1
|
Bar-Oz G, Schmidt J. Why study the archeo-histories of dryland landraces now? TRENDS IN PLANT SCIENCE 2025:S1360-1385(25)00008-1. [PMID: 39984375 DOI: 10.1016/j.tplants.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/03/2025] [Accepted: 01/20/2025] [Indexed: 02/23/2025]
Abstract
Living landrace fruit trees are preserved in the margins of the Mediterranean countryside. Often found in drought-prone areas and historically selected and bred for resilience to aridity, landrace cultivars have distinctive genetic identities. The study of their longevity, endurance, and intergenerational traits reveals how historical farmers adapted to harsh environments through resource management and the use of prized cultivars. We propose a model to merge archeological and socio-historical methods to contextualize the biological narratives in landrace fruit tree cultivars within their historical origins. Insights from this manner of research can enhance sustainable horticulture practices by offering innovative recourses for reclaiming traditional landrace cultivars. Using ancient landrace varieties to increase plant diversity can have various financial, cultural, and ecological benefits for modern agriculture.
Collapse
Affiliation(s)
- Guy Bar-Oz
- School of Archaeology and Maritime Cultures, University of Haifa, Haifa, 3498837, Mount Carmel, Israel.
| | - Joshua Schmidt
- School of Archaeology and Maritime Cultures, University of Haifa, Haifa, 3498837, Mount Carmel, Israel
| |
Collapse
|
2
|
Courtin J, Stoof-Leichsenring KR, Lisovski S, Liu Y, Alsos IG, Biskaborn BK, Diekmann B, Melles M, Wagner B, Pestryakova L, Russell J, Huang Y, Herzschuh U. Potential plant extinctions with the loss of the Pleistocene mammoth steppe. Nat Commun 2025; 16:645. [PMID: 39809751 PMCID: PMC11733255 DOI: 10.1038/s41467-024-55542-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
During the Pleistocene-Holocene transition, the dominant mammoth steppe ecosystem across northern Eurasia vanished, in parallel with megafauna extinctions. However, plant extinction patterns are rarely detected due to lack of identifiable fossil records. Here, we introduce a method for detection of plant taxa loss at regional (extirpation) to potentially global scale (extinction) and their causes, as determined from ancient plant DNA metabarcoding in sediment cores (sedaDNA) from lakes in Siberia and Alaska over the past 28,000 years. Overall, potential plant extinctions track changes in temperature, in vegetation, and in megafauna extinctions at the Pleistocene-Holocene transition. Estimated potential plant extinction rates were 1.7-5.9 extinctions per million species years (E/MSY), above background extinction rates but below modern estimates. Major potential plant extinction events were detected around 17,000 and 9000 years ago which lag maximum vegetation turnover. Our results indicate that herbaceous taxa and taxa contributing less to beta diversity are more vulnerable to extinction. While the robustness of the estimates will increase as DNA reference libraries and ancient sedaDNA data expand, the available data support that plants are more resilient to environmental changes than mammals.
Collapse
Affiliation(s)
- Jérémy Courtin
- Polar Terrestrial Environmental Systems, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Kathleen R Stoof-Leichsenring
- Polar Terrestrial Environmental Systems, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Simeon Lisovski
- Polar Terrestrial Environmental Systems, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Ying Liu
- Polar Terrestrial Environmental Systems, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Inger Greve Alsos
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Boris K Biskaborn
- Polar Terrestrial Environmental Systems, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Bernhard Diekmann
- Polar Terrestrial Environmental Systems, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Martin Melles
- Institute of Geology and Mineralogy, University of Cologne, Cologne, Germany
| | - Bernd Wagner
- Institute of Geology and Mineralogy, University of Cologne, Cologne, Germany
| | - Luidmila Pestryakova
- Institute of Natural Sciences, North-Eastern Federal University of Yakutsk, Yakutsk, Russia
| | - James Russell
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, USA
| | - Yongsong Huang
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, USA
| | - Ulrike Herzschuh
- Polar Terrestrial Environmental Systems, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany.
- Institute of Environmental Science and Geography, University of Potsdam, Potsdam, Germany.
- Institute of Biology and Biochemistry, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
3
|
Bolius S, Schmidt A, Kaiser J, Arz HW, Dellwig O, Karsten U, Epp LS, Kremp A. Resurrection of a diatom after 7000 years from anoxic Baltic Sea sediment. THE ISME JOURNAL 2025; 19:wrae252. [PMID: 39749986 PMCID: PMC11742256 DOI: 10.1093/ismejo/wrae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/15/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Dormancy is a widespread key life history trait observed across the tree of life. Many plankton species form dormant cell stages that accumulate in aquatic sediments and, under anoxic conditions, form chronological records of past species and population dynamics under changing environmental conditions. Here we report on the germination of a microscopic alga, the abundant marine diatom Skeletonema marinoi Sarno et Zigone, that had remained dormant for up to 6871 ± 140 years in anoxic sediments of the Baltic Sea and resumed growth when exposed to oxygen and light. Resurrected diatom strains, representing cohorts from six different time points of the past 6871 ± 140 years, are genetically differentiated, and fundamental physiological functions such as growth and photosynthesis have remained stable through time despite distinct environmental dynamics. Showing that resurrection and full functional recovery, in comparison to 3 ± 2 years of dormancy, is possible after millennial resting, we emphasize the relevance of dormancy and living sediment archives. For the future, sediment archives, together with the resurrection approach, would offer a powerful tool to trace adaptive traits over millennia under distinct climatic conditions and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Sarah Bolius
- Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, 18119 Rostock, Germany
| | - Alexandra Schmidt
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
- International Max Planck Research School Quantitative Behaviour Ecology & Evolution, 78457 Konstanz, Germany
| | - Jérôme Kaiser
- Marine Geology, Leibniz Institute for Baltic Sea Research Warnemünde, 18119 Rostock, Germany
| | - Helge W Arz
- Marine Geology, Leibniz Institute for Baltic Sea Research Warnemünde, 18119 Rostock, Germany
| | - Olaf Dellwig
- Marine Geology, Leibniz Institute for Baltic Sea Research Warnemünde, 18119 Rostock, Germany
| | - Ulf Karsten
- Institute of Biological Science, University of Rostock, 18051 Rostock, Germany
| | - Laura S Epp
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Anke Kremp
- Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, 18119 Rostock, Germany
| |
Collapse
|
4
|
Smet W, Blilou I. Developmental and Genetic Aspects of Desert Crops. Annu Rev Genet 2024; 58:91-112. [PMID: 39585906 DOI: 10.1146/annurev-genet-111523-102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Deserts are hostile environments to plant life due to exposure to abiotic stresses, including high temperature, heat, high light, low water availability, and poor soil quality. Desert plants have evolved to cope with these stresses, and for thousands of years humans have used these plants as sources of food, fiber, and medicine. Due to desertification, the amount of arable land is reduced every year; hence, the usage of these species as substitutes for some crops might become one of the solutions for food production and land remediation. Additionally, increasing our understanding of how these plants have adapted to their environment could aid in the generation of more resistant staple crops. In this review, we examine three desert plant species and discuss their developmental aspects, physiological adaptations, and genetic diversity and the related genomic resources available to date. We also address major environmental challenges and threats faced by these species as well as their potential use for improving food security through stimulating stress resistance in crops.
Collapse
Affiliation(s)
- Wouter Smet
- Laboratory of Plant Cell and Developmental Biology, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia;
| | - Ikram Blilou
- Laboratory of Plant Cell and Developmental Biology, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia;
| |
Collapse
|
5
|
Sallon S, Solowey E, Gostel MR, Egli M, Flematti GR, Bohman B, Schaeffer P, Adam P, Weeks A. Characterization and analysis of a Commiphora species germinated from an ancient seed suggests a possible connection to a species mentioned in the Bible. Commun Biol 2024; 7:1109. [PMID: 39256474 PMCID: PMC11387840 DOI: 10.1038/s42003-024-06721-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024] Open
Abstract
A seed recovered during archaeological excavations of a cave in the Judean desert was germinated, with radiocarbon analysis indicating an age of 993 CE- 1202 calCE. DNA sequencing and phylogenetic analysis identified the seedling as belonging to the angiosperm genus Commiphora Jacq., sister to three Southern African Commiphora species, but unique from all other species sampled to date. The germinated seedling was not closely related to Commiphora species commonly harvested for their fragrant oleoresins including Commiphora gileadensis (L.) C.Chr., candidate for the locally extinct "Judean Balsam" or "Balm of Gilead" of antiquity. GC-MS analysis revealed minimal fragrant compounds but abundance of those associated with multi-target bioactivity and a previously undescribed glycolipid compound series. Several hypotheses are offered to explain the origins, implications and ethnobotanical significance of this unknown Commiphora sp., to the best of our knowledge the first identified from an archaeological site in this region, including identification with a resin producing tree mentioned in Biblical sources and possible agricultural relationship with the historic Judean Balsam.
Collapse
Affiliation(s)
- Sarah Sallon
- Natural Medicine Research Center (NMRC), Hadassah Medical Organization, Jerusalem, 91120, Israel.
| | - Elaine Solowey
- Centre for Sustainable Agriculture, Arava Institute of Environmental Studies (AIES) Kibbutz, Ketura, 88840, Israel
| | - Morgan R Gostel
- Botanical Research Institute of Texas, 1700 University Drive, Fort Worth, Texas, 76132-3400, USA
| | - Markus Egli
- Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Gavin R Flematti
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
| | - Björn Bohman
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Philippe Schaeffer
- Université de Strasbourg-CNRS, Institut de Chimie de Strasbourg UMR 7177, F-67000, Strasbourg, France
| | - Pierre Adam
- Université de Strasbourg-CNRS, Institut de Chimie de Strasbourg UMR 7177, F-67000, Strasbourg, France
| | - Andrea Weeks
- Department of Biology and Ted R. Bradley Herbarium, George Mason University, 4400 University Drive, Fairfax, Virginia, 22030, USA
| |
Collapse
|
6
|
Meiri M, Bar-Oz G. Unraveling the diversity and cultural heritage of fruit crops through paleogenomics. Trends Genet 2024; 40:398-409. [PMID: 38423916 PMCID: PMC11079635 DOI: 10.1016/j.tig.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Abundant and plentiful fruit crops are threatened by the loss of diverse legacy cultivars which are being replaced by a limited set of high-yielding ones. This article delves into the potential of paleogenomics that utilizes ancient DNA analysis to revive lost diversity. By focusing on grapevines, date palms, and tomatoes, recent studies showcase the effectiveness of paleogenomic techniques in identifying and understanding genetic traits crucial for crop resilience, disease resistance, and nutritional value. The approach not only tracks landrace dispersal and introgression but also sheds light on domestication events. In the face of major future environmental challenges, integrating paleogenomics with modern breeding strategies emerges as a promising avenue to significantly bolster fruit crop sustainability.
Collapse
Affiliation(s)
- Meirav Meiri
- The Steinhardt Museum of Natural History and Israel National Center for Biodiversity Studies, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Guy Bar-Oz
- School of Archaeology and Maritime Cultures, University of Haifa, Haifa, 3498837 Mount Carmel, Israel
| |
Collapse
|
7
|
Abstract
DNA methylation can identify evolutionary relationships among close plant lineages.
Collapse
Affiliation(s)
- P R V Satyaki
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ONT, Canada
| |
Collapse
|
8
|
No resurrection without preservation. NATURE PLANTS 2023; 9:193. [PMID: 36813916 DOI: 10.1038/s41477-023-01368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
9
|
Methyl jasmonate induces oxidative/nitrosative stress and the accumulation of antioxidant metabolites in Phoenix dactylifera L. Biotechnol Lett 2022; 44:1323-1336. [DOI: 10.1007/s10529-022-03299-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/23/2022] [Indexed: 11/02/2022]
|
10
|
Malmstrom CM, Martin MD, Gagnevin L. Exploring the Emergence and Evolution of Plant Pathogenic Microbes Using Historical and Paleontological Sources. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:187-209. [PMID: 35483672 DOI: 10.1146/annurev-phyto-021021-041830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biotechnological advances now permit broad exploration of past microbial communities preserved in diverse substrates. Despite biomolecular degradation, high-throughput sequencing of preserved materials can yield invaluable genomic and metagenomic data from the past. This line of research has expanded from its initial human- and animal-centric foci to include plant-associated microbes (viruses, archaea, bacteria, fungi, and oomycetes), for which historical, archaeological, and paleontological data illuminate past epidemics and evolutionary history. Genetic mechanisms underlying the acquisition of microbial pathogenicity, including hybridization, polyploidization, and horizontal gene transfer, can now be reconstructed, as can gene-for-gene coevolution with plant hosts. Epidemiological parameters, such as geographic origin and range expansion, can also be assessed. Building on published case studies with individual phytomicrobial taxa, the stage is now set for broader, community-wide studies of preserved plant microbiomes to strengthen mechanistic understanding of microbial interactions and plant disease emergence.
Collapse
Affiliation(s)
- Carolyn M Malmstrom
- Department of Plant Biology and Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, Michigan, USA
| | - Michael D Martin
- Department of Natural History, University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Lionel Gagnevin
- Plant Health Institute of Montpellier, CIRAD, Montpellier, France;
| |
Collapse
|
11
|
Pérez-Escobar OA, Bellot S, Przelomska NAS, Flowers JM, Nesbitt M, Ryan P, Gutaker RM, Gros-Balthazard M, Wells T, Kuhnhäuser BG, Schley R, Bogarín D, Dodsworth S, Diaz R, Lehmann M, Petoe P, Eiserhardt WL, Preick M, Hofreiter M, Hajdas I, Purugganan M, Antonelli A, Gravendeel B, Leitch IJ, Torres Jimenez MF, Papadopulos AST, Chomicki G, Renner SS, Baker WJ. Molecular clocks and archaeogenomics of a Late Period Egyptian date palm leaf reveal introgression from wild relatives and add timestamps on the domestication. Mol Biol Evol 2021; 38:4475-4492. [PMID: 34191029 PMCID: PMC8476131 DOI: 10.1093/molbev/msab188] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The date palm, Phoenix dactylifera, has been a cornerstone of Middle Eastern and North African agriculture for millennia. It was first domesticated in the Persian Gulf, and its evolution appears to have been influenced by gene flow from two wild relatives, P. theophrasti, currently restricted to Crete and Turkey, and P. sylvestris, widespread from Bangladesh to the West Himalayas. Genomes of ancient date palm seeds show that gene flow from P. theophrasti to P. dactylifera may have occurred by ∼2,200 years ago, but traces of P. sylvestris could not be detected. We here integrate archeogenomics of a ∼2,100-year-old P. dactylifera leaf from Saqqara (Egypt), molecular-clock dating, and coalescence approaches with population genomic tests, to probe the hybridization between the date palm and its two closest relatives and provide minimum and maximum timestamps for its reticulated evolution. The Saqqara date palm shares a close genetic affinity with North African date palm populations, and we find clear genomic admixture from both P. theophrasti, and P. sylvestris, indicating that both had contributed to the date palm genome by 2,100 years ago. Molecular-clocks placed the divergence of P. theophrasti from P. dactylifera/P. sylvestris and that of P. dactylifera from P. sylvestris in the Upper Miocene, but strongly supported, conflicting topologies point to older gene flow between P. theophrasti and P. dactylifera, and P. sylvestris and P. dactylifera. Our work highlights the ancient hybrid origin of the date palms, and prompts the investigation of the functional significance of genetic material introgressed from both close relatives, which in turn could prove useful for modern date palm breeding.
Collapse
Affiliation(s)
| | - Sidonie Bellot
- Royal Botanic Gardens, Kew, Richmond TW9 3AE. London, UK
| | - Natalia A S Przelomska
- Royal Botanic Gardens, Kew, Richmond TW9 3AE. London, UK.,National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Jonathan M Flowers
- Center for Genomics and Systems Biology, New York University Abu Dhabi, United Arab Emirates
| | - Mark Nesbitt
- Royal Botanic Gardens, Kew, Richmond TW9 3AE. London, UK
| | - Philippa Ryan
- Royal Botanic Gardens, Kew, Richmond TW9 3AE. London, UK
| | | | - Muriel Gros-Balthazard
- French National Research Institute for Sustainable Development, Montpellier, BP 64501 - 34394 Cedex 5, France
| | - Tom Wells
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3QU, UK
| | | | - Rowan Schley
- Royal Botanic Gardens, Kew, Richmond TW9 3AE. London, UK
| | - Diego Bogarín
- Lankester Botanical Garden, University of Costa Rica, San José, 302-7050, Costa Rica
| | - Steven Dodsworth
- Royal Botanic Gardens, Kew, Richmond TW9 3AE. London, UK.,School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Rudy Diaz
- Royal Botanic Gardens, Kew, Richmond TW9 3AE. London, UK
| | | | - Peter Petoe
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Wolf L Eiserhardt
- Royal Botanic Gardens, Kew, Richmond TW9 3AE. London, UK.,Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Michaela Preick
- Institute of Biochemistry and Biology, University of Potsdam, 14469 Potsdam, Germany
| | - Michael Hofreiter
- Institute of Biochemistry and Biology, University of Potsdam, 14469 Potsdam, Germany
| | - Irka Hajdas
- Department of Earth Sciences, ETH Zurich, 8092, Switzerland
| | - Michael Purugganan
- Center for Genomics and Systems Biology, New York University Abu Dhabi, United Arab Emirates
| | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, Richmond TW9 3AE. London, UK.,Department of Plant Sciences, University of Oxford, Oxford, OX1 3QU, UK.,Gothenburg Global Biodiversity Centre and Department of Biological and Environmental Sciences, University of Gothenburg, 413 19, Sweden
| | | | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond TW9 3AE. London, UK
| | - Maria Fernanda Torres Jimenez
- Gothenburg Global Biodiversity Centre and Department of Biological and Environmental Sciences, University of Gothenburg, 413 19, Sweden
| | - Alexander S T Papadopulos
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, University of Bangor, Bangor LL57 2UW, UK
| | - Guillaume Chomicki
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Susanne S Renner
- Department of Biology, Washington University, Saint Louis, MO 63130, USA
| | | |
Collapse
|