1
|
Catalan RE, Fragkopoulos AA, Girot A, Lorenz M, Bäumchen O. Preparation, maintenance and propagation of synchronous cultures of photoactive Chlamydomonas cells. Nat Protoc 2025:10.1038/s41596-024-01135-3. [PMID: 40082720 DOI: 10.1038/s41596-024-01135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/12/2024] [Indexed: 03/16/2025]
Abstract
The systematic cultivation of species of photosynthetically active 'green' microorganisms in research labs started in the 1940s. Among these microorganisms, Chlamydomonas represents a genus of green biciliated microalgae, of which Chlamydomonas reinhardtii has become the main describing species. For decades C. reinhardtii has been used as an established model organism in biology, including research areas such as molecular biology of eukaryotes, photosynthesis, light receptors, cell metabolism, the dynamics of microtubule assembly and protein transport along cilia. More recently, the use of suspensions of light-responsive living microorganisms has seen a major expansion from the life sciences to the biophysics, statistical physics, fluid dynamics and bioengineering communities. Studies that substantially advance the state of the art in these research areas require the reliable preparation and maintenance of viable, monodisperse and synchronous cell cultures. Although some technical aspects are shared with standard procedures in cell biology and microbiology, Chlamydomonas and its relatives are photosensitive and, simultaneously, motile, meaning this microorganism requires tailored cultivation protocols that are specific to this species. Here we provide guidance on which Chlamydomonas wild-type and mutant strains are suitable for specific experiments and provide detailed step-by-step procedures to measure culture synchronicity, growth rate of the population, average cell size and motility features. The reliable preparation of cell cultures may facilitate future interdisciplinary research using living suspensions of photoactive microorganisms.
Collapse
Affiliation(s)
| | | | - Antoine Girot
- Experimental Physics V, University of Bayreuth, Bayreuth, Germany
| | - Maike Lorenz
- Department of Experimental Phycology and SAG Culture Collection of Algae, Georg-August-University Göttingen, Göttingen, Germany
| | - Oliver Bäumchen
- Experimental Physics V, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
2
|
Kurjahn M, Abbaspour L, Papenfuß F, Bittihn P, Golestanian R, Mahault B, Karpitschka S. Collective self-caging of active filaments in virtual confinement. Nat Commun 2024; 15:9122. [PMID: 39443452 PMCID: PMC11499643 DOI: 10.1038/s41467-024-52936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Motility coupled to responsive behavior is essential for many microorganisms to seek and establish appropriate habitats. One of the simplest possible responses, reversing the direction of motion, is believed to enable filamentous cyanobacteria to form stable aggregates or accumulate in suitable light conditions. Here, we demonstrate that filamentous morphology in combination with responding to light gradients by reversals has consequences far beyond simple accumulation: Entangled aggregates form at the boundaries of illuminated regions, harnessing the boundary to establish local order. We explore how the light pattern, in particular its boundary curvature, impacts aggregation. A minimal mechanistic model of active flexible filaments resembles the experimental findings, thereby revealing the emergent and generic character of these structures. This phenomenon may enable elongated microorganisms to generate adaptive colony architectures in limited habitats or guide the assembly of biomimetic fibrous materials.
Collapse
Affiliation(s)
- Maximilian Kurjahn
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany
| | - Leila Abbaspour
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany
| | - Franziska Papenfuß
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany
| | - Philip Bittihn
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK
| | - Benoît Mahault
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany.
| | - Stefan Karpitschka
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany.
- Fachbereich Physik, Universität Konstanz, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, Universität Konstanz, Konstanz, Germany.
| |
Collapse
|
3
|
Mangeat M, Chakraborty S, Wysocki A, Rieger H. Stationary particle currents in sedimenting active matter wetting a wall. Phys Rev E 2024; 109:014616. [PMID: 38366426 DOI: 10.1103/physreve.109.014616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/02/2024] [Indexed: 02/18/2024]
Abstract
Recently it was predicted, on the basis of a lattice gas model, that scalar active matter in a gravitational field would rise against gravity up a confining wall or inside a thin capillary-in spite of repulsive particle-wall interactions [Phys. Rev. Lett. 124, 048001 (2020)0031-900710.1103/PhysRevLett.124.048001]. In this paper we confirm this prediction with sedimenting active Brownian particles (ABPs) in a box numerically and elucidate the mechanism leading to the formation of a meniscus rising above the bulk of the sedimentation region. The height of the meniscus increases with the activity of the system, algebraically with the Péclet number. The formation of the meniscus is determined by a stationary circular particle current, a vortex, centered at the base of the meniscus, whose size and strength increase with the ABP activity. The origin of these vortices can be traced back to the confinement of the ABPs in a box: already the stationary state of ideal (noninteracting) ABPs without gravitation displays circular currents that arrange in a highly symmetric way in the eight octants of the box. Gravitation distorts this vortex configuration downward, leaving two major vortices at the two side walls, with a strong downward flow along the walls. Repulsive interactions between the ABPs change this situation only as soon as motility induced phase separation (MIPS) sets in and forms a dense, sedimented liquid region at the bottom, which pushes the center of the vortex upwards towards the liquid-gas interface. Self-propelled particles therefore represent an impressive realization of scalar active matter that forms stationary particle currents being able to perform visible work against gravity or any other external field, which we predict to be observable experimentally in active colloids under gravitation.
Collapse
Affiliation(s)
- Matthieu Mangeat
- Center for Biophysics & Department for Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Shauri Chakraborty
- Center for Biophysics & Department for Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Adam Wysocki
- Center for Biophysics & Department for Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Heiko Rieger
- Center for Biophysics & Department for Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
- INM - Leibniz Institute for New Materials, Campus D2 2, D-66123 Saarbrücken, Germany
| |
Collapse
|
4
|
Bondoc-Naumovitz KG, Laeverenz-Schlogelhofer H, Poon RN, Boggon AK, Bentley SA, Cortese D, Wan KY. Methods and Measures for Investigating Microscale Motility. Integr Comp Biol 2023; 63:1485-1508. [PMID: 37336589 PMCID: PMC10755196 DOI: 10.1093/icb/icad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023] Open
Abstract
Motility is an essential factor for an organism's survival and diversification. With the advent of novel single-cell technologies, analytical frameworks, and theoretical methods, we can begin to probe the complex lives of microscopic motile organisms and answer the intertwining biological and physical questions of how these diverse lifeforms navigate their surroundings. Herein, we summarize the main mechanisms of microscale motility and give an overview of different experimental, analytical, and mathematical methods used to study them across different scales encompassing the molecular-, individual-, to population-level. We identify transferable techniques, pressing challenges, and future directions in the field. This review can serve as a starting point for researchers who are interested in exploring and quantifying the movements of organisms in the microscale world.
Collapse
Affiliation(s)
| | | | - Rebecca N Poon
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
| | - Alexander K Boggon
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
| | - Samuel A Bentley
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
| | - Dario Cortese
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
| | - Kirsty Y Wan
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
| |
Collapse
|
5
|
Faluweki MK, Cammann J, Mazza MG, Goehring L. Active Spaghetti: Collective Organization in Cyanobacteria. PHYSICAL REVIEW LETTERS 2023; 131:158303. [PMID: 37897773 DOI: 10.1103/physrevlett.131.158303] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/30/2023] [Indexed: 10/30/2023]
Abstract
Filamentous cyanobacteria can show fascinating examples of nonequilibrium self-organization, which, however, are not well understood from a physical perspective. We investigate the motility and collective organization of colonies of these simple multicellular lifeforms. As their area density increases, linear chains of cells gliding on a substrate show a transition from an isotropic distribution to bundles of filaments arranged in a reticulate pattern. Based on our experimental observations of individual behavior and pairwise interactions, we introduce a nonreciprocal model accounting for the filaments' large aspect ratio, fluctuations in curvature, motility, and nematic interactions. This minimal model of active filaments recapitulates the observations, and rationalizes the appearance of a characteristic length scale in the system, based on the Péclet number of the cyanobacteria filaments.
Collapse
Affiliation(s)
- Mixon K Faluweki
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
- Malawi Institute of Technology, Malawi University of Science and Technology, S150 Road, Thyolo 310105, Malawi
| | - Jan Cammann
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| | - Marco G Mazza
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany
| | - Lucas Goehring
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| |
Collapse
|
6
|
Aono T, Yamashita K, Hashimoto M, Ishikawa Y, Aizawa K, Tokunaga E. Spatial Distribution of Flagellated Microalgae Chlamydomonas reinhardtii in a Quasi-Two-Dimensional Space. MICROMACHINES 2023; 14:813. [PMID: 37421046 DOI: 10.3390/mi14040813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 07/09/2023]
Abstract
Although the phenomenon of collective order formation by cell-cell interactions in motile cells, microswimmers, has been a topic of interest, most studies have been conducted under conditions of high cell density, where the space occupancy of a cell population relative to the space size ϕ>0.1 (ϕ is the area fraction). We experimentally determined the spatial distribution (SD) of the flagellated unicellular green alga Chlamydomonas reinhardtii at a low cell density (ϕ≈0.01) in a quasi-two-dimensional (thickness equal to cell diameter) restricted space and used the variance-to-mean ratio to investigate the deviation from the random distribution of cells, that is, do cells tend to cluster together or avoid each other? The experimental SD is consistent with that obtained by Monte Carlo simulation, in which only the excluded volume effect (EV effect) due to the finite size of cells is taken into account, indicating that there is no interaction between cells other than the EV effect at a low cell density of ϕ≈0.01. A simple method for fabricating a quasi-two-dimensional space using shim rings was also proposed.
Collapse
Affiliation(s)
- Tetsuo Aono
- Department of Physics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kyohei Yamashita
- Department of Physics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Masafumi Hashimoto
- Department of Physics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuji Ishikawa
- Department of Physics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kentaro Aizawa
- Department of Physics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Eiji Tokunaga
- Department of Physics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
7
|
Catalan RE, Fragkopoulos AA, von Trott N, Kelterborn S, Baidukova O, Hegemann P, Bäumchen O. Light-regulated adsorption and desorption of Chlamydomonas cells at surfaces. SOFT MATTER 2023; 19:306-314. [PMID: 36520090 DOI: 10.1039/d2sm01039a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Microbial colonization of surfaces represents the first step towards biofilm formation, which is a recurring phenomenon in nature with beneficial and detrimental implications in technological and medical settings. Consequently, there is interest in elucidating the fundamental aspects of the initial stages of biofilm formation of microorganisms on solid surfaces. While most of the research is oriented to understand bacterial surface colonization, the fundamental principles of surface colonization of motile, photosynthetic microbes remain largely unexplored so far. Recent single-cell studies showed that the flagellar adhesion of Chlamydomonas reinhardtii is switched on in blue light and switched off under red light [Kreis et al., Nat. Phys., 2018, 14, 45-49]. Here, we study this light-switchable surface association on the population level and measure the kinetics of adsorption and desorption of suspensions of motile C. reinhardtii cells on glass surfaces using bright-field optical microscopy. We observe that both processes exhibit a response lag relative to the time at which the blue- and red-light conditions are set and model this feature using time-delayed Langmuir-type kinetics. We find that cell adsorption occurs significantly faster than desorption, which we attribute to the protein-mediated molecular adhesion mechanism of the cells. Adsorption experiments using phototactically blind C. reinhardtii mutants demonstrate that phototaxis does not affect the cell adsorption kinetics. Hence, this framework can be used as an assay for characterizing the dynamics of the surface colonization of microbial species exhibiting light-regulated surface adhesion under precisely controlled environmental conditions.
Collapse
Affiliation(s)
- Rodrigo E Catalan
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany
- Experimental Physics V, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany.
| | - Alexandros A Fragkopoulos
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany
- Experimental Physics V, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany.
| | - Nicolas von Trott
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany
| | - Simon Kelterborn
- Institute of Biology, Experimental Biophysics, Humboldt-Universität, Invalidenstraße 42, 10115 Berlin, Germany
- Institute of Translational Physiology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Olga Baidukova
- Institute of Biology, Experimental Biophysics, Humboldt-Universität, Invalidenstraße 42, 10115 Berlin, Germany
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt-Universität, Invalidenstraße 42, 10115 Berlin, Germany
| | - Oliver Bäumchen
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany
- Experimental Physics V, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany.
| |
Collapse
|
8
|
Bentley SA, Laeverenz-Schlogelhofer H, Anagnostidis V, Cammann J, Mazza MG, Gielen F, Wan KY. Phenotyping single-cell motility in microfluidic confinement. eLife 2022; 11:e76519. [PMID: 36416411 PMCID: PMC9683786 DOI: 10.7554/elife.76519] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
The movement trajectories of organisms serve as dynamic read-outs of their behaviour and physiology. For microorganisms this can be difficult to resolve due to their small size and fast movement. Here, we devise a novel droplet microfluidics assay to encapsulate single micron-sized algae inside closed arenas, enabling ultralong high-speed tracking of the same cell. Comparing two model species - Chlamydomonas reinhardtii (freshwater, 2 cilia), and Pyramimonas octopus (marine, 8 cilia), we detail their highly-stereotyped yet contrasting swimming behaviours and environmental interactions. By measuring the rates and probabilities with which cells transition between a trio of motility states (smooth-forward swimming, quiescence, tumbling or excitable backward swimming), we reconstruct the control network that underlies this gait switching dynamics. A simplified model of cell-roaming in circular confinement reproduces the observed long-term behaviours and spatial fluxes, including novel boundary circulation behaviour. Finally, we establish an assay in which pairs of droplets are fused on demand, one containing a trapped cell with another containing a chemical that perturbs cellular excitability, to reveal how aneural microorganisms adapt their locomotor patterns in real-time.
Collapse
Affiliation(s)
- Samuel A Bentley
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Mathematics and Statistics, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
| | - Hannah Laeverenz-Schlogelhofer
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Mathematics and Statistics, University of ExeterExeterUnited Kingdom
| | - Vasileios Anagnostidis
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
- Physics and Astronomy, University of ExeterExeterUnited Kingdom
| | - Jan Cammann
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough UniversityLoughboroughUnited Kingdom
| | - Marco G Mazza
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough UniversityLoughboroughUnited Kingdom
- Max Planck Institute for Dynamics and Self-Organization (MPIDS)GöttingenGermany
| | - Fabrice Gielen
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Physics and Astronomy, University of ExeterExeterUnited Kingdom
| | - Kirsty Y Wan
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Mathematics and Statistics, University of ExeterExeterUnited Kingdom
| |
Collapse
|
9
|
A multi-adenylate cyclase regulator at the flagellar tip controls African trypanosome transmission. Nat Commun 2022; 13:5445. [PMID: 36114198 PMCID: PMC9481589 DOI: 10.1038/s41467-022-33108-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Signaling from ciliary microdomains controls developmental processes in metazoans. Trypanosome transmission requires development and migration in the tsetse vector alimentary tract. Flagellar cAMP signaling has been linked to parasite social motility (SoMo) in vitro, yet uncovering control of directed migration in fly organs is challenging. Here we show that the composition of an adenylate cyclase (AC) complex in the flagellar tip microdomain is essential for tsetse salivary gland (SG) colonization and SoMo. Cyclic AMP response protein 3 (CARP3) binds and regulates multiple AC isoforms. CARP3 tip localization depends on the cytoskeletal protein FLAM8. Re-localization of CARP3 away from the tip microdomain is sufficient to abolish SoMo and fly SG colonization. Since intrinsic development is normal in carp3 and flam8 knock-out parasites, AC complex-mediated tip signaling specifically controls parasite migration and thereby transmission. Participation of several developmentally regulated receptor-type AC isoforms may indicate the complexity of the in vivo signals perceived. Trypanosomes can sense signal molecules and coordinate their movement in response to such signals, a phenomenon termed social motility (SoMo). Here, Bachmaier et al show that cyclic AMP response protein 3 (CARP3) localization to the flagellar tip and its interaction with a number of different adenylate cyclases is essential for migration to tsetse fly salivary glands and for SoMo, therewith linking SoMo and cAMP signaling to trypanosome transmission.
Collapse
|
10
|
Williams S, Jeanneret R, Tuval I, Polin M. Confinement-induced accumulation and de-mixing of microscopic active-passive mixtures. Nat Commun 2022; 13:4776. [PMID: 35970896 PMCID: PMC9378696 DOI: 10.1038/s41467-022-32520-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the out-of-equilibrium properties of noisy microscale systems and the extent to which they can be modulated externally, is a crucial scientific and technological challenge. It holds the promise to unlock disruptive new technologies ranging from targeted delivery of chemicals within the body to directed assembly of new materials. Here we focus on how active matter can be harnessed to transport passive microscopic systems in a statistically predictable way. Using a minimal active-passive system of weakly Brownian particles and swimming microalgae, we show that spatial confinement leads to a complex non-monotonic steady-state distribution of colloids, with a pronounced peak at the boundary. The particles’ emergent active dynamics is well captured by a space-dependent Poisson process resulting from the space-dependent motion of the algae. Based on our findings, we then realise experimentally the de-mixing of the active-passive suspension, opening the way for manipulating colloidal objects via controlled activity fields. Understanding how order emerges in active matter may facilitate macroscopic control of microscopic objects. Here, Williams et al. show how to control the transport of passive microscopic particles in presence of motile algae in conjunction with boundary-induced accumulation of microswimmers.
Collapse
Affiliation(s)
- Stephen Williams
- Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Raphaël Jeanneret
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005, Paris, France
| | - Idan Tuval
- Departament de Física, Universitat de les Illes Balears, 07071, Palma de Mallorca, Spain.,Instituto Mediterráneo de Estudios Avanzados, IMEDEA, Miquel Marques 21, 07190, Esporles, Spain
| | - Marco Polin
- Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom. .,Departament de Física, Universitat de les Illes Balears, 07071, Palma de Mallorca, Spain. .,Instituto Mediterráneo de Estudios Avanzados, IMEDEA, Miquel Marques 21, 07190, Esporles, Spain.
| |
Collapse
|
11
|
Shang L, Ye F, Li M, Zhao Y. Spatial confinement toward creating artificial living systems. Chem Soc Rev 2022; 51:4075-4093. [PMID: 35502858 DOI: 10.1039/d1cs01025e] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lifeforms are regulated by many physicochemical factors, and these factors could be controlled to play a role in the construction of artificial living systems. Among these factors, spatial confinement is an important one, which mediates biological behaviors at multiscale levels and participates in the biomanufacturing processes accordingly. This review describes how spatial confinement, as a fundamental biological phenomenon, provides cues for the construction of artificial living systems. Current knowledge about the role of spatial confinement in mediating individual cell behavior, collective cellular behavior, and tissue-level behavior are categorized. Endeavors on the synthesis of biomacromolecules, artificial cells, engineered tissues, and organoids in spatially confined bioreactors are then emphasized. After that, we discuss the cutting-edge applications of spatially confined artificial living systems in biomedical fields. Finally, we conclude by assessing the remaining challenges and future trends in the context of fundamental science, technical improvement, and practical applications.
Collapse
Affiliation(s)
- Luoran Shang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. .,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
12
|
Araki S, Beppu K, Kabir AMR, Kakugo A, Maeda YT. Controlling Collective Motion of Kinesin-Driven Microtubules via Patterning of Topographic Landscapes. NANO LETTERS 2021; 21:10478-10485. [PMID: 34874725 DOI: 10.1021/acs.nanolett.1c03952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biomolecular motor proteins that generate forces by consuming chemical energy obtained from ATP hydrolysis play pivotal roles in organizing cytoskeletal structures in living cells. An ability to control cytoskeletal structures would benefit programmable protein patterning; however, our current knowledge is limited because of the underdevelopment of engineering approaches for controlling pattern formation. Here, we demonstrate the controlling of self-assembled patterns of microtubules (MTs) driven by kinesin motors by designing the boundary shape in fabricated microwells. By manipulating the collision angle of gliding MTs defined by the boundary shape, the self-assembly of MTs can be controlled to form protruding bundle and bridge patterns. Corroborated by the theory of self-propelled rods, we further show that the alignment of MTs determines the transition between the assembled patterns, providing a blueprint to reconstruct bridge structures in microchannels. Our findings introduce the tailoring of the self-organization of cytoskeletons and motor proteins for nanotechnological applications.
Collapse
Affiliation(s)
- Shunya Araki
- Department of Physics, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Kazusa Beppu
- Department of Physics, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Arif Md Rashedul Kabir
- Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Hokkaido Japan
| | - Akira Kakugo
- Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Hokkaido Japan
| | - Yusuke T Maeda
- Department of Physics, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| |
Collapse
|
13
|
Abstract
When the motion of a motile cell is observed closely, it appears erratic, and yet the combination of nonequilibrium forces and surfaces can produce striking examples of organization in microbial systems. While most of our current understanding is based on bulk systems or idealized geometries, it remains elusive how and at which length scale self-organization emerges in complex geometries. Here, using experiments and analytical and numerical calculations, we study the motion of motile cells under controlled microfluidic conditions and demonstrate that probability flux loops organize active motion, even at the level of a single cell exploring an isolated compartment of nontrivial geometry. By accounting for the interplay of activity and interfacial forces, we find that the boundary's curvature determines the nonequilibrium probability fluxes of the motion. We theoretically predict a universal relation between fluxes and global geometric properties that is directly confirmed by experiments. Our findings open the possibility to decipher the most probable trajectories of motile cells and may enable the design of geometries guiding their time-averaged motion.
Collapse
|