1
|
Wang J, Seo JW, Kare AJ, Schneider M, Pandrala M, Tumbale SK, Raie MN, Engudar G, Zhang N, Guo Y, Zhong X, Ferreira S, Wu B, Attardi LD, Pratx G, Iagaru A, Brunsing RL, Charville GW, Park WG, Ferrara KW. Spatial transcriptomic analysis drives PET imaging of tight junction protein expression in pancreatic cancer theranostics. Nat Commun 2024; 15:10751. [PMID: 39737976 PMCID: PMC11686138 DOI: 10.1038/s41467-024-54761-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 11/19/2024] [Indexed: 01/01/2025] Open
Abstract
Molecular imaging using positron emission tomography (PET) provides sensitive detection and mapping of molecular targets. While cancer-associated fibroblasts and integrins have been proposed as targets for imaging of pancreatic ductal adenocarcinoma (PDAC), herein, spatial transcriptomics and proteomics of human surgical samples are applied to select PDAC targets. We find that selected cancer cell surface markers are spatially correlated and provide specific cancer localization, whereas the spatial correlation between cancer markers and immune-related or fibroblast markers is low. Claudin-4 expression increases ~16 fold in cancer as compared with normal pancreas, and tight junction localization confers low background for imaging in normal tissue. We develop a peptide-based molecular imaging agent targeted to claudin-4 with accumulation to ~25% injected activity per cubic centimeter (IA/cc) in metastases and ~18% IA/cc in tumors. Our work motivates a data-driven approach to selection of molecular targets.
Collapse
Affiliation(s)
- James Wang
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
| | - Jai Woong Seo
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
| | - Aris J Kare
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA, USA
| | - Martin Schneider
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
| | - Mallesh Pandrala
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
| | - Spencer K Tumbale
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
| | - Marina N Raie
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
| | - Gokce Engudar
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
| | - Nisi Zhang
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
| | - Yutong Guo
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
| | - Xiaoxu Zhong
- Department of Radiation Oncology, Stanford University, 857 Blake Wilbur Drive, Stanford, CA, USA
| | - Sofia Ferreira
- Department of Radiation Oncology, Stanford University, 857 Blake Wilbur Drive, Stanford, CA, USA
| | - Bo Wu
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
| | - Laura D Attardi
- Department of Radiation Oncology, Stanford University, 857 Blake Wilbur Drive, Stanford, CA, USA
- Department of Genetics, Stanford University, 291 Campus Drive, Stanford, CA, USA
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University, 857 Blake Wilbur Drive, Stanford, CA, USA
| | - Andrei Iagaru
- Nuclear Medicine and Molecular Imaging Division, Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
| | - Ryan L Brunsing
- Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
| | - Gregory W Charville
- Department of Pathology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
| | - Walter G Park
- Department of Medicine-Gastroenterology & Hepatology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA
| | - Katherine W Ferrara
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA.
| |
Collapse
|
2
|
Pacesa M, Nickel L, Schellhaas C, Schmidt J, Pyatova E, Kissling L, Barendse P, Choudhury J, Kapoor S, Alcaraz-Serna A, Cho Y, Ghamary KH, Vinué L, Yachnin BJ, Wollacott AM, Buckley S, Westphal AH, Lindhoud S, Georgeon S, Goverde CA, Hatzopoulos GN, Gönczy P, Muller YD, Schwank G, Swarts DC, Vecchio AJ, Schneider BL, Ovchinnikov S, Correia BE. BindCraft: one-shot design of functional protein binders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.30.615802. [PMID: 39677777 PMCID: PMC11642741 DOI: 10.1101/2024.09.30.615802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Protein-protein interactions (PPIs) are at the core of all key biological processes. However, the complexity of the structural features that determine PPIs makes their design challenging. We present BindCraft, an open-source and automated pipeline for de novo protein binder design with experimental success rates of 10-100%. BindCraft leverages the weights of AlphaFold2 1 to generate binders with nanomolar affinity without the need for high-throughput screening or experimental optimization, even in the absence of known binding sites. We successfully designed binders against a diverse set of challenging targets, including cell-surface receptors, common allergens, de novo designed proteins, and multi-domain nucleases, such as CRISPR-Cas9. We showcase the functional and therapeutic potential of designed binders by reducing IgE binding to birch allergen in patient-derived samples, modulating Cas9 gene editing activity, and reducing the cytotoxicity of a foodborne bacterial enterotoxin. Lastly, we utilize cell surface receptor-specific binders to redirect AAV capsids for targeted gene delivery. This work represents a significant advancement towards a "one design-one binder" approach in computational design, with immense potential in therapeutics, diagnostics, and biotechnology.
Collapse
|
3
|
Nagarajan SK, Weber J, Roderer D, Piontek J. C. perfringens enterotoxin-claudin pore complex: Models for structure, mechanism of pore assembly and cation permeability. Comput Struct Biotechnol J 2024; 27:287-306. [PMID: 39881828 PMCID: PMC11774686 DOI: 10.1016/j.csbj.2024.11.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 01/31/2025] Open
Abstract
The pore-forming Clostridium perfringens enterotoxin (CPE), a common cause of foodborne diseases, facilitates Ca2+ influx in enterocytes, leading to cell damage. Upon binding to certain claudins (e.g., claudin-4), CPE forms oligomeric pores in the cell membrane. While the mechanism of CPE-claudin interaction is well understood, the structure and assembly of the pore complex remain elusive. Here, we used AlphaFold2 complex prediction, structure alignment, and molecular dynamics simulations to generate models of prepore and pore states of the CPE/claudin-4 complex. We sequentially addressed CPE-claudin, CPE-CPE, and claudin-claudin interactions, along with CPE conformational changes. The CPE pore is a hexameric variant of the typical heptameric pore stem and cap architecture of aerolysin-like β-barrel pore-forming toxins (β-PFT). The pore is lined with three hexa-glutamate rings, which differ from other β-PFTs and confer CPE-specific cation selectivity. Additionally, the pore center is indicated to be anchored by a dodecameric claudin ring formed by a cis-interaction variant of an interface found in claudin-based tight junction strands. Mutation of an interface residue inhibited CPE-mediated cell damage in vitro. We propose that this claudin ring constitutes an anchor for a twisting mechanism that drives extension and membrane insertion of the CPE β-hairpins. Our pore model agrees with previous key experimental data and provides insights into the structural mechanisms of CPE-mediated cytotoxic cation influx.
Collapse
Affiliation(s)
- Santhosh Kumar Nagarajan
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Joy Weber
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Daniel Roderer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Jörg Piontek
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
4
|
Ogbu CP, Mandriota AM, Liu X, de Las Alas M, Kapoor S, Choudhury J, Kossiakoff AA, Duffey ME, Vecchio AJ. Biophysical Basis of Paracellular Barrier Modulation by a Pan-Claudin-Binding Molecule. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.10.622873. [PMID: 39605593 PMCID: PMC11601404 DOI: 10.1101/2024.11.10.622873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Claudins are a 27-member protein family that form and fortify specialized cell contacts in endothelium and epithelium called tight junctions. Tight junctions restrict paracellular transport across tissues by forming molecular barriers between cells. Claudin-binding molecules thus hold promise for modulating tight junction permeability to deliver drugs or as therapeutics to treat tight junction-linked disease. The development of claudin-binding molecules, however, is hindered by their intractability and small targetable surfaces. Here, we determine that a synthetic antibody fragment (sFab) we developed binds directly to 10 claudin subtypes with nanomolar affinity by targeting claudin's paracellular-exposed surface. Application of this sFab to cells that model intestinal epithelium show that it opens the paracellular barrier comparable to a known, but application limited, tight junction modulator. This novel pan-claudin-binding molecule can probe claudin or tight junction structure and holds potential as a broad modulator of tight junction permeability for basic or translational applications.
Collapse
|
5
|
Rathnayake SS, Erramilli SK, Kossiakoff AA, Vecchio AJ. Cryo-EM structures of Clostridium perfringens enterotoxin bound to its human receptor, claudin-4. Structure 2024; 32:1936-1951.e5. [PMID: 39383874 PMCID: PMC11560561 DOI: 10.1016/j.str.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/09/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024]
Abstract
Clostridium perfringens enterotoxin (CpE) causes prevalent and deadly gastrointestinal disorders. CpE binds to receptors called claudins on the apical surfaces of small intestinal epithelium. Claudins normally regulate paracellular transport but are hijacked from doing so by CpE and are instead led to form claudin/CpE complexes. Claudin/CpE complexes are the building blocks of oligomeric β-barrel pores that penetrate the plasma membrane and induce gut cytotoxicity. Here, we present the structures of CpE in complex with its native claudin receptor in humans, claudin-4, using cryogenic electron microscopy. The structures reveal the architecture of the claudin/CpE complex, the residues used in binding, the orientation of CpE relative to the membrane, and CpE-induced changes to claudin-4. Further, structures and modeling allude to the biophysical procession from claudin/CpE complexes to cytotoxic β-barrel pores during pathogenesis. In full, this work proposes a model of claudin/CpE assembly and provides strategies to obstruct its formation to treat CpE diseases.
Collapse
Affiliation(s)
| | - Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Alex J Vecchio
- Department of Structural Biology, University at Buffalo, Buffalo, NY 14203, USA.
| |
Collapse
|
6
|
Katoh M, Katoh M. Claudin 1, 4, 6 and 18 isoform 2 as targets for the treatment of cancer (Review). Int J Mol Med 2024; 54:100. [PMID: 39301632 DOI: 10.3892/ijmm.2024.5424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
The 24 claudin (CLDN) genes in the human genome encode 26 representative CLDN family proteins. CLDNs are tetraspan‑transmembrane proteins at tight junctions. Because several CLDN isoforms, such as CLDN6 and CLDN18.2, are specifically upregulated in human cancer, CLDN‑targeting monoclonal antibodies (mAbs), antibody‑drug conjugates (ADCs), bispecific antibodies (bsAbs) and chimeric antigen receptor (CAR) T cells have been developed. In the present review, CLDN1‑, 4‑, 6‑ and 18.2‑targeting investigational drugs in clinical trials are discussed. CLDN18.2‑directed therapy for patients with gastric and other types of cancer is the most advanced area in this field. The mouse/human chimeric anti‑CLDN18.2 mAb zolbetuximab has a single‑agent objective response rate (ORR) of 9%, and increases progression‑free and overall survival in combination with chemotherapy. The human/humanized anti‑CLDN18.2 mAb osemitamab, and ADCs AZD0901, IBI343 and LM‑302, with single‑agent ORRs of 28‑60%, have been tested in phase III clinical trials. In addition, bsAbs, CAR T cells and their derivatives targeting CLDN4, 6 or 18.2 are in phase I and/or II clinical trials. AZD0901, IBI343, zolbetuximab and the anti‑CLDN1 mAb ALE.C04 have been granted fast track designation or priority review designation by the US Food and Drug Administration.
Collapse
Affiliation(s)
- Masuko Katoh
- Department of Global Network, M & M Precision Medicine, Tokyo 113‑0033, Japan
| | - Masaru Katoh
- Department of Global Network, M & M Precision Medicine, Tokyo 113‑0033, Japan
| |
Collapse
|
7
|
Szkopek D, Mendel M, Kinsner M, Fotschki B, Juśkiewicz J, Kozłowski K, Matusevičius P, Konieczka P. Interaction Between Peroxisome Proliferator-Activated Receptors and Cannabidiol in the Gut of Chickens Applied to Different Challenge Conditions. Int J Mol Sci 2024; 25:11398. [PMID: 39518951 PMCID: PMC11547005 DOI: 10.3390/ijms252111398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are important targets for cannabidiol (CBD), which mediate many of its biological actions. The hypothesis of the present research assumed that PPARs affect the gut response to different challenge factors in chickens (C. perfringens vs. lipopolysaccharides (LPS) from E. coli), and that CBD can mediate the pathways of this response. The study proved that CBD and the challenge factors significantly affect the expression level of PPARα (p = 0.001) and selected genes determining gut barrier function. A positive correlation was demonstrated between PPARs and genes involved in the formation of tight junctions, immune, and oxidative stress responses in chickens. Dietary supplementation with CBD actively mediated the expression rate of PPARs, but the mechanism of interaction between CBD and PPARs was different depending on the stress factor used. The addition of CBD to the birds' diets did not contribute to reducing intestinal permeability under induced stress conditions nor cause stress, as indicated by the absence of elevated blood cortisol and endotoxin levels. CBD also supported the mechanisms of protecting intestinal cells from the cytotoxic effects in a C. perfringens challenge through the levels of genes involved in oxidative stress. This study indicates the importance of research toward understanding the mechanisms of PPARs as a target for enhancing intestinal barrier function, provides new results on the biological action of CBD in chickens, and shows a constant PPAR association with the jejunum mucosa of birds.
Collapse
Affiliation(s)
- Dominika Szkopek
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| | - Marta Mendel
- Division of Pharmacology and Toxicology, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland;
| | - Misza Kinsner
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| | - Bartosz Fotschki
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (B.F.); (J.J.)
| | - Jerzy Juśkiewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (B.F.); (J.J.)
| | - Krzysztof Kozłowski
- Department of Poultry Science and Apiculture, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland;
| | - Paulius Matusevičius
- Department of Animal Nutrition, Lithuanian University of Health Sciences, Tilzes 18, LT-47181 Kaunas, Lithuania;
| | - Paweł Konieczka
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
- Department of Poultry Science and Apiculture, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland;
| |
Collapse
|
8
|
van der Veen RE, Piontek J, Bieck M, Saiti A, Gonschior H, Lehmann M. Claudin-4 polymerizes after a small extracellular claudin-3-like substitution. J Biol Chem 2024; 300:107693. [PMID: 39159821 PMCID: PMC11490706 DOI: 10.1016/j.jbc.2024.107693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/14/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
Tight junctions play a pivotal role in the functional integrity of the human body by forming barriers that compartmentalize tissues and protect the body from external threats. Essential components of tight junctions are the transmembrane claudin proteins, which can polymerize into tight junction strands and meshworks. This study delves into the structural determinants of claudin polymerization, using the close homology yet strong difference in polymerization capacity between claudin-3 and claudin-4. Through a combination of sequence alignment and structural modeling, critical residues in the second extracellular segment are pinpointed. Molecular dynamics simulations provide insights into the interactions of and the conformational changes induced by the identified extracellular segment 2 residues. Live-stimulated emission depletion imaging demonstrates that introduction of these residues from claudin-3 into claudin-4 significantly enhances polymerization in nonepithelial cells. In tight junction-deficient epithelial cells, mutated claudin-4 not only influences tight junction morphology but also partially restores barrier function. Understanding the structural basis of claudin polymerization is crucial, as it offers insights into the dynamic nature of tight junctions. This knowledge could be applied to targeted therapeutic interventions, offer insight to repair or prevent barrier defects associated with pathological conditions, or introduce temporary barrier openings during drug delivery.
Collapse
Affiliation(s)
- Rozemarijn E van der Veen
- Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| | - Jörg Piontek
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marie Bieck
- Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Arbesa Saiti
- Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Hannes Gonschior
- Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Martin Lehmann
- Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| |
Collapse
|
9
|
Shrestha A, Mehdizadeh Gohari I, Li J, Navarro M, Uzal FA, McClane BA. The biology and pathogenicity of Clostridium perfringens type F: a common human enteropathogen with a new(ish) name. Microbiol Mol Biol Rev 2024; 88:e0014023. [PMID: 38864615 PMCID: PMC11426027 DOI: 10.1128/mmbr.00140-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
SUMMARYIn the 2018-revised Clostridium perfringens typing classification system, isolates carrying the enterotoxin (cpe) and alpha toxin genes but no other typing toxin genes are now designated as type F. Type F isolates cause food poisoning and nonfoodborne human gastrointestinal (GI) diseases, which most commonly involve type F isolates carrying, respectivefooly, a chromosomal or plasmid-borne cpe gene. Compared to spores of other C. perfringens isolates, spores of type F chromosomal cpe isolates often exhibit greater resistance to food environment stresses, likely facilitating their survival in improperly prepared or stored foods. Multiple factors contribute to this spore resistance phenotype, including the production of a variant small acid-soluble protein-4. The pathogenicity of type F isolates involves sporulation-dependent C. perfringens enterotoxin (CPE) production. C. perfringens sporulation is initiated by orphan histidine kinases and sporulation-associated sigma factors that drive cpe transcription. CPE-induced cytotoxicity starts when CPE binds to claudin receptors to form a small complex (which also includes nonreceptor claudins). Approximately six small complexes oligomerize on the host cell plasma membrane surface to form a prepore. CPE molecules in that prepore apparently extend β-hairpin loops to form a β-barrel pore, allowing a Ca2+ influx that activates calpain. With low-dose CPE treatment, caspase-3-dependent apoptosis develops, while high-CPE dose treatment induces necroptosis. Those effects cause histologic damage along with fluid and electrolyte losses from the colon and small intestine. Sialidases likely contribute to type F disease by enhancing CPE action and, for NanI-producing nonfoodborne human GI disease isolates, increasing intestinal growth and colonization.
Collapse
Affiliation(s)
- Archana Shrestha
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Iman Mehdizadeh Gohari
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mauricio Navarro
- Instituto de Patologia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco A Uzal
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California Davis, San Bernardino, California, USA
| | - Bruce A McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
10
|
Du F, Xie Y, Wu S, Ji M, Dong B, Zhu C. Expression and Targeted Application of Claudins Family in Hepatobiliary and Pancreatic Diseases. J Hepatocell Carcinoma 2024; 11:1801-1821. [PMID: 39345937 PMCID: PMC11439345 DOI: 10.2147/jhc.s483861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Hepatobiliary and pancreatic diseases are becoming increasingly common worldwide and associated cancers are prone to recurrence and metastasis. For a more accurate treatment, new therapeutic strategies are urgently needed. The claudins (CLDN) family comprises a class of membrane proteins that are the main components of tight junctions, and are essential for forming intercellular barriers and maintaining cellular polarity. In mammals, the claudin family contains at least 27 transmembrane proteins and plays a major role in mediating cell adhesion and paracellular permeability. Multiple claudin proteins are altered in various cancers, including gastric cancer (GC), esophageal cancer (EC), hepatocellular carcinoma (HCC), pancreatic cancer (PC), colorectal cancer (CRC) and breast cancer (BC). An increasing number of studies have shown that claudins are closely associated with the occurrence and development of hepatobiliary and pancreatic diseases. Interestingly, claudin proteins exhibit different effects on cancer progression in different tumor tissues, including tumor suppression and promotion. In addition, various claudin proteins are currently being studied as potential diagnostic and therapeutic targets, including claudin-3, claudin-4, claudin-18.2, etc. In this article, the functional phenotype, molecular mechanism, and targeted application of the claudin family in hepatobiliary and pancreatic diseases are reviewed, with an emphasis on claudin-1, claudin-4, claudin-7 and claudin-18.2, and the current situation and future prospects are proposed.
Collapse
Affiliation(s)
- Fangqian Du
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yuwei Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Shengze Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Mengling Ji
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
11
|
Osamura A, Onizuka H, Masui K, Murakami K, Yamamoto T, Nagashima Y, Takeda M, Kurata A. An Autopsy Case of Fulminant Systemic Infection of Clostridium perfringens With a Diverse Role of Toxins in a Healthy Patient. Case Rep Pathol 2024; 2024:9213132. [PMID: 39310291 PMCID: PMC11416167 DOI: 10.1155/2024/9213132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/04/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
We herein report an autopsy case of a fulminant Clostridium perfringens (C. perfringens or Welch bacilli) infection in a healthy adult. A 72-year-old, immunocompetent man visited the emergency department with lower back pain, and blood test revealed hemolytic attack. His condition rapidly worsened with severe acidosis and anemia, and he died despite symptomatic treatment. An autopsy examination demonstrated an abscess with necrosis and air spaces in the right lobe of his liver. Numerous Gram-positive bacilli were seen in the liver and bone marrow, and C. perfringens was identified in culture of the antemortem blood sample. Of note, a mucosal epithelium of the ileum showed loss of tight junctions (claudin 4), suggesting the involvement of C. perfringens toxins with its systemic spreading. Welch toxins were suggested to be involved in serious pathological conditions such as hemolytic anemia and systemic infections, and it is necessary to raise Welch infection as one of the differential diagnoses for fulminant systemic infections even in healthy individuals.
Collapse
Affiliation(s)
- Ayano Osamura
- Department of PathologyTokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan
| | - Hiromi Onizuka
- Department of PathologyKyorin University, Mitaka, Tokyo 181-8611, Japan
| | - Kenta Masui
- Department of PathologyTokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan
| | - Kumiko Murakami
- Department of PathologyTokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan
| | - Tomoko Yamamoto
- Department of PathologyTokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan
- Department of Surgical PathologyTokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan
| | - Yoji Nagashima
- Department of Surgical PathologyTokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan
| | - Munekazu Takeda
- Department of Critical Care and Emergency MedicineTokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan
| | - Atsushi Kurata
- Department of PathologyTokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan
| |
Collapse
|
12
|
Ramirez-Velez I, Namjoshi AA, Effiong UM, Peppas NA, Belardi B. Paracellular Delivery of Protein Drugs with Smart EnteroPatho Nanoparticles. ACS NANO 2024; 18:21038-21051. [PMID: 39096293 DOI: 10.1021/acsnano.4c02116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
A general platform for the safe and effective oral delivery of biologics would revolutionize the administration of protein-based drugs, improving access for patients and lowering the financial burden on the health-care industry. Because of their dimensions and physiochemical properties, nanomaterials stand as promising vehicles for navigating the complex and challenging environment in the gastrointestinal (GI) tract. Recent developments have led to materials that protect protein drugs from degradation and enable controlled release in the small intestine, the site of absorption for most proteins. Yet, once present in the small intestine, the protein must transit through the secreted mucus and epithelial cells of the intestinal mucosa into systemic circulation, a process that remains a bottleneck for nanomaterial-based delivery. One attractive pathway through the intestinal mucosa is the paracellular route, which avoids cell trafficking and other degradative processes in the interior of cells. Direct flux between cells is regulated by epithelial tight junctions (TJs) that seal the paracellular space and prevent protein flux. Here, we describe a smart nanoparticle system that directly and transiently disrupts TJs for improved protein delivery, an unrealized goal to-date. We take inspiration from enteropathogenic bacteria that adhere to intestinal epithelia and secrete inhibitors that block TJ interactions in the local environment. To mimic these natural mechanisms, we engineer nanoparticles (EnteroPatho NPs) that attach to the epithelial glycocalyx and release TJ modulators in response to the intestinal pH. We show that EnteroPatho NPs lead to TJ disruption and paracellular protein delivery, giving rise to a general platform for oral delivery.
Collapse
Affiliation(s)
- Isabela Ramirez-Velez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Aditya A Namjoshi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Unyime M Effiong
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Institute for Biomaterials, Drug Delivery and Regenerative Medicine, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Brian Belardi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
13
|
Ba X, Jin Y, Ning X, Gao Y, Li W, Li Y, Wang Y, Zhou J. Clostridium perfringens in the Intestine: Innocent Bystander or Serious Threat? Microorganisms 2024; 12:1610. [PMID: 39203452 PMCID: PMC11356505 DOI: 10.3390/microorganisms12081610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
The Clostridium perfringens epidemic threatens biosecurity and causes significant economic losses. C. perfringens infections are linked to more than one hundred million cases of food poisoning annually, and 8-60% of susceptible animals are vulnerable to infection, resulting in an economic loss of more than 6 hundred million USD. The enzymes and toxins (>20 species) produced by C. perfringens play a role in intestinal colonization, immunological evasion, intestinal micro-ecosystem imbalance, and intestinal mucosal disruption, all influencing host health. In recent decades, there has been an increase in drug resistance in C. perfringens due to antibiotic misuse and bacterial evolution. At the same time, traditional control interventions have proven ineffective, highlighting the urgent need to develop and implement new strategies and approaches to improve intervention targeting. Therefore, an in-depth understanding of the spatial and temporal evolutionary characteristics, transmission routes, colonization dynamics, and pathogenic mechanisms of C. perfringens will aid in the development of optimal therapeutic strategies and vaccines for C. perfringens management. Here, we review the global epidemiology of C. perfringens, as well as the molecular features and roles of various virulence factors in C. perfringens pathogenicity. In addition, we emphasize measures to prevent and control this zoonotic disease to reduce the transmission and infection of C. perfringens.
Collapse
Affiliation(s)
- Xuli Ba
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (X.B.); (Y.J.); (X.N.); (W.L.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China; (Y.L.); (Y.W.)
| | - Youshun Jin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (X.B.); (Y.J.); (X.N.); (W.L.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China; (Y.L.); (Y.W.)
| | - Xuan Ning
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (X.B.); (Y.J.); (X.N.); (W.L.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China; (Y.L.); (Y.W.)
| | - Yidan Gao
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
| | - Wei Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (X.B.); (Y.J.); (X.N.); (W.L.)
| | - Yunhui Li
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China; (Y.L.); (Y.W.)
| | - Yihan Wang
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China; (Y.L.); (Y.W.)
| | - Jizhang Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (X.B.); (Y.J.); (X.N.); (W.L.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China; (Y.L.); (Y.W.)
| |
Collapse
|
14
|
Goverde CA, Pacesa M, Goldbach N, Dornfeld LJ, Balbi PEM, Georgeon S, Rosset S, Kapoor S, Choudhury J, Dauparas J, Schellhaas C, Kozlov S, Baker D, Ovchinnikov S, Vecchio AJ, Correia BE. Computational design of soluble and functional membrane protein analogues. Nature 2024; 631:449-458. [PMID: 38898281 PMCID: PMC11236705 DOI: 10.1038/s41586-024-07601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
De novo design of complex protein folds using solely computational means remains a substantial challenge1. Here we use a robust deep learning pipeline to design complex folds and soluble analogues of integral membrane proteins. Unique membrane topologies, such as those from G-protein-coupled receptors2, are not found in the soluble proteome, and we demonstrate that their structural features can be recapitulated in solution. Biophysical analyses demonstrate the high thermal stability of the designs, and experimental structures show remarkable design accuracy. The soluble analogues were functionalized with native structural motifs, as a proof of concept for bringing membrane protein functions to the soluble proteome, potentially enabling new approaches in drug discovery. In summary, we have designed complex protein topologies and enriched them with functionalities from membrane proteins, with high experimental success rates, leading to a de facto expansion of the functional soluble fold space.
Collapse
Affiliation(s)
- Casper A Goverde
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Martin Pacesa
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicolas Goldbach
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Lars J Dornfeld
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Petra E M Balbi
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sandrine Georgeon
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Stéphane Rosset
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Srajan Kapoor
- Department of Structural Biology, University at Buffalo, Buffalo, NY, USA
| | - Jagrity Choudhury
- Department of Structural Biology, University at Buffalo, Buffalo, NY, USA
| | - Justas Dauparas
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Christian Schellhaas
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Simon Kozlov
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Sergey Ovchinnikov
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alex J Vecchio
- Department of Structural Biology, University at Buffalo, Buffalo, NY, USA
| | - Bruno E Correia
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
15
|
Erramilli SK, Dominik PK, Ogbu CP, Kossiakoff AA, Vecchio AJ. Structural and biophysical insights into targeting of claudin-4 by a synthetic antibody fragment. Commun Biol 2024; 7:733. [PMID: 38886509 PMCID: PMC11183071 DOI: 10.1038/s42003-024-06437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Claudins are a 27-member family of ~25 kDa membrane proteins that integrate into tight junctions to form molecular barriers at the paracellular spaces between endothelial and epithelial cells. As the backbone of tight junction structure and function, claudins are attractive targets for modulating tissue permeability to deliver drugs or treat disease. However, structures of claudins are limited due to their small sizes and physicochemical properties-these traits also make therapy development a challenge. Here we report the development of a synthetic antibody fragment (sFab) that binds human claudin-4 and the determination of a high-resolution structure of it bound to claudin-4/enterotoxin complexes using cryogenic electron microscopy. Structural and biophysical results reveal this sFabs mechanism of select binding to human claudin-4 over other homologous claudins and establish the ability of sFabs to bind hard-to-target claudins to probe tight junction structure and function. The findings provide a framework for tight junction modulation by sFabs for tissue-selective therapies.
Collapse
Affiliation(s)
- Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Pawel K Dominik
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
- Pfizer, San Diego, CA, 92121, USA
| | - Chinemerem P Ogbu
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Structural Biology, University at Buffalo, Buffalo, NY, 14203, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Alex J Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Department of Structural Biology, University at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
16
|
Goverde CA, Pacesa M, Goldbach N, Dornfeld LJ, Balbi PEM, Georgeon S, Rosset S, Kapoor S, Choudhury J, Dauparas J, Schellhaas C, Kozlov S, Baker D, Ovchinnikov S, Vecchio AJ, Correia BE. Computational design of soluble functional analogues of integral membrane proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.09.540044. [PMID: 38496615 PMCID: PMC10942269 DOI: 10.1101/2023.05.09.540044] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
De novo design of complex protein folds using solely computational means remains a significant challenge. Here, we use a robust deep learning pipeline to design complex folds and soluble analogues of integral membrane proteins. Unique membrane topologies, such as those from GPCRs, are not found in the soluble proteome and we demonstrate that their structural features can be recapitulated in solution. Biophysical analyses reveal high thermal stability of the designs and experimental structures show remarkable design accuracy. The soluble analogues were functionalized with native structural motifs, standing as a proof-of-concept for bringing membrane protein functions to the soluble proteome, potentially enabling new approaches in drug discovery. In summary, we designed complex protein topologies and enriched them with functionalities from membrane proteins, with high experimental success rates, leading to a de facto expansion of the functional soluble fold space.
Collapse
|
17
|
Huang Q, Chen Y, Zhang W, Xia X, Li H, Qin M, Gao H. Nanotechnology for enhanced nose-to-brain drug delivery in treating neurological diseases. J Control Release 2024; 366:519-534. [PMID: 38182059 DOI: 10.1016/j.jconrel.2023.12.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/07/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
Despite the increasing global incidence of brain disorders, achieving sufficient delivery towards the central nervous system (CNS) remains a formidable challenge in terms of translating into improved clinical outcomes. The brain is highly safeguarded by physiological barriers, primarily the blood-brain barrier (BBB), which routinely excludes most therapeutics from entering the brain following systemic administration. Among various strategies investigated to circumvent this challenge, intranasal administration, a noninvasive method that bypasses the BBB to allow direct access of drugs to the CNS, has been showing promising results. Nanotechnology-based drug delivery systems, in particular, have demonstrated remarkable capacities in overcoming the challenges posed by nose-to-brain drug delivery and facilitating targeted drug accumulation within the brain while minimizing side effects of systemic distribution. This review comprehensively summarizes the barriers of nose-to-brain drug delivery, aiming to enhance our understanding of potential physiological obstacles and improve the efficacy of nasal delivery in future trials. We then highlight cutting-edge nanotechnology-based studies that enhance nose-to-brain drug delivery in three key aspects, demonstrating substantial potential for improved treatment of brain diseases. Furthermore, the attention towards clinical studies will ease the regulatory approval process for nasal administration of nanomedicines targeting brain disease.
Collapse
Affiliation(s)
- Qianqian Huang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yongke Chen
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Weiwei Zhang
- Department of Public Health, Chengdu Medical College, 783 Xindu Avenue, Xindu, Chengdu, Sichuan 610500, China
| | - Xue Xia
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Meng Qin
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610064, China.
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
18
|
Wang J, Seo JW, Kare AJ, Schneider M, Tumbale SK, Wu B, Raie MN, Pandrala M, Iagaru A, Brunsing RL, Charville GW, Park WG, Ferrara KW. Spatial transcriptomic analysis drives PET imaging of tight junction protein expression in pancreatic cancer theranostics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574209. [PMID: 38249519 PMCID: PMC10798647 DOI: 10.1101/2024.01.07.574209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
We apply spatial transcriptomics and proteomics to select pancreatic cancer surface receptor targets for molecular imaging and theranostics using an approach that can be applied to many cancers. Selected cancer surfaceome epithelial markers were spatially correlated and provided specific cancer localization, whereas the spatial correlation between cancer markers and immune- cell or fibroblast markers was low. While molecular imaging of cancer-associated fibroblasts and integrins has been proposed for pancreatic cancer, our data point to the tight junction protein claudin-4 as a theranostic target. Claudin-4 expression increased ∼16 fold in cancer as compared with normal pancreas, and the tight junction localization conferred low background for imaging in normal tissue. We developed a peptide-based molecular imaging agent targeted to claudin-4 with accumulation to ∼25% injected activity per cc (IA/cc) in metastases and ∼18% IA/cc in tumors. Our work motivates a new approach for data-driven selection of molecular targets.
Collapse
|
19
|
Ogbu CP, Kapoor S, Vecchio AJ. Structural Basis of Clostridium perfringens Enterotoxin Activation and Oligomerization by Trypsin. Toxins (Basel) 2023; 15:637. [PMID: 37999500 PMCID: PMC10674488 DOI: 10.3390/toxins15110637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
Clostridium perfringens enterotoxin (CpE) is a β-pore forming toxin that disrupts gastrointestinal homeostasis in mammals by binding membrane protein receptors called claudins. Although structures of CpE fragments bound to claudins have been determined, the mechanisms that trigger CpE activation and oligomerization that lead to the formation of cytotoxic β-pores remain undetermined. Proteolysis of CpE in the gut by trypsin has been shown to play a role in this and subsequent cytotoxicity processes. Here, we report solution structures of full-length and trypsinized CpE using small-angle X-ray scattering (SAXS) and crystal structures of trypsinized CpE and its C-terminal claudin-binding domain (cCpE) using X-ray crystallography. Mass spectrometry and SAXS uncover that removal of the CpE N-terminus by trypsin alters the CpE structure to expose areas that are normally unexposed. Crystal structures of trypsinized CpE and cCpE reveal unique dimer interfaces that could serve as oligomerization sites. Moreover, comparisons of these structures to existing ones predict the functional implications of oligomerization in the contexts of cell receptor binding and β-pore formation. This study sheds light on trypsin's role in altering CpE structure to activate its function via inducing oligomerization on its path toward cytotoxic β-pore formation. Its findings can incite new approaches to inhibit CpE-based cytotoxicity with oligomer-disrupting therapeutics.
Collapse
Affiliation(s)
| | | | - Alex J. Vecchio
- Department of Structural Biology, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA; (C.P.O.); (S.K.)
| |
Collapse
|
20
|
Ramirez-Velez I, Belardi B. Storming the gate: New approaches for targeting the dynamic tight junction for improved drug delivery. Adv Drug Deliv Rev 2023; 199:114905. [PMID: 37271282 PMCID: PMC10999255 DOI: 10.1016/j.addr.2023.114905] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/20/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
As biologics used in the clinic outpace the number of new small molecule drugs, an important challenge for their efficacy and widespread use has emerged, namely tissue penetrance. Macromolecular drugs - bulky, high-molecular weight, hydrophilic agents - exhibit low permeability across biological barriers. Epithelial and endothelial layers, for example within the gastrointestinal tract or at the blood-brain barrier, present the most significant obstacle to drug transport. Within epithelium, two subcellular structures are responsible for limiting absorption: cell membranes and intercellular tight junctions. Previously considered impenetrable to macromolecular drugs, tight junctions control paracellular flux and dictate drug transport between cells. Recent work, however, has shown tight junctions to be dynamic, anisotropic structures that can be targeted for delivery. This review aims to summarize new approaches for targeting tight junctions, both directly and indirectly, and to highlight how manipulation of tight junction interactions may help usher in a new era of precision drug delivery.
Collapse
Affiliation(s)
- Isabela Ramirez-Velez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
| | - Brian Belardi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
21
|
Erramilli SK, Dominik PK, Ogbu CP, Kossiakoff AA, Vecchio AJ. Cryo-EM structures of a synthetic antibody against 22 kDa claudin-4 reveal its complex with Clostridium perfringens enterotoxin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544689. [PMID: 37398044 PMCID: PMC10312657 DOI: 10.1101/2023.06.12.544689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Claudins are a family of ∼25 kDa membrane proteins that integrate into tight junctions to form molecular barriers at the paracellular spaces between endothelial and epithelial cells. Humans have 27 subtypes, which homo- and hetero-oligomerize to impart distinct properties and physiological functions to tissues and organs. As the structural and functional backbone of tight junctions, claudins are attractive targets for therapeutics capable of modulating tissue permeability to deliver drugs or treat disease. However, structures of claudins are limited due to their small sizes and physicochemical properties-these traits also make therapy development a challenge. We have developed a synthetic antibody fragment (sFab) that binds human claudin-4 and used it to resolve structures of its complex with Clostridium perfringens enterotoxin (CpE) using cryogenic electron microscopy (cryo-EM). The resolution of the structures reveals the architectures of 22 kDa claudin-4, the 14 kDa C-terminal domain of CpE, and the mechanism by which this sFab binds claudins. Further, we elucidate the biochemical and biophysical bases of sFab binding and demonstrate that this molecule exhibits subtype-selectivity by assaying homologous claudins. Our results provide a framework for developing sFabs against hard-to-target claudins and establishes the utility of sFabs as fiducial markers for determining cryo-EM structures of this small membrane protein family at resolutions that surpass X-ray crystallography. Taken together, this work highlights the ability of sFabs to elucidate claudin structure and function and posits their potential as therapeutics for modulating tight junctions by targeting specific claudin subtypes.
Collapse
|
22
|
Safaei S, Imani M. Computational design of a chimeric toxin against Claudin-4-expressing cancer cells: molecular modeling, docking and molecular dynamics simulation analysis. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2023; 14:259-265. [PMID: 37342289 PMCID: PMC10278906 DOI: 10.30466/vrf.2022.548415.3378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/11/2022] [Indexed: 06/22/2023]
Abstract
Cancer is one of the main reasons of mortality all over the world. Over the time, the major ways for cancer-therapy were based on radiotherapy, chemotherapy and surgery. These methods are not specific enough for that purpose, therefore, new ideas for design of new drugs with higher specificity are considered. Chimeric protein toxins are hybrid proteins consisting of a targeting portion and a toxic one which specifically bind and kill the target cancer cells. The main purpose of this study was designing a recombinant chimeric toxin with biding capability to one of the most key receptors namely claudin-4 which is over-expressed in almost all cancer cells. To design it, we utilized the last 30 C-terminal amino acids of Clostridium perfringens enterotoxin (CPE) as a binding module for claudin-4 and the toxic module which is the A-domain of Shiga toxin from Shigella dysenteriae. Using molecular modeling and docking methods, appropriate binding affinity of the recombinant chimeric toxin to its specific receptor was demonstrated. In the next step, the stability of this interaction was investigated by molecular dynamics simulation. Although partial instability was detected at some time points, however, sufficient stable situation of hydrogens bonds and high binding affinity between the chimeric toxin and receptor were observed in the in silico studies which in turn suggested that this complex could be formed successfully.
Collapse
Affiliation(s)
| | - Mehdi Imani
- Correspondence:Mehdi Imani. Msc, PhD, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran, E-mail:
| |
Collapse
|
23
|
Haroun E, Kumar PA, Saba L, Kassab J, Ghimire K, Dutta D, Lim SH. Intestinal barrier functions in hematologic and oncologic diseases. J Transl Med 2023; 21:233. [PMID: 37004099 PMCID: PMC10064590 DOI: 10.1186/s12967-023-04091-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
The intestinal barrier is a complex structure that not only regulates the influx of luminal contents into the systemic circulation but is also involved in immune, microbial, and metabolic homeostasis. Evidence implicating disruption in intestinal barrier functions in the development of many systemic diseases, ranging from non-alcoholic steatohepatitis to autism, or systemic complications of intestinal disorders has increased rapidly in recent years, raising the possibility of the intestinal barrier as a potential target for therapeutic intervention to alter the course and mitigate the complications associated with these diseases. In addition to the disease process being associated with a breach in the intestinal barrier functions, patients with hematologic and oncologic diseases are particularly at high risks for the development of increased intestinal permeability, due to the frequent use of broad-spectrum antibiotics and chemoradiation. They also face a distinct challenge of being intermittently severely neutropenic due to treatment of the underlying conditions. In this review, we will discuss how hematologic and oncologic diseases are associated with disruption in the intestinal barrier and highlight the complications associated with an increase in the intestinal permeability. We will explore methods to modulate the complication. To provide a background for our discussion, we will first examine the structure and appraise the methods of evaluation of the intestinal barrier.
Collapse
Affiliation(s)
- Elio Haroun
- Division of Hematology and Oncology, State University of New York Upstate Medical University, SUNY Upstate Medical University, 750 E Adams, Syracuse, NY, 13210, USA
| | - Prashanth Ashok Kumar
- Division of Hematology and Oncology, State University of New York Upstate Medical University, SUNY Upstate Medical University, 750 E Adams, Syracuse, NY, 13210, USA
| | - Ludovic Saba
- Department of Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon
| | - Joseph Kassab
- Department of Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon
| | - Krishna Ghimire
- Division of Hematology and Oncology, State University of New York Upstate Medical University, SUNY Upstate Medical University, 750 E Adams, Syracuse, NY, 13210, USA
| | - Dibyendu Dutta
- Division of Hematology and Oncology, State University of New York Upstate Medical University, SUNY Upstate Medical University, 750 E Adams, Syracuse, NY, 13210, USA.
| | - Seah H Lim
- Division of Hematology and Oncology, State University of New York Upstate Medical University, SUNY Upstate Medical University, 750 E Adams, Syracuse, NY, 13210, USA.
| |
Collapse
|
24
|
Su X, Hao Z, Yao B. Translocation of health-promoting enzymes across the gut barrier. Trends Endocrinol Metab 2023; 34:257-259. [PMID: 36890042 DOI: 10.1016/j.tem.2023.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/09/2023]
Abstract
Tiny amounts of exogenous enzymes entering the plasma can exert important health-promoting functions. We propose that orally administered enzymes can potentially translocate across the gut barrier to combat reduced fitness and diseases concurrent with increased gut permeability. Engineering of the enzymes using two discussed strategies may further improve their translocation efficiency.
Collapse
Affiliation(s)
- Xiaoyun Su
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China.
| | - Zhenzhen Hao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
25
|
Qi Z, Zhibo Z, Jing Z, Zhanbo Q, Shugao H, Weili J, Jiang L, Shuwen H. Prediction model of poorly differentiated colorectal cancer (CRC) based on gut bacteria. BMC Microbiol 2022; 22:312. [PMID: 36539710 PMCID: PMC9764708 DOI: 10.1186/s12866-022-02712-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The mortality of colorectal cancer is high, the malignant degree of poorly differentiated colorectal cancer is high, and the prognosis is poor. OBJECTIVE To screen the characteristic intestinal microbiota of poorly differentiated intestinal cancer. METHODS Fecal samples were collected from 124 patients with moderately differentiated CRC and 123 patients with poorly differentiated CRC, and the bacterial 16S rRNA V1-V4 region of the fecal samples was sequenced. Alpha diversity analysis was performed on fecal samples to assess the diversity and abundance of flora. The RDP classifier Bayesian algorithm was used to analyze the community structure. Linear discriminant analysis and Student's t test were used to screen the differences in flora. The PICRUSt1 method was used to predict the bacterial function, and six machine learning models, including logistic regression, random forest, neural network, support vector machine, CatBoost and gradient boosting decision tree, were used to construct a prediction model for the poor differentiation of colorectal cancer. RESULTS There was no significant difference in fecal flora alpha diversity between moderately and poorly differentiated colorectal cancer (P > 0.05). The bacteria that accounted for a large proportion of patients with poorly differentiated and moderately differentiated colorectal cancer were Blautia, Escherichia-Shigella, Streptococcus, Lactobacillus, and Bacteroides. At the genus level, there were nine bacteria with high abundance in the poorly differentiated group, including Bifidobacterium, norank_f__Oscillospiraceae, Eisenbergiella, etc. There were six bacteria with high abundance in the moderately differentiated group, including Megamonas, Erysipelotrichaceae_UCG-003, Actinomyces, etc. The RF model had the highest prediction accuracy (100.00% correct). The bacteria that had the greatest variable importance in the model were Pseudoramibacter, Megamonas and Bifidobacterium. CONCLUSION The degree of pathological differentiation of colorectal cancer was related to gut flora, and poorly differentiated colorectal cancer had some different bacterial flora, and intestinal bacteria can be used as biomarkers for predicting poorly differentiated CRC.
Collapse
Affiliation(s)
- Zhang Qi
- grid.413679.e0000 0004 0517 0981Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000 People’s Republic of China
| | - Zuo Zhibo
- grid.459505.80000 0004 4669 7165First Hospital of Jiaxing, Jiaxing, Zhejiang Province People’s Republic of China
| | - Zhuang Jing
- grid.413679.e0000 0004 0517 0981Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000 People’s Republic of China
| | - Qu Zhanbo
- grid.268505.c0000 0000 8744 8924Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province People’s Republic of China
| | - Han Shugao
- grid.13402.340000 0004 1759 700XSecond Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
| | - Jin Weili
- Nanxun District People’s Hospital, Huzhou, Zhejiang Province People’s Republic of China
| | - Liu Jiang
- grid.413679.e0000 0004 0517 0981Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000 People’s Republic of China
| | - Han Shuwen
- grid.413679.e0000 0004 0517 0981Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000 People’s Republic of China ,Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, People’s Republic of China
| |
Collapse
|
26
|
Guo W, Han D, Zhang F, Zhan Q, Liu Y, Peng Q, Huang S, Xue Z, Yang X. Effects of dietary β-1,3-glucan addition on the growth performance, mRNA expression in jejunal barrier, and cecal microflora of broilers challenged with Clostridium perfringens. Poult Sci 2022; 102:102349. [PMID: 36470029 PMCID: PMC9719862 DOI: 10.1016/j.psj.2022.102349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/18/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022] Open
Abstract
This experiment aimed to explore the interaction of β-1,3-glucan and Clostridium perfringens on the growth performance, intestinal health and cecal microflora of broilers. A total of 384 one-day-old Arbor Acre broilers were sorted into 4 treatments with 6 replications. There were 2 factors in this trial: dietary β-1,3-glucan addition including 0 and 250 mg/kg, intestinal enteritis challenged with Clostridium perfringens attack or not. Results showed that Clostridium perfringens infection disrupted the integrity of the intestinal mucosa by reducing the jejunal Occludin and Claudin-1 mRNA expression of broiler chickens at 21 d of age (P < 0.05). Meanwhile, when considering Clostridium perfringens as the main effect, it also decreased the mRNA expression of the glucose transporter recombinant sodium/glucose cotransporter 1 (SGLT1) at d 21 and the fatty acid transporter liver fatty acid-binding protein (L-FABP) at d 42 (P < 0.05) as well as affect cecum microbial diversity, especially in relative abundance of Firmicutes and Bacteroidetes. In addition, Clostridium perfringens infection reduced body weight, daily weight gain, and feed-gain ratio (FCR) in broilers at d 42 (P < 0.05). The dietary β-1,3-glucan could alleviate intestinal mucosal damage caused by the Clostridium perfringens to some extent. When considering β-1,3-glucan as the main effect, it increased the SGLT1 at 42 d of age (P < 0.05), and stabilized gut microbiota disorder caused by Clostridium perfringens. More over dietary β-1,3-glucan addition increased body weight at 42-day-old (P < 0.05), and improved daily weight gain and FCR during 1 to 42 d (P < 0.05). In conclusion, dietary β-1,3-glucan could improve growth performance and intestinal health in broilers infected with Clostridium perfringens.
Collapse
Affiliation(s)
- Wei Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Di Han
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qinyi Zhan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanyan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingyun Peng
- Kemin (China) Technologies Co., Ltd. Zhuhai, 519040, China
| | - Shengshu Huang
- Kemin (China) Technologies Co., Ltd. Zhuhai, 519040, China
| | - Zhen Xue
- Kemin (China) Technologies Co., Ltd. Zhuhai, 519040, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China,Corresponding author:
| |
Collapse
|
27
|
Fuladi S, McGuinness S, Shen L, Weber CR, Khalili-Araghi F. Molecular mechanism of claudin-15 strand flexibility: A computational study. J Gen Physiol 2022; 154:213632. [PMID: 36318156 PMCID: PMC9629798 DOI: 10.1085/jgp.202213116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/30/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022] Open
Abstract
Claudins are one of the major components of tight junctions that play a key role in the formation and maintenance of the epithelial barrier function. Tight junction strands are dynamic and capable of adapting their structure in response to large-scale tissue rearrangement and cellular movement. Here, we present molecular dynamics simulations of claudin-15 strands of up to 225 nm in length in two parallel lipid membranes and characterize their mechanical properties. The persistence length of claudin-15 strands is comparable with those obtained from analyses of freeze-fracture electron microscopy. Our results indicate that lateral flexibility of claudin strands is due to an interplay of three sets of interfacial interaction networks between two antiparallel double rows of claudins in the membranes. In this model, claudins are assembled into interlocking tetrameric ion channels along the strand that slide with respect to each other as the strands curve over submicrometer-length scales. These results suggest a novel molecular mechanism underlying claudin-15 strand flexibility. It also sheds light on intermolecular interactions and their role in maintaining epithelial barrier function.
Collapse
Affiliation(s)
- Shadi Fuladi
- Department of Physics, University of Illinois, Chicago, IL
| | - Sarah McGuinness
- Department of Bioengineering, University of Illinois, Chicago, IL
| | - Le Shen
- Department of Surgery, The University of Chicago, Chicago, IL
| | | | - Fatemeh Khalili-Araghi
- Department of Physics, University of Illinois, Chicago, IL,Correspondence to Fatemeh Khalili-Araghi:
| |
Collapse
|
28
|
Berselli A, Benfenati F, Maragliano L, Alberini G. Multiscale modelling of claudin-based assemblies: a magnifying glass for novel structures of biological interfaces. Comput Struct Biotechnol J 2022; 20:5984-6010. [DOI: 10.1016/j.csbj.2022.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/03/2022] Open
|
29
|
Banga AR, Odiase P, Rachakonda K, Garg AP, Adunyah SE, Rachakonda G. Application of C-Terminal Clostridium Perfringens Enterotoxin in Treatment of Brain Metastasis from Breast Cancer. Cancers (Basel) 2022; 14:4309. [PMID: 36077843 PMCID: PMC9454751 DOI: 10.3390/cancers14174309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Claudin-4 is part of the Claudin family of transmembrane tight junction (TJ) proteins found in almost all tissues and, together with adherens junctions and desmosomes, forms epithelial and endothelial junctional complexes. Although the distribution of Claudin-4 occurs in many cell types, the level of expression is cell-specific. Claudin proteins regulate cell proliferation and differentiation by binding cell-signaling ligands, and its expression is upregulated in several cancers. As a result, alterations in Claudin expression patterns or distribution are vital in the pathology of cancer. Profiling the genetic expression of Claudin-4 showed that Claudin-4 is also a receptor for the clostridium perfringens enterotoxin (CPE) and that Claudin-4 has a high sequence similarity with CPE's high-affinity receptor. CPE is cytolytic due to its ability to form pores in cellular membranes, and CPE treatment in breast cancer cells have shown promising results due to the high expression of Claudin-4. The C-terminal fragment of CPE (c-CPE) provides a less toxic alternative for drug delivery into breast cancer cells, particularly metastatic tumors in the brain, especially as Claudin-4 expression in the central nervous system (CNS) is low. Therefore, c-CPE provides a unique avenue for the treatment of breast-brain metastatic tumors.
Collapse
Affiliation(s)
- Amita R. Banga
- Department of Biotechnology, School of Biological Engineering & Sciences, Shobhit Institute of Engineering & Technology, Meerut 250110, India
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Peace Odiase
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Kartik Rachakonda
- Undergraduate Studies, School of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Amar P. Garg
- Department of Biotechnology, School of Biological Engineering & Sciences, Shobhit Institute of Engineering & Technology, Meerut 250110, India
| | - Samuel E. Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Girish Rachakonda
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
30
|
Orlando BJ, Dominik PK, Roy S, Ogbu CP, Erramilli SK, Kossiakoff AA, Vecchio AJ. Development, structure, and mechanism of synthetic antibodies that target claudin and Clostridium perfringens enterotoxin complexes. J Biol Chem 2022; 298:102357. [PMID: 35952760 PMCID: PMC9463536 DOI: 10.1016/j.jbc.2022.102357] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022] Open
Abstract
Strains of Clostridium perfringens produce a two-domain enterotoxin (CpE) that afflicts humans and domesticated animals, causing prevalent gastrointestinal illnesses. CpE’s C-terminal domain (cCpE) binds cell surface receptors, followed by a restructuring of its N-terminal domain to form a membrane-penetrating β-barrel pore, which is toxic to epithelial cells of the gut. The claudin family of membrane proteins are known receptors for CpE and also control the architecture and function of cell-cell contacts (tight junctions) that create barriers to intercellular molecular transport. CpE binding and assembly disables claudin barrier function and induces cytotoxicity via β-pore formation, disrupting gut homeostasis; however, a structural basis of this process and strategies to inhibit the claudin–CpE interactions that trigger it are both lacking. Here, we used a synthetic antigen-binding fragment (sFab) library to discover two sFabs that bind claudin-4 and cCpE complexes. We established these sFabs’ mode of molecular recognition and binding properties and determined structures of each sFab bound to claudin-4–cCpE complexes using cryo-EM. The structures reveal that the sFabs bind a shared epitope, but conform distinctly, which explains their unique binding equilibria. Mutagenesis of antigen/sFab interfaces observed therein result in binding changes, validating the structures, and uncovering the sFab’s targeting mechanism. From these insights, we generated a model for CpE’s claudin-bound β-pore that predicted sFabs would not prevent cytotoxicity, which we then verified in vivo. Taken together, this work demonstrates the development and mechanism of claudin/cCpE-binding sFabs that provide a framework and strategy for obstructing claudin/CpE assembly to treat CpE-linked gastrointestinal diseases.
Collapse
Affiliation(s)
- Benjamin J Orlando
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824 USA
| | - Pawel K Dominik
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637 USA
| | - Sourav Roy
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588 USA
| | - Chinemerem P Ogbu
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588 USA
| | - Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637 USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637 USA
| | - Alex J Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588 USA.
| |
Collapse
|
31
|
Cao W, Xing H, Li Y, Tian W, Song Y, Jiang Z, Yu J. Claudin18.2 is a novel molecular biomarker for tumor-targeted immunotherapy. Biomark Res 2022; 10:38. [PMID: 35642043 PMCID: PMC9153115 DOI: 10.1186/s40364-022-00385-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/16/2022] [Indexed: 12/18/2022] Open
Abstract
The claudin18.2 (CLDN18.2) protein, an isoform of claudin18, a member of the tight junction protein family, is a highly selective biomarker with limited expression in normal tissues and often abnormal expression during the occurrence and development of various primary malignant tumors, such as gastric cancer/gastroesophageal junction (GC/GEJ) cancer, breast cancer, colon cancer, liver cancer, head and neck cancer, bronchial cancer and non-small-cell lung cancer. CLDN18.2 participates in the proliferation, differentiation and migration of tumor cells. Recent studies have identified CLDN18.2 expression as a potential specific marker for the diagnosis and treatment of these tumors. With its specific expression pattern, CLDN18.2 has become a unique molecule for targeted therapy in different cancers, especially in GC; for example, agents such as zolbetuximab (claudiximab, IMAB362), a monoclonal antibody (mAb) against CLDN18.2, have been developed. In this review, we outline recent advances in the development of immunotherapy strategies targeting CLDN18.2, including monoclonal antibodies (mAbs), bispecific antibodies (BsAbs), chimeric antigen receptor T (CAR-T) cells redirected to target CLDN18.2, and antibody–drug conjugates (ADCs).
Collapse
Affiliation(s)
- Weijie Cao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Haizhou Xing
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yingmei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wenliang Tian
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Jifeng Yu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
32
|
Eroglu E, Yen CYT, Tsoi YL, Witman N, Elewa A, Joven Araus A, Wang H, Szattler T, Umeano CH, Sohlmér J, Goedel A, Simon A, Chien KR. Epicardium-derived cells organize through tight junctions to replenish cardiac muscle in salamanders. Nat Cell Biol 2022; 24:645-658. [PMID: 35550612 PMCID: PMC9106584 DOI: 10.1038/s41556-022-00902-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
The contribution of the epicardium, the outermost layer of the heart, to cardiac regeneration has remained controversial due to a lack of suitable analytical tools. By combining genetic marker-independent lineage-tracing strategies with transcriptional profiling and loss-of-function methods, we report here that the epicardium of the highly regenerative salamander species Pleurodeles waltl has an intrinsic capacity to differentiate into cardiomyocytes. Following cryoinjury, CLDN6+ epicardium-derived cells appear at the lesion site, organize into honeycomb-like structures connected via focal tight junctions and undergo transcriptional reprogramming that results in concomitant differentiation into de novo cardiomyocytes. Ablation of CLDN6+ differentiation intermediates as well as disruption of their tight junctions impairs cardiac regeneration. Salamanders constitute the evolutionarily closest species to mammals with an extensive ability to regenerate heart muscle and our results highlight the epicardium and tight junctions as key targets in efforts to promote cardiac regeneration.
Collapse
Affiliation(s)
- Elif Eroglu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Christopher Y T Yen
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Yat-Long Tsoi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ahmed Elewa
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Alberto Joven Araus
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Heng Wang
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tamara Szattler
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Chimezie H Umeano
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Gene Therapy, Lunds Universitet, Lund, Sweden
| | - Jesper Sohlmér
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Goedel
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Klinik und Poliklinik für Innere Medizin I, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
33
|
Micronutrient Improvement of Epithelial Barrier Function in Various Disease States: A Case for Adjuvant Therapy. Int J Mol Sci 2022; 23:ijms23062995. [PMID: 35328419 PMCID: PMC8951934 DOI: 10.3390/ijms23062995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
The published literature makes a very strong case that a wide range of disease morbidity associates with and may in part be due to epithelial barrier leak. An equally large body of published literature substantiates that a diverse group of micronutrients can reduce barrier leak across a wide array of epithelial tissue types, stemming from both cell culture as well as animal and human tissue models. Conversely, micronutrient deficiencies can exacerbate both barrier leak and morbidity. Focusing on zinc, Vitamin A and Vitamin D, this review shows that at concentrations above RDA levels but well below toxicity limits, these micronutrients can induce cell- and tissue-specific molecular-level changes in tight junctional complexes (and by other mechanisms) that reduce barrier leak. An opportunity now exists in critical care—but also medical prophylactic and therapeutic care in general—to consider implementation of select micronutrients at elevated dosages as adjuvant therapeutics in a variety of disease management. This consideration is particularly pointed amidst the COVID-19 pandemic.
Collapse
|
34
|
Disruption of Claudin-Made Tight Junction Barriers by Clostridium perfringens Enterotoxin: Insights from Structural Biology. Cells 2022; 11:cells11050903. [PMID: 35269525 PMCID: PMC8909277 DOI: 10.3390/cells11050903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Claudins are a family of integral membrane proteins that enable epithelial cell/cell interactions by localizing to and driving the formation of tight junctions. Via claudin self-assembly within the membranes of adjoining cells, their extracellular domains interact, forming barriers to the paracellular transport of small molecules and ions. The bacterium Clostridium perfringens causes prevalent gastrointestinal disorders in mammals by employing an enterotoxin (CpE) that targets claudins. CpE binds to claudins at or near tight junctions in the gut and disrupts their barrier function, potentially by disabling their assembly or via cell signaling means—the mechanism(s) remain unclear. CpE ultimately destroys claudin-expressing cells through the formation of a cytotoxic membrane-penetrating β-barrel pore. Structures obtained by X-ray crystallography of CpE, claudins, and claudins in complex with CpE fragments have provided the structural bases of claudin and CpE functions, revealing potential mechanisms for the CpE-mediated disruption of claudin-made tight junctions. This review highlights current progress in this space—what has been discovered and what remains unknown—toward efforts to elucidate the molecular mechanism of CpE disruption of tight junction barriers. It further underscores the key insights obtained through structure that are being applied to develop CpE-based therapeutics that combat claudin-overexpressing cancers or modulate tight junction barriers.
Collapse
|
35
|
Ulhuq FR, Mariano G. Bacterial pore-forming toxins. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001154. [PMID: 35333704 PMCID: PMC9558359 DOI: 10.1099/mic.0.001154] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022]
Abstract
Pore-forming toxins (PFTs) are widely distributed in both Gram-negative and Gram-positive bacteria. PFTs can act as virulence factors that bacteria utilise in dissemination and host colonisation or, alternatively, they can be employed to compete with rival microbes in polymicrobial niches. PFTs transition from a soluble form to become membrane-embedded by undergoing large conformational changes. Once inserted, they perforate the membrane, causing uncontrolled efflux of ions and/or nutrients and dissipating the protonmotive force (PMF). In some instances, target cells intoxicated by PFTs display additional effects as part of the cellular response to pore formation. Significant progress has been made in the mechanistic description of pore formation for the different PFTs families, but in several cases a complete understanding of pore structure remains lacking. PFTs have evolved recognition mechanisms to bind specific receptors that define their host tropism, although this can be remarkably diverse even within the same family. Here we summarise the salient features of PFTs and highlight where additional research is necessary to fully understand the mechanism of pore formation by members of this diverse group of protein toxins.
Collapse
Affiliation(s)
- Fatima R. Ulhuq
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Giuseppina Mariano
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|