of natural enemy insects remain unknown. In this study, two ILP genes, CsILP1 and CsILP2, were cloned and their functions were analyzed in female Coccinella septempunctata L. (Coleoptera: Coccinellidae). The open reading frames (ORFs) of CsILP1 and CsILP2 were 384 bp and 357 bp, respectively. The expression of CsILP1 increased on the 6th day after eclosion, reaching its peak on the 12th day, while CsILP2 levels showed a significant increase on the 6th day and then stabilized. In different tissues, CsILP1 was highly expressed in ovaries, while CsILP2 predominated in elytra. Injection of dsRNA targeting CsILP1 and CsILP2 resulted in the down-regulation of insulin pathway genes. The relative expression of ovarian development-related genes Vasa, G2/M, and Vg was reduced by 82.50%, 89.55%. and 96.98% in dsCsILP1-treated females, and by 42.55%, 91.36%, and 55.63% in dsCsILP2-treated females. Furthermore, substantial decreases in 14-day fecundity were observed, with reductions of 89.99% for dsCsILP1 and 83.45% for dsCsILP2. These results confirm the regulatory functions of CsILP1 and CsILP2 in female C. septempunctata reproduction.
Collapse
Affiliation(s)
| | - Da Wang
- Correspondence: (D.W.); (Y.H.)
| | | | | | | | - Yunzhuan He
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (S.F.); (Q.Q.); (K.C.); (W.Z.)
| |
Collapse
|
6
|
Lopez AD, Debnath T, Pinch M, Hansen IA. Phosphoproteomics analyses of Aedes aegypti fat body reveals blood meal-induced signaling and metabolic pathways. Heliyon 2024; 10:e40060. [PMID: 39634388 PMCID: PMC11615488 DOI: 10.1016/j.heliyon.2024.e40060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
The mosquito fat body is the principal source of yolk protein precursors (YPP) during mosquito egg development in female Aedes aegypti. To better understand the metabolic and signaling pathways involved in mosquito reproduction, we investigated changes in the mosquito fat body phosphoproteome at multiple time points after a blood meal. Using LC/MS, we identified 3570 phosphorylated proteins containing 14,551 individual phosphorylation sites. We observed protein phosphorylation changes in cellular pathways required for vitellogenesis, as well as proteins involved in primary cellular functions. Specifically, after a blood meal, proteins involved in ribosome synthesis, transcription, translation, and autophagy showed dynamic changes in their phosphorylation patterns. Our results provide new insight into blood meal-induced fat body dynamics and reveal potential proteins that can be targeted for interference with mosquito reproduction. Considering the devastating impact of mosquitoes on human health, worldwide, new approaches to control mosquitoes are urgently needed.
Collapse
Affiliation(s)
| | | | - Matthew Pinch
- New Mexico State University, Las Cruces, NM, 88003, USA
- The University of Texas at El Paso, El Paso, TX, 79968, USA
| | | |
Collapse
|
7
|
Feng J, Du J, Li S, Chen X. Akt regulates the fertility of Coridius chinensis by insulin signaling pathway. Sci Rep 2024; 14:28708. [PMID: 39567555 PMCID: PMC11579311 DOI: 10.1038/s41598-024-78416-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
Akt (also known as protein kinase B) belongs to the multifunctional serine/threonine kinase family and is an important component of the insulin signaling pathway that plays a key role in many biological processes such as cell growth, proliferation, and survival. However, few studies have reported the effect of Akt on reproduction in Hemiptera. In this study, we cloned and characterized the Akt gene from Coridius chinensis (CcAkt). The open reading frame of CcAkt has a length of 1,563 bp and encodes 520 amino acids. It has a conserved pleckstrin homology domain (PH), catalytic domain of serine/threonine protein kinases (S_TKc), and extension of Ser/Thr-type protein kinases (S_TK_X). Phylogenetic analysis showed that CcAkt and HhAkt of Halyomorpha halys had the highest similarity. Analysis of temporal and spatial expression patterns revealed that CcAkt is expressed throughout development and in various tissues of C. chinensis adults. CcAkt was highly expressed in the female adult and the fourth-instar nymph, as well as in the testis and ovary of C. chinensis. Injection of bovine insulin and methoprene induced the CcAkt expression, whereas that of 20-hydroxyecdysone significantly reduced the CcAkt expression. These three hormones, however, induced the expression of vitellogenin (Vg) and vitellogenin receptor (VgR). In unmated females, knockdown of CcAkt resulted in decreased expression of CcVg and CcVgR, stunted the development of the ovarioles, decreased the number of eggs and hatching rate. These findings from RNA interference experiment suggested that CcAkt may be involved in regulating the reproduction of C. chinensis.
Collapse
Affiliation(s)
- Jinyu Feng
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, 550025, Guizhou, China
| | - Juan Du
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, 550025, Guizhou, China
| | - Shangwei Li
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, 550025, Guizhou, China.
| | - Xingxing Chen
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, 550025, Guizhou, China
| |
Collapse
|
8
|
Leyria J. Endocrine factors modulating vitellogenesis and oogenesis in insects: An update. Mol Cell Endocrinol 2024; 587:112211. [PMID: 38494046 DOI: 10.1016/j.mce.2024.112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/26/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The endocrine system plays a pivotal role in shaping the mechanisms that ensure successful reproduction. With over a million known insect species, understanding the endocrine control of reproduction has become increasingly complex. Some of the key players include the classic insect lipid hormones juvenile hormone (JH) and ecdysteroids, and neuropeptides such as insulin-like peptides (ILPs). Individual endocrine factors not only modulate their own target tissue but also play crucial roles in crosstalk among themselves, ensuring successful vitellogenesis and oogenesis. Recent advances in omics, gene silencing, and genome editing approaches have accelerated research, offering both fundamental insights and practical applications for studying in-depth endocrine signaling pathways. This review provides an updated and integrated view of endocrine factors modulating vitellogenesis and oogenesis in insect females.
Collapse
Affiliation(s)
- Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| |
Collapse
|
9
|
Weger AA, Rittschof CC. The diverse roles of insulin signaling in insect behavior. FRONTIERS IN INSECT SCIENCE 2024; 4:1360320. [PMID: 38638680 PMCID: PMC11024295 DOI: 10.3389/finsc.2024.1360320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
In insects and other animals, nutrition-mediated behaviors are modulated by communication between the brain and peripheral systems, a process that relies heavily on the insulin/insulin-like growth factor signaling pathway (IIS). Previous studies have focused on the mechanistic and physiological functions of insulin-like peptides (ILPs) in critical developmental and adult milestones like pupation or vitellogenesis. Less work has detailed the mechanisms connecting ILPs to adult nutrient-mediated behaviors related to survival and reproductive success. Here we briefly review the range of behaviors linked to IIS in insects, from conserved regulation of feeding behavior to evolutionarily derived polyphenisms. Where possible, we incorporate information from Drosophila melanogaster and other model species to describe molecular and neural mechanisms that connect nutritional status to behavioral expression via IIS. We identify knowledge gaps which include the diverse functional roles of peripheral ILPs, how ILPs modulate neural function and behavior across the lifespan, and the lack of detailed mechanistic research in a broad range of taxa. Addressing these gaps would enable a better understanding of the evolution of this conserved and widely deployed tool kit pathway.
Collapse
Affiliation(s)
| | - Clare C. Rittschof
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
10
|
Geng DQ, Wang XL, Lyu XY, Raikhel AS, Zou Z. Ecdysone-controlled nuclear receptor ERR regulates metabolic homeostasis in the disease vector mosquito Aedes aegypti. PLoS Genet 2024; 20:e1011196. [PMID: 38466721 PMCID: PMC10957079 DOI: 10.1371/journal.pgen.1011196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/21/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
Hematophagous mosquitoes require vertebrate blood for their reproductive cycles, making them effective vectors for transmitting dangerous human diseases. Thus, high-intensity metabolism is needed to support reproductive events of female mosquitoes. However, the regulatory mechanism linking metabolism and reproduction in mosquitoes remains largely unclear. In this study, we found that the expression of estrogen-related receptor (ERR), a nuclear receptor, is activated by the direct binding of 20-hydroxyecdysone (20E) and ecdysone receptor (EcR) to the ecdysone response element (EcRE) in the ERR promoter region during the gonadotropic cycle of Aedes aegypti (named AaERR). RNA interference (RNAi) of AaERR in female mosquitoes led to delayed development of ovaries. mRNA abundance of genes encoding key enzymes involved in carbohydrate metabolism (CM)-glucose-6-phosphate isomerase (GPI) and pyruvate kinase (PYK)-was significantly decreased in AaERR knockdown mosquitoes, while the levels of metabolites, such as glycogen, glucose, and trehalose, were elevated. The expression of fatty acid synthase (FAS) was notably downregulated, and lipid accumulation was reduced in response to AaERR depletion. Dual luciferase reporter assays and electrophoretic mobility shift assays (EMSA) determined that AaERR directly activated the expression of metabolic genes, such as GPI, PYK, and FAS, by binding to the corresponding AaERR-responsive motif in the promoter region of these genes. Our results have revealed an important role of AaERR in the regulation of metabolism during mosquito reproduction and offer a novel target for mosquito control.
Collapse
Affiliation(s)
- Dan-Qian Geng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Li Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xiang-Yang Lyu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Alexander S. Raikhel
- Department of Entomology, University of California, Riverside, California, United States of America
- Institute for Integrative Genome Biology, University of California, Riverside, California, United States of America
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Bai B, Zhang SP, Li YT, Gao P, Yang XQ. Quercetin stimulates an accelerated burst of oviposition-based reproductive strategy in codling moth controlled by juvenile hormone signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169643. [PMID: 38159769 DOI: 10.1016/j.scitotenv.2023.169643] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
The advantageous characteristics of invasive pests, particularly their ability to reproduce and adapt to the environment, have been observed. However, it remains unclear what specific inherent superiority enables fruit pests to successfully invade and dominate in interactions with other species. In this study, we report that Cydia pomonella (Linnaeus), a notorious invasive pest of pome fruits and walnuts globally, employs unique reproductive strategies in response to quercetin, a plant compound in host fruits. By monitoring adult dynamics and fruit infestation rates, we observed a competitive relationship between C. pomonella and the native species Grapholita molesta (Busck). C. pomonella was able to occupy vacant niches to ensure its population growth. We also found that quercetin had different effects on the reproductive capacity and population growth of C. pomonella and G. molesta. While quercetin stimulated the fecundity and population growth of G. molesta, it inhibited C. pomonella. However, C. pomonella was able to rapidly increase its population after exposure to quercetin by adopting an 'accelerated burst' of oviposition strategy, with each individual making a greater reproductive contribution compared to the control. We further demonstrated that the effect of quercetin on oviposition is regulated by the juvenile hormone (JH) signaling pathway in C. pomonella, allowing it to prioritize survival. The enhanced reproductive fitness of G. molesta in response to quercetin is attributed to the regulation of JH titers and key genes such as Met and Kr-h1, which in turn up-regulate reproduction-related genes Vg and VgR. In contrast, C. pomonella is inhibited. These findings shed light on the mechanisms interspecific competition and help to improve our understanding of the global spread of C. pomonella, which can be attributed to its inherent superiority in terms of reproductive strategy.
Collapse
Affiliation(s)
- Bing Bai
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China; Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang 110866, Liaoning, China
| | - Shi-Pan Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China; Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang 110866, Liaoning, China
| | - Yu-Ting Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China; Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang 110866, Liaoning, China
| | - Ping Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China; Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang 110866, Liaoning, China
| | - Xue-Qing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China; Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang 110866, Liaoning, China.
| |
Collapse
|
12
|
Lamsal M, Luker HA, Pinch M, Hansen IA. RNAi-Mediated Knockdown of Acidic Ribosomal Stalk Protein P1 Arrests Egg Development in Adult Female Yellow Fever Mosquitoes, Aedes aegypti. INSECTS 2024; 15:84. [PMID: 38392504 PMCID: PMC10889338 DOI: 10.3390/insects15020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/10/2024] [Accepted: 01/20/2024] [Indexed: 02/24/2024]
Abstract
After taking a blood meal, the fat body of the adult female yellow fever mosquito, Aedes aegypti, switches from a previtellogenic state of arrest to an active state of synthesizing large quantities of yolk protein precursors (YPPs) that are crucial for egg development. The synthesis of YPPs is regulated at both the transcriptional and translational levels. Previously, we identified the cytoplasmic protein general control nonderepressible 1 (GCN1) as a part of the translational regulatory pathway for YPP synthesis. In the current study, we used the C-terminal end of GCN1 to screen for protein-protein interactions and identified 60S acidic ribosomal protein P1 (P1). An expression analysis and RNAi-mediated knockdown of P1 was performed to further investigate the role of P1 in mosquito reproduction. We showed that in unfed (absence of a blood meal) adult A. aegypti mosquitoes, P1 was expressed ubiquitously in the mosquito organs and tissues tested. We also showed that the RNAi-mediated knockdown of P1 in unfed adult female mosquitoes resulted in a strong, transient knockdown with observable phenotypic changes in ovary length and egg deposition. Our results suggest that 60S acidic ribosomal protein P1 is necessary for mosquito reproduction and is a promising target for mosquito population control.
Collapse
Affiliation(s)
- Mahesh Lamsal
- Molecular Vector Physiology Laboratory, Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA; (M.L.)
| | - Hailey A. Luker
- Molecular Vector Physiology Laboratory, Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA; (M.L.)
| | - Matthew Pinch
- Department of Biology, University of Texas El Paso, El Paso, TX 79968, USA
| | - Immo A. Hansen
- Molecular Vector Physiology Laboratory, Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA; (M.L.)
| |
Collapse
|
13
|
Chen K, Dou X, Eum JH, Harrison RE, Brown MR, Strand MR. Insulin-like peptides and ovary ecdysteroidogenic hormone differentially stimulate physiological processes regulating egg formation in the mosquito Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 163:104028. [PMID: 37913852 PMCID: PMC10842226 DOI: 10.1016/j.ibmb.2023.104028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Mosquitoes including Aedes aegypti are human disease vectors because females must blood feed to produce and lay eggs. Blood feeding triggers insulin-insulin growth factor signaling (IIS) which regulates several physiological processes required for egg development. A. aegypti encodes 8 insulin-like peptides (ILPs) and one insulin-like receptor (IR) plus ovary ecdysteroidogenic hormone (OEH) that also activates IIS through the OEH receptor (OEHR). In this study, we assessed the expression of A. aegypti ILPs and OEH during a gonadotrophic cycle and produced each that were functionally characterized to further understand their roles in regulating egg formation. All A. aegypti ILPs and OEH were expressed during a gonadotrophic cycle. Five ILPs (1, 3, 4, 7, 8) and OEH were specifically expressed in the head, while antibodies to ILP3 and OEH indicated each was released after blood feeding from ventricular axons that terminate on the anterior midgut. A subset of ILP family members and OEH stimulated nutrient storage in previtellogenic females before blood feeding, whereas most IIS-dependent processes after blood feeding were activated by one or more of the brain-specific ILPs and/or OEH. ILPs and OEH with different biological activities also exhibited differences in IIS as measured by phosphorylation of the IR, phosphoinositide 3-kinase/Akt kinase (AKT) and mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK). Altogether, our results provide the first results that compare the functional activities of all ILP family members and OEH produced by an insect.
Collapse
Affiliation(s)
- Kangkang Chen
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Xiaoyi Dou
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Jai Hoon Eum
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Ruby E Harrison
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Mark R Brown
- Department of Entomology, University of Georgia, Athens, GA, USA.
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
14
|
Zhang S, Zhang Y, Zou H, Li X, Zou H, Wang Z, Zou C. FDP-Na-induced enhancement of glycolysis impacts larval growth and development and chitin biosynthesis in fall webworm, Hyphantria cunea (Lepidoptera: Arctiidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105560. [PMID: 37666596 DOI: 10.1016/j.pestbp.2023.105560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 09/06/2023]
Abstract
Fructose 1, 6-diphosphate (FDP) is an endogenous intermediate in the glycolytic pathway, as well as an allosteric activator of phosphofructokinase (PFK). Based on the role in promoting glycolysis, FDP has been widely used as a therapeutic agent for mitigating the damage of endotoxemia and ischemia/reperfusion in clinical practice. However, the effect of exogenous FDP-induced glycolysis activation on insect carbohydrate metabolism and chitin synthesis remains largely unclear. Here, we investigated for the first time the effects of FDP-Na, an allosteric activator of PFK, on the growth and development of Hyphantria cunea larvae, a serious defoliator in agriculture and forestry, especially on glycolysis and chitin synthesis. The results showed that FDP-Na significantly restrained the growth and development of H. cunea larvae and resulted in larval lethality. After treatment with FDP-Na, hexokinase (HK), phosphofructokinase (PFK) and pyruvate kinase (PK) were significantly activated, and HcHK2, HcPFK, HcPK were dramatically upregulated, which suggested that FDP-Na enhanced glycolysis in H. cunea larvae. Meanwhile, FDP-Na also distinctly impacted chitin biosynthesis by disturbing transcriptions of genes in the chitin synthesis pathway, resulting in changes of chitin contents in the midgut and epidermis of H. cunea larvae. Therefore, we considered that FDP-Na caused the growth and development arrest, and impacted chitin biosynthesis, probably by disturbing in vivo glycolysis and carbohydrate metabolism in H. cunea larvae. The findings provide a new perspective on the mechanism by which glycolysis regulates insect growth and development, and lay the foundation for exploring the potential application of glycolysis activators in pest control as well.
Collapse
Affiliation(s)
- Shengyu Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Yu Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Haifeng Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Xingpeng Li
- Jilin Agricultural University, Jilin 132013, PR China
| | - Hang Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Ze Wang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Chuanshan Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
15
|
Ling L, Raikhel AS. Amino acid-dependent regulation of insulin-like peptide signaling is mediated by TOR and GATA factors in the disease vector mosquito Aedes aegypti. Proc Natl Acad Sci U S A 2023; 120:e2303234120. [PMID: 37579141 PMCID: PMC10450652 DOI: 10.1073/pnas.2303234120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023] Open
Abstract
Aedes aegypti female mosquitoes require vertebrate blood for their egg production and consequently they become vectors of devastating human diseases. Amino acids (AAs) and nutrients originating from a blood meal activate vitellogenesis and fuel embryo development of anautogenous mosquitoes. Insulin-like peptides (ILPs) are indispensable in reproducing female mosquitoes, regulating glycogen and lipid metabolism, and other essential functions. However, how ILPs coordinate their action in response to the AA influx in mosquito reproduction was unknown. We report here that the AA/Target of Rapamycin (TOR) signaling pathway regulates ILPs through GATA transcription factors (TFs). AA infusion combined with RNA-interference TOR silencing of revealed their differential action on ILPs, elevating circulating levels of several ILPs but inhibiting others, in the female mosquito. Experiments involving isoform-specific CRISPR-Cas9 genomic editing and chromatin immunoprecipitation assays showed that the expression of ilp4, ilp6, and ilp7 genes was inhibited by the GATA repressor (GATAr) isoform in response to low AA-TOR signaling, while the expression of ilp1, ilp2, ilp3, ilp5, and ilp8 genes was activated by the GATA activator isoform after a blood meal in response to the increased AA-TOR signaling. FoxO, a downstream TF in the insulin pathway, was involved in the TOR-GATAr-mediated repression of ilp4, ilp6, and ilp7 genes. This work uncovered how AA/TOR signaling controls the ILP pathway in modulation of metabolic requirements of reproducing female mosquitoes.
Collapse
Affiliation(s)
- Lin Ling
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing210096, China
| | - Alexander S. Raikhel
- Department of Entomology, University of California, Riverside, CA92521
- Institute of Integrative Genome Biology, University of California, Riverside, CA92521
| |
Collapse
|
16
|
Yoon KJ, Cunningham CB, Bretman A, Duncan EJ. One genome, multiple phenotypes: decoding the evolution and mechanisms of environmentally induced developmental plasticity in insects. Biochem Soc Trans 2023; 51:675-689. [PMID: 36929376 PMCID: PMC10246940 DOI: 10.1042/bst20210995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023]
Abstract
Plasticity in developmental processes gives rise to remarkable environmentally induced phenotypes. Some of the most striking and well-studied examples of developmental plasticity are seen in insects. For example, beetle horn size responds to nutritional state, butterfly eyespots are enlarged in response to temperature and humidity, and environmental cues also give rise to the queen and worker castes of eusocial insects. These phenotypes arise from essentially identical genomes in response to an environmental cue during development. Developmental plasticity is taxonomically widespread, affects individual fitness, and may act as a rapid-response mechanism allowing individuals to adapt to changing environments. Despite the importance and prevalence of developmental plasticity, there remains scant mechanistic understanding of how it works or evolves. In this review, we use key examples to discuss what is known about developmental plasticity in insects and identify fundamental gaps in the current knowledge. We highlight the importance of working towards a fully integrated understanding of developmental plasticity in a diverse range of species. Furthermore, we advocate for the use of comparative studies in an evo-devo framework to address how developmental plasticity works and how it evolves.
Collapse
Affiliation(s)
- Kane J. Yoon
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, U.K
| | | | - Amanda Bretman
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, U.K
| | - Elizabeth J. Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, U.K
| |
Collapse
|
17
|
Ratnayake OC, Chotiwan N, Saavedra-Rodriguez K, Perera R. The buzz in the field: the interaction between viruses, mosquitoes, and metabolism. Front Cell Infect Microbiol 2023; 13:1128577. [PMID: 37360524 PMCID: PMC10289420 DOI: 10.3389/fcimb.2023.1128577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 06/28/2023] Open
Abstract
Among many medically important pathogens, arboviruses like dengue, Zika and chikungunya cause severe health and economic burdens especially in developing countries. These viruses are primarily vectored by mosquitoes. Having surmounted geographical barriers and threat of control strategies, these vectors continue to conquer many areas of the globe exposing more than half of the world's population to these viruses. Unfortunately, no medical interventions have been capable so far to produce successful vaccines or antivirals against many of these viruses. Thus, vector control remains the fundamental strategy to prevent disease transmission. The long-established understanding regarding the replication of these viruses is that they reshape both human and mosquito host cellular membranes upon infection for their replicative benefit. This leads to or is a result of significant alterations in lipid metabolism. Metabolism involves complex chemical reactions in the body that are essential for general physiological functions and survival of an organism. Finely tuned metabolic homeostases are maintained in healthy organisms. However, a simple stimulus like a viral infection can alter this homeostatic landscape driving considerable phenotypic change. Better comprehension of these mechanisms can serve as innovative control strategies against these vectors and viruses. Here, we review the metabolic basis of fundamental mosquito biology and virus-vector interactions. The cited work provides compelling evidence that targeting metabolism can be a paradigm shift and provide potent tools for vector control as well as tools to answer many unresolved questions and gaps in the field of arbovirology.
Collapse
Affiliation(s)
- Oshani C. Ratnayake
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Nunya Chotiwan
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Karla Saavedra-Rodriguez
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rushika Perera
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
18
|
Guo Z, Guo L, Bai Y, Kang S, Sun D, Qin J, Ye F, Wang S, Wu Q, Xie W, Yang X, Crickmore N, Zhou X, Zhang Y. Retrotransposon-mediated evolutionary rewiring of a pathogen response orchestrates a resistance phenotype in an insect host. Proc Natl Acad Sci U S A 2023; 120:e2300439120. [PMID: 36996102 PMCID: PMC10083559 DOI: 10.1073/pnas.2300439120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/23/2023] [Indexed: 03/31/2023] Open
Abstract
Ongoing host-pathogen interactions can trigger a coevolutionary arms race, while genetic diversity within the host can facilitate its adaptation to pathogens. Here, we used the diamondback moth (Plutella xylostella) and its pathogen Bacillus thuringiensis (Bt) as a model for exploring an adaptive evolutionary mechanism. We found that insect host adaptation to the primary Bt virulence factors was tightly associated with a short interspersed nuclear element (SINE - named SE2) insertion into the promoter of the transcriptionally activated MAP4K4 gene. This retrotransposon insertion coopts and potentiates the effect of the transcription factor forkhead box O (FOXO) in inducing a hormone-modulated Mitogen-activated protein kinase (MAPK) signaling cascade, leading to an enhancement of a host defense mechanism against the pathogen. This work demonstrates that reconstructing a cis-trans interaction can escalate a host response mechanism into a more stringent resistance phenotype to resist pathogen infection, providing a new insight into the coevolutionary mechanism of host organisms and their microbial pathogens.
Collapse
Affiliation(s)
- Zhaojiang Guo
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Le Guo
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Yang Bai
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Shi Kang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Dan Sun
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Jianying Qin
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Fan Ye
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Shaoli Wang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, BrightonBN1 9QG, UK
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY40546-0091
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
| |
Collapse
|
19
|
Zhang C, Wan B, Jin MR, Wang J, Xin TR, Zou ZW, Xia B. The loss of Halloween gene function seriously affects the development and reproduction of Diaphorina citri (Hemiptera: Liviidae) and increases its susceptibility to pesticides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105361. [PMID: 36963933 DOI: 10.1016/j.pestbp.2023.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The citrus industry has suffered severe losses as a result of Huanglongbing spread by Diaphorina citri. Controlling the population of D. citri is the key to preventing and controlling the spread of Huanglongbing. Ecdysteroids are key hormones that regulate insect development and reproduction. Therefore, the Halloween gene family involved in the ecdysone synthesis of D. citri is an ideal target for controlling the population growth of this insect. In this study, we successfully cloned four Halloween genes expressed during D. citri development. Silencing of one of the four genes resulted in a significant decrease in 20E titers in nymphs and significant decreases in the developmental, survival and emergence rates. Inhibiting Halloween gene expression in adults impeded the growth of the female ovary, diminished yolk formation, lowered vitellogenin transcription levels, and hence impaired female fecundity. This showed that Halloween genes were required for D. citri development and reproduction. DcCYP315A1 and DcCYP314A1 were highly expressed when D. citri was exposed to thiamethoxam and cypermethrin, and silencing these two genes made D. citri more sensitive to these two pesticides. Inhibition of DcCYP315A1 and DcCYP314A1 expression not only significantly delayed the development and reproduction of D. citri but also increased its susceptibility to pesticides. Therefore, these two genes are more suitable as potential target genes for controlling D. citri.
Collapse
Affiliation(s)
- Cong Zhang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Bin Wan
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Meng-Ru Jin
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Jing Wang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Tian-Rong Xin
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Zhi-Wen Zou
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Bin Xia
- School of Life Sciences, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
20
|
Dou X, Chen K, Brown MR, Strand MR. Multiple endocrine factors regulate nutrient mobilization and storage in Aedes aegypti during a gonadotrophic cycle. INSECT SCIENCE 2023; 30:425-442. [PMID: 36056560 DOI: 10.1111/1744-7917.13110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Anautogenous mosquitoes must blood feed on a vertebrate host to produce eggs. Each gonadotrophic cycle is subdivided into a sugar-feeding previtellogenic phase that produces primary follicles and a blood meal-activated vitellogenic phase in which large numbers of eggs synchronously mature and are laid. Multiple endocrine factors including juvenile hormone (JH), insulin-like peptides (ILPs), ovary ecdysteroidogenic hormone (OEH), and 20-hydroxyecdysone (20E) coordinate each gonadotrophic cycle. Egg formation also requires nutrients from feeding that are stored in the fat body. Regulation of egg formation is best understood in Aedes aegypti but the role different endocrine factors play in regulating nutrient mobilization and storage remains unclear. In this study, we report that adult female Ae. aegypti maintained triacylglycerol (TAG) stores during the previtellogenic phase of the first gonadotrophic cycle while glycogen stores declined. In contrast, TAG and glycogen stores were rapidly mobilized during the vitellogenic phase and then replenishment. Several genes encoding enzymes with functions in TAG and glycogen metabolism were differentially expressed in the fat body, which suggested regulation was mediated in part at the transcriptional level. Gain of function assays indicated that stored nutrients were primarily mobilized by adipokinetic hormone (AKH) while juvenoids and OEH regulated replenishment. ILP3 further showed evidence of negatively regulating certain lipolytic enzymes. Loss of function assays indicated AKH depends on the AKH receptor (AKHR) for function. Altogether, our results indicate that the opposing activities of different hormones regulate nutrient stores during a gonadotrophic cycle in Ae. aegypti.
Collapse
Affiliation(s)
- Xiaoyi Dou
- Department of Entomology, University of Georgia, Athens, Georgia, 30602, United States
| | - Kangkang Chen
- Department of Entomology, University of Georgia, Athens, Georgia, 30602, United States
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Mark R Brown
- Department of Entomology, University of Georgia, Athens, Georgia, 30602, United States
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, Georgia, 30602, United States
| |
Collapse
|
21
|
Xu H, Zhang Z, Zhang Z, Peng J, Gao Y, Li K, Chen J, Du J, Yan S, Zhang D, Zhou X, Shi X, Liu Y. Effects of insulin-like peptide 7 in Bemisia tabaci MED on tomato chlorosis virus transmission. PEST MANAGEMENT SCIENCE 2023; 79:1508-1517. [PMID: 36533303 DOI: 10.1002/ps.7329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Tomato chlorosis virus (ToCV) is a semi-persistent plant virus that is primarily transmitted by the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). It causes a serious disease that lowers tomato yield. Insulin-like peptide (ILP), an insulin homolog, regulates trehalose metabolism in a variety of insects. In a previous study, we discovered that trehalose metabolism is required for whiteflies to transmit ToCV effectively. Furthermore, transcriptome sequencing revealed that the BtILP7 gene was highly expressed in B. tabaci infected with ToCV. Therefore, the whitefly ILP7 gene may facilitate the transmission of ToCV and be an attractive target for the control of whiteflies and subsequently ToCV. RESULTS The ToCV content in B. tabaci MED was found to be correlated with BtILP7 gene expression. Subsequent RNA interference (RNAi) of the BtILP7 gene had a significant impact on B. tabaci MED's trehalose metabolism and reproductive capacity, as well as ability to transmit ToCV. CONCLUSIONS These results indicate that the BtILP7 gene was closely related to ToCV transmission by regulating trehalose metabolism and reproduction behavior, thus providing a secure and environmentally friendly management strategy for the control of whiteflies and ToCV-caused disease. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- HuiNan Xu
- Longping Branch, School of Biology, Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - ZhanHong Zhang
- Institute of Vegetable, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhuo Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jing Peng
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yang Gao
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - KaiLong Li
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jianbin Chen
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jiao Du
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Shuo Yan
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - DeYong Zhang
- Longping Branch, School of Biology, Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - XuGuo Zhou
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | - XiaoBin Shi
- Longping Branch, School of Biology, Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yong Liu
- Longping Branch, School of Biology, Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
22
|
Yu J, Wang H, Chen W, Song H, Wang Y, Liu Z, Xu B. 20-Hydroxyecdysone and Receptor Interplay in the Regulation of Hemolymph Glucose Level in Honeybee ( Apis mellifera) Larvae. Metabolites 2023; 13:metabo13010080. [PMID: 36677005 PMCID: PMC9865031 DOI: 10.3390/metabo13010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
The hormone 20-hydroxyecdysone (20E) and the ecdysone receptors (ECR and USP) play critical roles in the growth and metabolism of insects, including honeybees. In this study, we investigated the effect of 20E on the growth and development of honeybee larvae by rearing them in vitro and found reduced food consumption and small-sized pupae with increasing levels of 20E. A liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based analysis of widely targeted metabolomics was used to examine the changes in the metabolites after an exogenous 20E application to honeybee larvae and the underlying mechanisms. A total of 374 different metabolites were detected between the control group and the 20E treatment group, covering 12 subclasses. The most significant changes occurred in 7-day-old larvae, where some monosaccharides, such as D-Glucose and UDP-galactose, were significantly upregulated. In addition, some metabolic pathways, such as glycolysis/gluconeogenesis and galactose metabolism, were affected by the 20E treatment, suggesting that the 20E treatment disrupts the metabolic homeostasis of honeybee larvae hemolymph and that the response of honeybee larvae to the 20E treatment is dynamic and contains many complex pathways. Many genes involved in carbohydrate metabolism, including genes of the glycolysis and glycogen synthesis pathways, were downregulated during molting and pupation after the 20E treatment. In contrast, the expression levels of the genes related to gluconeogenesis and glycogenolysis were significantly increased, which directly or indirectly upregulated glucose levels in the hemolymph, whereas RNA interference with the 20E receptor EcR-USP had an opposite effect to that of the 20E treatment. Taken together, 20E plays a critical role in the changes in carbohydrate metabolism during metamorphosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baohua Xu
- Correspondence: ; Tel.: +86-13805488930
| |
Collapse
|
23
|
Tikhe CV, Cardoso-Jaime V, Dong S, Rutkowski N, Dimopoulos G. Trypsin-like Inhibitor Domain (TIL)-Harboring Protein Is Essential for Aedes aegypti Reproduction. Int J Mol Sci 2022; 23:ijms23147736. [PMID: 35887084 PMCID: PMC9319116 DOI: 10.3390/ijms23147736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
Cysteine-rich trypsin inhibitor-like domain (TIL)-harboring proteins are broadly distributed in nature but remain understudied in vector mosquitoes. Here we have explored the biology of a TIL domain-containing protein of the arbovirus vector Aedes aegypti, cysteine-rich venom protein 379 (CRVP379). CRVP379 was previously shown to be essential for dengue virus infection in Ae. aegypti mosquitoes. Gene expression analysis showed CRVP379 to be highly expressed in pupal stages, male testes, and female ovaries. CRVP379 expression is also increased in the ovaries at 48 h post-blood feeding. We used CRISPR-Cas9 genome editing to generate two mutant lines of CRVP379 with mutations inside or outside the TIL domain. Female mosquitoes from both mutant lines showed severe defects in their reproductive capability; mutant females also showed differences in their follicular cell morphology. However, the CRVP379 line with a mutation outside the TIL domain did not affect male reproductive performance, suggesting that some CRVP379 residues may have sexually dimorphic functions. In contrast to previous reports, we did not observe a noticeable difference in dengue virus infection between the wild-type and any of the mutant lines. The importance of CRVP379 in Ae. aegypti reproductive biology makes it an interesting candidate for the development of Ae. aegypti population control methods.
Collapse
Affiliation(s)
- Chinmay Vijay Tikhe
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.V.T.); (V.C.-J.); (S.D.); (N.R.)
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Victor Cardoso-Jaime
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.V.T.); (V.C.-J.); (S.D.); (N.R.)
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Shengzhang Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.V.T.); (V.C.-J.); (S.D.); (N.R.)
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Natalie Rutkowski
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.V.T.); (V.C.-J.); (S.D.); (N.R.)
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.V.T.); (V.C.-J.); (S.D.); (N.R.)
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Correspondence:
| |
Collapse
|
24
|
Insulin-like Growth Factor 2 Promotes Tissue-Specific Cell Growth, Proliferation and Survival during Development of Helicoverpa armigera. Cells 2022; 11:cells11111799. [PMID: 35681494 PMCID: PMC9180042 DOI: 10.3390/cells11111799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/19/2022] Open
Abstract
During development, cells constantly undergo fate choices by differentiating, proliferating, and dying as part of tissue remodeling. However, we only begin to understand the mechanisms of these different fate choices. Here, we took the lepidopteran insect Helicoverpa armigera, the cotton bollworm, as a model to reveal that insulin-like growth factor 2 (IGF-2-like) prevented cell death by promoting cell growth and proliferation. Tissue remodeling occurs during insect metamorphosis from larva to adult under regulation by 20-hydroxyecdysone (20E), a steroid hormone. An unknown insulin-like peptide in the genome of H. armigera was identified as IGF-2-like by sequence analysis using human IGFs. The expression of Igf-2-like was upregulated by 20E. IGF-2-like was localized in the imaginal midgut during tissue remodeling, but not in larval midgut that located nearby. IGF-2-like spread through the fat body during fat body remodeling. Cell proliferation was detected in the imaginal midgut and some fat body cells expressing IGF-2-like. Apoptosis was detected in the larval midgut and some fat body cells that did not express IGF-2-like, suggesting the IGF-2-like was required for cell survival, and IGF-2-like and apoptosis were exclusive, pointing to a survival requirement. Knockdown of Igf-2-like resulted in repression of growth and proliferation of the imaginal midgut and fat body. Our results suggested that IGF-2-like promotes cell growth and proliferation in imaginal tissues, promoting cell death avoidance and survival of imaginal cells during tissue remodeling. It will be interesting to determine whether the mechanism of action of steroid hormones on insulin growth factors is conserved in other species.
Collapse
|
25
|
Wang YY, Zhang XY, Mu XR, Li X, Zhou M, Song YH, Xu KK, Li C. Insulin-Like ILP2 Regulates Trehalose Metabolism to Tolerate Hypoxia/Hypercapnia in Tribolium castaneum. Front Physiol 2022; 13:857239. [PMID: 35514356 PMCID: PMC9065413 DOI: 10.3389/fphys.2022.857239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
RNAi was used to downregulate the expression of insulin-like peptides (ILP2), with air-modulation, and high-concentration CO2 stress, in the larvae of Tribolium castaneum. We assessed the changes in carbohydrate-related content, trehalase activity, and the expression levels of trehalose pathway genes. And pupation, adult emergence, pupation rate, and mortality were assessed. There was a significant change in the expression of ILPs in T. castaneum, at a certain concentration of CO2. ILP2 RNAi did not alter the trehalose content significantly, however, the glycogen and glucose content increased significantly. High-concentration CO2 stress altered the trehalose content and reduced the glycogen and glucose content. The expression levels of TPS and TRE2 were up-regulated by hypoxia/hypercapnia and dsILP2 combination, with the increase of CO2 concentration, other trehalase genes begin to respond successively. ILP2 knockout raised the mortality and reduced the pupation rate and eclosion rate in CO2. Understanding the insulin pathway responses to hypoxic stress induced by a high concentration of CO2 would further elucidate the mechanisms underlying trehalose metabolism in insects.
Collapse
Affiliation(s)
- Yuan-Yuan Wang
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Xin-Yu Zhang
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Xue-Rui Mu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Xian Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Min Zhou
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Yue-Hua Song
- Institute of South China Karst, Guizhou Normal University, Guiyang, China
| | - Kang-Kang Xu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| |
Collapse
|
26
|
Rani J, De TD, Chauhan C, Kumari S, Sharma P, Tevatiya S, Chakraborti S, Pandey KC, Singh N, Dixit R. Functional disruption of transferrin expression alters reproductive physiology in Anopheles culicifacies. PLoS One 2022; 17:e0264523. [PMID: 35245324 PMCID: PMC8896695 DOI: 10.1371/journal.pone.0264523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 02/11/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Iron metabolism is crucial to maintain optimal physiological homeostasis of every organism and any alteration of the iron concentration (i.e. deficit or excess) can have adverse consequences. Transferrins are glycoproteins that play important role in iron transportation and have been widely characterized in vertebrates and insects, but poorly studied in blood-feeding mosquitoes. RESULTS We characterized a 2102 bp long transcript AcTrf1a with complete CDS of 1872bp, and 226bp UTR region, encoding putative transferrin homolog protein from mosquito An. culicifacies. A detailed in silico analysis predicts AcTrf1a encodes 624 amino acid (aa) long polypeptide that carries transferrin domain. AcTrf1a also showed a putative N-linked glycosylation site, a characteristic feature of most of the mammalian transferrins and certain non-blood feeding insects. Structure modelling prediction confirms the presence of an iron-binding site at the N-terminal lobe of the transferrin. Our spatial and temporal expression analysis under altered pathophysiological conditions showed that AcTrf1a is abundantly expressed in the fat-body, ovary, and its response is significantly altered (enhanced) after blood meal uptake, and exogenous bacterial challenge. Additionally, non-heme iron supplementation of FeCl3 at 1 mM concentration not only augmented the AcTrf1a transcript expression in fat-body but also enhanced the reproductive fecundity of gravid adult female mosquitoes. RNAi-mediated knockdown of AcTrf1a causes a significant reduction in fecundity, confirming the important role of transferrin in oocyte maturation. CONCLUSION All together our results advocate that detailed characterization of newly identified AcTrf1a transcript may help to select it as a unique target to impair the mosquito reproductive outcome.
Collapse
Affiliation(s)
- Jyoti Rani
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
- Department of Biotechnology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Tanwee Das De
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Charu Chauhan
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Seena Kumari
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Punita Sharma
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Sanjay Tevatiya
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Soumyananda Chakraborti
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Kailash C. Pandey
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Namita Singh
- Department of Biotechnology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Rajnikant Dixit
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| |
Collapse
|
27
|
Hutfilz C. Endocrine Regulation of Lifespan in Insect Diapause. Front Physiol 2022; 13:825057. [PMID: 35242054 PMCID: PMC8886022 DOI: 10.3389/fphys.2022.825057] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
Diapause is a physiological adaptation to conditions that are unfavorable for growth or reproduction. During diapause, animals become long-lived, stress-resistant, developmentally static, and non-reproductive, in the case of diapausing adults. Diapause has been observed at all developmental stages in both vertebrates and invertebrates. In adults, diapause traits weaken into adaptations such as hibernation, estivation, dormancy, or torpor, which represent evolutionarily diverse versions of the traditional diapause traits. These traits are regulated through modifications of the endocrine program guiding development. In insects, this typically includes changes in molting hormones, as well as metabolic signals that limit growth while skewing the organism's energetic demands toward conservation. While much work has been done to characterize these modifications, the interactions between hormones and their downstream consequences are incompletely understood. The current state of diapause endocrinology is reviewed here to highlight the relevance of diapause beyond its use as a model to study seasonality and development. Specifically, insect diapause is an emerging model to study mechanisms that determine lifespan. The induction of diapause represents a dramatic change in the normal progression of age. Hormones such as juvenile hormone, 20-hydroxyecdysone, and prothoracicotropic hormone are well-known to modulate this plasticity. The induction of diapause-and by extension, the cessation of normal aging-is coordinated by interactions between these pathways. However, research directly connecting diapause endocrinology to the biology of aging is lacking. This review explores connections between diapause and aging through the perspective of endocrine signaling. The current state of research in both fields suggests appreciable overlap that will greatly contribute to our understanding of diapause and lifespan determination.
Collapse
|
28
|
Cellular diversity and gene expression profiles in the male and female brain of Aedes aegypti. BMC Genomics 2022; 23:119. [PMID: 35144549 PMCID: PMC8832747 DOI: 10.1186/s12864-022-08327-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/18/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Aedes aegypti is a medically-important mosquito vector that transmits arboviruses including yellow fever, dengue, chikungunya, and Zika viruses to humans. The mosquito exhibits typical sexually dimorphic behaviors such as courtship, mating, host seeking, bloodfeeding, and oviposition. All these behaviors are mainly regulated by the brain; however, little is known about the function and neuron composition of the mosquito brain. In this study, we generated an initial atlas of the adult male and female brain of Ae. aegypti using 10xGenomics based single-nucleus RNA sequencing. RESULTS We identified 35 brain cell clusters in male and female brains, and 15 of those clusters were assigned to known cell types. Identified cell types include glia (astrocytes), Kenyon cells, (ventral) projection neurons, monoaminergic neurons, medulla neurons, and proximal medulla neurons. In addition, the cell type compositions of male and female brains were compared to each other showing that they were quantitatively distinct, as 17 out of 35 cell clusters varied significantly in their cell type proportions. Overall, the transcriptomes from each cell cluster looked very similar between the male and female brain as only up to 25 genes were differentially expressed in these clusters. The sex determination factor Nix was highly expressed in neurons and glia of the male brain, whereas doublesex (dsx) was expressed in all neuron and glia cell clusters of the male and female brain. CONCLUSIONS An initial cell atlas of the brain of the mosquito Ae. aegypti has been generated showing that the cellular compositions of the male and female brains of this hematophagous insect differ significantly from each other. Although some of the rare brain cell types have not been detected in our single biological replicate, this study provides an important basis for the further development of a complete brain cell atlas as well as a better understanding of the neurobiology of the brains of male and female mosquitoes and their sexually dimorphic behaviors.
Collapse
|
29
|
Domínguez CV, Pagone V, Maestro JL. Regulation of insulin-like peptide expression in adult Blattella germanica females. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 141:103706. [PMID: 34974083 DOI: 10.1016/j.ibmb.2021.103706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
The insulin-IGF-signalling (IIS) pathway regulates key processes in metazoans. The pathway is activated through the binding of the ligands, which in insects are usually referred to as insulin-like peptides (ILPs), to a class of receptor tyrosine kinases, the insect insulin receptor. To study the pathway regulation, it is therefore essential to understand how ILPs are produced and released. In this study we analysed the factors that regulate the expression of the seven ILPs (BgILPs) expressed in adult females of the German cockroach, Blattella germanica. The results showed that the starvation-induced expression reduction of brain BgILP3, 5 and 6 and fat body BgILP7 is not due to reduced juvenile hormone (JH) or decreased TOR pathway activity. In addition, depletion of FoxO in starved females did not correct the low levels of these BgILPs, but even reduced further BgILP5 expression, indicating the need to maintain certain basal levels of BgILP5 even during starvation. Furthermore, JH promoted increased BgILP5 and decreased BgILP3 expression in the brain, an effect that required Methoprene-tolerant (Met), the JH receptor, but not Krüppel homolog 1 (Kr-h1), the main JH transducer. On the other hand, JH inhibited the expression of BgILP7 in the fat body, although in this case, the action required both Met and Kr-h1. In addition, JH reduction treatments produced a decrease in the expression of the insulin receptor in the fat body, which suggests an increase in IIS. The results show a peculiar regulation of ILP expression in adult B. germanica females, which is clearly different than that seen in other species. This is understandable given that gene duplications in recent clades have resulted in different sets of ILP genes, involving substantial changes in gene regulatory networks.
Collapse
Affiliation(s)
- Claudia V Domínguez
- Institute of Evolutionary Biology (CSIC.Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Viviana Pagone
- Institute of Evolutionary Biology (CSIC.Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - José L Maestro
- Institute of Evolutionary Biology (CSIC.Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
30
|
Hun LV, Cheung KW, Brooks E, Zudekoff R, Luckhart S, Riehle MA. Increased insulin signaling in the Anopheles stephensi fat body regulates metabolism and enhances the host response to both bacterial challenge and Plasmodium falciparum infection. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 139:103669. [PMID: 34666189 PMCID: PMC8647039 DOI: 10.1016/j.ibmb.2021.103669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 05/06/2023]
Abstract
In vertebrates and invertebrates, the insulin/insulin-like growth factor 1 (IGF1) signaling (IIS) cascade is highly conserved and plays a vital role in many different physiological processes. Among the many tissues that respond to IIS in mosquitoes, the fat body has a central role in metabolism, lifespan, reproduction, and innate immunity. We previously demonstrated that fat body specific expression of active Akt, a key IIS signaling molecule, in adult Anopheles stephensi and Aedes aegypti activated the IIS cascade and extended lifespan. Additionally, we found that transgenic females produced more vitellogenin (Vg) protein than non-transgenic mosquitoes, although this did not translate into increased fecundity. These results prompted us to further examine how IIS impacts immunity, metabolism, growth and development of these transgenic mosquitoes. We observed significant changes in glycogen, trehalose, triglycerides, glucose, and protein in young (3-5 d) transgenic mosquitoes relative to non-transgenic sibling controls, while only triglycerides were significantly changed in older (18 d) transgenic mosquitoes. More importantly, we demonstrated that enhanced fat body IIS decreased both the prevalence and intensity of Plasmodium falciparum infection in transgenic An. stephensi. Additionally, challenging transgenic An. stephensi with Gram-positive and Gram-negative bacteria altered the expression of several antimicrobial peptides (AMPs) and two anti-Plasmodium genes, nitric oxide synthase (NOS) and thioester complement-like protein (TEP1), relative to non-transgenic controls. Increased IIS in the fat body of adult female An. stephensi had little to no impact on body size, growth or development of progeny from transgenic mosquitoes relative to non-transgenic controls. This study both confirms and expands our understanding of the critical roles insulin signaling plays in regulating the diverse functions of the mosquito fat body.
Collapse
Affiliation(s)
- Lewis V Hun
- Department of Entomology, University of California Riverside, Riverside, CA, USA; Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Kong Wai Cheung
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Elizabeth Brooks
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Rissa Zudekoff
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Shirley Luckhart
- Departrment of Entomology, Plant Pathology and Nematology and Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Michael A Riehle
- Department of Entomology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
31
|
Pandey A, Bloch G. Krüppel-homologue 1 Mediates Hormonally Regulated Dominance Rank in a Social Bee. BIOLOGY 2021; 10:biology10111188. [PMID: 34827180 PMCID: PMC8614866 DOI: 10.3390/biology10111188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/23/2022]
Abstract
Dominance hierarchies are ubiquitous in invertebrates and vertebrates, but little is known on how genes influence dominance rank. Our gaps in knowledge are specifically significant concerning female hierarchies, particularly in insects. To start filling these gaps, we studied the social bumble bee Bombus terrestris, in which social hierarchies among females are common and functionally significant. Dominance rank in this bee is influenced by multiple factors, including juvenile hormone (JH) that is a major gonadotropin in this species. We tested the hypothesis that the JH responsive transcription factor Krüppel homologue 1 (Kr-h1) mediates hormonal influences on dominance behavior. We first developed and validated a perfluorocarbon nanoparticles-based RNA interference protocol for knocking down Kr-h1 expression. We then used this procedure to show that Kr-h1 mediates the influence of JH, not only on oogenesis and wax production, but also on aggression and dominance rank. To the best of our knowledge, this is the first study causally linking a gene to dominance rank in social insects, and one of only a few such studies on insects or on female hierarchies. These findings are important for determining whether there are general molecular principles governing dominance rank across gender and taxa.
Collapse
Affiliation(s)
- Atul Pandey
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (A.P.); (G.B.)
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Correspondence: (A.P.); (G.B.)
| |
Collapse
|
32
|
Insects as a New Complex Model in Hormonal Basis of Obesity. Int J Mol Sci 2021; 22:ijms222011066. [PMID: 34681728 PMCID: PMC8540125 DOI: 10.3390/ijms222011066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 11/30/2022] Open
Abstract
Nowadays, one of the biggest problems in healthcare is an obesity epidemic. Consumption of cheap and low-quality energy-rich diets, low physical activity, and sedentary work favor an increase in the number of obesity cases within many populations/nations. This is a burden on society, public health, and the economy with many deleterious consequences. Thus, studies concerning this disorder are extremely needed, including searching for new, effective, and fitting models. Obesity may be related, among other factors, to disrupting adipocytes activity, disturbance of metabolic homeostasis, dysregulation of hormonal balance, cardiovascular problems, or disorders in nutrition which may lead to death. Because of the high complexity of obesity, it is not easy to find an ideal model for its studies which will be suitable for genetic and physiological analysis including specification of different compounds’ (hormones, neuropeptides) functions, as well as for signaling pathways analysis. In recent times, in search of new models for human diseases there has been more and more attention paid to insects, especially in neuro-endocrine regulation. It seems that this group of animals might also be a new model for human obesity. There are many arguments that insects are a good, multidirectional, and complex model for this disease. For example, insect models can have similar conservative signaling pathways (e.g., JAK-STAT signaling pathway), the presence of similar hormonal axis (e.g., brain–gut axis), or occurrence of structural and functional homologues between neuropeptides (e.g., neuropeptide F and human neuropeptide Y, insulin-like peptides, and human insulin) compared to humans. Here we give a hint to use insects as a model for obesity that can be used in multiple ways: as a source of genetic and peptidomic data about etiology and development correlated with obesity occurrence as well as a model for novel hormonal-based drug activity and their impact on mechanism of disease occurrence.
Collapse
|
33
|
Horvath TD, Dagan S, Scaraffia PY. Unraveling mosquito metabolism with mass spectrometry-based metabolomics. Trends Parasitol 2021; 37:747-761. [PMID: 33896683 PMCID: PMC8282712 DOI: 10.1016/j.pt.2021.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Nearly half a million people die annually due to mosquito-borne diseases. Despite aggressive mosquito population-control efforts, current strategies are limited in their ability to control these vectors. A better understanding of mosquito metabolism through modern approaches can contribute to the discovery of novel metabolic targets and/or regulators and lead to the development of better mosquito-control strategies. Currently, cutting-edge technologies such as gas or liquid chromatography-mass spectrometry-based metabolomics are considered 'mature technologies' in many life-science disciplines but are still an emerging area of research in medical entomology. This review primarily discusses recent developments and progress in the application of mass spectrometry-based metabolomics to answer multiple biological questions related to mosquito metabolism.
Collapse
Affiliation(s)
- Thomas D Horvath
- Department of Immunology and Pathology, Baylor College of Medicine, and Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Shai Dagan
- Israel Institute for Biological Research, Ness Ziona, Israel, 74100, Israel
| | - Patricia Y Scaraffia
- Department of Tropical Medicine and Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
34
|
Chowański S, Walkowiak-Nowicka K, Winkiel M, Marciniak P, Urbański A, Pacholska-Bogalska J. Insulin-Like Peptides and Cross-Talk With Other Factors in the Regulation of Insect Metabolism. Front Physiol 2021; 12:701203. [PMID: 34267679 PMCID: PMC8276055 DOI: 10.3389/fphys.2021.701203] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
The insulin-like peptide (ILP) and insulin-like growth factor (IGF) signalling pathways play a crucial role in the regulation of metabolism, growth and development, fecundity, stress resistance, and lifespan. ILPs are encoded by multigene families that are expressed in nervous and non-nervous organs, including the midgut, salivary glands, and fat body, in a tissue- and stage-specific manner. Thus, more multidirectional and more complex control of insect metabolism can occur. ILPs are not the only factors that regulate metabolism. ILPs interact in many cross-talk interactions of different factors, for example, hormones (peptide and nonpeptide), neurotransmitters and growth factors. These interactions are observed at different levels, and three interactions appear to be the most prominent/significant: (1) coinfluence of ILPs and other factors on the same target cells, (2) influence of ILPs on synthesis/secretion of other factors regulating metabolism, and (3) regulation of activity of cells producing/secreting ILPs by various factors. For example, brain insulin-producing cells co-express sulfakinins (SKs), which are cholecystokinin-like peptides, another key regulator of metabolism, and express receptors for tachykinin-related peptides, the next peptide hormones involved in the control of metabolism. It was also shown that ILPs in Drosophila melanogaster can directly and indirectly regulate AKH. This review presents an overview of the regulatory role of insulin-like peptides in insect metabolism and how these factors interact with other players involved in its regulation.
Collapse
Affiliation(s)
- Szymon Chowański
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Karolina Walkowiak-Nowicka
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Magdalena Winkiel
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Pawel Marciniak
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Arkadiusz Urbański
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.,HiProMine S.A., Robakowo, Poland
| | - Joanna Pacholska-Bogalska
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|