1
|
Klimova N, Ngov C, Devaux F, Turcotte B. Regulation of meiotic gene expression is functional in the human fungal pathogen Candida glabrata. FEMS Yeast Res 2025; 25:foaf018. [PMID: 40175304 PMCID: PMC12012894 DOI: 10.1093/femsyr/foaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/22/2025] [Accepted: 04/01/2025] [Indexed: 04/04/2025] Open
Abstract
The human fungal pathogen Candida glabrata is closely related to the budding yeast Saccharomyces cerevisiae. The sexual cycle in S. cerevisiae has been extensively characterized. Haploid cells 'a' and alpha secrete pheromones involved in mating of the opposite cell type leading to the formation of a diploid cell. Under harsh conditions, diploid cells undergo meiosis for the formation of four haploid spores. In C. glabrata, cells are also found as 'a' and alpha and this organism possesses most S. cerevisiae homologous genes involved in meiosis and mating. However, mating has never been observed in C. glabrata. In S. cerevisiae, the non-essential UME6 gene is involved in controlling the expression of meiotic genes. We have previously shown that Zcf11, a putative homolog of Ume6, is encoded by an essential gene but its function is unknown. Here, we show that the expression of UME6 in C. glabrata can partially complement a Zcf11 knock-down and that these factors recognize the same DNA sequence. Importantly, expression profiling using a Zcf11 knock-down strain revealed that this factor is a negative regulator of meiotic genes expression as well as some genes involved in mating. Thus, regulation of the expression of meiotic genes is functional in this organism reinforcing the view that C. glabrata may have a sexual cycle under specific conditions.
Collapse
Affiliation(s)
- Natalia Klimova
- Department of Medicine, McGill University Health Centre, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
| | - Cindy Ngov
- Department of Microbiology and Immunology, McGill University Health Centre, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
| | - Frédéric Devaux
- Sorbonne Université, CNRS, Institut de biologie Paris-Seine (IBPS), UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris 75005, France
| | - Bernard Turcotte
- Department of Medicine, McGill University Health Centre, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
- Department of Microbiology and Immunology, McGill University Health Centre, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
- Department of Biochemistry, McGill University Health Centre, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
2
|
Kociemba J, Jørgensen ACS, Tadić N, Harris A, Sideri T, Chan WY, Ibrahim F, Ünal E, Skehel M, Shahrezaei V, Argüello-Miranda O, van Werven FJ. Multi-signal regulation of the GSK-3β homolog Rim11 controls meiosis entry in budding yeast. EMBO J 2024; 43:3256-3286. [PMID: 38886580 PMCID: PMC11294583 DOI: 10.1038/s44318-024-00149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/22/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Starvation in diploid budding yeast cells triggers a cell-fate program culminating in meiosis and spore formation. Transcriptional activation of early meiotic genes (EMGs) hinges on the master regulator Ime1, its DNA-binding partner Ume6, and GSK-3β kinase Rim11. Phosphorylation of Ume6 by Rim11 is required for EMG activation. We report here that Rim11 functions as the central signal integrator for controlling Ume6 phosphorylation and EMG transcription. In nutrient-rich conditions, PKA suppresses Rim11 levels, while TORC1 retains Rim11 in the cytoplasm. Inhibition of PKA and TORC1 induces Rim11 expression and nuclear localization. Remarkably, nuclear Rim11 is required, but not sufficient, for Rim11-dependent Ume6 phosphorylation. In addition, Ime1 is an anchor protein enabling Ume6 phosphorylation by Rim11. Subsequently, Ume6-Ime1 coactivator complexes form and induce EMG transcription. Our results demonstrate how various signaling inputs (PKA/TORC1/Ime1) converge through Rim11 to regulate EMG expression and meiosis initiation. We posit that the signaling-regulatory network elucidated here generates robustness in cell-fate control.
Collapse
Affiliation(s)
- Johanna Kociemba
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Andreas Christ Sølvsten Jørgensen
- Department of Mathematics, Imperial College London, London, SW7 2BX, UK
- I-X Centre for AI In Science, Imperial College London, White City Campus, 84 Wood Lane, London, W12 0BZ, UK
| | - Nika Tadić
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA
| | - Anthony Harris
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Theodora Sideri
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Wei Yee Chan
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Fairouz Ibrahim
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Mark Skehel
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Vahid Shahrezaei
- Department of Mathematics, Imperial College London, London, SW7 2BX, UK.
| | - Orlando Argüello-Miranda
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA.
| | | |
Collapse
|
3
|
Isoda T, Takeda E, Hosokawa S, Hotta-Ren S, Ohsumi Y. Atg45 is an autophagy receptor for glycogen, a non-preferred cargo of bulk autophagy in yeast. iScience 2024; 27:109810. [PMID: 38832010 PMCID: PMC11145338 DOI: 10.1016/j.isci.2024.109810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/03/2023] [Accepted: 04/22/2024] [Indexed: 06/05/2024] Open
Abstract
The mechanisms governing autophagy of proteins and organelles have been well studied, but how other cytoplasmic components such as RNA and polysaccharides are degraded remains largely unknown. In this study, we examine autophagy of glycogen, a storage form of glucose. We find that cells accumulate glycogen in the cytoplasm during nitrogen starvation and that this carbohydrate is rarely observed within autophagosomes and autophagic bodies. However, sequestration of glycogen by autophagy is observed following prolonged nitrogen starvation. We identify a yet-uncharacterized open reading frame, Yil024c (herein Atg45), as encoding a cytosolic receptor protein that mediates autophagy of glycogen (glycophagy). Furthermore, we show that, during sporulation, Atg45 is highly expressed and is associated with an increase in glycophagy. Our results suggest that cells regulate glycophagic activity by controlling the expression level of Atg45.
Collapse
Affiliation(s)
- Takahiro Isoda
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Frontier Research Center, POLA Chemical Industries, Inc, Yokohama 244-0812, Japan
| | - Eigo Takeda
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Sachiko Hosokawa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Shukun Hotta-Ren
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Yoshinori Ohsumi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
4
|
Maksiutenko EM, Barbitoff YA, Danilov LG, Matveenko AG, Zemlyanko OM, Efremova EP, Moskalenko SE, Zhouravleva GA. Gene Expression Analysis of Yeast Strains with a Nonsense Mutation in the eRF3-Coding Gene Highlights Possible Mechanisms of Adaptation. Int J Mol Sci 2024; 25:6308. [PMID: 38928012 PMCID: PMC11203930 DOI: 10.3390/ijms25126308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
In yeast Saccharomyces cerevisiae, there are two translation termination factors, eRF1 (Sup45) and eRF3 (Sup35), which are essential for viability. Previous studies have revealed that presence of nonsense mutations in these genes leads to amplification of mutant alleles (sup35-n and sup45-n), which appears to be necessary for the viability of such cells. However, the mechanism of this phenomenon remained unclear. In this study, we used RNA-Seq and proteome analysis to reveal the complete set of gene expression changes that occur during cellular adaptation to the introduction of the sup35-218 nonsense allele. Our analysis demonstrated significant changes in the transcription of genes that control the cell cycle: decreases in the expression of genes of the anaphase promoting complex APC/C (APC9, CDC23) and their activator CDC20, and increases in the expression of the transcription factor FKH1, the main cell cycle kinase CDC28, and cyclins that induce DNA biosynthesis. We propose a model according to which yeast adaptation to nonsense mutations in the translation termination factor genes occurs as a result of a delayed cell cycle progression beyond the G2-M stage, which leads to an extension of the S and G2 phases and an increase in the number of copies of the mutant sup35-n allele.
Collapse
Affiliation(s)
- Evgeniia M. Maksiutenko
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.M.M.); (Y.A.B.); (L.G.D.); (A.G.M.); (O.M.Z.); (E.P.E.); (S.E.M.)
- St. Petersburg Branch, Vavilov Institute of General Genetics of the Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Yury A. Barbitoff
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.M.M.); (Y.A.B.); (L.G.D.); (A.G.M.); (O.M.Z.); (E.P.E.); (S.E.M.)
- Bioinformatics Institute, 197342 St. Petersburg, Russia
| | - Lavrentii G. Danilov
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.M.M.); (Y.A.B.); (L.G.D.); (A.G.M.); (O.M.Z.); (E.P.E.); (S.E.M.)
| | - Andrew G. Matveenko
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.M.M.); (Y.A.B.); (L.G.D.); (A.G.M.); (O.M.Z.); (E.P.E.); (S.E.M.)
| | - Olga M. Zemlyanko
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.M.M.); (Y.A.B.); (L.G.D.); (A.G.M.); (O.M.Z.); (E.P.E.); (S.E.M.)
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Elena P. Efremova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.M.M.); (Y.A.B.); (L.G.D.); (A.G.M.); (O.M.Z.); (E.P.E.); (S.E.M.)
| | - Svetlana E. Moskalenko
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.M.M.); (Y.A.B.); (L.G.D.); (A.G.M.); (O.M.Z.); (E.P.E.); (S.E.M.)
- St. Petersburg Branch, Vavilov Institute of General Genetics of the Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Galina A. Zhouravleva
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.M.M.); (Y.A.B.); (L.G.D.); (A.G.M.); (O.M.Z.); (E.P.E.); (S.E.M.)
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
5
|
Randhawa A, A Ogunyewo O, Jawed K, Yazdani SS. Calcium signaling positively regulates cellulase translation and secretion in a Clr-2-overexpressing, catabolically derepressed strain of Penicillium funiculosum. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:21. [PMID: 38336687 PMCID: PMC10858516 DOI: 10.1186/s13068-023-02448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/13/2023] [Indexed: 02/12/2024]
Abstract
BACKGROUND Low-cost cellulase production is vital to sustainable second-generation biorefineries. The catabolically derepressed strain of Penicillium funiculosum NCIM1228 (PfMig188 or ∆Mig1) secretes a superior set of cellulolytic enzymes, that are most suitable for 2G biorefineries. At a 3% (w/w) load, the ∆Mig1 secretome can release > 80% of fermentable sugars from lignocellulose at a 15% (w/v) biomass load, irrespective of the type of biomass and pretreatment. The robustness of the secretome can be further increased by improving the cellulase production capacity of the fungal strain. RESULTS We began by identifying the transcription factor responsible for cellulase production in NCIM1228. An advanced RNA-seq screen identified three genes, clr-2, ctf1a and ctf1b; the genes were cloned under their native promoters and transformed into NCIM1228. Of the three, clr-2 overexpression led to twofold higher cellulase production than the parent strain and was thus identified as the transcriptional activator of cellulase in NCIM1228. Next, we overexpressed clr-2 in ∆Mig1 and expected an exponential increase in cellulolytic attributes accredited to the reinforced activation mechanisms, conjoint with diminished negative regulation. Although clr-2 overexpression increased the transcript levels of cellulase genes in ∆Mig1, there was no increase in cellulase yield. Even a further increase in the transcript levels of clr-2 via a stronger promoter was ineffective. However, when the CaCO3 concentration was increased to 5 g/l in the growth medium, we achieved a 1.5-fold higher activity of 6.4 FPU/ml in the ∆Mig1 strain with clr-2 overexpression. Enthused by the calcium effect, a transcriptomic screen for genes encoding Ca2+-activated kinase identified ssp1, whose overexpression could further increase cellulase yield to ~ 7.5 FPU/ml. Investigation of the mechanism revealed that calcium signaling exclusively enhances the translation and secretion of cellulase in Penicillium funiculosum. CONCLUSIONS Our study identifies for the first time that cellulose activates two discrete signaling events to govern cellulase transcription and posttranscriptional processes (translation, processing and secretion) in P. funiculosum NCIM1228. Whereas Clr-2, the transcriptional activator of cellulase, governs transcription, calcium signaling specifically activates cellulase translation and secretion.
Collapse
Affiliation(s)
- Anmoldeep Randhawa
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
- AMITY University, Mohali, Punjab, 140306, India.
| | - Olusola A Ogunyewo
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Kamran Jawed
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Syed Shams Yazdani
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| |
Collapse
|
6
|
Gaspary A, Laureau R, Dyatel A, Dursuk G, Simon Y, Berchowitz LE. Rie1 and Sgn1 form an RNA-binding complex that enforces the meiotic entry cell fate decision. J Cell Biol 2023; 222:e202302074. [PMID: 37638885 PMCID: PMC10460998 DOI: 10.1083/jcb.202302074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/28/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Budding yeast cells have the capacity to adopt few but distinct physiological states depending on environmental conditions. Vegetative cells proliferate rapidly by budding while spores can survive prolonged periods of nutrient deprivation and/or desiccation. Whether or not a yeast cell will enter meiosis and sporulate represents a critical decision that could be lethal if made in error. Most cell fate decisions, including those of yeast, are understood as being triggered by the activation of master transcription factors. However, mechanisms that enforce cell fates posttranscriptionally have been more difficult to attain. Here, we perform a forward genetic screen to determine RNA-binding proteins that affect meiotic entry at the posttranscriptional level. Our screen revealed several candidates with meiotic entry phenotypes, the most significant being RIE1, which encodes an RRM-containing protein. We demonstrate that Rie1 binds RNA, is associated with the translational machinery, and acts posttranscriptionally to enhance protein levels of the master transcription factor Ime1 in sporulation conditions. We also identified a physical binding partner of Rie1, Sgn1, which is another RRM-containing protein that plays a role in timely Ime1 expression. We demonstrate that these proteins act independently of cell size regulation pathways to promote meiotic entry. We propose a model explaining how constitutively expressed RNA-binding proteins, such as Rie1 and Sgn1, can act in cell fate decisions both as switch-like enforcers and as repressors of spurious cell fate activation.
Collapse
Affiliation(s)
- Alec Gaspary
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Raphaelle Laureau
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Annie Dyatel
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Gizem Dursuk
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Yael Simon
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Luke E. Berchowitz
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer’s and the Aging Brain, New York, NY, USA
| |
Collapse
|
7
|
Harris A, Ünal E. The transcriptional regulator Ume6 is a major driver of early gene expression during gametogenesis. Genetics 2023; 225:iyad123. [PMID: 37431893 PMCID: PMC10550318 DOI: 10.1093/genetics/iyad123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023] Open
Abstract
The process of gametogenesis is orchestrated by a dynamic gene expression program, where a vital subset constitutes the early meiotic genes. In budding yeast, the transcription factor Ume6 represses early meiotic gene expression during mitotic growth. However, during the transition from mitotic to meiotic cell fate, early meiotic genes are activated in response to the transcriptional regulator Ime1 through its interaction with Ume6. While it is known that binding of Ime1 to Ume6 promotes early meiotic gene expression, the mechanism of early meiotic gene activation remains elusive. Two competing models have been proposed whereby Ime1 either forms an activator complex with Ume6 or promotes Ume6 degradation. Here, we resolve this controversy. First, we identify the set of genes that are directly regulated by Ume6, including UME6 itself. While Ume6 protein levels increase in response to Ime1, Ume6 degradation occurs much later in meiosis. Importantly, we found that depletion of Ume6 shortly before meiotic entry is detrimental to early meiotic gene activation and gamete formation, whereas tethering of Ume6 to a heterologous activation domain is sufficient to trigger early meiotic gene expression and produce viable gametes in the absence of Ime1. We conclude that Ime1 and Ume6 form an activator complex. While Ume6 is indispensable for early meiotic gene expression, Ime1 primarily serves as a transactivator for Ume6.
Collapse
Affiliation(s)
- Anthony Harris
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
8
|
Park ZM, Remillard M, Belnap E, Rose MD. Kar4 is required for the normal pattern of meiotic gene expression. PLoS Genet 2023; 19:e1010898. [PMID: 37639444 PMCID: PMC10491391 DOI: 10.1371/journal.pgen.1010898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/08/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023] Open
Abstract
Kar4p, the yeast homolog of the mammalian methyltransferase subunit METTL14, is required for efficient mRNA m6A methylation, which regulates meiotic entry. Kar4p is also required for a second seemingly non-catalytic function during meiosis. Overexpression of the early meiotic transcription factor, IME1, can bypass the requirement for Kar4p in meiotic entry but the additional overexpression of the translational regulator, RIM4, is required to permit sporulation in kar4Δ/Δ. Using microarray analysis and RNA sequencing, we sought to determine the impact of removing Kar4p and consequently mRNA methylation on the early meiotic transcriptome in a strain background (S288c) that is sensitive to the loss of early meiotic regulators. We found that kar4Δ/Δ mutants have a largely wild type transcriptional profile with the exception of two groups of genes that show delayed and reduced expression: (1) a set of Ime1p-dependent early genes as well as IME1, and (2) a set of late genes dependent on the mid-meiotic transcription factor, Ndt80p. The early gene expression defect is likely the result of the loss of mRNA methylation and is rescued by overexpressing IME1, but the late defect is only suppressed by overexpression of both IME1 and RIM4. The requirement for RIM4 led us to predict that the non-catalytic function of Kar4p, like methyltransferase complex orthologs in other systems, may function at the level of translation. Mass spectrometry analysis identified several genes involved in meiotic recombination with strongly reduced protein levels, but with little to no reduction in transcript levels in kar4Δ/Δ after IME1 overexpression. The low levels of these proteins were rescued by overexpression of RIM4 and IME1, but not by the overexpression of IME1 alone. These data expand our understanding of the role of Kar4p in regulating meiosis and provide key insights into a potential mechanism of Kar4p's later meiotic function that is independent of mRNA methylation.
Collapse
Affiliation(s)
- Zachory M. Park
- Department of Biology, Georgetown University, Washington DC, United States of America
| | - Matthew Remillard
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Ethan Belnap
- Department of Biology, Georgetown University, Washington DC, United States of America
| | - Mark D. Rose
- Department of Biology, Georgetown University, Washington DC, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
9
|
Salas-Navarrete PC, de Oca Miranda AIM, Martínez A, Caspeta L. Evolutionary and reverse engineering to increase Saccharomyces cerevisiae tolerance to acetic acid, acidic pH, and high temperature. Appl Microbiol Biotechnol 2021; 106:383-399. [PMID: 34913993 DOI: 10.1007/s00253-021-11730-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 11/24/2022]
Abstract
Saccharomyces cerevisiae scarcely grows on minimal media with acetic acid, acidic pH, and high temperatures. In this study, the adaptive laboratory evolution (ALE), whole-genome analysis, and reverse engineering approaches were used to generate strains tolerant to these conditions. The thermotolerant strain TTY23 and its parental S288C were evolved through 1 year, in increasing concentrations of acetic acid up to 12 g/L, keeping the pH ≤ 4. Of the 18 isolated strains, 9 from each ancestor, we selected the thermo-acid tolerant TAT12, derived from TTY23, and the acid tolerant AT22, derived from S288C. Both grew in minimal media with 12 g/L of acetic acid, pH 4, and 30 °C, and produced ethanol up to 29.25 ± 6 mmol/gDCW/h-neither of the ancestors thrived in these conditions. Furthermore, only the TAT12 grew on 2 g/L of acetic acid, pH 3, and 37 °C, and accumulated 16.5 ± 0.5 mmol/gDCW/h of ethanol. Whole-genome sequencing and transcriptomic analysis of this strain showed changes in the genetic sequence and transcription of key genes involved in the RAS-cAMP-PKA signaling pathway (RAS2, GPA2, and IRA2), the heat shock transcription factor (HSF1), and the positive regulator of replication initiation (SUM1), among others. By reverse engineering, the relevance of the combined mutations in the genes RAS2, HSF1, and SUM1 to the tolerance for acetic acid, low pH, and high temperature was confirmed. Alone, the RAS2 mutation yielded acid tolerance and HSF1 nutation thermotolerance. Increasing the thermo-acidic niche and acetic acid tolerance of S. cerevisiae can contribute to improve economic ethanol production. KEY POINTS: • Thermo-acid tolerant (TAT) yeast strains were generated by adaptive laboratory evolution. • The strain TAT12 thrived on non-native, thermo-acidic harmful conditions. • Mutations in RAS2, HSF1, and SUM1 genes rendered yeast thermo and acid tolerant.
Collapse
Affiliation(s)
- Prisciluis Caheri Salas-Navarrete
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos, Mexico
| | - Arturo Iván Montes de Oca Miranda
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos, Mexico
| | - Alfredo Martínez
- Departamento de Ingeniería Celular Y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Luis Caspeta
- Departamento de Ingeniería Celular Y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, C.P. 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
10
|
Ume6 Acts as a Stable Platform To Coordinate Repression and Activation of Early Meiosis-Specific Genes in Saccharomyces cerevisiae. Mol Cell Biol 2021; 41:e0037820. [PMID: 33941619 PMCID: PMC8224235 DOI: 10.1128/mcb.00378-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In response to nutrient starvation, the budding yeast Saccharomyces cerevisiae abandons mitotic proliferation and embarks on a differentiation process that leads through meiosis to the formation of haploid spores. This process is driven by cascading waves of meiosis-specific-gene expression. The early meiosis-specific genes are repressed during mitotic proliferation by the DNA-binding protein Ume6 in combination with repressors Rpd3 and Sin3. The expression of meiosis-specific transcription factor Ime1 leads to activation of the early meiosis-specific genes. We investigated the stability and promoter occupancy of Ume6 in sporulating cells and determined that it remains bound to early meiosis-specific gene promoters when those genes are activated. Furthermore, we find that the repressor Rpd3 remains associated with Ume6 after the transactivator Ime1 has joined the complex and that the Gcn5 and Tra1 components of the SAGA complex bind to the promoter of IME2 in an Ime1-dependent fashion to induce transcription of the early meiosis-specific genes. Our investigation supports a model whereby Ume6 provides a platform allowing recruitment of both activating and repressing factors to coordinate the expression of the early meiosis-specific genes in Saccharomyces cerevisiae.
Collapse
|
11
|
Integrated genomic analysis reveals key features of long undecoded transcript isoform-based gene repression. Mol Cell 2021; 81:2231-2245.e11. [PMID: 33826921 PMCID: PMC8153250 DOI: 10.1016/j.molcel.2021.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/05/2021] [Accepted: 03/09/2021] [Indexed: 12/31/2022]
Abstract
Long undecoded transcript isoforms (LUTIs) represent a class of non-canonical mRNAs that downregulate gene expression through the combined act of transcriptional and translational repression. While single gene studies revealed important aspects of LUTI-based repression, how these features affect gene regulation on a global scale is unknown. Using transcript leader and direct RNA sequencing, here, we identify 74 LUTI candidates that are specifically induced in meiotic prophase. Translational repression of these candidates appears to be ubiquitous and is dependent on upstream open reading frames. However, LUTI-based transcriptional repression is variable. In only 50% of the cases, LUTI transcription causes downregulation of the protein-coding transcript isoform. Higher LUTI expression, enrichment of histone 3 lysine 36 trimethylation, and changes in nucleosome position are the strongest predictors of LUTI-based transcriptional repression. We conclude that LUTIs downregulate gene expression in a manner that integrates translational repression, chromatin state changes, and the magnitude of LUTI expression.
Collapse
|
12
|
Cheng Y, Zhu H, Du Z, Guo X, Zhou C, Wang Z, He X. Eukaryotic translation factor eIF5A contributes to acetic acid tolerance in Saccharomyces cerevisiae via transcriptional factor Ume6p. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:38. [PMID: 33557922 PMCID: PMC7869214 DOI: 10.1186/s13068-021-01885-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/16/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Saccharomyces cerevisiae is well-known as an ideal model system for basic research and important industrial microorganism for biotechnological applications. Acetic acid is an important growth inhibitor that has deleterious effects on both the growth and fermentation performance of yeast cells. Comprehensive understanding of the mechanisms underlying S. cerevisiae adaptive response to acetic acid is always a focus and indispensable for development of robust industrial strains. eIF5A is a specific translation factor that is especially required for the formation of peptide bond between certain residues including proline regarded as poor substrates for slow peptide bond formation. Decrease of eIF5A activity resulted in temperature-sensitive phenotype of yeast, while up-regulation of eIF5A protected transgenic Arabidopsis against high temperature, oxidative or osmotic stress. However, the exact roles and functional mechanisms of eIF5A in stress response are as yet largely unknown. RESULTS In this research, we compared cell growth between the eIF5A overexpressing and the control S. cerevisiae strains under various stressed conditions. Improvement of acetic acid tolerance by enhanced eIF5A activity was observed all in spot assay, growth profiles and survival assay. eIF5A prompts the synthesis of Ume6p, a pleiotropic transcriptional factor containing polyproline motifs, mainly in a translational related way. As a consequence, BEM4, BUD21 and IME4, the direct targets of Ume6p, were up-regulated in eIF5A overexpressing strain, especially under acetic acid stress. Overexpression of UME6 results in similar profiles of cell growth and target genes transcription to eIF5A overexpression, confirming the role of Ume6p and its association between eIF5A and acetic acid tolerance. CONCLUSION Translation factor eIF5A protects yeast cells against acetic acid challenge by the eIF5A-Ume6p-Bud21p/Ime4p/Bem4p axles, which provides new insights into the molecular mechanisms underlying the adaptive response and tolerance to acetic acid in S. cerevisiae and novel targets for construction of robust industrial strains.
Collapse
Affiliation(s)
- Yanfei Cheng
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hui Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengda Du
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuena Guo
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chenyao Zhou
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoyue Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiuping He
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Yang X, Zhang W, Wen X, Bulinski PJ, Chomchai DA, Arines FM, Liu YY, Sprenger S, Teis D, Klionsky DJ, Li M. TORC1 regulates vacuole membrane composition through ubiquitin- and ESCRT-dependent microautophagy. J Cell Biol 2020; 219:133713. [PMID: 32045480 PMCID: PMC7055007 DOI: 10.1083/jcb.201902127] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 11/22/2019] [Accepted: 01/07/2020] [Indexed: 01/12/2023] Open
Abstract
Cellular adaptation in response to nutrient limitation requires the induction of autophagy and lysosome biogenesis for the efficient recycling of macromolecules. Here, we discovered that starvation and TORC1 inactivation not only lead to the up-regulation of autophagy and vacuole proteins involved in recycling but also result in the down-regulation of many vacuole membrane proteins to supply amino acids as part of a vacuole remodeling process. Down-regulation of vacuole membrane proteins is initiated by ubiquitination, which is accomplished by the coordination of multiple E3 ubiquitin ligases, including Rsp5, the Dsc complex, and a newly characterized E3 ligase, Pib1. The Dsc complex is negatively regulated by TORC1 through the Rim15-Ume6 signaling cascade. After ubiquitination, vacuole membrane proteins are sorted into the lumen for degradation by ESCRT-dependent microautophagy. Thus, our study uncovered a complex relationship between TORC1 inactivation and vacuole biogenesis.
Collapse
Affiliation(s)
- Xi Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Weichao Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Xin Wen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI.,Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Patrick J Bulinski
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Dominic A Chomchai
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Felichi Mae Arines
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Yun-Yu Liu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Simon Sprenger
- Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - David Teis
- Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniel J Klionsky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI.,Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Ming Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
14
|
Parnell EJ, Stillman DJ. Multiple Negative Regulators Restrict Recruitment of the SWI/SNF Chromatin Remodeler to the HO Promoter in Saccharomyces cerevisiae. Genetics 2019; 212:1181-1204. [PMID: 31167839 PMCID: PMC6707452 DOI: 10.1534/genetics.119.302359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/30/2019] [Indexed: 01/22/2023] Open
Abstract
Activation of the Saccharomyces cerevisiae HO promoter is highly regulated, requiring the ordered recruitment of activators and coactivators and allowing production of only a few transcripts in mother cells within a short cell cycle window. We conducted genetic screens to identify the negative regulators of HO expression necessary to limit HO transcription. Known repressors of HO (Ash1 and Rpd3) were identified, as well as several additional chromatin-associated factors including the Hda1 histone deacetylase, the Isw2 chromatin remodeler, and the corepressor Tup1 We also identified clusters of HO promoter mutations that suggested roles for the Dot6/Tod6 (PAC site) and Ume6 repression pathways. We used ChIP assays with synchronized cells to validate the involvement of these factors and map the association of Ash1, Dot6, and Ume6 with the HO promoter to a brief window in the cell cycle between binding of the initial activating transcription factor and initiation of transcription. We found that Ash1 and Ume6 each recruit the Rpd3 histone deacetylase to HO, and their effects are additive. In contrast, Rpd3 was not recruited significantly to the PAC site, suggesting this site has a distinct mechanism for repression. Increases in HO expression and SWI/SNF recruitment were all additive upon loss of Ash1, Ume6, and PAC site factors, indicating the convergence of independent pathways for repression. Our results demonstrate that multiple protein complexes are important for limiting the spread of SWI/SNF-mediated nucleosome eviction across the HO promoter, suggesting that regulation requires a delicate balance of activities that promote and repress transcription.
Collapse
Affiliation(s)
- Emily J Parnell
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - David J Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| |
Collapse
|
15
|
Baghban R, Farajnia S, Rajabibazl M, Ghasemi Y, Mafi A, Hoseinpoor R, Rahbarnia L, Aria M. Yeast Expression Systems: Overview and Recent Advances. Mol Biotechnol 2019; 61:365-384. [PMID: 30805909 DOI: 10.1007/s12033-019-00164-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Yeasts are outstanding hosts for the production of functional recombinant proteins with industrial or medical applications. Great attention has been emerged on yeast due to the inherent advantages and new developments in this host cell. For the production of each specific product, the most appropriate expression system should be identified and optimized both on the genetic and fermentation levels, considering the features of the host, vector and expression strategies. Currently, several new systems are commercially available; some of them are private and need licensing. The potential for secretory expression of heterologous proteins in yeast proposed this system as a candidate for the production of complex eukaryotic proteins. The common yeast expression hosts used for recombinant proteins' expression include Saccharomyces cerevisiae, Pichia pastoris, Hansenula polymorpha, Yarrowia lipolytica, Arxula adeninivorans, Kluyveromyces lactis, and Schizosaccharomyces pombe. This review is dedicated to discuss on significant characteristics of the most common methylotrophic and non-methylotrophic yeast expression systems with an emphasis on their advantages and new developments.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Daneshgah Ave, Tabriz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Daneshgah Ave, Tabriz, Iran. .,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak, Arabi Ave, Tehran, Iran. .,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - AmirAli Mafi
- Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Hoseinpoor
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Aria
- Biotechnology Research Center, Tabriz University of Medical Sciences, Daneshgah Ave, Tabriz, Iran
| |
Collapse
|
16
|
Moretto F, Wood NE, Kelly G, Doncic A, van Werven FJ. A regulatory circuit of two lncRNAs and a master regulator directs cell fate in yeast. Nat Commun 2018; 9:780. [PMID: 29472539 PMCID: PMC5823921 DOI: 10.1038/s41467-018-03213-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/24/2018] [Indexed: 12/27/2022] Open
Abstract
Transcription of long noncoding RNAs (lncRNAs) regulates local gene expression in eukaryotes. Many examples of how a single lncRNA controls the expression of an adjacent or nearby protein-coding gene have been described. Here we examine the regulation of a locus consisting of two contiguous lncRNAs and the master regulator for entry into yeast meiosis, IME1. We find that the cluster of two lncRNAs together with several transcription factors form a regulatory circuit by which IME1 controls its own promoter and thereby promotes its own expression. Inhibition or stimulation of this unusual feedback circuit affects timing and rate of IME1 accumulation, and hence the ability for cells to enter meiosis. Our data demonstrate that orchestrated transcription through two contiguous lncRNAs promotes local gene expression and determines a critical cell fate decision.
Collapse
Affiliation(s)
- Fabien Moretto
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - N Ezgi Wood
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Gavin Kelly
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Andreas Doncic
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA
- Green Center for Systems Biology, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA
| | | |
Collapse
|
17
|
Vizoso-Vázquez Á, Lamas-Maceiras M, González-Siso MI, Cerdán ME. Ixr1 Regulates Ribosomal Gene Transcription and Yeast Response to Cisplatin. Sci Rep 2018; 8:3090. [PMID: 29449612 PMCID: PMC5814428 DOI: 10.1038/s41598-018-21439-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/30/2018] [Indexed: 11/22/2022] Open
Abstract
Ixr1 is a Saccharomyces cerevisiae HMGB protein that regulates the hypoxic regulon and also controls the expression of other genes involved in the oxidative stress response or re-adaptation of catabolic and anabolic fluxes when oxygen is limiting. Ixr1 also binds with high affinity to cisplatin-DNA adducts and modulates DNA repair. The influence of Ixr1 on transcription in the absence or presence of cisplatin has been analyzed in this work. Ixr1 regulates other transcriptional factors that respond to nutrient availability or extracellular and intracellular stress stimuli, some controlled by the TOR pathway and PKA signaling. Ixr1 controls transcription of ribosomal RNAs and genes encoding ribosomal proteins or involved in ribosome assembly. qPCR, ChIP, and 18S and 25S rRNAs measurement have confirmed this function. Ixr1 binds directly to several promoters of genes related to rRNA transcription and ribosome biogenesis. Cisplatin treatment mimics the effect of IXR1 deletion on rRNA and ribosomal gene transcription, and prevents Ixr1 binding to specific promoters related to these processes.
Collapse
Affiliation(s)
- Ángel Vizoso-Vázquez
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, 15071 A, Coruña, Spain
| | - Mónica Lamas-Maceiras
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, 15071 A, Coruña, Spain
| | - M Isabel González-Siso
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, 15071 A, Coruña, Spain
| | - M Esperanza Cerdán
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, 15071 A, Coruña, Spain.
| |
Collapse
|
18
|
Adam C, Guérois R, Citarella A, Verardi L, Adolphe F, Béneut C, Sommermeyer V, Ramus C, Govin J, Couté Y, Borde V. The PHD finger protein Spp1 has distinct functions in the Set1 and the meiotic DSB formation complexes. PLoS Genet 2018; 14:e1007223. [PMID: 29444071 PMCID: PMC5828529 DOI: 10.1371/journal.pgen.1007223] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/27/2018] [Accepted: 01/25/2018] [Indexed: 11/18/2022] Open
Abstract
Histone H3K4 methylation is a feature of meiotic recombination hotspots shared by many organisms including plants and mammals. Meiotic recombination is initiated by programmed double-strand break (DSB) formation that in budding yeast takes place in gene promoters and is promoted by histone H3K4 di/trimethylation. This histone modification is recognized by Spp1, a PHD finger containing protein that belongs to the conserved histone H3K4 methyltransferase Set1 complex. During meiosis, Spp1 binds H3K4me3 and interacts with a DSB protein, Mer2, to promote DSB formation close to gene promoters. How Set1 complex- and Mer2- related functions of Spp1 are connected is not clear. Here, combining genome-wide localization analyses, biochemical approaches and the use of separation of function mutants, we show that Spp1 is present within two distinct complexes in meiotic cells, the Set1 and the Mer2 complexes. Disrupting the Spp1-Set1 interaction mildly decreases H3K4me3 levels and does not affect meiotic recombination initiation. Conversely, the Spp1-Mer2 interaction is required for normal meiotic recombination initiation, but dispensable for Set1 complex-mediated histone H3K4 methylation. Finally, we provide evidence that Spp1 preserves normal H3K4me3 levels independently of the Set1 complex. We propose a model where Spp1 works in three ways to promote recombination initiation: first by depositing histone H3K4 methylation (Set1 complex), next by “reading” and protecting histone H3K4 methylation, and finally by making the link with the chromosome axis (Mer2-Spp1 complex). This work deciphers the precise roles of Spp1 in meiotic recombination and opens perspectives to study its functions in other organisms where H3K4me3 is also present at recombination hotspots. Meiotic recombination is a conserved pathway of sexual reproduction that is required to faithfully segregate homologous chromosomes and produce viable gametes. Recombination events between homologous chromosomes are triggered by the programmed formation of DNA breaks, which occur preferentially at places called hotspots. In many organisms, these hotspots are located close to a particular chromatin modification, the methylation of lysine 4 of histone H3 (H3K4me3). It was previously shown in the budding yeast model that one protein, Spp1, plays an important function in this process. We further explored the functional link between Spp1 and its interacting partners, and show that Spp1 shows genetically separable functions, by depositing the H3K4me3 mark on the chromatin, “reading” and protecting it, and linking it to the recombination proteins. We provide evidence that Spp1 is in distinct complexes to perform these functions. This work opens perspectives for understanding the process in other eukaryotes such as mammals, where most of the proteins involved are conserved.
Collapse
Affiliation(s)
- Céline Adam
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France
- Université Pierre et Marie Curie (UPMC), Paris, France
| | - Raphaël Guérois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Anna Citarella
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France
- Université Pierre et Marie Curie (UPMC), Paris, France
| | - Laura Verardi
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France
- Université Pierre et Marie Curie (UPMC), Paris, France
| | - Florine Adolphe
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France
- Université Pierre et Marie Curie (UPMC), Paris, France
| | - Claire Béneut
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France
- Université Pierre et Marie Curie (UPMC), Paris, France
| | - Vérane Sommermeyer
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France
- Université Pierre et Marie Curie (UPMC), Paris, France
| | - Claire Ramus
- Univ. Grenoble Alpes, CEA, INSERM, BIG-BGE, Grenoble, France
| | - Jérôme Govin
- Univ. Grenoble Alpes, CEA, INSERM, BIG-BGE, Grenoble, France
| | - Yohann Couté
- Univ. Grenoble Alpes, CEA, INSERM, BIG-BGE, Grenoble, France
| | - Valérie Borde
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France
- Université Pierre et Marie Curie (UPMC), Paris, France
- * E-mail:
| |
Collapse
|
19
|
Dayan IE, Arga KY, Ulgen KO. Multiomics Approach to Novel Therapeutic Targets for Cancer and Aging-Related Diseases: Role of Sld7 in Yeast Aging Network. ACTA ACUST UNITED AC 2017; 21:100-113. [DOI: 10.1089/omi.2016.0157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Irem E. Dayan
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
| | | | - Kutlu O. Ulgen
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
| |
Collapse
|
20
|
Chia M, van Werven FJ. Temporal Expression of a Master Regulator Drives Synchronous Sporulation in Budding Yeast. G3 (BETHESDA, MD.) 2016; 6:3553-3560. [PMID: 27605516 PMCID: PMC5100854 DOI: 10.1534/g3.116.034983] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/29/2016] [Indexed: 11/30/2022]
Abstract
Yeast cells enter and undergo gametogenesis relatively asynchronously, making it technically challenging to perform stage-specific genomic and biochemical analyses. Cell-to-cell variation in the expression of the master regulator of entry into sporulation, IME1, has been implicated to be the underlying cause of asynchronous sporulation. Here, we find that timing of IME1 expression is of critical importance for inducing cells to undergo sporulation synchronously. When we force expression of IME1 from an inducible promoter in cells incubated in sporulation medium for 2 hr, the vast majority of cells exhibit synchrony during premeiotic DNA replication and meiotic divisions. Inducing IME1 expression too early or too late affects the synchrony of sporulation. Surprisingly, our approach for synchronous sporulation does not require growth in acetate-containing medium, but can be achieved in cells grown in rich medium until saturation. Our system requires solely IME1, because the expression of the N6-methyladenosine methyltransferase IME4, another key regulator of early sporulation, is controlled by IME1 itself. The approach described here can be combined easily with other stage-specific synchronization methods, and thereby applied to study specific stages of sporulation, or the complete sporulation program.
Collapse
Affiliation(s)
- Minghao Chia
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - Folkert J van Werven
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| |
Collapse
|
21
|
Attenuation of transcriptional and signaling responses limits viability of ρ(0)Saccharomyces cerevisiae during periods of glucose deprivation. Biochim Biophys Acta Gen Subj 2016; 1860:2563-2575. [PMID: 27478089 DOI: 10.1016/j.bbagen.2016.07.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/09/2016] [Accepted: 07/27/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND The maintenance of viability during periods when a glycolytic carbon source is limited (or absent) is a major obstacle for cells whose mitochondrial DNA (mtDNA) has been damaged or lost. METHODS We utilized genome wide transcriptional profiling and in gel mobility analyses to examine the transcriptional response and characterize defects in the phosphorylation dependent signaling events that occur during acute glucose starvation in ρ(0) cells that lack mtDNA. Genetic and pharmacological interventions were employed to clarify the contribution of nutrient responsive kinases to regulation of the transcription factors that displayed abnormal phosphoregulation in ρ(0) cells. RESULTS The transcriptional response to glucose deprivation is dampened but not blocked in ρ(0) cells. Genes regulated by the transcription factors Mig1, Msn2, Gat1, and Ume6 were noticeably affected and phosphorylation of these factors in response to nutrient depletion is abnormal in ρ(0) cells. Regulation of the nutrient responsive kinases PKA and Snf1 remains normal in ρ(0) cells. The phosphorylation defect results from ATP depletion and loss of the activity of kinases including GSK3β, Rim15, and Yak1. Interventions which rescue phosphoregulation of transcription factors bolster maintenance of viability in ρ(0) cells during subsequent glucose deprivation. CONCLUSIONS A subset of nutrient responsive kinases is especially sensitive to ATP levels and their misregulation may underlie regulatory defects presented by ρ(0) cells. GENERAL SIGNIFICANCE Abnormal regulation of mitochondrial function is implicated in numerous human disorders. This work illustrates that some signaling pathways are more sensitive than others to metabolic defects caused by mitochondrial dysfunction.
Collapse
|
22
|
Yang J, Wang G, Ng TB, Lin J, Ye X. Laccase Production and Differential Transcription of Laccase Genes in Cerrena sp. in Response to Metal Ions, Aromatic Compounds, and Nutrients. Front Microbiol 2016; 6:1558. [PMID: 26793186 PMCID: PMC4710055 DOI: 10.3389/fmicb.2015.01558] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/22/2015] [Indexed: 11/30/2022] Open
Abstract
Laccases can oxidize a wide range of aromatic compounds and are industrially valuable. Laccases often exist in gene families and may differ from each other in expression and function. Quantitative real-time polymerase chain reaction (qPCR) was used for transcription profiling of eight laccase genes in Cerrena sp. strain HYB07 with validated reference genes. A high laccase activity of 280.0 U/mL was obtained after submerged fermentation for 5 days. Laccase production and laccase gene transcription at different fermentation stages and in response to various environmental cues were revealed. HYB07 laccase activity correlated with transcription levels of its predominantly expressed laccase gene, Lac7. Cu2+ ions were indispensable for efficient laccase production by HYB07, mainly through Lac7 transcription induction, and no aromatic compounds were needed. HYB07 laccase synthesis and biomass accumulation were highest with non-limiting carbon and nitrogen. Glycerol and inorganic nitrogen sources adversely impacted Lac7 transcription, laccase yields, and fungal growth. The present study would further our understanding of transcription regulation of laccase genes, which may in turn facilitate laccase production as well as elucidation of their physiological roles.
Collapse
Affiliation(s)
- Jie Yang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University Fuzhou, China
| | - Guozeng Wang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University Fuzhou, China
| | - Tzi Bun Ng
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong Hong Kong, China
| | - Juan Lin
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University Fuzhou, China
| | - Xiuyun Ye
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University Fuzhou, China
| |
Collapse
|
23
|
Goldschmidt Y, Yurkovsky E, Reif A, Rosner R, Akiva A, Nachman I. Control of relative timing and stoichiometry by a master regulator. PLoS One 2015; 10:e0127339. [PMID: 26000862 PMCID: PMC4441471 DOI: 10.1371/journal.pone.0127339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/14/2015] [Indexed: 02/03/2023] Open
Abstract
Developmental processes in cells require a series of complex steps. Often only a single master regulator activates genes in these different steps. This poses several challenges: some targets need to be ordered temporally, while co-functional targets may need to be synchronized in both time and expression level. Here we study in single cells the dynamic activation patterns of early meiosis genes in budding yeast, targets of the meiosis master regulator Ime1. We quantify the individual roles of the promoter and protein levels in expression pattern control, as well as the roles of individual promoter elements. We find a consistent expression pattern difference between a non-cofunctional pair of genes, and a highly synchronized activation of a co-functional pair. We show that dynamic control leading to these patterns is distributed between promoter, gene and external regions. Through specific reciprocal changes to the promoters of pairs of genes, we show that different genes can use different promoter elements to reach near identical activation patterns.
Collapse
Affiliation(s)
- Yifat Goldschmidt
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Evgeny Yurkovsky
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Amit Reif
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Roni Rosner
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Amit Akiva
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Iftach Nachman
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
24
|
Global alterations of the transcriptional landscape during yeast growth and development in the absence of Ume6-dependent chromatin modification. Mol Genet Genomics 2015; 290:2031-46. [PMID: 25957495 DOI: 10.1007/s00438-015-1051-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022]
Abstract
Chromatin modification enzymes are important regulators of gene expression and some are evolutionarily conserved from yeast to human. Saccharomyces cerevisiae is a major model organism for genome-wide studies that aim at the identification of target genes under the control of conserved epigenetic regulators. Ume6 interacts with the upstream repressor site 1 (URS1) and represses transcription by recruiting both the conserved histone deacetylase Rpd3 (through the co-repressor Sin3) and the chromatin-remodeling factor Isw2. Cells lacking Ume6 are defective in growth, stress response, and meiotic development. RNA profiling studies and in vivo protein-DNA binding assays identified mRNAs or transcript isoforms that are directly repressed by Ume6 in mitosis. However, a comprehensive understanding of the transcriptional alterations, which underlie the complex ume6Δ mutant phenotype during fermentation, respiration, or sporulation, is lacking. We report the protein-coding transcriptome of a diploid MAT a/α wild-type and ume6/ume6 mutant strains cultured in rich media with glucose or acetate as a carbon source, or sporulation-inducing medium. We distinguished direct from indirect effects on mRNA levels by combining GeneChip data with URS1 motif predictions and published high-throughput in vivo Ume6-DNA binding data. To gain insight into the molecular interactions between successive waves of Ume6-dependent meiotic genes, we integrated expression data with information on protein networks. Our work identifies novel Ume6 repressed genes during growth and development and reveals a strong effect of the carbon source on the derepression pattern of transcripts in growing and developmentally arrested ume6/ume6 mutant cells. Since yeast is a useful model organism for chromatin-mediated effects on gene expression, our results provide a rich source for further genetic and molecular biological work on the regulation of cell growth and cell differentiation in eukaryotes.
Collapse
|
25
|
The histone deacetylase Rpd3/Sin3/Ume6 complex represses an acetate-inducible isoform of VTH2 in fermenting budding yeast cells. FEBS Lett 2015; 589:924-32. [PMID: 25728275 DOI: 10.1016/j.febslet.2015.02.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/30/2015] [Accepted: 02/12/2015] [Indexed: 11/21/2022]
Abstract
The tripartite Rpd3/Sin3/Ume6 complex represses meiotic isoforms during mitosis. We asked if it also controls starvation-induced isoforms. We report that VTH1/VTH2 encode acetate-inducible isoforms with extended 5'-regions overlapping antisense long non-coding RNAs. Rpd3 and Ume6 repress the long isoform of VTH2 during fermentation. Cells metabolising glucose contain Vth2, while the protein is undetectable in acetate and during sporulation. VTH2 is a useful model locus to study mechanisms implicating promoter directionality, lncRNA transcription and post-transcriptional control of gene expression via 5'-UTRs. Since mammalian genes encode transcript isoforms and Rpd3 is conserved, our findings are relevant for gene expression in higher eukaryotes.
Collapse
|
26
|
Chandra V, Bhagyaraj E, Parkesh R, Gupta P. Transcription factors and cognate signalling cascades in the regulation of autophagy. Biol Rev Camb Philos Soc 2015; 91:429-51. [PMID: 25651938 DOI: 10.1111/brv.12177] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 01/04/2015] [Accepted: 01/11/2015] [Indexed: 12/11/2022]
Abstract
Autophagy is a process that maintains the equilibrium between biosynthesis and the recycling of cellular constituents; it is critical for avoiding the pathophysiology that results from imbalance in cellular homeostasis. Recent reports indicate the need for the design of high-throughput screening assays to identify targets and small molecules for autophagy modulation. For such screening, however, a better understanding of the regulation of autophagy is essential. In addition to regulation by various signalling cascades, regulation of gene expression by transcription factors is also critical. This review focuses on the various transcription factors as well as the corresponding signalling molecules that act together to translate the stimuli to effector molecules that up- or downregulate autophagy. This review rationalizes the importance of these transcription factors functioning in tandem with cognate signalling molecules and their interfaces as possible therapeutic targets for more specific pharmacological interventions.
Collapse
Affiliation(s)
- Vemika Chandra
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Ella Bhagyaraj
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Raman Parkesh
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Pawan Gupta
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| |
Collapse
|
27
|
Becker E, Liu Y, Lardenois A, Walther T, Horecka J, Stuparevic I, Law MJ, Lavigne R, Evrard B, Demougin P, Riffle M, Strich R, Davis RW, Pineau C, Primig M. Integrated RNA- and protein profiling of fermentation and respiration in diploid budding yeast provides insight into nutrient control of cell growth and development. J Proteomics 2015; 119:30-44. [PMID: 25662576 DOI: 10.1016/j.jprot.2015.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/16/2015] [Accepted: 01/25/2015] [Indexed: 12/29/2022]
Abstract
UNLABELLED Diploid budding yeast undergoes rapid mitosis when it ferments glucose, and in the presence of a non-fermentable carbon source and the absence of a nitrogen source it triggers sporulation. Rich medium with acetate is a commonly used pre-sporulation medium, but our understanding of the molecular events underlying the acetate-driven transition from mitosis to meiosis is still incomplete. We identified 263 proteins for which mRNA and protein synthesis are linked or uncoupled in fermenting and respiring cells. Using motif predictions, interaction data and RNA profiling we find among them 28 likely targets for Ume6, a subunit of the conserved Rpd3/Sin3 histone deacetylase-complex regulating genes involved in metabolism, stress response and meiosis. Finally, we identify 14 genes for which both RNA and proteins are detected exclusively in respiring cells but not in fermenting cells in our sample set, including CSM4, SPR1, SPS4 and RIM4, which were thought to be meiosis-specific. Our work reveals intertwined transcriptional and post-transcriptional control mechanisms acting when a MATa/α strain responds to nutritional signals, and provides molecular clues how the carbon source primes yeast cells for entering meiosis. BIOLOGICAL SIGNIFICANCE Our integrated genomics study provides insight into the interplay between the transcriptome and the proteome in diploid yeast cells undergoing vegetative growth in the presence of glucose (fermentation) or acetate (respiration). Furthermore, it reveals novel target genes involved in these processes for Ume6, the DNA binding subunit of the conserved histone deacetylase Rpd3 and the co-repressor Sin3. We have combined data from an RNA profiling experiment using tiling arrays that cover the entire yeast genome, and a large-scale protein detection analysis based on mass spectrometry in diploid MATa/α cells. This distinguishes our study from most others in the field-which investigate haploid yeast strains-because only diploid cells can undergo meiotic development in the simultaneous absence of a non-fermentable carbon source and nitrogen. Indeed, we report molecular clues how respiration of acetate might prime diploid cells for efficient spore formation, a phenomenon that is well known but poorly understood.
Collapse
Affiliation(s)
| | - Yuchen Liu
- Inserm U1085 IRSET, Université de Rennes 1, 35042 Rennes, France
| | | | - Thomas Walther
- Inserm U1085 IRSET, Université de Rennes 1, 35042 Rennes, France
| | - Joe Horecka
- Stanford Genome Technology Center, Palo Alto, CA 94304, USA
| | - Igor Stuparevic
- Inserm U1085 IRSET, Université de Rennes 1, 35042 Rennes, France
| | - Michael J Law
- Rowan University, School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Régis Lavigne
- Inserm U1085 IRSET, Proteomics Core Facility Biogenouest, Université de Rennes 1, 35042 Rennes, France
| | - Bertrand Evrard
- Inserm U1085 IRSET, Université de Rennes 1, 35042 Rennes, France
| | | | - Michael Riffle
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Randy Strich
- Rowan University, School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Ronald W Davis
- Stanford Genome Technology Center, Palo Alto, CA 94304, USA; Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Charles Pineau
- Inserm U1085 IRSET, Université de Rennes 1, 35042 Rennes, France; Inserm U1085 IRSET, Proteomics Core Facility Biogenouest, Université de Rennes 1, 35042 Rennes, France
| | - Michael Primig
- Inserm U1085 IRSET, Université de Rennes 1, 35042 Rennes, France.
| |
Collapse
|
28
|
Lardenois A, Stuparevic I, Liu Y, Law MJ, Becker E, Smagulova F, Waern K, Guilleux MH, Horecka J, Chu A, Kervarrec C, Strich R, Snyder M, Davis RW, Steinmetz LM, Primig M. The conserved histone deacetylase Rpd3 and its DNA binding subunit Ume6 control dynamic transcript architecture during mitotic growth and meiotic development. Nucleic Acids Res 2014; 43:115-28. [PMID: 25477386 PMCID: PMC4288150 DOI: 10.1093/nar/gku1185] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
It was recently reported that the sizes of many mRNAs change when budding yeast cells exit mitosis and enter the meiotic differentiation pathway. These differences were attributed to length variations of their untranslated regions. The function of UTRs in protein translation is well established. However, the mechanism controlling the expression of distinct transcript isoforms during mitotic growth and meiotic development is unknown. In this study, we order developmentally regulated transcript isoforms according to their expression at specific stages during meiosis and gametogenesis, as compared to vegetative growth and starvation. We employ regulatory motif prediction, in vivo protein-DNA binding assays, genetic analyses and monitoring of epigenetic amino acid modification patterns to identify a novel role for Rpd3 and Ume6, two components of a histone deacetylase complex already known to repress early meiosis-specific genes in dividing cells, in mitotic repression of meiosis-specific transcript isoforms. Our findings classify developmental stage-specific early, middle and late meiotic transcript isoforms, and they point to a novel HDAC-dependent control mechanism for flexible transcript architecture during cell growth and differentiation. Since Rpd3 is highly conserved and ubiquitously expressed in many tissues, our results are likely relevant for development and disease in higher eukaryotes.
Collapse
Affiliation(s)
| | - Igor Stuparevic
- Inserm U1085-Irset, Université de Rennes 1, Rennes, F-35042, France
| | - Yuchen Liu
- Inserm U1085-Irset, Université de Rennes 1, Rennes, F-35042, France
| | - Michael J Law
- School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | | | - Fatima Smagulova
- Inserm U1085-Irset, Université de Rennes 1, Rennes, F-35042, France
| | - Karl Waern
- Department of Genetics, Stanford University, Stanford, CA 94395, USA
| | | | - Joe Horecka
- Stanford Genome Technology Center, Palo Alto, CA 94304, USA
| | - Angela Chu
- Stanford Genome Technology Center, Palo Alto, CA 94304, USA
| | | | - Randy Strich
- School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Mike Snyder
- Department of Genetics, Stanford University, Stanford, CA 94395, USA
| | - Ronald W Davis
- Stanford Genome Technology Center, Palo Alto, CA 94304, USA Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Lars M Steinmetz
- European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Michael Primig
- Inserm U1085-Irset, Université de Rennes 1, Rennes, F-35042, France
| |
Collapse
|
29
|
Farnesoid X receptor regulates forkhead Box O3a activation in ethanol-induced autophagy and hepatotoxicity. Redox Biol 2014; 2:991-1002. [PMID: 25460735 PMCID: PMC4215528 DOI: 10.1016/j.redox.2014.08.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 08/17/2014] [Accepted: 08/25/2014] [Indexed: 02/07/2023] Open
Abstract
Alcoholic liver disease encompasses a wide spectrum of pathogenesis including steatosis, fibrosis, cirrhosis, and alcoholic steatohepatitis. Autophagy is a lysosomal degradation process that degrades cellular proteins and damaged/excess organelles, and serves as a protective mechanism in response to various stresses. Acute alcohol treatment induces autophagy via FoxO3a-mediated autophagy gene expression and protects against alcohol-induced steatosis and liver injury in mice. Farnesoid X Receptor (FXR) is a nuclear receptor that regulates cellular bile acid homeostasis. In the present study, wild type and FXR knockout (KO) mice were treated with acute ethanol for 16 h. We found that ethanol treated-FXR KO mice had exacerbated hepatotoxicity and steatosis compared to wild type mice. Furthermore, we found that ethanol treatment had decreased expression of various essential autophagy genes and several other FoxO3 target genes in FXR KO mice compared with wild type mice. Mechanistically, we did not find a direct interaction between FXR and FoxO3. Ethanol-treated FXR KO mice had increased Akt activation, increased phosphorylation of FoxO3 resulting in decreased FoxO3a nuclear retention and DNA binding. Furthermore, ethanol treatment induced hepatic mitochondrial spheroid formation in FXR KO mice but not in wild type mice, which may serve as a compensatory alternative pathway to remove ethanol-induced damaged mitochondria in FXR KO mice. These results suggest that lack of FXR impaired FoxO3a-mediated autophagy and in turn exacerbated alcohol-induced liver injury. FXR knockout mice are more susceptible to acute ethanol-induced steatosis and liver injury due to defective hepatic autophagy. FXR knockout mice had decreased FoxO3a activation and reduced expression of autophagy related genes in the liver after acute ethanol treatment. FXR knockout mice had increased mitochondrial spheroid formation after acute ethanol treatment.
Collapse
|
30
|
Füllgrabe J, Klionsky DJ, Joseph B. The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat Rev Mol Cell Biol 2013; 15:65-74. [PMID: 24326622 DOI: 10.1038/nrm3716] [Citation(s) in RCA: 370] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autophagy is a conserved process by which cytoplasmic components are degraded by the lysosome. It is commonly seen as a cytoplasmic event and, until now, nuclear events were not considered of primary importance for this process. However, recent studies have unveiled a transcriptional and epigenetic network that regulates autophagy. The identification of tightly controlled transcription factors (such as TFEB and ZKSCAN3), microRNAs and histone marks (especially acetylated Lys16 of histone 4 (H4K16ac) and dimethylated H3K9 (H3K9me2)) associated with the autophagic process offers an attractive conceptual framework to understand the short-term transcriptional response and potential long-term responses to autophagy.
Collapse
Affiliation(s)
- Jens Füllgrabe
- Department of Oncology Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm 17176, Sweden
| | - Daniel J Klionsky
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Bertrand Joseph
- Department of Oncology Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm 17176, Sweden
| |
Collapse
|
31
|
Acetylation of the transcriptional repressor Ume6p allows efficient promoter release and timely induction of the meiotic transient transcription program in yeast. Mol Cell Biol 2013; 34:631-42. [PMID: 24298021 DOI: 10.1128/mcb.00256-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Differentiation programs require strict spatial and temporal control of gene transcription. Genes expressed during meiotic development in Saccharomyces cerevisiae display transient induction and repression. Early meiotic gene (EMG) repression during mitosis is achieved by recruiting both histone deacetylase and chromatin remodeling complexes to their promoters by the zinc cluster DNA binding protein Ume6p. Ume6p repression is relieved by ubiquitin-mediated destruction that is stimulated by Gcn5p-induced acetylation. In this report, we demonstrate that Gcn5p acetylation of separate lysines within the zinc cluster domain negatively impacts Ume6p DNA binding. Mimicking lysine acetylation using glutamine substitution mutations decreased Ume6p binding efficiency and resulted in partial derepression of Ume6p-regulated genes. Consistent with this result, molecular modeling predicted that these lysine side chains are adjacent to the DNA phosphate backbone, suggesting that acetylation inhibits Ume6p binding by electrostatic repulsion. Preventing acetylation did not impact final EMG induction levels during meiosis. However, a delay in EMG induction was observed, which became more severe in later expression classes, ultimately resulting in delayed and reduced execution of the meiotic nuclear divisions. These results indicate that Ume6p acetylation ensures the proper timing of the transient transcription program during meiotic development.
Collapse
|
32
|
Schwartz S, Agarwala SD, Mumbach MR, Jovanovic M, Mertins P, Shishkin A, Tabach Y, Mikkelsen TS, Satija R, Ruvkun G, Carr SA, Lander ES, Fink GR, Regev A. High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell 2013; 155:1409-21. [PMID: 24269006 DOI: 10.1016/j.cell.2013.10.047] [Citation(s) in RCA: 506] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 10/22/2013] [Accepted: 10/29/2013] [Indexed: 01/12/2023]
Abstract
N(6)-methyladenosine (m(6)A) is the most ubiquitous mRNA base modification, but little is known about its precise location, temporal dynamics, and regulation. Here, we generated genomic maps of m(6)A sites in meiotic yeast transcripts at nearly single-nucleotide resolution, identifying 1,308 putatively methylated sites within 1,183 transcripts. We validated eight out of eight methylation sites in different genes with direct genetic analysis, demonstrated that methylated sites are significantly conserved in a related species, and built a model that predicts methylated sites directly from sequence. Sites vary in their methylation profiles along a dense meiotic time course and are regulated both locally, via predictable methylatability of each site, and globally, through the core meiotic circuitry. The methyltransferase complex components localize to the yeast nucleolus, and this localization is essential for mRNA methylation. Our data illuminate a conserved, dynamically regulated methylation program in yeast meiosis and provide an important resource for studying the function of this epitranscriptomic modification.
Collapse
|
33
|
Munding EM, Shiue L, Katzman S, Donohue JP, Ares M. Competition between pre-mRNAs for the splicing machinery drives global regulation of splicing. Mol Cell 2013; 51:338-48. [PMID: 23891561 PMCID: PMC3771316 DOI: 10.1016/j.molcel.2013.06.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 05/18/2013] [Accepted: 06/18/2013] [Indexed: 01/08/2023]
Abstract
During meiosis in yeast, global splicing efficiency increases and then decreases. Here we provide evidence that splicing improves due to reduced competition for the splicing machinery. The timing of this regulation corresponds to repression and reactivation of ribosomal protein genes (RPGs) during meiosis. In vegetative cells, RPG repression by rapamycin treatment also increases splicing efficiency. Downregulation of the RPG-dedicated transcription factor gene IFH1 genetically suppresses two spliceosome mutations, prp11-1 and prp4-1, and globally restores splicing efficiency in prp4-1 cells. We conclude that the splicing apparatus is limiting and that pre-messenger RNAs compete. Splicing efficiency of a pre-mRNA therefore depends not just on its own concentration and affinity for limiting splicing factor(s), but also on those of competing pre-mRNAs. Competition between RNAs for limiting processing factors appears to be a general condition in eukaryotes for a variety of posttranscriptional control mechanisms including microRNA (miRNA) repression, polyadenylation, and splicing.
Collapse
Affiliation(s)
- Elizabeth M. Munding
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, Sinsheimer Laboratories, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Lily Shiue
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, Sinsheimer Laboratories, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Sol Katzman
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, Sinsheimer Laboratories, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - John Paul Donohue
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, Sinsheimer Laboratories, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Manuel Ares
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, Sinsheimer Laboratories, University of California, Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|
34
|
Ume6 transcription factor is part of a signaling cascade that regulates autophagy. Proc Natl Acad Sci U S A 2012; 109:11206-10. [PMID: 22733735 PMCID: PMC3396506 DOI: 10.1073/pnas.1200313109] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autophagy has been implicated in a number of physiological processes important for human heath and disease. Autophagy involves the formation of a double-membrane cytosolic vesicle, an autophagosome. Central to the formation of the autophagosome is the ubiquitin-like protein autophagy-related (Atg)8 (microtubule-associated protein 1 light chain 3/LC3 in mammalian cells). Following autophagy induction, Atg8 shows the greatest change in expression of any of the proteins required for autophagy. The magnitude of autophagy is, in part, controlled by the amount of Atg8; thus, controlling Atg8 protein levels is one potential mechanism for modulating autophagy activity. We have identified a negative regulator of ATG8 transcription, Ume6, which acts along with a histone deacetylase complex including Sin3 and Rpd3 to regulate Atg8 levels; deletion of any of these components leads to an increase in Atg8 and a concomitant increase in autophagic activity. A similar regulatory mechanism is present in mammalian cells, indicating that this process is highly conserved.
Collapse
|
35
|
Bryant JM, Govin J, Zhang L, Donahue G, Pugh BF, Berger SL. The linker histone plays a dual role during gametogenesis in Saccharomyces cerevisiae. Mol Cell Biol 2012; 32:2771-83. [PMID: 22586276 PMCID: PMC3416202 DOI: 10.1128/mcb.00282-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/07/2012] [Indexed: 11/20/2022] Open
Abstract
The differentiation of gametes involves dramatic changes to chromatin, affecting transcription, meiosis, and cell morphology. Sporulation in Saccharomyces cerevisiae shares many chromatin features with spermatogenesis, including a 10-fold compaction of the nucleus. To identify new proteins involved in spore nuclear organization, we purified chromatin from mature spores and discovered a significant enrichment of the linker histone (Hho1). The function of Hho1 has proven to be elusive during vegetative growth, but here we demonstrate its requirement for efficient sporulation and full compaction of the spore genome. Hho1 chromatin immunoprecipitation followed by sequencing (ChIP-seq) revealed increased genome-wide binding in mature spores and provides novel in vivo evidence of the linker histone binding to nucleosomal linker DNA. We also link Hho1 function to the transcription factor Ume6, the master repressor of early meiotic genes. Hho1 and Ume6 are depleted during meiosis, and analysis of published ChIP-chip data obtained during vegetative growth reveals a high binding correlation of both proteins at promoters of early meiotic genes. Moreover, Ume6 promotes binding of Hho1 to meiotic gene promoters. Thus, Hho1 may play a dual role during sporulation: Hho1 and Ume6 depletion facilitates the onset of meiosis via activation of Ume6-repressed early meiotic genes, whereas Hho1 enrichment in mature spores contributes to spore genome compaction.
Collapse
Affiliation(s)
- Jessica M. Bryant
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biomedical Graduate Studies, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jérôme Govin
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Liye Zhang
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- The Integrative Biosciences Graduate Program in Cell and Developmental Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Greg Donahue
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - B. Franklin Pugh
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Shelley L. Berger
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
36
|
El Hadrami A, El-Bebany AF, Yao Z, Adam LR, El Hadrami I, Daayf F. Plants versus fungi and oomycetes: pathogenesis, defense and counter-defense in the proteomics era. Int J Mol Sci 2012; 13:7237-7259. [PMID: 22837691 PMCID: PMC3397523 DOI: 10.3390/ijms13067237] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 05/29/2012] [Accepted: 05/30/2012] [Indexed: 11/17/2022] Open
Abstract
Plant-fungi and plant-oomycete interactions have been studied at the proteomic level for many decades. However, it is only in the last few years, with the development of new approaches, combined with bioinformatics data mining tools, gel staining, and analytical instruments, such as 2D-PAGE/nanoflow-LC-MS/MS, that proteomic approaches thrived. They allow screening and analysis, at the sub-cellular level, of peptides and proteins resulting from plants, pathogens, and their interactions. They also highlight post-translational modifications to proteins, e.g., glycosylation, phosphorylation or cleavage. However, many challenges are encountered during in planta studies aimed at stressing details of host defenses and fungal and oomycete pathogenicity determinants during interactions. Dissecting the mechanisms of such host-pathogen systems, including pathogen counter-defenses, will ensure a step ahead towards understanding current outcomes of interactions from a co-evolutionary point of view, and eventually move a step forward in building more durable strategies for management of diseases caused by fungi and oomycetes. Unraveling intricacies of more complex proteomic interactions that involve additional microbes, i.e., PGPRs and symbiotic fungi, which strengthen plant defenses will generate valuable information on how pathosystems actually function in nature, and thereby provide clues to solving disease problems that engender major losses in crops every year.
Collapse
Affiliation(s)
- Abdelbasset El Hadrami
- Department of Plant Science, University of Manitoba, 222, Agriculture Building, Winnipeg, Manitoba, R3T 2N2, Canada; E-Mails: (A.E.H.); (A.F.E.-B.); (Z.Y.); (L.R.A.)
- OMEX Agriculture Inc., P.O. Box 301, 290 Agri Park Road, Oak Bluff, Manitoba, R0G 1N0, Canada
| | - Ahmed F. El-Bebany
- Department of Plant Science, University of Manitoba, 222, Agriculture Building, Winnipeg, Manitoba, R3T 2N2, Canada; E-Mails: (A.E.H.); (A.F.E.-B.); (Z.Y.); (L.R.A.)
- Department of Plant Pathology, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria, 21545, Egypt
| | - Zhen Yao
- Department of Plant Science, University of Manitoba, 222, Agriculture Building, Winnipeg, Manitoba, R3T 2N2, Canada; E-Mails: (A.E.H.); (A.F.E.-B.); (Z.Y.); (L.R.A.)
| | - Lorne R. Adam
- Department of Plant Science, University of Manitoba, 222, Agriculture Building, Winnipeg, Manitoba, R3T 2N2, Canada; E-Mails: (A.E.H.); (A.F.E.-B.); (Z.Y.); (L.R.A.)
| | - Ismailx El Hadrami
- Laboratoire de Biotechnologies, Protection et Valorisation des Ressources Végétales (Biotec-VRV), Faculté des Sciences Semlalia, B.P. 2390, Marrakech, 40 000, Morocco; E-Mail:
| | - Fouad Daayf
- Department of Plant Science, University of Manitoba, 222, Agriculture Building, Winnipeg, Manitoba, R3T 2N2, Canada; E-Mails: (A.E.H.); (A.F.E.-B.); (Z.Y.); (L.R.A.)
| |
Collapse
|
37
|
Acetate regulation of spore formation is under the control of the Ras/cyclic AMP/protein kinase A pathway and carbon dioxide in Saccharomyces cerevisiae. EUKARYOTIC CELL 2012; 11:1021-32. [PMID: 22660623 DOI: 10.1128/ec.05240-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In Saccharomyces cerevisiae, the Ras/cyclic AMP (cAMP)/protein kinase A (PKA) pathway is a nutrient-sensitive signaling cascade that regulates vegetative growth, carbohydrate metabolism, and entry into meiosis. How this pathway controls later steps of meiotic development is largely unknown. Here, we have analyzed the role of the Ras/cAMP/PKA pathway in spore formation by the meiosis-specific manipulation of Ras and PKA or by the disturbance of cAMP production. We found that the regulation of spore formation by acetate takes place after commitment to meiosis and depends on PKA and appropriate A kinase activation by Ras/Cyr1 adenylyl cyclase but not by activation through the Gpa2/Gpr1 branch. We further discovered that spore formation is regulated by carbon dioxide/bicarbonate, and an analysis of mutants defective in acetate transport (ady2Δ) or carbonic anhydrase (nce103Δ) provided evidence that these metabolites are involved in connecting the nutritional state of the meiotic cell to spore number control. Finally, we observed that the potential PKA target Ady1 is required for the proper localization of the meiotic plaque proteins Mpc70 and Spo74 at spindle pole bodies and for the ability of these proteins to initiate spore formation. Overall, our investigation suggests that the Ras/cAMP/PKA pathway plays a crucial role in the regulation of spore formation by acetate and indicates that the control of meiotic development by this signaling cascade takes places at several steps and is more complex than previously anticipated.
Collapse
|
38
|
Stead BE, Brandl CJ, Sandre MK, Davey MJ. Mcm2 phosphorylation and the response to replicative stress. BMC Genet 2012; 13:36. [PMID: 22564307 PMCID: PMC3517340 DOI: 10.1186/1471-2156-13-36] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 05/07/2012] [Indexed: 12/30/2022] Open
Abstract
Background The replicative helicase in eukaryotic cells is comprised of minichromosome maintenance (Mcm) proteins 2 through 7 (Mcm2-7) and is a key target for regulation of cell proliferation. In addition, it is regulated in response to replicative stress. One of the protein kinases that targets Mcm2-7 is the Dbf4-dependent kinase Cdc7 (DDK). In a previous study, we showed that alanine mutations of the DDK phosphorylation sites at S164 and S170 in Saccharomyces cerevisiae Mcm2 result in sensitivity to caffeine and methyl methanesulfonate (MMS) leading us to suggest that DDK phosphorylation of Mcm2 is required in response to replicative stress. Results We show here that a strain with the mcm2 allele lacking DDK phosphorylation sites (mcm2AA) is also sensitive to the ribonucleotide reductase inhibitor, hydroxyurea (HU) and to the base analogue 5-fluorouracil (5-FU) but not the radiomimetic drug, phleomycin. We screened the budding yeast non-essential deletion collection for synthetic lethal interactions with mcm2AA and isolated deletions that include genes involved in the control of genome integrity and oxidative stress. In addition, the spontaneous mutation rate, as measured by mutations in CAN1, was increased in the mcm2AA strain compared to wild type, whereas with a phosphomimetic allele (mcm2EE) the mutation rate was decreased. These results led to the idea that the mcm2AA strain is unable to respond properly to DNA damage. We examined this by screening the deletion collection for suppressors of the caffeine sensitivity of mcm2AA. Deletions that decrease spontaneous DNA damage, increase homologous recombination or slow replication forks were isolated. Many of the suppressors of caffeine sensitivity suppressed other phenotypes of mcm2AA including sensitivity to genotoxic drugs, the increased frequency of cells with RPA foci and the increased mutation rate. Conclusions Together these observations point to a role for DDK-mediated phosphorylation of Mcm2 in the response to replicative stress, including some forms of DNA damage. We suggest that phosphorylation of Mcm2 modulates Mcm2-7 activity resulting in the stabilization of replication forks in response to replicative stress.
Collapse
Affiliation(s)
- Brent E Stead
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | | | | | | |
Collapse
|
39
|
Zhao XQ, Bai FW. Zinc and yeast stress tolerance: Micronutrient plays a big role. J Biotechnol 2012; 158:176-83. [DOI: 10.1016/j.jbiotec.2011.06.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 06/20/2011] [Accepted: 06/29/2011] [Indexed: 10/18/2022]
|
40
|
Wyrick JJ. Computational analysis of promoter elements and chromatin features in yeast. Methods Mol Biol 2012; 809:217-35. [PMID: 22113279 DOI: 10.1007/978-1-61779-376-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Regulatory elements in promoter sequences typically function as binding sites for transcription factor proteins and thus are critical determinants of gene transcription. There is growing evidence that chromatin features, such as histone modifications or nucleosome positions, also have important roles in transcriptional regulation. Recent functional genomics and computational studies have yielded extensive datasets cataloging transcription factor binding sites (TFBS) and chromatin features, such as nucleosome positions, throughout the yeast genome. However, much of this data can be difficult to navigate or analyze efficiently. This chapter describes practical methods for the visualization, data mining, and statistical analysis of yeast promoter elements and chromatin features using two Web-accessible bioinformatics databases: ChromatinDB and Ceres.
Collapse
Affiliation(s)
- John J Wyrick
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA.
| |
Collapse
|
41
|
Winter E. The Sum1/Ndt80 transcriptional switch and commitment to meiosis in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2012; 76:1-15. [PMID: 22390969 PMCID: PMC3294429 DOI: 10.1128/mmbr.05010-11] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cells encounter numerous signals during the development of an organism that induce division, differentiation, and apoptosis. These signals need to be present for defined intervals in order to induce stable changes in the cellular phenotype. The point after which an inducing signal is no longer needed for completion of a differentiation program can be termed the "commitment point." Meiotic development in the yeast Saccharomyces cerevisiae (sporulation) provides a model system to study commitment. Similar to differentiation programs in multicellular organisms, the sporulation program in yeast is regulated by a transcriptional cascade that produces early, middle, and late sets of sporulation-specific transcripts. Although critical meiosis-specific events occur as early genes are expressed, commitment does not take place until middle genes are induced. Middle promoters are activated by the Ndt80 transcription factor, which is produced and activated shortly before most middle genes are expressed. In this article, I discuss the connection between Ndt80 and meiotic commitment. A transcriptional regulatory pathway makes NDT80 transcription contingent on the prior expression of early genes. Once Ndt80 is produced, the recombination (pachytene) checkpoint prevents activation of the Ndt80 protein. Upon activation, Ndt80 triggers a positive autoregulatory loop that leads to the induction of genes that promote exit from prophase, the meiotic divisions, and spore formation. The pathway is controlled by multiple feed-forward loops that give switch-like properties to the commitment transition. The conservation of regulatory components of the meiotic commitment pathway and the recently reported ability of Ndt80 to increase replicative life span are discussed.
Collapse
Affiliation(s)
- Edward Winter
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
42
|
Livas D, Almering MJ, Daran JM, Pronk JT, Gancedo JM. Transcriptional responses to glucose in Saccharomyces cerevisiae strains lacking a functional protein kinase A. BMC Genomics 2011; 12:405. [PMID: 21827659 PMCID: PMC3166949 DOI: 10.1186/1471-2164-12-405] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 08/09/2011] [Indexed: 11/10/2022] Open
Abstract
Background The pattern of gene transcripts in the yeast Saccharomyces cerevisiae is strongly affected by the presence of glucose. An increased activity of protein kinase A (PKA), triggered by a rise in the intracellular concentration of cAMP, can account for many of the effects of glucose on transcription. In S. cerevisiae three genes, TPK1, TPK2, and TPK3, encode catalytic subunits of PKA. The lack of viability of tpk1 tpk2 tpk3 triple mutants may be suppressed by mutations such as yak1 or msn2/msn4. To investigate the requirement for PKA in glucose control of gene expression, we have compared the effects of glucose on global transcription in a wild-type strain and in two strains devoid of PKA activity, tpk1 tpk2 tpk3 yak1 and tpk1 tpk2 tpk3 msn2 msn4. Results We have identified different classes of genes that can be induced -or repressed- by glucose in the absence of PKA. Representative examples are genes required for glucose utilization and genes involved in the metabolism of other carbon sources, respectively. Among the genes responding to glucose in strains devoid of PKA some are also controlled by a redundant signalling pathway involving PKA activation, while others are not affected when PKA is activated through an increase in cAMP concentration. On the other hand, among genes that do not respond to glucose in the absence of PKA, some give a full response to increased cAMP levels, even in the absence of glucose, while others appear to require the cooperation of different signalling pathways. We show also that, for a number of genes controlled by glucose through a PKA-dependent pathway, the changes in mRNA levels are transient. We found that, in cells grown in gluconeogenic conditions, expression of a small number of genes, mainly connected with the response to stress, is reduced in the strains lacking PKA. Conclusions In S. cerevisiae, the transcriptional responses to glucose are triggered by a variety of pathways, alone or in combination, in which PKA is often involved. Redundant signalling pathways confer a greater robustness to the response to glucose, while cooperative pathways provide a greater flexibility.
Collapse
Affiliation(s)
- Daniela Livas
- Department of Metabolism and Cell Signalling, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | | | | | | | | |
Collapse
|
43
|
Sugino RP, Innan H. Natural Selection on Gene Order in the Genome Reorganization Process After Whole-Genome Duplication of Yeast. Mol Biol Evol 2011; 29:71-9. [DOI: 10.1093/molbev/msr118] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
44
|
Zhang L, Ma H, Pugh BF. Stable and dynamic nucleosome states during a meiotic developmental process. Genome Res 2011; 21:875-84. [PMID: 21515815 DOI: 10.1101/gr.117465.110] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The plasticity of chromatin organization as chromosomes undergo a full compendium of transactions including DNA replication, recombination, chromatin compaction, and changes in transcription during a developmental program is unknown. We generated genome-wide maps of individual nucleosome organizational states, including positions and occupancy of all nucleosomes, and H3K9 acetylation and H3K4, K36, K79 tri-methylation, during meiotic spore development (gametogenesis) in Saccharomyces. Nucleosome organization was remarkably constant as the genome underwent compaction. However, during an acute meiotic starvation response, nucleosomes were repositioned to alter the accessibility of select transcriptional start sites. Surprisingly, the majority of the meiotic programs did not use this nucleosome repositioning, but was dominated by antisense control. Histone modification states were also remarkably stable, being abundant at specific nucleosome positions at three-quarters of all genes, despite most genes being rarely transcribed. Our findings suggest that, during meiosis, the basic features of genomic chromatin organization are essentially a fixed property of chromosomes, but tweaked in a restricted and program-specific manner.
Collapse
Affiliation(s)
- Liye Zhang
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
45
|
Radman-Livaja M, Ruben G, Weiner A, Friedman N, Kamakaka R, Rando OJ. Dynamics of Sir3 spreading in budding yeast: secondary recruitment sites and euchromatic localization. EMBO J 2011; 30:1012-26. [PMID: 21336256 DOI: 10.1038/emboj.2011.30] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/20/2011] [Indexed: 11/10/2022] Open
Abstract
Chromatin domains are believed to spread via a polymerization-like mechanism in which modification of a given nucleosome recruits a modifying complex, which can then modify the next nucleosome in the polymer. In this study, we carry out genome-wide mapping of the Sir3 component of the Sir silencing complex in budding yeast during a time course of establishment of heterochromatin. Sir3 localization patterns do not support a straightforward model for nucleation and polymerization, instead showing strong but spatially delimited binding to silencers, and weaker and more variable Ume6-dependent binding to novel secondary recruitment sites at the seripauperin (PAU) genes. Genome-wide nucleosome mapping revealed that Sir binding to subtelomeric regions was associated with overpackaging of subtelomeric promoters. Sir3 also bound to a surprising number of euchromatic sites, largely at genes expressed at high levels, and was dynamically recruited to GAL genes upon galactose induction. Together, our results indicate that heterochromatin complex localization cannot simply be explained by nucleation and linear polymerization, and show that heterochromatin complexes associate with highly expressed euchromatic genes in many different organisms.
Collapse
Affiliation(s)
- Marta Radman-Livaja
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | | | | |
Collapse
|
46
|
Munding EM, Igel AH, Shiue L, Dorighi KM, Treviño LR, Ares M. Integration of a splicing regulatory network within the meiotic gene expression program of Saccharomyces cerevisiae. Genes Dev 2010; 24:2693-704. [PMID: 21123654 DOI: 10.1101/gad.1977410] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Splicing regulatory networks are essential components of eukaryotic gene expression programs, yet little is known about how they are integrated with transcriptional regulatory networks into coherent gene expression programs. Here we define the MER1 splicing regulatory network and examine its role in the gene expression program during meiosis in budding yeast. Mer1p splicing factor promotes splicing of just four pre-mRNAs. All four Mer1p-responsive genes also require Nam8p for splicing activation by Mer1p; however, other genes require Nam8p but not Mer1p, exposing an overlapping meiotic splicing network controlled by Nam8p. MER1 mRNA and three of the four Mer1p substrate pre-mRNAs are induced by the transcriptional regulator Ume6p. This unusual arrangement delays expression of Mer1p-responsive genes relative to other genes under Ume6p control. Products of Mer1p-responsive genes are required for initiating and completing recombination and for activation of Ndt80p, the activator of the transcriptional network required for subsequent steps in the program. Thus, the MER1 splicing regulatory network mediates the dependent relationship between the UME6 and NDT80 transcriptional regulatory networks in the meiotic gene expression program. This study reveals how splicing regulatory networks can be interlaced with transcriptional regulatory networks in eukaryotic gene expression programs.
Collapse
Affiliation(s)
- Elizabeth M Munding
- Center for Molecular Biology of RNA, Department of Molecular, Cell, and Developmental Biology, University of California at Santa Cruz, 95064, USA
| | | | | | | | | | | |
Collapse
|
47
|
Lardenois A, Gattiker A, Collin O, Chalmel F, Primig M. GermOnline 4.0 is a genomics gateway for germline development, meiosis and the mitotic cell cycle. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2010; 2010:baq030. [PMID: 21149299 PMCID: PMC3004465 DOI: 10.1093/database/baq030] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
GermOnline 4.0 is a cross-species database portal focusing on high-throughput expression data relevant for germline development, the meiotic cell cycle and mitosis in healthy versus malignant cells. It is thus a source of information for life scientists as well as clinicians who are interested in gene expression and regulatory networks. The GermOnline gateway provides unlimited access to information produced with high-density oligonucleotide microarrays (3'-UTR GeneChips), genome-wide protein-DNA binding assays and protein-protein interaction studies in the context of Ensembl genome annotation. Samples used to produce high-throughput expression data and to carry out genome-wide in vivo DNA binding assays are annotated via the MIAME-compliant Multiomics Information Management and Annotation System (MIMAS 3.0). Furthermore, the Saccharomyces Genomics Viewer (SGV) was developed and integrated into the gateway. SGV is a visualization tool that outputs genome annotation and DNA-strand specific expression data produced with high-density oligonucleotide tiling microarrays (Sc_tlg GeneChips) which cover the complete budding yeast genome on both DNA strands. It facilitates the interpretation of expression levels and transcript structures determined for various cell types cultured under different growth and differentiation conditions. Database URL: www.germonline.org/
Collapse
Affiliation(s)
- Aurélie Lardenois
- Inserm, U625, GERHM, IFR-140, Université de Rennes 1, F-35042 Rennes, France
| | | | | | | | | |
Collapse
|
48
|
Strich R, Khakhina S, Mallory MJ. Ume6p is required for germination and early colony development of yeast ascospores. FEMS Yeast Res 2010; 11:104-13. [PMID: 21059190 DOI: 10.1111/j.1567-1364.2010.00696.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Ume6p is a nonessential transcription factor that represses meiotic gene expression during vegetative growth in budding yeast. To relieve this repression, Ume6p is destroyed as cells enter meiosis and is not resynthesized until spore wall assembly. The present study reveals that spores derived from a ume6 null homozygous diploid fail to germinate. In addition, mutant spores from a UME6/ume6 heterozygote exhibited reduced germination efficiency compared with their wild-type sister spores. Analysis of ume6 spore colonies that did germinate revealed that the majority of cells in microcolonies following the first few cell divisions were inviable. As the colony developed, the viability percentage increased and achieved wild-type levels within approximately six cell divisions, indicating that the requirement for Ume6p in cell viability is transient. This function is specific for germinating spores as Ume6p has no or only a modest impact on the return to the growth ability of cells arrested at other points in the cell cycle. These results define a new role for Ume6p in spore germination and the first few subsequent mitotic cell divisions.
Collapse
Affiliation(s)
- Randy Strich
- Department of Molecular Biology, University of Medicine and Dentistry of New Jersey, Newark, NJ 08055, USA.
| | | | | |
Collapse
|
49
|
Tsankov AM, Thompson DA, Socha A, Regev A, Rando OJ. The role of nucleosome positioning in the evolution of gene regulation. PLoS Biol 2010; 8:e1000414. [PMID: 20625544 PMCID: PMC2897762 DOI: 10.1371/journal.pbio.1000414] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 05/27/2010] [Indexed: 11/18/2022] Open
Abstract
Chromatin organization plays a major role in gene regulation and can affect the function and evolution of new transcriptional programs. However, it can be difficult to decipher the basis of changes in chromatin organization and their functional effect on gene expression. Here, we present a large-scale comparative genomic analysis of the relationship between chromatin organization and gene expression, by measuring mRNA abundance and nucleosome positions genome-wide in 12 Hemiascomycota yeast species. We found substantial conservation of global and functional chromatin organization in all species, including prominent nucleosome-free regions (NFRs) at gene promoters, and distinct chromatin architecture in growth and stress genes. Chromatin organization has also substantially diverged in both global quantitative features, such as spacing between adjacent nucleosomes, and in functional groups of genes. Expression levels, intrinsic anti-nucleosomal sequences, and trans-acting chromatin modifiers all play important, complementary, and evolvable roles in determining NFRs. We identify five mechanisms that couple chromatin organization to evolution of gene regulation and have contributed to the evolution of respiro-fermentation and other key systems, including (1) compensatory evolution of alternative modifiers associated with conserved chromatin organization, (2) a gradual transition from constitutive to trans-regulated NFRs, (3) a loss of intrinsic anti-nucleosomal sequences accompanying changes in chromatin organization and gene expression, (4) re-positioning of motifs from NFRs to nucleosome-occluded regions, and (5) the expanded use of NFRs by paralogous activator-repressor pairs. Our study sheds light on the molecular basis of chromatin organization, and on the role of chromatin organization in the evolution of gene regulation.
Collapse
Affiliation(s)
- Alexander M. Tsankov
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Dawn Anne Thompson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Amanda Socha
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Cambridge, Massachusetts, United States of America
| | - Oliver J. Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
50
|
Mitotic expression of Spo13 alters M-phase progression and nucleolar localization of Cdc14 in budding yeast. Genetics 2010; 185:841-54. [PMID: 20407133 DOI: 10.1534/genetics.109.113746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spo13 is a key meiosis-specific regulator required for centromere cohesion and coorientation, and for progression through two nuclear divisions. We previously reported that it causes a G2/M arrest and may delay the transition from late anaphase to G1, when overexpressed in mitosis. Yet its mechanism of action has remained elusive. Here we show that Spo13, which is phosphorylated and stabilized at G2/M in a Cdk/Clb-dependent manner, acts at two stages during mitotic cell division. Spo13 provokes a G2/M arrest that is reversible and largely independent of the Mad2 spindle checkpoint. Since mRNAs whose induction requires Cdc14 activation are reduced, we propose that its anaphase delay results from inhibition of Cdc14 function. Indeed, the Spo13-induced anaphase delay correlates with Cdc14 phosphatase retention in the nucleolus and with cyclin B accumulation, which both impede anaphase exit. At the onset of arrest, Spo13 is primarily associated with the nucleolus, where Cdc14 accumulates. Significantly, overexpression of separase (Esp1), which promotes G2/M and anaphase progression, suppresses Spo13 effects in mitosis, arguing that Spo13 acts upstream or parallel to Esp1. Given that Spo13 overexpression reduces Pds1 and cyclin B degradation, our findings are consistent with a role for Spo13 in regulating APC, which controls both G2/M and anaphase. Similar effects of Spo13 during meiotic MI may prevent cell cycle exit and initiation of DNA replication prior to MII, thereby ensuring two successive chromosome segregation events without an intervening S phase.
Collapse
|