1
|
Bryant JL, McCabe J, Klews CC, Johnson M, Atchley AN, Cousins TW, Barnard-Davidson M, Smith KM, Ackermann MR, Netherland M, Hasan NA, Jordan PA, Forsythe ES, Ball PN, Seal BS. Phenotypic and Complete Reference Whole Genome Sequence Analyses of Two Paenibacillus spp. Isolates from a Gray Wolf ( Canis lupus) Gastrointestinal Tract. Vet Sci 2025; 12:51. [PMID: 39852926 PMCID: PMC11769508 DOI: 10.3390/vetsci12010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Inflammatory bowel disease (IBD) is increasing among mammals around the world, and domestic dogs are no exception. There is no approved cure for canine IBD with limited treatment options. Novel probiotic bacteria discovery from free-ranging animals for the treatment of IBD in domestic pets can likely yield promising probiotic candidates. Consequently, the overall aim was to isolate bacteria from free-ranging animals that could potentially be utilized as novel probiotics. Two bacteria identified as unique Paenibacillus spp. strains by small ribosomal RNA (16S) gene sequencing were isolated from the gastrointestinal tract of a North American Gray Wolf (Canis lupus). The bacteria were typed as Gram-variable, and both were catalase/oxidase positive as well as sensitive to commonly used antibiotics. The bacteria digested complex carbohydrates and lipids by standard assays. The isolated bacteria also inhibited the growth of Staphylococcus aureus and Micrococcus luteus. The whole genome sequence (WGS) length of bacterial isolate ClWae17B was 6,939,193 bp, while ClWae19 was 7,032,512 bp, both similar in size to other Paenibacillus spp. The genomes of both bacteria encoded enzymes involved with the metabolism of complex starches and lipids, such as lyases and pectinases, along with encoding antimicrobials such as lanthipeptides, lasso peptides, and cyclic-lactone-autoinducers. No pernicious virulence genes were identified in the WGS of either bacterial isolate. Phylogenetically, the most closely related bacteria based on 16S gene sequences and WGS were P. taichungensis for ClWae17B and P. amylolyticus for ClWae19. WGS analyses and phenotypic assays supported the hypothesis that the isolates described constitute two novel candidate probiotic bacteria for potential use in dogs.
Collapse
Affiliation(s)
- Jessika L. Bryant
- Biology Program, Oregon State University-Cascades, 1500 SW Chandler Avenue, Bend, OR 97702, USA; (J.L.B.); (C.C.K.); (M.J.); (A.N.A.); (T.W.C.); (K.M.S.); (P.A.J.); (E.S.F.)
| | - Jennifer McCabe
- Biology Program, Oregon State University-Cascades, 1500 SW Chandler Avenue, Bend, OR 97702, USA; (J.L.B.); (C.C.K.); (M.J.); (A.N.A.); (T.W.C.); (K.M.S.); (P.A.J.); (E.S.F.)
| | - C. Cristoph Klews
- Biology Program, Oregon State University-Cascades, 1500 SW Chandler Avenue, Bend, OR 97702, USA; (J.L.B.); (C.C.K.); (M.J.); (A.N.A.); (T.W.C.); (K.M.S.); (P.A.J.); (E.S.F.)
| | - MiCayla Johnson
- Biology Program, Oregon State University-Cascades, 1500 SW Chandler Avenue, Bend, OR 97702, USA; (J.L.B.); (C.C.K.); (M.J.); (A.N.A.); (T.W.C.); (K.M.S.); (P.A.J.); (E.S.F.)
| | - Ariel N. Atchley
- Biology Program, Oregon State University-Cascades, 1500 SW Chandler Avenue, Bend, OR 97702, USA; (J.L.B.); (C.C.K.); (M.J.); (A.N.A.); (T.W.C.); (K.M.S.); (P.A.J.); (E.S.F.)
| | - Thomas W. Cousins
- Biology Program, Oregon State University-Cascades, 1500 SW Chandler Avenue, Bend, OR 97702, USA; (J.L.B.); (C.C.K.); (M.J.); (A.N.A.); (T.W.C.); (K.M.S.); (P.A.J.); (E.S.F.)
| | - Maya Barnard-Davidson
- Biology Program, Oregon State University-Cascades, 1500 SW Chandler Avenue, Bend, OR 97702, USA; (J.L.B.); (C.C.K.); (M.J.); (A.N.A.); (T.W.C.); (K.M.S.); (P.A.J.); (E.S.F.)
| | - Kristina M. Smith
- Biology Program, Oregon State University-Cascades, 1500 SW Chandler Avenue, Bend, OR 97702, USA; (J.L.B.); (C.C.K.); (M.J.); (A.N.A.); (T.W.C.); (K.M.S.); (P.A.J.); (E.S.F.)
| | - Mark R. Ackermann
- Oregon Veterinary Diagnostic Laboratory, OSU Carlson College of Veterinary Medicine, 134 Magruder Hall, 700 SW 30th, Corvallis, OR 97331, USA
| | - Michael Netherland
- EzBiome Inc., 704 Quince Orchard Rd Suite 250, Gaithersburg, MD 20878, USA; (M.N.J.); (N.A.H.)
| | - Nur A. Hasan
- EzBiome Inc., 704 Quince Orchard Rd Suite 250, Gaithersburg, MD 20878, USA; (M.N.J.); (N.A.H.)
| | - Peter A. Jordan
- Biology Program, Oregon State University-Cascades, 1500 SW Chandler Avenue, Bend, OR 97702, USA; (J.L.B.); (C.C.K.); (M.J.); (A.N.A.); (T.W.C.); (K.M.S.); (P.A.J.); (E.S.F.)
| | - Evan S. Forsythe
- Biology Program, Oregon State University-Cascades, 1500 SW Chandler Avenue, Bend, OR 97702, USA; (J.L.B.); (C.C.K.); (M.J.); (A.N.A.); (T.W.C.); (K.M.S.); (P.A.J.); (E.S.F.)
| | - Patrick N. Ball
- Biology Program, Oregon State University-Cascades, 1500 SW Chandler Avenue, Bend, OR 97702, USA; (J.L.B.); (C.C.K.); (M.J.); (A.N.A.); (T.W.C.); (K.M.S.); (P.A.J.); (E.S.F.)
| | - Bruce S. Seal
- Biology Program, Oregon State University-Cascades, 1500 SW Chandler Avenue, Bend, OR 97702, USA; (J.L.B.); (C.C.K.); (M.J.); (A.N.A.); (T.W.C.); (K.M.S.); (P.A.J.); (E.S.F.)
| |
Collapse
|
2
|
Smith TA, Srikanth K, Huson HJ. Comparative Population Genomics of Arctic Sled Dogs Reveals a Deep and Complex History. Genome Biol Evol 2024; 16:evae190. [PMID: 39193769 PMCID: PMC11403282 DOI: 10.1093/gbe/evae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Recent evidence demonstrates genomic and morphological continuity in the Arctic ancestral lineage of dogs. Here, we use the Siberian Husky to investigate the genomic legacy of the northeast Eurasian Arctic lineage and model the deep population history using genome-wide single nucleotide polymorphisms. Utilizing ancient dog-calibrated molecular clocks, we found that at least two distinct lineages of Arctic dogs existed in ancient Eurasia at the end of the Pleistocene. This pushes back the origin of sled dogs in the northeast Siberian Arctic with humans likely intentionally selecting dogs to perform different functions and keeping breeding populations that overlap in time and space relatively reproductively isolated. In modern Siberian Huskies, we found significant population structure based on how they are used by humans, recent European breed introgression in about half of the dogs that participate in races, moderate levels of inbreeding, and fewer potentially harmful variants in populations under strong selection for form and function (show, sled show, and racing populations of Siberian Huskies). As the struggle to preserve unique evolutionary lineages while maintaining genetic health intensifies across pedigreed dogs, understanding the genomic history to guide policies and best practices for breed management is crucial to sustain these ancient lineages and their unique evolutionary identity.
Collapse
Affiliation(s)
- Tracy A Smith
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Krishnamoorthy Srikanth
- Department of Animal Sciences, Cornell University College of Agriculture and Life Sciences, Ithaca, NY 14853, USA
| | - Heather Jay Huson
- Department of Animal Sciences, Cornell University College of Agriculture and Life Sciences, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Bougiouri K, Aninta SG, Charlton S, Harris A, Carmagnini A, Piličiauskienė G, Feuerborn TR, Scarsbrook L, Tabadda K, Blaževičius P, Parker HG, Gopalakrishnan S, Larson G, Ostrander EA, Irving-Pease EK, Frantz LA, Racimo F. Imputation of ancient canid genomes reveals inbreeding history over the past 10,000 years. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585179. [PMID: 38903121 PMCID: PMC11188068 DOI: 10.1101/2024.03.15.585179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The multi-millenia long history between dogs and humans has placed them at the forefront of archeological and genomic research. Despite ongoing efforts including the analysis of ancient dog and wolf genomes, many questions remain regarding their geographic and temporal origins, and the microevolutionary processes that led to the diversity of breeds today. Although ancient genomes provide valuable information, their use is hindered by low depth of coverage and post-mortem damage, which inhibits confident genotype calling. In the present study, we assess how genotype imputation of ancient dog and wolf genomes, utilising a large reference panel, can improve the resolution provided by ancient datasets. Imputation accuracy was evaluated by down-sampling high coverage dog and wolf genomes to 0.05-2x coverage and comparing concordance between imputed and high coverage genotypes. We measured the impact of imputation on principal component analyses and runs of homozygosity. Our findings show high (R2>0.9) imputation accuracy for dogs with coverage as low as 0.5x and for wolves as low as 1.0x. We then imputed a dataset of 90 ancient dog and wolf genomes, to assess changes in inbreeding during the last 10,000 years of dog evolution. Ancient dog and wolf populations generally exhibited lower inbreeding levels than present-day individuals. Interestingly, regions with low ROH density maintained across ancient and present-day samples were significantly associated with genes related to olfaction and immune response. Our study indicates that imputing ancient canine genomes is a viable strategy that allows for the use of analytical methods previously limited to high-quality genetic data.
Collapse
Affiliation(s)
- Katia Bougiouri
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Sabhrina Gita Aninta
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sophy Charlton
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Alex Harris
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alberto Carmagnini
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
| | - Giedrė Piličiauskienė
- Department of Archeology, Faculty of History, Vilnius University, Vilnius, Lithuania
| | - Tatiana R. Feuerborn
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lachie Scarsbrook
- The Palaeogenomics and Bio-archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Kristina Tabadda
- The Palaeogenomics and Bio-archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Povilas Blaževičius
- Department of Archeology, Faculty of History, Vilnius University, Vilnius, Lithuania
- National Museum of Lithuania, Vilnius, Lithuania
| | - Heidi G. Parker
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shyam Gopalakrishnan
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Greger Larson
- The Palaeogenomics and Bio-archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Elaine A. Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Evan K. Irving-Pease
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Laurent A.F. Frantz
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
| | - Fernando Racimo
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Wang SZ, Yan Y, Widlund M, Qian CC, Zhang LL, Zhang SJ, Li ZM, Cao P, Dai QY, Feng XT, Liu F, Wang L, Gao C, Fu QM, Hytönen MK, Lohi H, Savolainen P, Wang GD. Historic dog Furs Unravel the Origin and Artificial Selection of Modern Nordic Lapphund and Elkhound dog Breeds. Mol Biol Evol 2024; 41:msae108. [PMID: 38842255 PMCID: PMC11226788 DOI: 10.1093/molbev/msae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024] Open
Abstract
The origins and extreme morphological evolution of the modern dog breeds are poorly studied because the founder populations are extinct. Here, we analyse eight 100 to 200 years old dog fur samples obtained from traditional North Swedish clothing, to explore the origin and artificial selection of the modern Nordic Lapphund and Elkhound dog breeds. Population genomic analysis confirmed the Lapphund and Elkhound breeds to originate from the local dog population, and showed a distinct decrease in genetic diversity in agreement with intense breeding. We identified eleven genes under positive selection during the breed development. In particular, the MSRB3 gene, associated with breed-related ear morphology, was selected in all Lapphund and Elkhound breeds, and functional assays showed that a SNP mutation in the 3'UTR region suppresses its expression through miRNA regulation. Our findings demonstrate analysis of near-modern dog artifacts as an effective tool for interpreting the origin and artificial selection of the modern dog breeds.
Collapse
Affiliation(s)
- Shi-Zhi Wang
- Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Yu Yan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Malin Widlund
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Chen-Chang Qian
- Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | | | - Shao-Jie Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Zi-Mai Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Qing-Yan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Tian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Lu Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qiao-Mei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Marjo K Hytönen
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Peter Savolainen
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Guo-Dong Wang
- Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
5
|
He Y, Zhang K, Shi Y, Lin H, Huang X, Lu X, Wang Z, Li W, Feng X, Shi T, Chen Q, Wang J, Tang Y, Chapman MA, Germ M, Luthar Z, Kreft I, Janovská D, Meglič V, Woo SH, Quinet M, Fernie AR, Liu X, Zhou M. Genomic insight into the origin, domestication, dispersal, diversification and human selection of Tartary buckwheat. Genome Biol 2024; 25:61. [PMID: 38414075 PMCID: PMC10898187 DOI: 10.1186/s13059-024-03203-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Tartary buckwheat, Fagopyrum tataricum, is a pseudocereal crop with worldwide distribution and high nutritional value. However, the origin and domestication history of this crop remain to be elucidated. RESULTS Here, by analyzing the population genomics of 567 accessions collected worldwide and reviewing historical documents, we find that Tartary buckwheat originated in the Himalayan region and then spread southwest possibly along with the migration of the Yi people, a minority in Southwestern China that has a long history of planting Tartary buckwheat. Along with the expansion of the Mongol Empire, Tartary buckwheat dispersed to Europe and ultimately to the rest of the world. The different natural growth environments resulted in adaptation, especially significant differences in salt tolerance between northern and southern Chinese Tartary buckwheat populations. By scanning for selective sweeps and using a genome-wide association study, we identify genes responsible for Tartary buckwheat domestication and differentiation, which we then experimentally validate. Comparative genomics and QTL analysis further shed light on the genetic foundation of the easily dehulled trait in a particular variety that was artificially selected by the Wa people, a minority group in Southwestern China known for cultivating Tartary buckwheat specifically for steaming as a staple food to prevent lysine deficiency. CONCLUSIONS This study provides both comprehensive insights into the origin and domestication of, and a foundation for molecular breeding for, Tartary buckwheat.
Collapse
Affiliation(s)
- Yuqi He
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kaixuan Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yaliang Shi
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Lin
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xu Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiang Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhirong Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xibo Feng
- Tibet Key Experiments of Crop Cultivation and Farming/College of Plant Science, Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China
| | - Taoxiong Shi
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Qingfu Chen
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Junzhen Wang
- Xichang Institute of Agricultural Science, Liangshan Yi People Autonomous Prefecture, Liangshan, Sichuan, 615000, China
| | - Yu Tang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Zlata Luthar
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Ivan Kreft
- Nutrition Institute, Koprska Ulica 98, SI-1000, Ljubljana, Slovenia
| | - Dagmar Janovská
- Gene Bank, Crop Research Institute, Drnovská 507, Prague 6, Czech Republic
| | - Vladimir Meglič
- Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000, Ljubljana, Slovenia
| | - Sun-Hee Woo
- Department of Crop Science, Chungbuk National University, Cheong-ju, Republic of Korea
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 45, boîte L7.07.13, B-1348, Louvain-la-Neuve, Belgium
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Xu Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Meiliang Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
6
|
Febo M, Mahar R, Rodriguez NA, Buraima J, Pompilus M, Pinto AM, Grudny MM, Bruijnzeel AW, Merritt ME. Age-Related Differences in Affective Behaviors in Mice: Possible Role of Prefrontal Cortical-Hippocampal Functional Connectivity and Metabolomic Profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.13.566691. [PMID: 38014219 PMCID: PMC10680600 DOI: 10.1101/2023.11.13.566691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The differential expression of emotional reactivity from early to late adulthood may involve maturation of prefrontal cortical responses to negative valence stimuli. In mice, age-related changes in affective behaviors have been reported, but the functional neural circuitry warrants further investigation. We assessed age variations in affective behaviors and functional connectivity in male and female C57BL6/J mice. Mice aged 10, 30 and 60 weeks (wo) were tested over 8 weeks for open field activity, sucrose preference, social interactions, fear conditioning, and functional neuroimaging. Prefrontal cortical and hippocampal tissues were excised for metabolomics. Our results indicate that young and old mice differ significantly in affective behavioral, functional connectome and prefrontal cortical-hippocampal metabolome. Young mice show a greater responsivity to novel environmental and social stimuli compared to older mice. Conversely, late middle-aged mice (60wo group) display variable patterns of fear conditioning and with re-testing with a modified context. Functional connectivity between a temporal cortical/auditory cortex network and subregions of the anterior cingulate cortex and ventral hippocampus, and a greater network modularity and assortative mixing of nodes was stronger in young versus older adult mice. Metabolome analyses identified differences in several essential amino acids between 10wo mice and the other age groups. The results support differential expression of 'emotionality' across distinct stages of the mouse lifespan involving greater prefrontal-hippocampal connectivity and neurochemistry.
Collapse
|
7
|
Petr M, Haller BC, Ralph PL, Racimo F. slendr: a framework for spatio-temporal population genomic simulations on geographic landscapes. PEER COMMUNITY JOURNAL 2023; 3:e121. [PMID: 38984034 PMCID: PMC11233137 DOI: 10.24072/pcjournal.354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
One of the goals of population genetics is to understand how evolutionary forces shape patterns of genetic variation over time. However, because populations evolve across both time and space, most evolutionary processes also have an important spatial component, acting through phenomena such as isolation by distance, local mate choice, or uneven distribution of resources. This spatial dimension is often neglected, partly due to the lack of tools specifically designed for building and evaluating complex spatio-temporal population genetic models. To address this methodological gap, we present a new framework for simulating spatially-explicit genomic data, implemented in a new R package called slendr (www.slendr.net), which leverages a SLiM simulation back-end script bundled with the package. With this framework, the users can programmatically and visually encode spatial population ranges and their temporal dynamics (i.e., population displacements, expansions, and contractions) either on real Earth landscapes or on abstract custom maps, and schedule splits and gene-flow events between populations using a straightforward declarative language. Additionally, slendr can simulate data from traditional, non-spatial models, either with SLiM or using an alternative built-in coalescent msprime back end. Together with its R-idiomatic interface to the tskit library for tree-sequence processing and analysis, slendr opens up the possibility of performing efficient, reproducible simulations of spatio-temporal genomic data entirely within the R environment, leveraging its wealth of libraries for geospatial data analysis, statistics, and visualization. Here, we present the design of the slendr R package and demonstrate its features on several practical example workflows.
Collapse
Affiliation(s)
- Martin Petr
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Denmark
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Denmark
| | - Benjamin C Haller
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Peter L Ralph
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Fernando Racimo
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Denmark
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Denmark
| |
Collapse
|
8
|
Lin AT, Hammond-Kaarremaa L, Liu HL, Stantis C, McKechnie I, Pavel M, Pavel SSM, Wyss SSÁ, Sparrow DQ, Carr K, Aninta SG, Perri A, Hartt J, Bergström A, Carmagnini A, Charlton S, Dalén L, Feuerborn TR, France CAM, Gopalakrishnan S, Grimes V, Harris A, Kavich G, Sacks BN, Sinding MHS, Skoglund P, Stanton DWG, Ostrander EA, Larson G, Armstrong CG, Frantz LAF, Hawkins MTR, Kistler L. The history of Coast Salish "woolly dogs" revealed by ancient genomics and Indigenous Knowledge. Science 2023; 382:1303-1308. [PMID: 38096292 PMCID: PMC7615573 DOI: 10.1126/science.adi6549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
Ancestral Coast Salish societies in the Pacific Northwest kept long-haired "woolly dogs" that were bred and cared for over millennia. However, the dog wool-weaving tradition declined during the 19th century, and the population was lost. In this study, we analyzed genomic and isotopic data from a preserved woolly dog pelt from "Mutton," collected in 1859. Mutton is the only known example of an Indigenous North American dog with dominant precolonial ancestry postdating the onset of settler colonialism. We identified candidate genetic variants potentially linked with their distinct woolly phenotype. We integrated these data with interviews from Coast Salish Elders, Knowledge Keepers, and weavers about shared traditional knowledge and memories surrounding woolly dogs, their importance within Coast Salish societies, and how colonial policies led directly to their disappearance.
Collapse
Affiliation(s)
- Audrey T Lin
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY, USA
| | - Liz Hammond-Kaarremaa
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Vancouver Island University, Nanaimo, BC, Canada
| | - Hsiao-Lei Liu
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Chris Stantis
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA
| | - Iain McKechnie
- Department of Anthropology, University of Victoria, Victoria, BC, Canada
| | - Michael Pavel
- Twana/Skokomish Indian Tribe, Skokomish Nation, WA, USA
| | - Susan sa'hLa mitSa Pavel
- Twana/Skokomish Indian Tribe, Skokomish Nation, WA, USA
- Coast Salish Wool Weaving Center, Skokomish Nation, WA, USA
- The Evergreen State College, Olympia, WA, USA
| | | | | | | | - Sabhrina Gita Aninta
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Angela Perri
- Department of Anthropology, Texas A&M University, College Station, TX, USA
- Chronicle Heritage, Phoenix, AZ, USA
| | - Jonathan Hartt
- Department of Indigenous Studies, Simon Fraser University, Burnaby, BC, Canada
| | - Anders Bergström
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Alberto Carmagnini
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sophy Charlton
- PalaeoBARN, School of Archaeology, University of Oxford, Oxford, UK
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Love Dalén
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Tatiana R Feuerborn
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Shyam Gopalakrishnan
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Vaughan Grimes
- Department of Archaeology, Memorial University of Newfoundland, St. Johns, NL, Canada
| | - Alex Harris
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gwénaëlle Kavich
- Museum Conservation Institute, Smithsonian Institution, Suitland, MD, USA
| | - Benjamin N Sacks
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | | | - Pontus Skoglund
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
| | - David W G Stanton
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, Munich, Germany
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Greger Larson
- PalaeoBARN, School of Archaeology, University of Oxford, Oxford, UK
| | - Chelsey G Armstrong
- Department of Indigenous Studies, Simon Fraser University, Burnaby, BC, Canada
| | - Laurent A F Frantz
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Melissa T R Hawkins
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Logan Kistler
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
9
|
Granado J, Susat J, Gerling C, Schernig-Mráz M, Schlumbaum A, Deschler-Erb S, Krause-Kyora B. A melting pot of Roman dogs north of the Alps with high phenotypic and genetic diversity and similar diets. Sci Rep 2023; 13:17389. [PMID: 37833364 PMCID: PMC10575936 DOI: 10.1038/s41598-023-44060-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Several dog skeletons were excavated at the Roman town of Augusta Raurica and at the military camp of Vindonissa, located in the northern Alpine region of Switzerland (Germania Superior). The relationships between them and the people, the nature of their lives, and the circumstances of their deaths are unclear. In order to gain insight into this dog population, we collected 31 dogs deposited almost simultaneously in two wells (second half of the third century CE), three dogs from burial contexts (70-200 CE and third to fifth century CE) at Augusta Raurica, and two dogs from burial contexts at Vindonissa (ca. first century CE). We detected a mixed population of young and adult dogs including small, medium and large sized individuals. Three small dogs had conspicuous phenotypes: abnormally short legs, and one with a brachycephalic skull. Stable isotope analysis of a subset of the dogs showed that their diets were omnivorous with a substantial input of animal proteins and little variation, except one with a particularly low δ15N value, indicating a diet low in animal proteins. Partial mitochondrial DNA sequences from 25 dogs revealed eight haplotypes within canine haplogroup A (11 dogs; 44%; 5 haplotypes), C (8 dogs; 32%; 1 haplotype), D (4 dogs, 16%; 1 haplotype) and B (2 dogs, 8%; 1 haplotype). Based on shotgun sequencing, four Roman mitogenomes were assembled, representing sub-haplogroups A1b3, A1b2 and C2. No canine pathogens were identified, weakening the assumption of infectious disease as a cause for dog disposal. The genetic and morphological diversity observed in dogs of Augusta Raurica and Vindonissa is similar to modern dog diversity.
Collapse
Affiliation(s)
- José Granado
- Department Environmental Science, Integrative Prehistory and Archaeological Science (IPAS), University of Basel, Spalenring 145, 4055, Basel, Switzerland
| | - Julian Susat
- Institute of Clinical Molecular Biology (IKMB), Christian-Albrechts-University Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Claudia Gerling
- Department Environmental Science, Integrative Prehistory and Archaeological Science (IPAS), University of Basel, Spalenring 145, 4055, Basel, Switzerland
| | - Monika Schernig-Mráz
- Department Environmental Science, Integrative Prehistory and Archaeological Science (IPAS), University of Basel, Spalenring 145, 4055, Basel, Switzerland
| | - Angela Schlumbaum
- Department Environmental Science, Integrative Prehistory and Archaeological Science (IPAS), University of Basel, Spalenring 145, 4055, Basel, Switzerland
| | - Sabine Deschler-Erb
- Department Environmental Science, Integrative Prehistory and Archaeological Science (IPAS), University of Basel, Spalenring 145, 4055, Basel, Switzerland.
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology (IKMB), Christian-Albrechts-University Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| |
Collapse
|
10
|
Peng MS, Liu YH, Shen QK, Zhang XH, Dong J, Li JX, Zhao H, Zhang H, Zhang X, He Y, Shi H, Cui C, Ouzhuluobu, Wu TY, Liu SM, Gonggalanzi, Baimakangzhuo, Bai C, Duojizhuoma, Liu T, Dai SS, Murphy RW, Qi XB, Dong G, Su B, Zhang YP. Genetic and cultural adaptations underlie the establishment of dairy pastoralism in the Tibetan Plateau. BMC Biol 2023; 21:208. [PMID: 37798721 PMCID: PMC10557253 DOI: 10.1186/s12915-023-01707-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Domestication and introduction of dairy animals facilitated the permanent human occupation of the Tibetan Plateau. Yet the history of dairy pastoralism in the Tibetan Plateau remains poorly understood. Little is known how Tibetans adapted to milk and dairy products. RESULTS We integrated archeological evidence and genetic analysis to show the picture that the dairy ruminants, together with dogs, were introduced from West Eurasia into the Tibetan Plateau since ~ 3600 years ago. The genetic admixture between the exotic and indigenous dogs enriched the candidate lactase persistence (LP) allele 10974A > G of West Eurasian origin in Tibetan dogs. In vitro experiments demonstrate that - 13838G > A functions as a LP allele in Tibetans. Unlike multiple LP alleles presenting selective signatures in West Eurasians and South Asians, the de novo origin of Tibetan-specific LP allele - 13838G > A with low frequency (~ 6-7%) and absence of selection corresponds - 13910C > T in pastoralists across eastern Eurasia steppe. CONCLUSIONS Results depict a novel scenario of genetic and cultural adaptations to diet and expand current understanding of the establishment of dairy pastoralism in the Tibetan Plateau.
Collapse
Affiliation(s)
- Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Quan-Kuan Shen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Hua Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China
- Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College, Kunming, 650118, China
| | - Jiajia Dong
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jin-Xiu Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Hui Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China
| | - Hui Zhang
- State Key Laboratory of Primate Biomedical Research (LPBR), School of Primate Translational Medicine, Kunming University of Science and Technology (KUST), Kunming, 650000, China
| | - Xiaoming Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Shi
- State Key Laboratory of Primate Biomedical Research (LPBR), School of Primate Translational Medicine, Kunming University of Science and Technology (KUST), Kunming, 650000, China
| | - Chaoying Cui
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Ouzhuluobu
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Tian-Yi Wu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining, 810000, China
| | - Shi-Ming Liu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining, 810000, China
| | - Gonggalanzi
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Baimakangzhuo
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Caijuan Bai
- The First People's Hospital of Gansu Province, Lanzhou, 730000, China
| | - Duojizhuoma
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Ti Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China
| | - Shan-Shan Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Robert W Murphy
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, ON, M5S 2C6, Canada
| | - Xue-Bin Qi
- State Key Laboratory of Primate Biomedical Research (LPBR), School of Primate Translational Medicine, Kunming University of Science and Technology (KUST), Kunming, 650000, China.
- Tibetan Fukang Hospital, Lhasa, 850000, China.
| | - Guanghui Dong
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
11
|
Ciucani MM, Ramos-Madrigal J, Hernández-Alonso G, Carmagnini A, Aninta SG, Sun X, Scharff-Olsen CH, Lanigan LT, Fracasso I, Clausen CG, Aspi J, Kojola I, Baltrūnaitė L, Balčiauskas L, Moore J, Åkesson M, Saarma U, Hindrikson M, Hulva P, Bolfíková BČ, Nowak C, Godinho R, Smith S, Paule L, Nowak S, Mysłajek RW, Lo Brutto S, Ciucci P, Boitani L, Vernesi C, Stenøien HK, Smith O, Frantz L, Rossi L, Angelici FM, Cilli E, Sinding MHS, Gilbert MTP, Gopalakrishnan S. The extinct Sicilian wolf shows a complex history of isolation and admixture with ancient dogs. iScience 2023; 26:107307. [PMID: 37559898 PMCID: PMC10407145 DOI: 10.1016/j.isci.2023.107307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/04/2022] [Accepted: 07/04/2023] [Indexed: 08/11/2023] Open
Abstract
The Sicilian wolf remained isolated in Sicily from the end of the Pleistocene until its extermination in the 1930s-1960s. Given its long-term isolation on the island and distinctive morphology, the genetic origin of the Sicilian wolf remains debated. We sequenced four nuclear genomes and five mitogenomes from the seven existing museum specimens to investigate the Sicilian wolf ancestry, relationships with extant and extinct wolves and dogs, and diversity. Our results show that the Sicilian wolf is most closely related to the Italian wolf but carries ancestry from a lineage related to European Eneolithic and Bronze Age dogs. The average nucleotide diversity of the Sicilian wolf was half of the Italian wolf, with 37-50% of its genome contained in runs of homozygosity. Overall, we show that, by the time it went extinct, the Sicilian wolf had high inbreeding and low-genetic diversity, consistent with a population in an insular environment.
Collapse
Affiliation(s)
- Marta Maria Ciucani
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jazmín Ramos-Madrigal
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Germán Hernández-Alonso
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Alberto Carmagnini
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Sabhrina Gita Aninta
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Xin Sun
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Liam Thomas Lanigan
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ilaria Fracasso
- Forest Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Cecilie G. Clausen
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jouni Aspi
- Ecology and Genetics Research Unit, University of Oulu, Finland
| | - Ilpo Kojola
- Natural Resources Institute Finland, Rovaniemi, Finland
| | | | | | - Jane Moore
- Società Amatori Cirneco dell’Etna, Modica (RG), Italy
| | - Mikael Åkesson
- Swedish University of Agricultural Sciences, Grimsö Wildlife Research Station, Department of Ecology, Riddarhyttan, Sweden
| | - Urmas Saarma
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Maris Hindrikson
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Pavel Hulva
- Charles University, Department of Zoology, Faculty of Science, Prague 2, Czech Republic
| | | | - Carsten Nowak
- Center for Wildlife Genetics, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Raquel Godinho
- CIBIO/InBIO, University of Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Steve Smith
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Ladislav Paule
- Faculty of Forestry, Technical University, Zvolen, Slovakia
| | - Sabina Nowak
- Department of Ecology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Biological and Chemical Research Centre, Warszawa, Poland
| | - Robert W. Mysłajek
- Department of Ecology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Biological and Chemical Research Centre, Warszawa, Poland
| | - Sabrina Lo Brutto
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), University of Palermo, Palermo, Italy
- Museum of Zoology "P. Doderlein", SIMUA, University of Palermo, Palermo, Italy
| | - Paolo Ciucci
- Università di Roma La Sapienza, Department Biology and Biotechnologies "Charles Darwin", Roma, Italy
| | - Luigi Boitani
- Università di Roma La Sapienza, Department Biology and Biotechnologies "Charles Darwin", Roma, Italy
| | - Cristiano Vernesi
- Forest Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Hans K. Stenøien
- NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Oliver Smith
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Laurent Frantz
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | | - Francesco Maria Angelici
- FIZV, Via Marco Aurelio 2, Roma, Italy
- National Center for Wildlife, Al Imam Faisal Ibn Turki Ibn Abdullah, Ulaishah, Saudi Arabia
| | - Elisabetta Cilli
- Laboratory of Ancient DNA, Department of Cultural Heritage (DBC), University of Bologna, Bologna, Italy
| | - Mikkel-Holger S. Sinding
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - M. Thomas P. Gilbert
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Shyam Gopalakrishnan
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Romanov MN, Abdelmanova AS, Fisinin VI, Gladyr EA, Volkova NA, Anshakov DV, Stanishevskaya OI, Vakhrameev AB, Dotsev AV, Griffin DK, Zinovieva NA. Whole Genome Screening Procures a Holistic Hold of the Russian Chicken Gene Pool Heritage and Demographic History. BIOLOGY 2023; 12:979. [PMID: 37508409 PMCID: PMC10376169 DOI: 10.3390/biology12070979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/01/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023]
Abstract
A study for genomic variation that may reflect putative selective signaling and be associated with economically important traits is instrumental for obtaining information about demographic and selection history in domestic animal species and populations. A rich variety of the Russian chicken gene pool breeds warrants a further detailed study. Specifically, their genomic features can derive implications from their genome architecture and selective footprints for their subsequent breeding and practical efficient exploitation. In the present work, whole genome genotyping of 19 chicken breeds (20 populations with up to 71 samples each) was performed using the Chicken 50 K BeadChip DNA chip. The studied breed sample included six native Russian breeds of chickens developed in the 17th-19th centuries, as well as eight Russian chicken breeds, including the Russian White (RW), created in the 20th century on the basis of improving local chickens using breeds of foreign selection. Five specialized foreign breeds of chickens, including the White Leghorn (WL), were used along with other breeds representing the Russian gene pool. The characteristics of the genetic diversity and phylogenetic relationships of the native breeds of chickens were represented in comparison with foreign breeds. It was established that the studied native breeds demonstrate their own genetic structure that distinguishes them from foreign breeds, and from each other. For example, we previously made an assumption on what could cause the differences between two RW populations, RW1 and RW2. From the data obtained here, it was verified that WL was additionally crossed to RW2, unlike RW1. Thus, inherently, RW1 is a purer population of this improved Russian breed. A significant contribution of the gene pool of native breeds to the global genetic diversity of chickens was shown. In general, based on the results of a multilateral survey of this sample of breeds, it can be concluded that phylogenetic relationships based on their genetic structure and variability robustly reflect the known, previously postulated and newly discovered patterns of evolution of native chickens. The results herein presented will aid selection and breeding work using this gene pool.
Collapse
Affiliation(s)
- Michael N Romanov
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, Kent, UK
| | - Alexandra S Abdelmanova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia
| | - Vladimir I Fisinin
- Center "All-Russian Poultry Research and Technological Institute" of the Russian Academy of Sciences, Sergiev Posad 141311, Moscow Oblast, Russia
| | - Elena A Gladyr
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia
| | - Natalia A Volkova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia
| | - Dmitry V Anshakov
- Breeding and Genetic Center "Zagorsk Experimental Breeding Farm"-Branch of the Federal Research Centre "All-Russian Poultry Research and Technological Institute" of the Russian Academy of Sciences, Sergiev Posad 141311, Moscow Oblast, Russia
| | - Olga I Stanishevskaya
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L. K. Ernst Federal Research Center for Animal Husbandry, Pushkin, Saint Petersburg 196601, Russia
| | - Anatoly B Vakhrameev
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L. K. Ernst Federal Research Center for Animal Husbandry, Pushkin, Saint Petersburg 196601, Russia
| | - Arsen V Dotsev
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia
| | - Darren K Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, Kent, UK
| | - Natalia A Zinovieva
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia
| |
Collapse
|
13
|
Ahn B, Kang M, Jeon H, Kim JS, Jiang H, Ha J, Park C. Origin and population structure of native dog breeds in the Korean peninsula and East Asia. iScience 2023; 26:106982. [PMID: 37378348 PMCID: PMC10291505 DOI: 10.1016/j.isci.2023.106982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/13/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
To study the ancestry and phylogenetic relationships of native Korean dog breeds to other Asian dog populations, we analyzed nucleotide variations in whole-genome sequences of 205 canid individuals. Sapsaree, Northern Chinese indigenous dog, and Tibetan Mastiff were largely related to West Eurasian ancestry. Jindo, Donggyeongi, Shiba, Southern Chinese indigenous (SCHI), Vietnamese indigenous dogs (VIET), and Indonesian indigenous dogs were related to Southeast and East Asian ancestry. Among East Asian dog breeds, Sapsaree presented the highest haplotype sharing with German Shepherds, indicating ancient admixture of European ancestry to modern East Asian dog breeds. SCHI showed greater haplotype sharing with New Guinea singing dogs, VIET, and Jindo than with other Asian breeds. The predicted divergence time of East Asian populations from their common ancestor was approximately 2,000 to 11,000 years ago. Our results expand understanding of the genetic history of dogs in the Korean peninsula to the Asian continent and Oceanic region.
Collapse
Affiliation(s)
- Byeongyong Ahn
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Mingue Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyoim Jeon
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jong-Seok Kim
- Department of Korean Jindo and Domestic Animal, Jindo 58927, Republic of Korea
| | - Hao Jiang
- College of Animal Science, Jilin University, Changchun, Jilin 130119, China
| | - Jihong Ha
- Korean Sapsaree Foundation, Gyeongsan 38412, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
14
|
Losey RJ, Nomokonova T, Guiry E, Fleming LS, Garvie-Lok SJ, Waters-Rist AL, Bieraugle M, Szpak P, Bachura OP, Bazaliiskii VI, Berdnikova NE, Diatchina NG, Frolov IV, Gorbunov VV, Goriunova OI, Grushin SP, Gusev AV, Iaroslavtseva LG, Ivanov GL, Kharinskii AV, Konstantinov MV, Kosintsev PA, Kovychev EV, Lazin B, Nikitin IG, Papin DV, Popov AN, Sablin MV, Savel’ev NA, Savinetsky AB, Tishkin AA. The evolution of dog diet and foraging: Insights from archaeological canids in Siberia. SCIENCE ADVANCES 2022; 8:eabo6493. [PMID: 35867782 PMCID: PMC11587915 DOI: 10.1126/sciadv.abo6493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Research on the evolution of dog foraging and diet has largely focused on scavenging during their initial domestication and genetic adaptations to starch-rich food environments following the advent of agriculture. The Siberian archaeological record evidences other critical shifts in dog foraging and diet that likely characterize Holocene dogs globally. By the Middle Holocene, body size reconstruction for Siberia dogs indicates that most were far smaller than Pleistocene wolves. This contributed to dogs' tendencies to scavenge, feed on small prey, and reduce social foraging. Stable carbon and nitrogen isotope analysis of Siberian dogs reveals that their diets were more diverse than those of Pleistocene wolves. This included habitual consumption of marine and freshwater foods by the Middle Holocene and reliance on C4 foods by the Late Holocene. Feeding on such foods and anthropogenic waste increased dogs' exposure to microbes, affected their gut microbiomes, and shaped long-term dog population history.
Collapse
Affiliation(s)
- Robert J. Losey
- Department of Anthropology, University of Alberta, Tory Building 13-15 HM, Edmonton, AB T6G 2H4, Canada
- Department of Archaeology and Anthropology, University of Saskatchewan, 55 Campus Drive, Saskatoon, SK S7N 5B1, Canada
| | - Tatiana Nomokonova
- Department of Archaeology and Anthropology, University of Saskatchewan, 55 Campus Drive, Saskatoon, SK S7N 5B1, Canada
| | - Eric Guiry
- School of Archaeology and Ancient History, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
- Department of Anthropology, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada
| | - Lacey S. Fleming
- Tennessee Division of Archaeology, 216 Foster Avenue, Cole Building 3, Nashville, TN 37243, USA
| | - Sandra J. Garvie-Lok
- Department of Anthropology, University of Alberta, Tory Building 13-15 HM, Edmonton, AB T6G 2H4, Canada
| | - Andrea L. Waters-Rist
- Department of Anthropology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5C2, Canada
| | - Megan Bieraugle
- Department of Anthropology, University of Alberta, Tory Building 13-15 HM, Edmonton, AB T6G 2H4, Canada
| | - Paul Szpak
- Department of Anthropology, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada
| | - Olga P. Bachura
- Palaeoecology Laboratory, Institute of Plant and Animal Ecology, Ural Division of the Russian Academy of Science, 8 Marta Street #202, Ekaterinburg 620144, Russian Federation
| | - Vladimir I. Bazaliiskii
- Laboratory of Archaeology, Ethnology, Problems of Paleoecology and Human Evolution of the Faculty of History, Irkutsk State University, 5th Army Street 52, Irkutsk 664025, Russian Federation
| | - Natalia E. Berdnikova
- Scientific Research Center “Baikal Region”, Irkutsk State University, K. Marx St. 1, Irkutsk 664003, Russian Federation
| | - Natal’ia G. Diatchina
- Trans-Baikal State University, Aleksandro-Zavodskaia St. 30, Chita 672039, Russian Federation
| | - Iaroslav V. Frolov
- Museum of Archaeology and Ethnography of Altai, Altai State University, Dimitrova St. 66, Barnaul 656049, Russian Federation
| | - Vadim V. Gorbunov
- Department of Archaeology, Ethnography and Museology, Altai State University, Lenin Prospekt St. 61, Barnaul 656049, Russian Federation
| | - Olga I. Goriunova
- Scientific Research Center “Baikal Region”, Irkutsk State University, K. Marx St. 1, Irkutsk 664003, Russian Federation
| | - Sergei P. Grushin
- Department of Archaeology, Ethnography and Museology, Altai State University, Lenin Prospekt St. 61, Barnaul 656049, Russian Federation
| | - Andrei V. Gusev
- Scientific Center of Arctic Studies, Respublika St. 20, Salekhard, Iamal-Nenets Autonomous District 629008, Russian Federation
| | - Larisa G. Iaroslavtseva
- National Museum of the Republic of Buryatia, Kuibyshev St. 29, Ulan-Ude 670000, Russian Federation
| | - Grigorii L. Ivanov
- Irkutsk Museum of Regional Studies, K. Marx St. 13, Irkutsk 664003, Russian Federation
| | - Artur V. Kharinskii
- Laboratory of Archaeology, Paleoecology and the Subsistence Strategies of the Peoples of Northern Asia, Irkutsk National Research Technical University, Lermontov St. 83, Irkutsk 664074, Russian Federation
- Faculty of History, Irkutsk State University, K. Marx St. 1, Irkutsk 664003, Russian Federation
| | - Mikhail V. Konstantinov
- Trans-Baikal State University, Aleksandro-Zavodskaia St. 30, Chita 672039, Russian Federation
| | - Pavel A. Kosintsev
- Palaeoecology Laboratory, Institute of Plant and Animal Ecology, Ural Division of the Russian Academy of Science, 8 Marta Street #202, Ekaterinburg 620144, Russian Federation
| | - Evgenii V. Kovychev
- Trans-Baikal State University, Aleksandro-Zavodskaia St. 30, Chita 672039, Russian Federation
- Institute of Mongolian, Buddhist, and Tibetan Studies, Siberian Branch, Russian Academy of Science, Sakhiyanovoi St. 6, Ulan-Ude 670047, Russian Federation
| | - Boris Lazin
- Science Museum, Far East Federal University, Okeanskii Prospect 37, Vladivostok 690091, Russian Federation
| | - Iurii G. Nikitin
- Museum of Archaeology and Ethnographies, Institute of History, Archaeology and Ethnography of the Peoples of the Far East, Far Eastern Branch of the Russian Academy of Science, Pushkinskaia St. 89, Vladivostok 690091, Russian Federation
| | - Dmitri V. Papin
- Barnaul Laboratory of Archaeology and Ethnography of South Siberia, Altai State University, Dmitrova St. 66, Barnaul 656049, Russian Federation
- Institute of Archaeology and Ethnography, Siberian Branch of the Russian Academy of Sciences, 17, Acad. Lavretiev Avenue, Novosibirsk 630090, Russian Federation
| | - Alexandr N. Popov
- Science Museum, Far East Federal University, Okeanskii Prospect 37, Vladivostok 690091, Russian Federation
| | - Mikhail V. Sablin
- Zoological Institute of the Russian Academy of Science, Universitetskaia nab. 1, Saint Petersburg 199034, Russian Federation
| | - Nikolai A. Savel’ev
- Laboratory of Archaeology, Ethnology, Problems of Paleoecology and Human Evolution of the Faculty of History, Irkutsk State University, 5th Army Street 52, Irkutsk 664025, Russian Federation
| | - Arkady B. Savinetsky
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Science, Leninskii prospect 33, Moscow 119071, Russian Federation
| | - Alexey A. Tishkin
- Department of Archaeology, Ethnography and Museology, Altai State University, Lenin Prospekt St. 61, Barnaul 656049, Russian Federation
| |
Collapse
|
15
|
Liu T, Chen J, Jiang L, Qiao G. Human‐mediated eco‐evolutionary processes of the herbivorous insect
Hyalopterus arundiniformis
during the Holocene. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Tongyi Liu
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
- College of Life Sciences University of Chinese Academy of Sciences Beijing China
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
- College of Life Sciences University of Chinese Academy of Sciences Beijing China
| |
Collapse
|