1
|
Bsoul O, Lampel Y, Rofe M, Pariente-Cohen N, Timsit C, Fischer B. Regioselective N1-ribosylation of hydantoin: synthesis and properties of the first contracted uridine analog. Chem Commun (Camb) 2025; 61:2281-2284. [PMID: 39803794 DOI: 10.1039/d4cc06033d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Modified nucleosides are vital in mRNA vaccines. We developed a contracted uridine analog, N1-hydantoinyl-ribose, HR, using steric shields to invert the regioselectivity of the classic Vorbrüggen reaction. We report synthetic routes and explore HR features such as acidity, stability, base pairing/stacking, and crystal/solution conformation compared to uridine.
Collapse
Affiliation(s)
- Odai Bsoul
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Yakir Lampel
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Maayan Rofe
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | | | - Chen Timsit
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Bilha Fischer
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
2
|
Chen H, Zhao S. Research progress of RNA pseudouridine modification in nervous system. Int J Neurosci 2024:1-11. [PMID: 38407188 DOI: 10.1080/00207454.2024.2315483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/27/2024]
Abstract
Recent advances of pseudouridine (Ψ, 5-ribosyluracil) modification highlight its crucial role as a post-transcriptional regulator in gene expression and its impact on various RNA processes. Ψ synthase (PUS), a category of RNA-modifying enzymes, orchestrates the pseudouridylation reaction. It can specifically recognize conserved sequences or structural motifs within substrates, thereby regulating the biological function of various RNA molecules accurately. Our comprehensive review underscored the close association of PUS1, PUS3, PUS7, PUS10, and dyskerin PUS1 with various nervous system disorders, including neurodevelopmental disorders, nervous system tumors, mitochondrial myopathy, lactic acidosis and sideroblastic anaemia (MLASA) syndrome, peripheral nervous system disorders, and type II myotonic dystrophy. In light of these findings, this study elucidated how Ψ strengthened RNA structures and contributed to RNA function, thereby providing valuable insights into the intricate molecular mechanisms underlying nervous system diseases. However, the detailed effects and mechanisms of PUS on neuron remain elusive. This lack of mechanistic understanding poses a substantial obstacle to the development of therapeutic approaches for various neurological disorders based on Ψ modification.
Collapse
Affiliation(s)
- Hui Chen
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Shuang Zhao
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| |
Collapse
|
3
|
Schievelbein MJ, Resende C, Glennon MM, Kerosky M, Brown JA. Global RNA modifications to the MALAT1 triple helix differentially affect thermostability and weaken binding to METTL16. J Biol Chem 2024; 300:105548. [PMID: 38092148 PMCID: PMC10805700 DOI: 10.1016/j.jbc.2023.105548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023] Open
Abstract
Therapeutic mRNAs are generated using modified nucleotides, namely N1-methylpseudouridine (m1Ψ) triphosphate, so that the mRNA evades detection by the immune system. RNA modifications, even at a single-nucleotide position, perturb RNA structure, although it is not well understood how structure and function is impacted by globally modified RNAs. Therefore, we examined the metastasis-associated lung adenocarcinoma transcript 1 triple helix, a highly structured stability element that includes single-, double-, and triple-stranded RNA, globally modified with N6-methyladenosine (m6A), pseudouridine (Ψ), or m1Ψ. UV thermal denaturation assays showed that m6A destabilizes both the Hoogsteen and Watson-Crick faces of the RNA by ∼20 °C, Ψ stabilizes the Hoogsteen and Watson-Crick faces of the RNA by ∼12 °C, and m1Ψ has minimal effect on the stability of the Hoogsteen face of the RNA but increases the stability of the Watson-Crick face by ∼9 °C. Native gel-shift assays revealed that binding of the methyltransferase-like protein 16 to the metastasis-associated lung adenocarcinoma transcript 1 triple helix was weakened by at least 8-, 99-, and 23-fold, respectively, when RNA is globally modified with m6A, Ψ, or m1Ψ. These results demonstrate that a more thermostable RNA structure does not lead to tighter RNA-protein interactions, thereby highlighting the regulatory power of RNA modifications by multiple means.
Collapse
Affiliation(s)
- Mika J Schievelbein
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Carlos Resende
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Madeline M Glennon
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Matthew Kerosky
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jessica A Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA.
| |
Collapse
|
4
|
Tang Q, Li L, Wang Y, Wu P, Hou X, Ouyang J, Fan C, Li Z, Wang F, Guo C, Zhou M, Liao Q, Wang H, Xiang B, Jiang W, Li G, Zeng Z, Xiong W. RNA modifications in cancer. Br J Cancer 2023; 129:204-221. [PMID: 37095185 PMCID: PMC10338518 DOI: 10.1038/s41416-023-02275-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023] Open
Abstract
Currently, more than 170 modifications have been identified on RNA. Among these RNA modifications, various methylations account for two-thirds of total cases and exist on almost all RNAs. Roles of RNA modifications in cancer are garnering increasing interest. The research on m6A RNA methylation in cancer is in full swing at present. However, there are still many other popular RNA modifications involved in the regulation of gene expression post-transcriptionally besides m6A RNA methylation. In this review, we focus on several important RNA modifications including m1A, m5C, m7G, 2'-O-Me, Ψ and A-to-I editing in cancer, which will provide a new perspective on tumourigenesis by peeking into the complex regulatory network of epigenetic RNA modifications, transcript processing, and protein translation.
Collapse
Affiliation(s)
- Qiling Tang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Lvyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Yumin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Pan Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Xiangchan Hou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Jiawei Ouyang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Zheng Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Hui Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Weihong Jiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China.
| |
Collapse
|
5
|
Vögele J, Duchardt-Ferner E, Kruse H, Zhang Z, Sponer J, Krepl M, Wöhnert J. Structural and dynamic effects of pseudouridine modifications on noncanonical interactions in RNA. RNA (NEW YORK, N.Y.) 2023; 29:790-807. [PMID: 36868785 PMCID: PMC10187676 DOI: 10.1261/rna.079506.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/10/2023] [Indexed: 05/18/2023]
Abstract
Pseudouridine is the most frequently naturally occurring RNA modification, found in all classes of biologically functional RNAs. Compared to uridine, pseudouridine contains an additional hydrogen bond donor group and is therefore widely regarded as a structure stabilizing modification. However, the effects of pseudouridine modifications on the structure and dynamics of RNAs have so far only been investigated in a limited number of different structural contexts. Here, we introduced pseudouridine modifications into the U-turn motif and the adjacent U:U closing base pair of the neomycin-sensing riboswitch (NSR)-an extensively characterized model system for RNA structure, ligand binding, and dynamics. We show that the effects of replacing specific uridines with pseudouridines on RNA dynamics crucially depend on the exact location of the replacement site and can range from destabilizing to locally or even globally stabilizing. By using a combination of NMR spectroscopy, MD simulations and QM calculations, we rationalize the observed effects on a structural and dynamical level. Our results will help to better understand and predict the consequences of pseudouridine modifications on the structure and function of biologically important RNAs.
Collapse
Affiliation(s)
- Jennifer Vögele
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Elke Duchardt-Ferner
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Holger Kruse
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic
| | - Zhengyue Zhang
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic
- CEITEC-Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Jiri Sponer
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic
| | - Jens Wöhnert
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|
6
|
Zhou Y, Bie C, van Zijl PC, Yadav NN. The relayed nuclear Overhauser effect in magnetization transfer and chemical exchange saturation transfer MRI. NMR IN BIOMEDICINE 2023; 36:e4778. [PMID: 35642102 PMCID: PMC9708952 DOI: 10.1002/nbm.4778] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/19/2022] [Accepted: 05/29/2022] [Indexed: 05/23/2023]
Abstract
Magnetic resonance (MR) is a powerful technique for noninvasively probing molecular species in vivo but suffers from low signal sensitivity. Saturation transfer (ST) MRI approaches, including chemical exchange saturation transfer (CEST) and conventional magnetization transfer contrast (MTC), allow imaging of low-concentration molecular components with enhanced sensitivity using indirect detection via the abundant water proton pool. Several recent studies have shown the utility of chemical exchange relayed nuclear Overhauser effect (rNOE) contrast originating from nonexchangeable carbon-bound protons in mobile macromolecules in solution. In this review, we describe the mechanisms leading to the occurrence of rNOE-based signals in the water saturation spectrum (Z-spectrum), including those from mobile and immobile molecular sources and from molecular binding. While it is becoming clear that MTC is mainly an rNOE-based signal, we continue to use the classical MTC nomenclature to separate it from the rNOE signals of mobile macromolecules, which we will refer to as rNOEs. Some emerging applications of the use of rNOEs for probing macromolecular solution components such as proteins and carbohydrates in vivo or studying the binding of small substrates are discussed.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, Guangdong 518055 (China)
| | - Chongxue Bie
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway, Baltimore MD 21205 (USA)
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205 (USA)
- Department of Information Science and Technology, Northwest University, No.1 Xuefu Avenue, Xi’an, Shanxi 710127 (China)
| | - Peter C.M. van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway, Baltimore MD 21205 (USA)
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205 (USA)
| | - Nirbhay N. Yadav
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway, Baltimore MD 21205 (USA)
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205 (USA)
| |
Collapse
|
7
|
Mlotkowski AJ, Schlegel HB, Chow CS. Calculated p Ka Values for a Series of Aza- and Deaza-Modified Nucleobases. J Phys Chem A 2023; 127:3526-3534. [PMID: 37037184 PMCID: PMC10123669 DOI: 10.1021/acs.jpca.3c01358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
A variety of synthetic modified nucleobases have been used to investigate the structure and function of RNA and DNA or act as enzyme inhibitors. A set of these modifications involves the addition or removal of a nitrogen atom in the ring. These aza and deaza modifications have garnered interest as useful biochemical tools, but information on some of their physical characteristics is lacking. In this study, the B3LYP density functional with the 6-31+G(d,p) basis set and an implicit-explicit solvent model was used to perform ab initio quantum mechanical studies to estimate pKa values of aza- and deaza-modified nucleobases. A comparison between theoretical and known experimental pKa values was carried out, and adjustment factors were applied to 57 pKa values in the purine and pyrimidine data sets.
Collapse
Affiliation(s)
- Alan J Mlotkowski
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - H Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Christine S Chow
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
8
|
Prokhorova DV, Vokhtantsev IP, Tolstova PO, Zhuravlev ES, Kulishova LM, Zharkov DO, Stepanov GA. Natural Nucleoside Modifications in Guide RNAs Can Modulate the Activity of the CRISPR-Cas9 System In Vitro. CRISPR J 2022; 5:799-812. [PMID: 36350691 DOI: 10.1089/crispr.2022.0069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
At the present time, the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system has been widely adopted as an efficient genomic editing tool. However, there are some actual problems such as the off-target effects, cytotoxicity, and immunogenicity. The incorporation of modifications into guide RNAs permits enhancing both the efficiency and the specificity of the CRISPR-Cas9 system. In this study, we demonstrate that the inclusion of N6-methyladenosine, 5-methylcytidine, and pseudouridine in trans-activating RNA (tracrRNA) or in single guide RNA (sgRNA) enables efficient gene editing in vitro. We found that the complexes of modified guide RNAs with Cas9 protein promoted cleavage of the target short/long duplexes and plasmid substrates. In addition, the modified monomers in guide RNAs allow increasing the specificity of CRISPR-Cas9 system in vitro and promote diminishing both the immunostimulating and the cytotoxic effects of sgRNAs.
Collapse
Affiliation(s)
- Daria V Prokhorova
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Ivan P Vokhtantsev
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Polina O Tolstova
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Evgenii S Zhuravlev
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Lilia M Kulishova
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Dmitry O Zharkov
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Grigory A Stepanov
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
9
|
Detection technologies for RNA modifications. Exp Mol Med 2022; 54:1601-1616. [PMID: 36266445 PMCID: PMC9636272 DOI: 10.1038/s12276-022-00821-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/21/2022] [Accepted: 05/18/2022] [Indexed: 12/29/2022] Open
Abstract
To date, more than 170 chemical modifications have been characterized in RNA, providing a new layer of gene expression regulation termed the 'epitranscriptome'. RNA modification detection methods and tools advance the functional studies of the epitranscriptome. According to the detection throughput and principles, existing RNA modification detection technologies can be categorized into four classes, including quantification methods, locus-specific detection methods, next-generation sequencing-based detection technologies and nanopore direct RNA sequencing-based technologies. In this review, we summarize the current knowledge about these RNA modification detection technologies and discuss the challenges for the existing detection tools, providing information for a comprehensive understanding of the epitranscriptome.
Collapse
|
10
|
Feng Q, Wang D, Xue T, Lin C, Gao Y, Sun L, Jin Y, Liu D. The role of RNA modification in hepatocellular carcinoma. Front Pharmacol 2022; 13:984453. [PMID: 36120301 PMCID: PMC9479111 DOI: 10.3389/fphar.2022.984453] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/11/2022] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly mortal type of primary liver cancer. Abnormal epigenetic modifications are present in HCC, and RNA modification is dynamic and reversible and is a key post-transcriptional regulator. With the in-depth study of post-transcriptional modifications, RNA modifications are aberrantly expressed in human cancers. Moreover, the regulators of RNA modifications can be used as potential targets for cancer therapy. In RNA modifications, N6-methyladenosine (m6A), N7-methylguanosine (m7G), and 5-methylcytosine (m5C) and their regulators have important regulatory roles in HCC progression and represent potential novel biomarkers for the confirmation of diagnosis and treatment of HCC. This review focuses on RNA modifications in HCC and the roles and mechanisms of m6A, m7G, m5C, N1-methyladenosine (m1A), N3-methylcytosine (m3C), and pseudouridine (ψ) on its development and maintenance. The potential therapeutic strategies of RNA modifications are elaborated for HCC.
Collapse
Affiliation(s)
- Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Tianyi Xue
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liqun Sun
- Department of Pediatrics, First Hospital of Jilin University, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Dianfeng Liu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
- *Correspondence: Dianfeng Liu,
| |
Collapse
|
11
|
Shafik AM, Allen EG, Jin P. Epitranscriptomic dynamics in brain development and disease. Mol Psychiatry 2022; 27:3633-3646. [PMID: 35474104 PMCID: PMC9596619 DOI: 10.1038/s41380-022-01570-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/08/2023]
Abstract
Distinct cell types are generated at specific times during brain development and are regulated by epigenetic, transcriptional, and newly emerging epitranscriptomic mechanisms. RNA modifications are known to affect many aspects of RNA metabolism and have been implicated in the regulation of various biological processes and in disease. Recent studies imply that dysregulation of the epitranscriptome may be significantly associated with neuropsychiatric, neurodevelopmental, and neurodegenerative disorders. Here we review the current knowledge surrounding the role of the RNA modifications N6-methyladenosine, 5-methylcytidine, pseudouridine, A-to-I RNA editing, 2'O-methylation, and their associated machinery, in brain development and human diseases. We also highlight the need for the development of new technologies in the pursuit of directly mapping RNA modifications in both genome- and single-molecule-level approach.
Collapse
Affiliation(s)
- Andrew M Shafik
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Emily G Allen
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
12
|
Role of main RNA modifications in cancer: N 6-methyladenosine, 5-methylcytosine, and pseudouridine. Signal Transduct Target Ther 2022; 7:142. [PMID: 35484099 PMCID: PMC9051163 DOI: 10.1038/s41392-022-01003-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is one of the major diseases threatening human life and health worldwide. Epigenetic modification refers to heritable changes in the genetic material without any changes in the nucleic acid sequence and results in heritable phenotypic changes. Epigenetic modifications regulate many biological processes, such as growth, aging, and various diseases, including cancer. With the advancement of next-generation sequencing technology, the role of RNA modifications in cancer progression has become increasingly prominent and is a hot spot in scientific research. This review studied several common RNA modifications, such as N6-methyladenosine, 5-methylcytosine, and pseudouridine. The deposition and roles of these modifications in coding and noncoding RNAs are summarized in detail. Based on the RNA modification background, this review summarized the expression, function, and underlying molecular mechanism of these modifications and their regulators in cancer and further discussed the role of some existing small-molecule inhibitors. More in-depth studies on RNA modification and cancer are needed to broaden the understanding of epigenetics and cancer diagnosis, treatment, and prognosis.
Collapse
|
13
|
Dutta N, Deb I, Sarzynska J, Lahiri A. Data-informed reparameterization of modified RNA and the effect of explicit water models: application to pseudouridine and derivatives. J Comput Aided Mol Des 2022; 36:205-224. [PMID: 35338419 PMCID: PMC8956458 DOI: 10.1007/s10822-022-00447-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/04/2022] [Indexed: 11/29/2022]
Abstract
Pseudouridine is one of the most abundant post-transcriptional modifications in RNA. We have previously shown that the FF99-derived parameters for pseudouridine and some of its naturally occurring derivatives in the AMBER distribution either alone or in combination with the revised γ torsion parameters (parmbsc0) failed to reproduce their conformational characteristics observed experimentally (Deb et al. in J Chem Inf Model 54:1129–1142, 2014; Deb et al. in J Comput Chem 37:1576–1588, 2016; Dutta et al. in J Chem Inf Model 60:4995–5002, 2020). However, the application of the recommended bsc0 correction did lead to an improvement in the description not only of the distribution in the γ torsional space but also of the sugar pucker distributions. In an earlier study, we examined the transferability of the revised glycosidic torsion parameters (χIDRP) for Ψ to its derivatives. We noticed that although these parameters in combination with the AMBER FF99-derived parameters and the revised γ torsional parameters resulted in conformational properties of these residues that were in better agreement with experimental observations, the sugar pucker distributions were still not reproduced accurately. Here we report a new set of partial atomic charges for pseudouridine, 1-methylpseudouridine, 3-methylpseudouridine and 2′-O-methylpseudouridine and a new set of glycosidic torsional parameters (χND) based on chosen glycosidic torsional profiles that most closely corresponded to the NMR data for conformational propensities and studied their effect on the conformational distributions using REMD simulations at the individual nucleoside level. We have also studied the effect of the choice of water model on the conformational characteristics of these modified nucleosides. Our observations suggest that the current revised set of parameters and partial atomic charges describe the sugar pucker distributions for these residues more accurately and that the choice of a suitable water model is important for the accurate description of their conformational properties. We have further validated the revised sets of parameters by studying the effect of substitution of uridine with pseudouridine within single stranded RNA oligonucleotides on their conformational and hydration characteristics.
Collapse
Affiliation(s)
- Nivedita Dutta
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, West Bengal, 700009, India
| | - Indrajit Deb
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, West Bengal, 700009, India
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Ansuman Lahiri
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, West Bengal, 700009, India.
| |
Collapse
|
14
|
Jones EL, Mlotkowski AJ, Hebert SP, Schlegel HB, Chow CS. Calculations of p Ka Values for a Series of Naturally Occurring Modified Nucleobases. J Phys Chem A 2022; 126:1518-1529. [PMID: 35201779 DOI: 10.1021/acs.jpca.1c10905] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Modified nucleobases are found in functionally important regions of RNA and are often responsible for essential structural roles. Many of these nucleobase modifications are dynamically regulated in nature, with each modification having a different biological role in RNA. Despite the high abundance of modifications, many of their characteristics are still poorly understood. One important property of a nucleobase is its pKa value, which has been widely studied for unmodified nucleobases, but not for the modified versions. In this study, the pKa values of modified nucleobases were determined by performing ab initio quantum mechanical calculations using a B3LYP density functional with the 6-31+G(d,p) basis set and a combination of implicit-explicit solvation systems. This method, which was previously employed to determine the pKa values of unmodified nucleobases, is applicable to a variety of modified nucleobases. Comparisons of the pKa values of modified nucleobases give insight into their structural and energetic impacts within nucleic acids.
Collapse
Affiliation(s)
- Evan L Jones
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Alan J Mlotkowski
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Sebastien P Hebert
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - H Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Christine S Chow
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
15
|
Kiss DJ, Oláh J, Tóth G, Varga M, Stirling A, Menyhárd DK, Ferenczy GG. The Structure-Derived Mechanism of Box H/ACA Pseudouridine Synthase Offers a Plausible Paradigm for Programmable RNA Editing. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Dóra Judit Kiss
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Julianna Oláh
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rakpart 3, H-1111 Budapest, Hungary
| | - Gergely Tóth
- Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány P. stny. 1/a, H-1117 Budapest, Hungary
| | - Máté Varga
- Department of Genetics, ELTE Eötvös Loránd University, Pázmány P. stny. 1/c, H-1117 Budapest, Hungary
| | - András Stirling
- Theoretical Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Dóra K. Menyhárd
- MTA-ELTE Protein Modelling Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány P. stny. 1/a, H-1117 Budapest, Hungary
| | - György G. Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary
| |
Collapse
|
16
|
Biedenbänder T, de Jesus V, Schmidt-Dengler M, Helm M, Corzilius B, Fürtig B. RNA modifications stabilize the tertiary structure of tRNAfMet by locally increasing conformational dynamics. Nucleic Acids Res 2022; 50:2334-2349. [PMID: 35137185 PMCID: PMC8887418 DOI: 10.1093/nar/gkac040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/29/2021] [Accepted: 01/14/2022] [Indexed: 11/12/2022] Open
Abstract
A plethora of modified nucleotides extends the chemical and conformational space for natural occurring RNAs. tRNAs constitute the class of RNAs with the highest modification rate. The extensive modification modulates their overall stability, the fidelity and efficiency of translation. However, the impact of nucleotide modifications on the local structural dynamics is not well characterized. Here we show that the incorporation of the modified nucleotides in tRNAfMet from Escherichia coli leads to an increase in the local conformational dynamics, ultimately resulting in the stabilization of the overall tertiary structure. Through analysis of the local dynamics by NMR spectroscopic methods we find that, although the overall thermal stability of the tRNA is higher for the modified molecule, the conformational fluctuations on the local level are increased in comparison to an unmodified tRNA. In consequence, the melting of individual base pairs in the unmodified tRNA is determined by high entropic penalties compared to the modified. Further, we find that the modifications lead to a stabilization of long-range interactions harmonizing the stability of the tRNA's secondary and tertiary structure. Our results demonstrate that the increase in chemical space through introduction of modifications enables the population of otherwise inaccessible conformational substates.
Collapse
Affiliation(s)
- Thomas Biedenbänder
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, Frankfurt am Main 60438, Germany.,Institute of Chemistry and Department Life, Light & Matter, University of Rostock, Rostock 18059, Germany
| | - Vanessa de Jesus
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, Frankfurt am Main 60438, Germany
| | - Martina Schmidt-Dengler
- Institut für pharmazeutische und biomedizinische Wissenschaften (IPBW), Johannes Gutenberg-Universität, Mainz 55128, Germany
| | - Mark Helm
- Institut für pharmazeutische und biomedizinische Wissenschaften (IPBW), Johannes Gutenberg-Universität, Mainz 55128, Germany
| | - Björn Corzilius
- Institute of Chemistry and Department Life, Light & Matter, University of Rostock, Rostock 18059, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, Frankfurt am Main 60438, Germany
| |
Collapse
|
17
|
Jády BE, Ketele A, Moulis D, Kiss T. Guide RNA acrobatics: positioning consecutive uridines for pseudouridylation by H/ACA pseudouridylation loops with dual guide capacity. Genes Dev 2022; 36:70-83. [PMID: 34916304 PMCID: PMC8763049 DOI: 10.1101/gad.349072.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022]
Abstract
Site-specific pseudouridylation of human ribosomal and spliceosomal RNAs is directed by H/ACA guide RNAs composed of two hairpins carrying internal pseudouridylation guide loops. The distal "antisense" sequences of the pseudouridylation loop base-pair with the target RNA to position two unpaired target nucleotides 5'-UN-3', including the 5' substrate U, under the base of the distal stem topping the guide loop. Therefore, each pseudouridylation loop is expected to direct synthesis of a single pseudouridine (Ψ) in the target sequence. However, in this study, genetic depletion and restoration and RNA mutational analyses demonstrate that at least four human H/ACA RNAs (SNORA53, SNORA57, SCARNA8, and SCARNA1) carry pseudouridylation loops supporting efficient and specific synthesis of two consecutive pseudouridines (ΨΨ or ΨNΨ) in the 28S (Ψ3747/Ψ3749), 18S (Ψ1045/Ψ1046), and U2 (Ψ43/Ψ44 and Ψ89/Ψ91) RNAs, respectively. In order to position two substrate Us for pseudouridylation, the dual guide loops form alternative base-pairing interactions with their target RNAs. This remarkable structural flexibility of dual pseudouridylation loops provides an unexpected versatility for RNA-directed pseudouridylation without compromising its efficiency and accuracy. Besides supporting synthesis of at least 6% of human ribosomal and spliceosomal Ψs, evidence indicates that dual pseudouridylation loops also participate in pseudouridylation of yeast and archaeal rRNAs.
Collapse
Affiliation(s)
- Beáta E Jády
- Molecular, Cellular, and Developmental Biology Department (MCD) UMR 5077, Centre de Biologie Intégrative (CBI), University of Toulouse, Centre National de la Recherche Scientifique, 31062 Toulouse, France
| | - Amandine Ketele
- Molecular, Cellular, and Developmental Biology Department (MCD) UMR 5077, Centre de Biologie Intégrative (CBI), University of Toulouse, Centre National de la Recherche Scientifique, 31062 Toulouse, France
| | - Dylan Moulis
- Molecular, Cellular, and Developmental Biology Department (MCD) UMR 5077, Centre de Biologie Intégrative (CBI), University of Toulouse, Centre National de la Recherche Scientifique, 31062 Toulouse, France
| | - Tamás Kiss
- Molecular, Cellular, and Developmental Biology Department (MCD) UMR 5077, Centre de Biologie Intégrative (CBI), University of Toulouse, Centre National de la Recherche Scientifique, 31062 Toulouse, France
- Biological Research Centre, 6726 Szeged, Hungary
| |
Collapse
|
18
|
Morais P, Adachi H, Yu YT. The Critical Contribution of Pseudouridine to mRNA COVID-19 Vaccines. Front Cell Dev Biol 2021; 9:789427. [PMID: 34805188 PMCID: PMC8600071 DOI: 10.3389/fcell.2021.789427] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/22/2021] [Indexed: 01/14/2023] Open
Abstract
The current COVID-19 pandemic is a massive source of global disruption, having led so far to two hundred and fifty million COVID-19 cases and almost five million deaths worldwide. It was recognized in the beginning that only an effective vaccine could lead to a way out of the pandemic, and therefore the race for the COVID-19 vaccine started immediately, boosted by the availability of the viral sequence data. Two novel vaccine platforms, based on mRNA technology, were developed in 2020 by Pfizer-BioNTech and Moderna Therapeutics (comirnaty® and spikevax®, respectively), and were the first ones presenting efficacies higher than 90%. Both consisted of N1-methyl-pseudouridine-modified mRNA encoding the SARS-COVID-19 Spike protein and were delivered with a lipid nanoparticle (LNP) formulation. Because the delivery problem of ribonucleic acids had been known for decades, the success of LNPs was quickly hailed by many as the unsung hero of COVID-19 mRNA vaccines. However, the clinical trial efficacy results of the Curevac mRNA vaccine (CVnCoV) suggested that the delivery system was not the only key to the success. CVnCoV consisted of an unmodified mRNA (encoding the same spike protein as Moderna and Pfizer-BioNTech's mRNA vaccines) and was formulated with the same LNP as Pfizer-BioNTech's vaccine (Acuitas ALC-0315). However, its efficacy was only 48%. This striking difference in efficacy could be attributed to the presence of a critical RNA modification (N1-methyl-pseudouridine) in the Pfizer-BioNTech and Moderna's mRNA vaccines (but not in CVnCoV). Here we highlight the features of N1-methyl-pseudouridine and its contributions to mRNA vaccines.
Collapse
Affiliation(s)
| | - Hironori Adachi
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, United States
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
19
|
Owens MC, Zhang C, Liu KF. Recent technical advances in the study of nucleic acid modifications. Mol Cell 2021; 81:4116-4136. [PMID: 34480848 PMCID: PMC9109655 DOI: 10.1016/j.molcel.2021.07.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 12/30/2022]
Abstract
Enzyme-mediated chemical modifications of nucleic acids are indispensable regulators of gene expression. Our understanding of the biochemistry and biological significance of these modifications has largely been driven by an ever-evolving landscape of technologies that enable accurate detection, mapping, and manipulation of these marks. Here we provide a summary of recent technical advances in the study of nucleic acid modifications with a focus on techniques that allow accurate detection and mapping of these modifications. For each modification discussed (N6-methyladenosine, 5-methylcytidine, inosine, pseudouridine, and N4-acetylcytidine), we begin by introducing the "gold standard" technique for its mapping and detection, followed by a discussion of techniques developed to address any shortcomings of the gold standard. By highlighting the commonalities and differences of these techniques, we hope to provide a perspective on the current state of the field and to lay out a guideline for development of future technologies.
Collapse
Affiliation(s)
- Michael C Owens
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Celia Zhang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathy Fange Liu
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Riley AT, Sanford TC, Woodard AM, Clerc EP, Sumita M. Semi-enzymatic synthesis of pseudouridine. Bioorg Med Chem Lett 2021; 44:128105. [PMID: 33991631 DOI: 10.1016/j.bmcl.2021.128105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 12/01/2022]
Abstract
Modifications of RNA molecules have a significant effect on their structure and function. One of the most common modifications is the isomerization from uridine to pseudouridine. Despite its prevalence in natural RNA sequences, organic synthesis of pseudouridine has been challenging because of the stereochemistry requirement and the sensitivity of reaction steps to moisture. Herein, a semi-enzymatic synthetic route is developed for the synthesis of pseudouridine using adenosine 5'-monophosphate and uracil as the starting materials and a reverse reaction catalyzed by the pseudouridine monophosphate glycosidase. This synthetic route has only three steps and the overall yield of β-pseudouridine production was 68.4%.
Collapse
Affiliation(s)
- Andrew T Riley
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Tristan C Sanford
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Austin M Woodard
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Elliot P Clerc
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Minako Sumita
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States.
| |
Collapse
|
21
|
Netzband R, Pager CT. Viral Epitranscriptomics. Virology 2021. [DOI: 10.1002/9781119818526.ch4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Porat J, Kothe U, Bayfield MA. Revisiting tRNA chaperones: New players in an ancient game. RNA (NEW YORK, N.Y.) 2021; 27:rna.078428.120. [PMID: 33593999 PMCID: PMC8051267 DOI: 10.1261/rna.078428.120] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/10/2021] [Indexed: 05/03/2023]
Abstract
tRNAs undergo an extensive maturation process including post-transcriptional modifications that influence secondary and tertiary interactions. Precursor and mature tRNAs lacking key modifications are often recognized as aberrant and subsequently targeted for decay, illustrating the importance of modifications in promoting structural integrity. tRNAs also rely on tRNA chaperones to promote the folding of misfolded substrates into functional conformations. The best characterized tRNA chaperone is the La protein, which interacts with nascent RNA polymerase III transcripts to promote folding and offers protection from exonucleases. More recently, certain tRNA modification enzymes have also been demonstrated to possess tRNA folding activity distinct from their catalytic activity, suggesting that they may act as tRNA chaperones. In this review, we will discuss pioneering studies relating post-transcriptional modification to tRNA stability and decay pathways, present recent advances into the mechanism by which the RNA chaperone La assists pre-tRNA maturation, and summarize emerging research directions aimed at characterizing modification enzymes as tRNA chaperones. Together, these findings shed light on the importance of tRNA folding and how tRNA chaperones, in particular, increase the fraction of nascent pre-tRNAs that adopt a folded, functional conformation.
Collapse
|
23
|
Zhou Y, van Zijl PCM, Xu J, Yadav NN. Mechanism and quantitative assessment of saturation transfer for water-based detection of the aliphatic protons in carbohydrate polymers. Magn Reson Med 2020; 85:1643-1654. [PMID: 32970889 DOI: 10.1002/mrm.28503] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/20/2020] [Accepted: 08/10/2020] [Indexed: 12/23/2022]
Abstract
PURPOSE CEST MRI experiments of mobile macromolecules, for example, proteins, carbohydrates, and phospholipids, often show signals due to saturation transfer from aliphatic protons to water. Currently, the mechanism of this nuclear Overhauser effect (NOE)-based transfer pathway is not completely understood and could be due either to NOEs directly to bound water or NOEs relayed intramolecularly via exchangeable protons. We used glycogen as a model system to investigate this saturation transfer pathway in sugar polymer solution. METHODS To determine whether proton exchange affected saturation transfer, saturation spectra (Z-spectra) were measured for glycogen solutions of different pH, D2 O/H2 O ratio, and glycogen particle size. A theoretical model was derived to analytically describe the NOE-based signals in these spectra. Numerical simulations were performed to verify this theory, which was further tested by fitting experimental data for different exchange regimes. RESULTS Signal intensities of aliphatic NOEs in Z-spectra of glycogen in D2 O solution were influenced by hydroxyl proton exchange rates, whereas those in H2 O were not. This indicates that the primary transfer pathway is an exchange-relayed NOE from these aliphatic protons to neighboring hydroxyl protons, followed by the exchange to water protons. Experimental data for glycogen solutions in D2 O and H2 O could be analyzed successfully using an analytical theory derived for such relayed NOE transfer, which was further validated using numerical simulations with the Bloch equations. CONCLUSION The predominant mechanism underlying aliphatic signals in Z-spectra of mobile carbohydrate polymers is intramolecular relayed NOE transfer followed by proton exchange.
Collapse
Affiliation(s)
- Yang Zhou
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Peter C M van Zijl
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Jiadi Xu
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Nirbhay N Yadav
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Kalra K, Gorle S, Cavallo L, Oliva R, Chawla M. Occurrence and stability of lone pair-π and OH-π interactions between water and nucleobases in functional RNAs. Nucleic Acids Res 2020; 48:5825-5838. [PMID: 32392301 PMCID: PMC7293021 DOI: 10.1093/nar/gkaa345] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 01/15/2023] Open
Abstract
We identified over 1000 instances of water-nucleobase stacking contacts in a variety of RNA molecules from a non-redundant set of crystal structures with resolution ≤3.0 Å. Such contacts may be of either the lone pair-π (lp-π) or the OH-π type, in nature. The distribution of the distances of the water oxygen from the nucleobase plane peaks at 3.5 Å for A, G and C, and approximately at 3.1-3.2 Å for U. Quantum mechanics (QM) calculations confirm, as expected, that the optimal energy is reached at a shorter distance for the lp-π interaction as compared to the OH-π one (3.0 versus 3.5 Å). The preference of each nucleobase for either type of interaction closely correlates with its electrostatic potential map. Furthermore, QM calculations show that for all the nucleobases a favorable interaction, of either the lp-π or the OH-π type, can be established at virtually any position of the water molecule above the nucleobase skeleton, which is consistent with the uniform projection of the OW atoms over the nucleobases ring we observed in the experimental occurrences. Finally, molecular dynamics simulations of a model system for the characterization of water-nucleobase stacking contacts confirm the stability of these interactions also under dynamic conditions.
Collapse
Affiliation(s)
- Kanav Kalra
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Suresh Gorle
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, I-80143 Naples, Italy
| | - Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
25
|
Westhof E. Pseudouridines or how to draw on weak energy differences. Biochem Biophys Res Commun 2020; 520:702-704. [PMID: 31761086 DOI: 10.1016/j.bbrc.2019.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/01/2019] [Indexed: 01/28/2023]
Abstract
In many RNA molecules, pseudouridines occur at conserved positions in functional sites. A great diversity of pseudouridine synthases guarantees the insertion of the modified base at precise locations. The accepted structural role of pseudouridines is a reduction of the RNA flexibility around the modification site. However, experiments rarely yield clear-cut evidence. The article "Dynamic stacking of an expected branch point adenosine in duplexes containing pseudouridine-modified or unmodified U2 snRNA sites" published in 2019 in Biochemical and Biophysical Research Communication by Kennedy et al. constitute a provocative case [1]. This example illustrates how a definite conformational state can be selected through small energy differences in a constrained environment.
Collapse
Affiliation(s)
- Eric Westhof
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15 rue René Descartes, 67084, Strasbourg, France.
| |
Collapse
|
26
|
Gc K, Gyawali P, Balci H, Abeysirigunawardena S. Ribosomal RNA Methyltransferase RsmC Moonlights as an RNA Chaperone. Chembiochem 2020; 21:1885-1892. [PMID: 31972066 DOI: 10.1002/cbic.201900708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/14/2020] [Indexed: 01/31/2023]
Abstract
Ribosomes are ribonucleoprotein particles that are essential for protein biosynthesis in all forms of life. During ribosome biogenesis, transcription, folding, modification, and processing of rRNA are coupled to the assembly of proteins. Various assembly factors are required to synchronize all different processes that occur during ribosome biogenesis. Herein, the RNA chaperone and RNA strand annealing activity of rRNA modification enzyme ribosome small subunit methyltransferase C (RsmC), which modifies guanine to 2-methylguanosine (m2 G) at position 1207 of 16S rRNA (Escherichia coli nucleotide numbering) located at helix 34 (h34), are reported. A 25-fold increase in the h34 RNA strand annealing rates is observed in the presence of RsmC. Single-molecule FRET experiments confirmed the ability of protein RsmC to denature a non-native structure formed by one of the two h34 strands and to form a native-like duplex. This observed RNA chaperone activity of protein RsmC might play a vital role in the rapid generation of functional ribosomes.
Collapse
Affiliation(s)
- Keshav Gc
- Department of Chemistry and Biochemistry, Kent State University, 1175 Risman Drive, Kent, OH, 44242, USA
| | - Prabesh Gyawali
- Department of Physics, Kent State University, 103 Smith Hall, Kent, OH, 44242, USA
| | - Hamza Balci
- Department of Physics, Kent State University, 103 Smith Hall, Kent, OH, 44242, USA
| | | |
Collapse
|
27
|
Rajan K, Doniger T, Cohen-Chalamish S, Chen D, Semo O, Aryal S, Glick Saar E, Chikne V, Gerber D, Unger R, Tschudi C, Michaeli S. Pseudouridines on Trypanosoma brucei spliceosomal small nuclear RNAs and their implication for RNA and protein interactions. Nucleic Acids Res 2019; 47:7633-7647. [PMID: 31147702 PMCID: PMC6698659 DOI: 10.1093/nar/gkz477] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/11/2019] [Accepted: 05/18/2019] [Indexed: 12/15/2022] Open
Abstract
The parasite Trypanosoma brucei, the causative agent of sleeping sickness, cycles between an insect and a mammalian host. Here, we investigated the presence of pseudouridines (Ψs) on the spliceosomal small nuclear RNAs (snRNAs), which may enable growth at the very different temperatures characterizing the two hosts. To this end, we performed the first high-throughput mapping of spliceosomal snRNA Ψs by small RNA Ψ-seq. The analysis revealed 42 Ψs on T. brucei snRNAs, which is the highest number reported so far. We show that a trypanosome protein analogous to human protein WDR79, is essential for guiding Ψ on snRNAs but not on rRNAs. snoRNA species implicated in snRNA pseudouridylation were identified by a genome-wide approach based on ligation of RNAs following in vivo UV cross-linking. snRNA Ψs are guided by single hairpin snoRNAs, also implicated in rRNA modification. Depletion of such guiding snoRNA by RNAi compromised the guided modification on snRNA and reduced parasite growth at elevated temperatures. We further demonstrate that Ψ strengthens U4/U6 RNA–RNA and U2B"/U2A’ proteins-U2 snRNA interaction at elevated temperatures. The existence of single hairpin RNAs that modify both the spliceosome and ribosome RNAs is unique for these parasites, and may be related to their ability to cycle between their two hosts that differ in temperature.
Collapse
Affiliation(s)
- K Shanmugha Rajan
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Smadar Cohen-Chalamish
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dana Chen
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Oz Semo
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Saurav Aryal
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | - Vaibhav Chikne
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Doron Gerber
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Christian Tschudi
- Departmentof Epidemiology and Microbial Diseases, Yale School of Public Health, New Haven, CT 06536, USA
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
- To whom correspondence should be addressed. Tel:+972 3 5317522;
| |
Collapse
|
28
|
Computational and NMR studies of RNA duplexes with an internal pseudouridine-adenosine base pair. Sci Rep 2019; 9:16278. [PMID: 31700156 PMCID: PMC6838189 DOI: 10.1038/s41598-019-52637-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 10/03/2019] [Indexed: 01/28/2023] Open
Abstract
Pseudouridine (Ψ) is the most common chemical modification present in RNA. In general, Ψ increases the thermodynamic stability of RNA. However, the degree of stabilization depends on the sequence and structural context. To explain experimentally observed sequence dependence of the effect of Ψ on the thermodynamic stability of RNA duplexes, we investigated the structure, dynamics and hydration of RNA duplexes with an internal Ψ-A base pair in different nearest-neighbor sequence contexts. The structures of two RNA duplexes containing 5′-GΨC/3′-CAG and 5′-CΨG/3′-GAC motifs were determined using NMR spectroscopy. To gain insight into the effect of Ψ on duplex dynamics and hydration, we performed molecular dynamics (MD) simulations of RNA duplexes with 5′-GΨC/3′-CAG, 5′-CΨG/3′-GAC, 5′-AΨU/3′-UAA and 5′-UΨA/3′-AAU motifs and their unmodified counterparts. Our results showed a subtle impact from Ψ modification on the structure and dynamics of the RNA duplexes studied. The MD simulations confirmed the change in hydration pattern when U is replaced with Ψ. Quantum chemical calculations showed that the replacement of U with Ψ affected the intrinsic stacking energies at the base pair steps depending on the sequence context. The calculated intrinsic stacking energies help to explain the experimentally observed sequence dependent changes in the duplex stability from Ψ modification.
Collapse
|
29
|
Netzband R, Pager CT. Epitranscriptomic marks: Emerging modulators of RNA virus gene expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1576. [PMID: 31694072 PMCID: PMC7169815 DOI: 10.1002/wrna.1576] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/27/2022]
Abstract
Epitranscriptomics, the study of posttranscriptional chemical moieties placed on RNA, has blossomed in recent years. This is due in part to the emergence of high‐throughput detection methods as well as the burst of discoveries showing biological function of select chemical marks. RNA modifications have been shown to affect RNA structure, localization, and functions such as alternative splicing, stabilizing transcripts, nuclear export, cap‐dependent and cap‐independent translation, microRNA biogenesis and binding, RNA degradation, and immune regulation. As such, the deposition of chemical marks on RNA has the unique capability to spatially and temporally regulate gene expression. The goal of this article is to present the exciting convergence of the epitranscriptomic and virology fields, specifically the deposition and biological impact of N7‐methylguanosine, ribose 2′‐O‐methylation, pseudouridine, inosine, N6‐methyladenosine, and 5‐methylcytosine epitranscriptomic marks on gene expression of RNA viruses. This article is categorized under:RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein–RNA Interactions: Functional Implications
Collapse
Affiliation(s)
- Rachel Netzband
- Department of Biological Sciences, The RNA Institute, University at Albany-SUNY, Albany, New York
| | - Cara T Pager
- Department of Biological Sciences, The RNA Institute, University at Albany-SUNY, Albany, New York
| |
Collapse
|
30
|
Abstract
Chemical modifications of RNAs have long been established as key modulators of nonprotein-coding RNA structure and function in cells. There is a growing appreciation that messenger RNA (mRNA) sequences responsible for directing protein synthesis can also be posttranscriptionally modified. The enzymatic incorporation of mRNA modifications has many potential outcomes, including changing mRNA stability, protein recruitment, and translation. We tested how one of the most common modifications present in mRNA coding regions, pseudouridine (Ψ), impacts protein synthesis using a fully reconstituted bacterial translation system and human cells. Our work reveals that replacing a single uridine nucleotide with Ψ in an mRNA codon impedes amino acid addition and EF-Tu GTPase activation. A crystal structure of the Thermus thermophilus 70S ribosome with a tRNAPhe bound to a ΨUU codon in the A site supports these findings. We also find that the presence of Ψ can promote the low-level synthesis of multiple peptide products from a single mRNA sequence in the reconstituted translation system as well as human cells, and increases the rate of near-cognate Val-tRNAVal reacting on a ΨUU codon. The vast majority of Ψ moieties in mRNAs are found in coding regions, and our study suggests that one consequence of the ribosome encountering Ψ can be to modestly alter both translation speed and mRNA decoding.
Collapse
|
31
|
Biochemical insight into pseudouridine synthase 7 (PUS7) as a novel interactor of sirtuin, SIRT1. Biochem Biophys Res Commun 2019; 518:598-604. [PMID: 31451225 DOI: 10.1016/j.bbrc.2019.08.097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 01/28/2023]
Abstract
Sirtuin1 (SIRT1) forms a dynamic regulatory network with multiple proteins. The SIRT1 protein interactome comprises histone, non-histone substrates, and modulators of SIRT1 deacetylase. Proteomic studies have enlisted several proteins in SIRT1 network, but the structural and functional details of their interactions remain largely unexplored. In this study, we establish Pseudouridine synthase 7 (PUS7), a nuclear protein involved in stem cell development and intellectual disabilities, as a novel interactor of SIRT1. The binding regions are predicted and analyzed based on molecular docking studies. The direct interaction occurs between SIRT1 and PUS7, as evidenced by pull-down studies and surface plasmon resonance (SPR) assay. Furthermore, the truncation studies unambiguously suggested that the N-terminal region of PUS7 is essential for forming a stable complex with SIRT1. Overall, our results suggest that PUS7 may regulate the SIRT1 function when it directly interacts with SIRT1.
Collapse
|
32
|
Chen MX, Wijethunge BDIK, Zhou SM, Yang JF, Dai L, Wang SS, Chen C, Fu LJ, Zhang J, Hao GF, Yang GF. Chemical Modulation of Alternative Splicing for Molecular-Target Identification by Potential Genetic Control in Agrochemical Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5072-5084. [PMID: 30986354 DOI: 10.1021/acs.jafc.9b02086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Alternative splicing (AS), the process of removing introns from pre-mRNA and the rearrangement of exons to produce several types of mature transcripts, is a remarkable step preceding protein synthesis. In particular, it has now been conclusively shown that up to ∼95% of genes are alternatively spliced to generate a complex and diverse proteome in eukaryotic organisms. Consequently, AS is one of the determinants of the functional repertoire of cells. Many studies have revealed that AS in plants can be regulated by cell type, developmental stage, environmental stress, and the circadian clock. Moreover, increasing amounts of evidence reveal that chemical compounds can affect various steps during splicing to induce major effects on plant physiology. Hence, the chemical modulation of AS can serve as a good strategy for molecular-target identification in attempts to potentially control plant genetics. However, the kind of mechanisms involved in the chemical modulation of AS that can be used in agrochemical research remain largely unknown. This review introduces recent studies describing the specific roles AS plays in plant adaptation to environmental stressors and in the regulation of development. We also discuss recent advances in small molecules that induce alterations of AS and the possibility of using this strategy in agrochemical-target identification, giving a new direction for potential genetic control in agrochemical research.
Collapse
Affiliation(s)
- Mo-Xian Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals , Guizhou University , Guiyang 550025 , PR China
- Division of Gastroenterology , Shenzhen Children's Hospital , Shenzhen 518038 , PR China
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology , Chinese Academy of Sciences , Shenzhen 518055 , PR China
- School of Life Sciences and Shenzhen Research Institute , The Chinese University of Hong Kong , Shenzhen 518063 , PR China
| | - Boyagane D I K Wijethunge
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , PR China
| | - Shao-Ming Zhou
- Division of Gastroenterology , Shenzhen Children's Hospital , Shenzhen 518038 , PR China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , PR China
| | - Lei Dai
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology , Chinese Academy of Sciences , Shenzhen 518055 , PR China
| | - Shan-Shan Wang
- School of Life Sciences and Shenzhen Research Institute , The Chinese University of Hong Kong , Shenzhen 518063 , PR China
| | - Chen Chen
- Department of Infectious Disease, Nanjing Second Hospital , Nanjing University of Chinese Medicine , Nanjing 210003 , PR China
| | - Li-Jun Fu
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants , Putian University , Putian , Fujian 351100 , PR China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University and State Key Laboratory of Agrobiotechnology , The Chinese University of Hong Kong , Shatin , Hong Kong , PR China
| | - Ge-Fei Hao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals , Guizhou University , Guiyang 550025 , PR China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , PR China
| |
Collapse
|
33
|
Rebelo-Guiomar P, Powell CA, Van Haute L, Minczuk M. The mammalian mitochondrial epitranscriptome. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2019; 1862:429-446. [PMID: 30529456 PMCID: PMC6414753 DOI: 10.1016/j.bbagrm.2018.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/16/2018] [Accepted: 11/23/2018] [Indexed: 01/08/2023]
Abstract
Correct expression of the mitochondrially-encoded genes is critical for the production of the components of the oxidative phosphorylation machinery. Post-transcriptional modifications of mitochondrial transcripts have been emerging as an important regulatory feature of mitochondrial gene expression. Here we review the current knowledge on how the mammalian mitochondrial epitranscriptome participates in regulating mitochondrial homeostasis. In particular, we focus on the latest breakthroughs made towards understanding the roles of the modified nucleotides in mitochondrially-encoded ribosomal and transfer RNAs, the enzymes responsible for introducing these modifications and on recent transcriptome-wide studies reporting modifications to mitochondrial messenger RNAs. This article is part of a Special Issue entitled: mRNA modifications in gene expression control edited by Dr. Matthias Soller and Dr. Rupert Fray.
Collapse
Affiliation(s)
- Pedro Rebelo-Guiomar
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK; Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, Porto, Portugal
| | | | - Lindsey Van Haute
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
34
|
Dinescu S, Ignat S, Lazar AD, Constantin C, Neagu M, Costache M. Epitranscriptomic Signatures in lncRNAs and Their Possible Roles in Cancer. Genes (Basel) 2019; 10:genes10010052. [PMID: 30654440 PMCID: PMC6356509 DOI: 10.3390/genes10010052] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/16/2022] Open
Abstract
In contrast to the amazing exponential growth in knowledge related to long non-coding RNAs (lncRNAs) involved in cell homeostasis or dysregulated pathological states, little is known so far about the links between the chemical modifications occurring in lncRNAs and their function. Generally, ncRNAs are post-transcriptional regulators of gene expression, but RNA modifications occurring in lncRNAs generate an additional layer of gene expression control. Chemical modifications that have been reported in correlation with lncRNAs include m⁶A, m⁵C and pseudouridylation. Up to date, several chemically modified long non-coding transcripts have been identified and associated with different pathologies, including cancers. This review presents the current level of knowledge on the most studied cancer-related lncRNAs, such as the metastasis associated lung adenocarcinoma transcript 1 (MALAT1), the Hox transcript antisense intergenic RNA (HOTAIR), or the X-inactive specific transcript (XIST), as well as more recently discovered forms, and their potential roles in different types of cancer. Understanding how these RNA modifications occur, and the correlation between lncRNA changes in structure and function, may open up new therapeutic possibilities in cancer.
Collapse
Affiliation(s)
- Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Simona Ignat
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Andreea Daniela Lazar
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Carolina Constantin
- Immunology Department, "Victor Babes" National Institute of Pathology, 050096 Bucharest, Romania.
| | - Monica Neagu
- Immunology Department, "Victor Babes" National Institute of Pathology, 050096 Bucharest, Romania.
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| |
Collapse
|
35
|
de Brouwer AP, Abou Jamra R, Körtel N, Soyris C, Polla DL, Safra M, Zisso A, Powell CA, Rebelo-Guiomar P, Dinges N, Morin V, Stock M, Hussain M, Shahzad M, Riazuddin S, Ahmed ZM, Pfundt R, Schwarz F, de Boer L, Reis A, Grozeva D, Raymond FL, Riazuddin S, Koolen DA, Minczuk M, Roignant JY, van Bokhoven H, Schwartz S. Variants in PUS7 Cause Intellectual Disability with Speech Delay, Microcephaly, Short Stature, and Aggressive Behavior. Am J Hum Genet 2018; 103:1045-1052. [PMID: 30526862 DOI: 10.1016/j.ajhg.2018.10.026] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
We describe six persons from three families with three homozygous protein truncating variants in PUS7: c.89_90del (p.Thr30Lysfs∗20), c.1348C>T (p.Arg450∗), and a deletion of the penultimate exon 15. All these individuals have intellectual disability with speech delay, short stature, microcephaly, and aggressive behavior. PUS7 encodes the RNA-independent pseudouridylate synthase 7. Pseudouridylation is the most abundant post-transcriptional modification in RNA, which is primarily thought to stabilize secondary structures of RNA. We show that the disease-related variants lead to abolishment of PUS7 activity on both tRNA and mRNA substrates. Moreover, pus7 knockout in Drosophila melanogaster results in a number of behavioral defects, including increased activity, disorientation, and aggressiveness supporting that neurological defects are caused by PUS7 variants. Our findings demonstrate that RNA pseudouridylation by PUS7 is essential for proper neuronal development and function.
Collapse
|
36
|
Adachi H, De Zoysa MD, Yu YT. Post-transcriptional pseudouridylation in mRNA as well as in some major types of noncoding RNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:230-239. [PMID: 30414851 DOI: 10.1016/j.bbagrm.2018.11.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 01/13/2023]
Abstract
Pseudouridylation is a post-transcriptional isomerization reaction that converts a uridine to a pseudouridine (Ψ) within an RNA chain. Ψ has chemical properties that are distinct from that of uridine and any other known nucleotides. Experimental data accumulated thus far have indicated that Ψ is present in many different types of RNAs, including coding and noncoding RNAs. Ψ is particularly concentrated in rRNA and spliceosomal snRNAs, and plays an important role in protein translation and pre-mRNA splicing, respectively. Ψ has also been found in mRNA, but its function there remains essentially unknown. In this review, we discuss the mechanisms and functions of RNA pseudouridylation, focusing on rRNA, snRNA and mRNA. We also discuss the methods, which have been developed to detect Ψs in RNAs. This article is part of a Special Issue entitled: mRNA modifications in gene expression control edited by Dr. Soller Matthias and Dr. Fray Rupert.
Collapse
Affiliation(s)
- Hironori Adachi
- University of Rochester Medical Center, Department of Biochemistry and Biophysics, Center for RNA Biology, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Meemanage D De Zoysa
- University of Rochester Medical Center, Department of Biochemistry and Biophysics, Center for RNA Biology, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Yi-Tao Yu
- University of Rochester Medical Center, Department of Biochemistry and Biophysics, Center for RNA Biology, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
37
|
Fujikane R, Behm-Ansmant I, Tillault AS, Loegler C, Igel-Bourguignon V, Marguet E, Forterre P, Branlant C, Motorin Y, Charpentier B. Contribution of protein Gar1 to the RNA-guided and RNA-independent rRNA:Ψ-synthase activities of the archaeal Cbf5 protein. Sci Rep 2018; 8:13815. [PMID: 30218085 PMCID: PMC6138745 DOI: 10.1038/s41598-018-32164-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/29/2018] [Indexed: 01/09/2023] Open
Abstract
Archaeal RNA:pseudouridine-synthase (PUS) Cbf5 in complex with proteins L7Ae, Nop10 and Gar1, and guide box H/ACA sRNAs forms ribonucleoprotein (RNP) catalysts that insure the conversion of uridines into pseudouridines (Ψs) in ribosomal RNAs (rRNAs). Nonetheless, in the absence of guide RNA, Cbf5 catalyzes the in vitro formation of Ψ2603 in Pyrococcus abyssi 23S rRNA and of Ψ55 in tRNAs. Using gene-disrupted strains of the hyperthermophilic archaeon Thermococcus kodakarensis, we studied the in vivo contribution of proteins Nop10 and Gar1 to the dual RNA guide-dependent and RNA-independent activities of Cbf5 on 23S rRNA. The single-null mutants of the cbf5, nop10, and gar1 genes are viable, but display a thermosensitive slow growth phenotype. We also generated a single-null mutant of the gene encoding Pus10, which has redundant activity with Cbf5 for in vitro formation of Ψ55 in tRNA. Analysis of the presence of Ψs within the rRNA peptidyl transferase center (PTC) of the mutants demonstrated that Cbf5 but not Pus10 is required for rRNA modification. Our data reveal that, in contrast to Nop10, Gar1 is crucial for in vivo and in vitro RNA guide-independent formation of Ψ2607 (Ψ2603 in P. abyssi) by Cbf5. Furthermore, our data indicate that pseudouridylation at orphan position 2589 (2585 in P. abyssi), for which no PUS or guide sRNA has been identified so far, relies on RNA- and Gar1-dependent activity of Cbf5.
Collapse
Affiliation(s)
- Ryosuke Fujikane
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France
- Fukuoka Dental College, Department of Physiological Sciences and Molecular Biology, Section of Cellular and Molecular Regulation, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Isabelle Behm-Ansmant
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France
| | - Anne-Sophie Tillault
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Christine Loegler
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France
| | - Valérie Igel-Bourguignon
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France
| | - Evelyne Marguet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France
| | - Patrick Forterre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France
- Institut Pasteur, Département de Microbiologie, 25 rue du Dr Roux, F-7505, Paris, France
| | - Christiane Branlant
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France
| | - Yuri Motorin
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France
- Université de Lorraine, CNRS, INSERM, UMS2008 IBSLor, F-54500, Nancy, France
| | - Bruno Charpentier
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France.
| |
Collapse
|
38
|
Zhou KI, Clark WC, Pan DW, Eckwahl MJ, Dai Q, Pan T. Pseudouridines have context-dependent mutation and stop rates in high-throughput sequencing. RNA Biol 2018; 15:892-900. [PMID: 29683381 PMCID: PMC6161689 DOI: 10.1080/15476286.2018.1462654] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 01/28/2023] Open
Abstract
The abundant RNA modification pseudouridine (Ψ) has been mapped transcriptome-wide by chemically modifying pseudouridines with carbodiimide and detecting the resulting reverse transcription stops in high-throughput sequencing. However, these methods have limited sensitivity and specificity, in part due to the use of reverse transcription stops. We sought to use mutations rather than just stops in sequencing data to identify pseudouridine sites. Here, we identify reverse transcription conditions that allow read-through of carbodiimide-modified pseudouridine (CMC-Ψ), and we show that pseudouridines in carbodiimide-treated human ribosomal RNA have context-dependent mutation and stop rates in high-throughput sequencing libraries prepared under these conditions. Furthermore, accounting for the context-dependence of mutation and stop rates can enhance the detection of pseudouridine sites. Similar approaches could contribute to the sequencing-based detection of many RNA modifications.
Collapse
Affiliation(s)
- Katherine I. Zhou
- Medical Scientist Training Program, The University of Chicago, Chicago, Illinois, USA
| | - Wesley C. Clark
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, USA
| | - David W. Pan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, USA
| | - Matthew J. Eckwahl
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, USA
| | - Qing Dai
- Department of Chemistry, The University of Chicago, Chicago, Illinois, USA
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, USA
- Institute of Biophysical Dynamics, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
39
|
Nakamoto MA, Lovejoy AF, Cygan AM, Boothroyd JC. mRNA pseudouridylation affects RNA metabolism in the parasite Toxoplasma gondii. RNA (NEW YORK, N.Y.) 2017; 23:1834-1849. [PMID: 28851751 PMCID: PMC5689004 DOI: 10.1261/rna.062794.117] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/18/2017] [Indexed: 05/09/2023]
Abstract
RNA contains over 100 modified nucleotides that are created post-transcriptionally, among which pseudouridine (Ψ) is one of the most abundant. Although it was one of the first modifications discovered, the biological role of this modification is still not fully understood. Recently, we reported that a pseudouridine synthase (TgPUS1) is necessary for differentiation of the single-celled eukaryotic parasite Toxoplasma gondii from active to chronic infection. To better understand the biological role of pseudouridylation, we report here gel-based and deep-sequencing methods to identify TgPUS1-dependent Ψ's in Toxoplasma RNA, and the use of TgPUS1 mutants to examine the effect of this modification on mRNAs. In addition to identifying conserved sites of pseudouridylation in Toxoplasma rRNA, tRNA, and snRNA, we also report extensive pseudouridylation of Toxoplasma mRNAs, with the Ψ's being relatively depleted in the 3'-UTR but enriched at position 1 of codons. We show that many Ψ's in tRNA and mRNA are dependent on the action of TgPUS1 and that TgPUS1-dependent mRNA Ψ's are enriched in developmentally regulated transcripts. RNA-seq data obtained from wild-type and TgPUS1-mutant parasites shows that genes containing a TgPUS1-dependent Ψ are relatively more abundant in mutant parasites, while pulse/chase labeling of RNA with 4-thiouracil shows that mRNAs containing TgPUS1-dependent Ψ have a modest but statistically significant increase in half-life in the mutant parasites. These data are some of the first evidence suggesting that mRNA Ψ's play an important biological role.
Collapse
Affiliation(s)
- Margaret A Nakamoto
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Alexander F Lovejoy
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Alicja M Cygan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - John C Boothroyd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
40
|
van der Feltz C, DeHaven AC, Hoskins AA. Stress-induced Pseudouridylation Alters the Structural Equilibrium of Yeast U2 snRNA Stem II. J Mol Biol 2017; 430:524-536. [PMID: 29079482 DOI: 10.1016/j.jmb.2017.10.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/09/2017] [Accepted: 10/14/2017] [Indexed: 12/21/2022]
Abstract
In yeast, the U2 small nuclear ribonucleic acid (snRNA) component of the spliceosome is targeted for additional post-transcriptional modifications in response to cellular stress. Uridines 56 and 93 are both modified to pseudouridines (Ψ) during nutrient deprivation, while U56 is also pseudouridylated during heat shock. Both positions are located within stem II, which must toggle between two mutually exclusive structures during splicing. Stem IIa forms during spliceosome assembly, and stem IIc forms during the catalytic steps. We have studied how uridine 56 and 93 pseudouridylation impacts conformational switching of stem II. Using single-molecule Förster resonance energy transfer, we show that Ψ56 dampens conformational dynamics of stem II and stabilizes stem IIc. In contrast, Ψ93 increases dynamics of non-stem IIc conformations. Pseudouridylation impacts conformational switching of stem II by Mg2+ or the U2 protein Cus2; however, when Mg2+ and Cus2 are used in combination, the impacts of pseudouridylation can be suppressed. These results show that stress-induced post-transcriptional modification of U56 and U93 alters snRNA conformational dynamics by distinct mechanisms and that protein and metal cofactors of the spliceosome alter how snRNAs respond to these modifications.
Collapse
Affiliation(s)
- Clarisse van der Feltz
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr., Madison, WI 53706, USA
| | - Alexander C DeHaven
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr., Madison, WI 53706, USA
| | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr., Madison, WI 53706, USA.
| |
Collapse
|
41
|
|
42
|
Zaringhalam M, Papavasiliou FN. Pseudouridylation meets next-generation sequencing. Methods 2016; 107:63-72. [DOI: 10.1016/j.ymeth.2016.03.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/05/2016] [Accepted: 03/07/2016] [Indexed: 11/15/2022] Open
|
43
|
Duechler M, Leszczyńska G, Sochacka E, Nawrot B. Nucleoside modifications in the regulation of gene expression: focus on tRNA. Cell Mol Life Sci 2016; 73:3075-95. [PMID: 27094388 PMCID: PMC4951516 DOI: 10.1007/s00018-016-2217-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/25/2016] [Accepted: 04/04/2016] [Indexed: 01/10/2023]
Abstract
Both, DNA and RNA nucleoside modifications contribute to the complex multi-level regulation of gene expression. Modified bases in tRNAs modulate protein translation rates in a highly dynamic manner. Synonymous codons, which differ by the third nucleoside in the triplet but code for the same amino acid, may be utilized at different rates according to codon-anticodon affinity. Nucleoside modifications in the tRNA anticodon loop can favor the interaction with selected codons by stabilizing specific base pairs. Similarly, weakening of base pairing can discriminate against binding to near-cognate codons. mRNAs enriched in favored codons are translated in higher rates constituting a fine-tuning mechanism for protein synthesis. This so-called codon bias establishes a basic protein level, but sometimes it is necessary to further adjust the production rate of a particular protein to actual requirements, brought by, e.g., stages in circadian rhythms, cell cycle progression or exposure to stress. Such an adjustment is realized by the dynamic change of tRNA modifications resulting in the preferential translation of mRNAs coding for example for stress proteins to facilitate cell survival. Furthermore, tRNAs contribute in an entirely different way to another, less specific stress response consisting in modification-dependent tRNA cleavage that contributes to the general down-regulation of protein synthesis. In this review, we summarize control functions of nucleoside modifications in gene regulation with a focus on recent findings on protein synthesis control by tRNA base modifications.
Collapse
Affiliation(s)
- Markus Duechler
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland.
| | - Grażyna Leszczyńska
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Elzbieta Sochacka
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
44
|
Jiang J, Seo H, Chow CS. Post-transcriptional Modifications Modulate rRNA Structure and Ligand Interactions. Acc Chem Res 2016; 49:893-901. [PMID: 27064497 DOI: 10.1021/acs.accounts.6b00014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Post-transcriptional modifications play important roles in modulating the functions of RNA species. The presence of modifications in RNA may directly alter its interactions with binding partners or cause structural changes that indirectly affect ligand recognition. Given the rapidly growing list of modifications identified in noncoding and mRNAs associated with human disease, as well as the dynamic control over modifications involved in various physiological processes, it is imperative to understand RNA structural modulation by these modifications. Among the RNA species, rRNAs provide numerous examples of modification types located in differing sequence and structural contexts. In addition, the modified rRNA motifs participate in a wide variety of ligand interactions, including those with RNA, protein, and small molecules. In fact, several classes of antibiotics exert their effects on protein synthesis by binding to functionally important and highly modified regions of the rRNAs. These RNA regions often display conservation in sequence, secondary structure, tertiary interactions, and modifications, trademarks of ideal drug-targeting sites. Furthermore, ligand interactions with such regions often favor certain modification-induced conformational states of the RNA. Our laboratory has employed a combination of biophysical methods such as nuclear magnetic resonance spectroscopy (NMR), circular dichroism, and UV melting to study rRNA modifications in functionally important motifs, including helix 31 (h31) and helix h44 (h44) of the small subunit rRNA and helix 69 (H69) of the large subunit rRNA. The modified RNA oligonucleotides used in these studies were generated by solid-phase synthesis with a variety of phosphoramidite chemistries. The natural modifications were shown to impact thermal stability, dynamic behavior, and tertiary structures of the RNAs, with additive or cooperative effects occurring with multiple, clustered modifications. Taking advantage of the structural diversity offered by specific modifications in the chosen rRNA motifs, phage display was used to select peptides that bind with moderate (low micromolar) affinity and selectivity to modified h31, h44, and H69. Interactions between peptide ligands and RNAs were monitored by biophysical methods, including electrospray ionization mass spectrometry (ESI-MS), NMR, and surface plasmon resonance (SPR). The peptides compare well with natural compounds such as aminoglycosides in their binding affinities to the modified rRNA constructs. Some candidates were shown to exhibit specificity toward different modification states of the rRNA motifs. The selected peptides may be further optimized for improved RNA targeting or used in screening assays for new drug candidates. In this Account, we hope to stimulate interest in bioorganic and biophysical approaches, which may be used to deepen our understanding of other functionally important, naturally modified RNAs beyond the rRNAs.
Collapse
Affiliation(s)
- Jun Jiang
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Hyosuk Seo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Christine S. Chow
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
45
|
Wu G, Adachi H, Ge J, Stephenson D, Query CC, Yu YT. Pseudouridines in U2 snRNA stimulate the ATPase activity of Prp5 during spliceosome assembly. EMBO J 2016; 35:654-67. [PMID: 26873591 DOI: 10.15252/embj.201593113] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/04/2016] [Indexed: 12/20/2022] Open
Abstract
Pseudouridine (Ψ) is the most abundant internal modification identified in RNA, and yet little is understood of its effects on downstream reactions. Yeast U2 snRNA contains three conserved Ψs (Ψ35, Ψ42, and Ψ44) in the branch site recognition region (BSRR), which base pairs with the pre-mRNA branch site during splicing. Here, we show that blocks to pseudouridylation at these positions reduce the efficiency of pre-mRNA splicing, leading to growth-deficient phenotypes. Restoration of pseudouridylation at these positions using designer snoRNAs results in near complete rescue of splicing and cell growth. These Ψs interact genetically with Prp5, an RNA-dependent ATPase involved in monitoring the U2 BSRR-branch site base-pairing interaction. Biochemical analysis indicates that Prp5 has reduced affinity for U2 snRNA that lacks Ψ42 and Ψ44 and that Prp5 ATPase activity is reduced when stimulated by U2 lacking Ψ42 or Ψ44 relative to wild type, resulting in inefficient spliceosome assembly. Furthermore, in vivo DMS probing analysis reveals that pseudouridylated U2, compared to U2 lacking Ψ42 and Ψ44, adopts a slightly different structure in the branch site recognition region. Taken together, our results indicate that the Ψs in U2 snRNA contribute to pre-mRNA splicing by directly altering the binding/ATPase activity of Prp5.
Collapse
Affiliation(s)
- Guowei Wu
- Department of Biochemistry and Biophysics, Center for RNA Biology, The Rochester Aging Research (RoAR) Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Hironori Adachi
- Department of Biochemistry and Biophysics, Center for RNA Biology, The Rochester Aging Research (RoAR) Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Junhui Ge
- Department of Pathology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - David Stephenson
- Department of Biochemistry and Biophysics, Center for RNA Biology, The Rochester Aging Research (RoAR) Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Charles C Query
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, The Rochester Aging Research (RoAR) Center, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
46
|
Xu Y, Vanommeslaeghe K, Aleksandrov A, MacKerell AD, Nilsson L. Additive CHARMM force field for naturally occurring modified ribonucleotides. J Comput Chem 2016; 37:896-912. [PMID: 26841080 PMCID: PMC4801715 DOI: 10.1002/jcc.24307] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/16/2015] [Accepted: 01/06/2016] [Indexed: 01/13/2023]
Abstract
More than 100 naturally occurring modified nucleotides have been found in RNA molecules, in particular in tRNAs. We have determined molecular mechanics force field parameters compatible with the CHARMM36 all‐atom additive force field for all these modifications using the CHARMM force field parametrization strategy. Emphasis was placed on fine tuning of the partial atomic charges and torsion angle parameters. Quantum mechanics calculations on model compounds provided the initial set of target data, and extensive molecular dynamics simulations of nucleotides and oligonucleotides in aqueous solutions were used for further refinement against experimental data. The presented parameters will allow for computational studies of a wide range of RNAs containing modified nucleotides, including the ribosome and transfer RNAs. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- You Xu
- Department of Biosciences and Nutrition, Karolinska Institutet, HUDDINGE, SE-141 83, Sweden
| | - Kenno Vanommeslaeghe
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland, 21201.,Department of Analytical Chemistry and Pharmaceutical Technology (FABI), Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, B-1090, Belgium
| | - Alexey Aleksandrov
- Department of Biology, Ecole Polytechnique, Laboratoire De Biochimie (CNRS UMR7654), Palaiseau, F-91128, France
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland, 21201
| | - Lennart Nilsson
- Department of Biosciences and Nutrition, Karolinska Institutet, HUDDINGE, SE-141 83, Sweden
| |
Collapse
|
47
|
Chawla M, Oliva R, Bujnicki JM, Cavallo L. An atlas of RNA base pairs involving modified nucleobases with optimal geometries and accurate energies. Nucleic Acids Res 2015; 43:6714-29. [PMID: 26117545 PMCID: PMC4538814 DOI: 10.1093/nar/gkv606] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/28/2015] [Indexed: 01/08/2023] Open
Abstract
Posttranscriptional modifications greatly enhance the chemical information of RNA molecules, contributing to explain the diversity of their structures and functions. A significant fraction of RNA experimental structures available to date present modified nucleobases, with half of them being involved in H-bonding interactions with other bases, i.e. ‘modified base pairs’. Herein we present a systematic investigation of modified base pairs, in the context of experimental RNA structures. To this end, we first compiled an atlas of experimentally observed modified base pairs, for which we recorded occurrences and structural context. Then, for each base pair, we selected a representative for subsequent quantum mechanics calculations, to find out its optimal geometry and interaction energy. Our structural analyses show that most of the modified base pairs are non Watson–Crick like and are involved in RNA tertiary structure motifs. In addition, quantum mechanics calculations quantify and provide a rationale for the impact of the different modifications on the geometry and stability of the base pairs they participate in.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, I-80143, Naples, Italy
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
48
|
Powell CA, Nicholls TJ, Minczuk M. Nuclear-encoded factors involved in post-transcriptional processing and modification of mitochondrial tRNAs in human disease. Front Genet 2015; 6:79. [PMID: 25806043 PMCID: PMC4354410 DOI: 10.3389/fgene.2015.00079] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/16/2015] [Indexed: 11/29/2022] Open
Abstract
The human mitochondrial genome (mtDNA) encodes 22 tRNAs (mt-tRNAs) that are necessary for the intraorganellar translation of the 13 mtDNA-encoded subunits of the mitochondrial respiratory chain complexes. Maturation of mt-tRNAs involves 5′ and 3′ nucleolytic excision from precursor RNAs, as well as extensive post-transcriptional modifications. Recent data suggest that over 7% of all mt-tRNA residues in mammals undergo post-transcriptional modification, with over 30 different modified mt-tRNA positions so far described. These processing and modification steps are necessary for proper mt-tRNA function, and are performed by dedicated, nuclear-encoded enzymes. Recent growing evidence suggests that mutations in these nuclear genes (nDNA), leading to incorrect maturation of mt-tRNAs, are a cause of human mitochondrial disease. Furthermore, mtDNA mutations in mt-tRNA genes, which may also affect mt-tRNA function, processing, and modification, are also frequently associated with human disease. In theory, all pathogenic mt-tRNA variants should be expected to affect only a single process, which is mitochondrial translation, albeit to various extents. However, the clinical manifestations of mitochondrial disorders linked to mutations in mt-tRNAs are extremely heterogeneous, ranging from defects of a single tissue to complex multisystem disorders. This review focuses on the current knowledge of nDNA coding for proteins involved in mt-tRNA maturation that have been linked to human mitochondrial pathologies. We further discuss the possibility that tissue specific regulation of mt-tRNA modifying enzymes could play an important role in the clinical heterogeneity observed for mitochondrial diseases caused by mutations in mt-tRNA genes.
Collapse
Affiliation(s)
- Christopher A Powell
- Mitochondrial Genetics, Mitochondrial Biology Unit, Medical Research Council, Cambridge, UK
| | - Thomas J Nicholls
- Mitochondrial Genetics, Mitochondrial Biology Unit, Medical Research Council, Cambridge, UK
| | - Michal Minczuk
- Mitochondrial Genetics, Mitochondrial Biology Unit, Medical Research Council, Cambridge, UK
| |
Collapse
|
49
|
Adachi H, Yu YT. Insight into the mechanisms and functions of spliceosomal snRNA pseudouridylation. World J Biol Chem 2014; 5:398-408. [PMID: 25426264 PMCID: PMC4243145 DOI: 10.4331/wjbc.v5.i4.398] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 05/20/2014] [Accepted: 09/10/2014] [Indexed: 02/05/2023] Open
Abstract
Pseudouridines (Ψs) are the most abundant and highly conserved modified nucleotides found in various stable RNAs of all organisms. Most Ψs are clustered in regions that are functionally important for pre-mRNA splicing. Ψ has an extra hydrogen bond donor that endows RNA molecules with distinct properties that contribute significantly to RNA-mediated cellular processes. Experimental data indicate that spliceosomal snRNA pseudouridylation can be catalyzed by both RNA-dependent and RNA-independent mechanisms. Recent work has also demonstrated that pseudouridylation can be induced at novel positions under stress conditions, suggesting a regulatory role for Ψ.
Collapse
|
50
|
McMahon M, Contreras A, Ruggero D. Small RNAs with big implications: new insights into H/ACA snoRNA function and their role in human disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:173-89. [PMID: 25363811 DOI: 10.1002/wrna.1266] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/25/2014] [Accepted: 08/07/2014] [Indexed: 12/26/2022]
Abstract
A myriad of structurally and functionally diverse noncoding RNAs (ncRNAs) have recently been implicated in numerous human diseases including cancer. Small nucleolar RNAs (snoRNAs), the most abundant group of intron-encoded ncRNAs, are classified into two families (box C/D snoRNAs and box H/ACA snoRNAs) and are required for post-transcriptional modifications on ribosomal RNA (rRNA). There is now a growing appreciation that nucleotide modifications on rRNA may impart regulatory potential to the ribosome; however, the functional consequence of site-specific snoRNA-guided modifications remains poorly defined. Discovered almost 20 years ago, H/ACA snoRNAs are required for the conversion of specific uridine residues to pseudouridine on rRNA. Interestingly, recent reports indicate that the levels of subsets of H/ACA snoRNAs required for pseudouridine modifications at specific sites on rRNA are altered in several diseases, particularly cancer. In this review, we describe recent advances in understanding the downstream consequences of H/ACA snoRNA-guided modifications on ribosome function, discuss the possible mechanism by which H/ACA snoRNAs may be regulated, and explore prospective expanding functions of H/ACA snoRNAs. Furthermore, we discuss the potential biological implications of alterations in H/ACA snoRNA expression in several human diseases.
Collapse
Affiliation(s)
- Mary McMahon
- School of Medicine and Department of Urology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|