1
|
Song X, Li R, Chu X, Li Q, Li R, Li Q, Tong KY, Gu X, Ming D. Multilevel analysis of the central-peripheral-target organ pathway: contributing to recovery after peripheral nerve injury. Neural Regen Res 2025; 20:2807-2822. [PMID: 39435615 PMCID: PMC11826472 DOI: 10.4103/nrr.nrr-d-24-00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities. Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites, neglecting multilevel pathological analysis of the overall nervous system and target organs. This has led to restrictions on current therapeutic approaches. In this paper, we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective, covering the central nervous system, peripheral nervous system, and target organs. After peripheral nerve injury, the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves; changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord. The nerve will undergo axonal regeneration, activation of Schwann cells, inflammatory response, and vascular system regeneration at the injury site. Corresponding damage to target organs can occur, including skeletal muscle atrophy and sensory receptor disruption. We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury. The main current treatments are conducted passively and include physical factor rehabilitation, pharmacological treatments, cell-based therapies, and physical exercise. However, most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway. Therefore, we should further explore multilevel treatment options that produce effective, long-lasting results, perhaps requiring a combination of passive (traditional) and active (novel) treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.
Collapse
Affiliation(s)
- Xizi Song
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Machine Interface and Human-Machine Fusion, Tianjin, China
| | - Ruixin Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Machine Interface and Human-Machine Fusion, Tianjin, China
| | - Xiaolei Chu
- Department of Rehabilitation, Tianjin University Tianjin Hospital, Tianjin, China
| | - Qi Li
- Department of Rehabilitation, Tianjin University Tianjin Hospital, Tianjin, China
| | - Ruihua Li
- Department of Hand Microsurgery, Tianjin University Tianjin Hospital, Tianjin, China
| | - Qingwen Li
- School of Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Kai-Yu Tong
- Department of Biomedical Engineering, the Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiaosong Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Machine Interface and Human-Machine Fusion, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Machine Interface and Human-Machine Fusion, Tianjin, China
| |
Collapse
|
2
|
Schneider-Heieck K, Pérez-Schindler J, Blatter J, de Smalen LM, Duchemin W, Steurer SA, Karrer-Cardel B, Ritz D, Handschin C. Krüppel-like factor 5 remodels lipid metabolism in exercised skeletal muscle. Mol Metab 2025; 96:102154. [PMID: 40250760 PMCID: PMC12060515 DOI: 10.1016/j.molmet.2025.102154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025] Open
Abstract
Regular physical activity induces a variety of health benefits, preventing and counteracting diseases caused by a sedentary lifestyle. However, the molecular underpinnings of skeletal muscle plasticity in exercise remain poorly understood. We identified a role of the Krüppel-Like Factor 5 (Klf5) in this process, in particular in the regulation of lipid homeostasis. Surprisingly, gain- and loss-of-function studies in muscle in vivo revealed seemingly opposite functions of Klf5 in the response to an acute exercise bout and chronic training, modulating lipid oxidation and synthesis, respectively. Thus, even though only transiently induced, the function of Klf5 is complex and fundamental for a normal long-term training response. These findings highlight the importance of this mediator of external stress response to adaptive remodeling of skeletal muscle tissue.
Collapse
Affiliation(s)
| | | | | | | | - Wandrille Duchemin
- sciCORE Center for Scientific Computing, University of Basel, Basel, Switzerland
| | | | | | - Danilo Ritz
- Biozentrum, University of Basel, Basel, Switzerland
| | | |
Collapse
|
3
|
Cho CH, Chae SH, Thi NHL, Um SH, Lee S, Yu JS, Kang KS, Kim KH. Lambertianic Acid from Platycladus orientalis Inhibits Muscle Atrophy in Dexamethasone-Induced C2C12 Muscle Atrophy Cells. PLANTS (BASEL, SWITZERLAND) 2025; 14:1357. [PMID: 40364384 PMCID: PMC12073373 DOI: 10.3390/plants14091357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/19/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
Platycladus orientalis, an evergreen tree belonging to the Cupressaceae family, has been traditionally used to treat various ailments, including fever, cough, diarrhea, diuresis, cold symptoms, and gastrointestinal disorders in folk medicine. As part of our ongoing investigation aimed at discovering bioactive natural products and elucidating their mechanisms of action from various natural sources, we investigated a methanol (MeOH) extract of P. orientalis leaves. This investigation led to the isolation and identification of a labdane-type diterpene, lambertianic acid (LA), via column chromatography and HPLC purification. The structure of LA was elucidated using LC/MS and NMR spectroscopic analyses, including HR-ESIMS, while its absolute configuration was confirmed through electronic circular dichroism (ECD) calculations. Recent studies have reported that labdane-type diterpenes exhibit diverse pharmacological activities, such as anticancer, anti-inflammatory, anti-obesity, and hypolipidemic effects. Notably, LA has been shown to modulate adipocyte metabolism via AMPK signaling; however, its role in skeletal muscle atrophy remains unexplored. Therefore, in this study, we investigated the effects of LA on dexamethasone (Dex)-induced muscle atrophy in C2C12 myotubes. Treatment with LA at concentrations of 25 µM and 50 µM significantly rescued myotube diameter and reduced the expression of atrophy-related proteins, including MuRF-1 and atrogin-1/MAFbx, without compromising cell viability at these moderate concentrations. These findings suggest that LA derived from P. orientalis exerts protective effects against skeletal muscle atrophy, highlighting its potential as a promising natural therapeutic candidate for muscle-wasting disorders.
Collapse
Affiliation(s)
- Chan Hee Cho
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; (C.H.C.); (S.H.C.)
| | - Si Hyeon Chae
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; (C.H.C.); (S.H.C.)
| | - Ngoc Han Le Thi
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea;
| | - Sung Hee Um
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Seulah Lee
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Jae Sik Yu
- Department of Integrative Biological Sciences and Industry, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea;
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea;
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; (C.H.C.); (S.H.C.)
| |
Collapse
|
4
|
Wang Y, Lu Y, Hou J, Wang Y, Luo L, Lu Z, Xie Y, Cai L, Xiao Z. Upregulation of FAM129B protects against glucocorticoid-induced skeletal muscle atrophy via regulating long non-coding RNA NEAT1. Int J Biol Macromol 2025; 300:140120. [PMID: 39855497 DOI: 10.1016/j.ijbiomac.2025.140120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/29/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Skeletal muscle atrophy, manifested by a reduction in muscle size and quantity, is primarily attributed to excessive protein catabolism. FAM129B, an antioxidant protein, has been previously implicated in muscle growth and development in cattle. Aim of this study is to elucidate the role of FAM129B in muscle atrophy. FAM129B was consistently down-regulated in muscle atrophy models in vitro and in vivo and in human steroid-treated gluteus muscles. FAM129B depletion resulted in myotubes atrophy with reduced diameter, increased MuRF-1 and Atrogin-1. Conversely, FAM129B overexpression ameliorated muscle atrophy by increasing myotube diameter and reducing Atrogin-1 and MuRF-1. Mice overexpressing FAM129B exhibited resistance to muscle atrophy, evidenced by increased grip strength, increased tibial anterior weight, increased myofiber cross-sectional area and decreased MuRF-1 and Atrogin-1. RNA sequencing revealed NEAT1 as a downstream gene of FAM129B. Mechanistically, FAM129B was found to influence the stability of NEAT1 by directly binding to it. The enhanced stability of NEAT1 subsequently led to increased FoxO1 expression and subsequent protein degradation. Our study has provided evidence that the upregulation of FAM129B rescues the glucocorticoid-induced skeletal muscle atrophy, suggesting that FAM129B may be a potential target for alleviating skeletal muscle atrophy.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yushen Lu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 430000 Wuhan, China
| | - Jinhui Hou
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 430000 Wuhan, China
| | - Yuyang Wang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 430000 Wuhan, China
| | - Lihuan Luo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zuneng Lu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuanlong Xie
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 430000 Wuhan, China
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 430000 Wuhan, China.
| | - Zheman Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
5
|
Sun Z, Cheng X, Wang Z, Qiao C, Qian H, Yuan T, Lv Z, Sun W, Zhang H, Liu Y, Lu Z, Lin J, Lai C, Wang Y, Yang X, Wang X, Meng J, Bao N. Single-nucleus transcriptomics reveals subsets of degenerative myonuclei after rotator cuff tear-induced muscle atrophy. Cell Prolif 2025; 58:e13763. [PMID: 39435630 PMCID: PMC11882757 DOI: 10.1111/cpr.13763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/06/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Rotator cuff tear (RCT) is the primary cause of shoulder pain and disability and frequently trigger muscle degeneration characterised by muscle atrophy, fatty infiltration and fibrosis. Single-nucleus RNA sequencing (snRNA-seq) was used to reveal the transcriptional changes in the supraspinatus muscle after RCT. Supraspinatus muscles were obtained from patients with habitual shoulder dislocation (n = 3) and RCT (n = 3). In response to the RCT, trajectory analysis showed progression from normal myonuclei to ANKRD1+ myonuclei, which captured atrophy-and fatty infiltration-related regulons (KLF5, KLF10, FOSL1 and BHLHE40). Transcriptomic alterations in fibro/adipogenic progenitors (FAPs) and muscle satellite cells (MuSCs) have also been studied. By predicting cell-cell interactions, we observed communication alterations between myofibers and muscle-resident cells following RCT. Our findings reveal the plasticity of muscle cells in response to RCT and offer valuable insights into the molecular mechanisms and potential therapeutic targets of RCT.
Collapse
Affiliation(s)
- Ziying Sun
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Xi Cheng
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Zheng Wang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Chenfeng Qiao
- Department of Orthopedics, Jinling Clinical Medical CollegeNanjing University of Chinese MedicineNanjingJiangsuPeople's Republic of China
| | - Hong Qian
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Tao Yuan
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Zhongyang Lv
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Wenshuang Sun
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Hanwen Zhang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Yuan Liu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Zhihao Lu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Jintao Lin
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Chengteng Lai
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Yang Wang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Xiaojiang Yang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
| | - Xingyun Wang
- Hongqiao International Institute of Medicine, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Jia Meng
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
- Department of Orthopedics, Jinling Clinical Medical CollegeNanjing University of Chinese MedicineNanjingJiangsuPeople's Republic of China
| | - Nirong Bao
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuPeople's Republic of China
- Department of Orthopedics, Jinling Clinical Medical CollegeNanjing University of Chinese MedicineNanjingJiangsuPeople's Republic of China
| |
Collapse
|
6
|
Kramer AE, Berral-González A, Ellwood KM, Ding S, De Las Rivas J, Dutta A. Cross-species regulatory network analysis identifies FOXO1 as a driver of ovarian follicular recruitment. Sci Rep 2024; 14:30787. [PMID: 39730395 DOI: 10.1038/s41598-024-80003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/14/2024] [Indexed: 12/29/2024] Open
Abstract
The transcriptional regulation of gene expression in the latter stages of follicular development in laying hen ovarian follicles is not well understood. Although differentially expressed genes (DEGs) have been identified in pre-recruitment and pre-ovulatory stages, the master regulators driving these DEGs remain unknown. This study addresses this knowledge gap by utilizing Master Regulator Analysis (MRA) combined with the Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) for the first time in laying hen research to identify master regulators that are controlling DEGs in pre-recruitment and pre-ovulatory phases. The constructed ARACNe network included 10,466 nodes and 292,391 edges. The ARACNe network was then used in conjunction with the Virtual Inference of Protein-activity by Enriched Regulon (VIPER) for the MRA to identify top up- and down-regulated master regulators. VIPER analysis revealed FOXO1 as a master regulator, influencing 275 DEGs and impacting pathways related to apoptosis, proliferation, and hormonal regulation. Additionally, CLOCK, known as a crucial regulator of circadian rhythm, emerged as an upregulated master regulator in the pre-ovulatory stage. These findings provide new insights into the transcriptional landscape of laying hen ovarian follicles, offering a foundation for further exploration of follicle development and enhancing reproductive efficiency in avian species.
Collapse
Affiliation(s)
- Ashley E Kramer
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Alberto Berral-González
- Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Salamanca, Spain
| | - Kathryn M Ellwood
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Shanshan Ding
- Department of Applied Economics and Statistics, University of Delaware, Newark, DE, USA
| | - Javier De Las Rivas
- Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Salamanca, Spain.
| | - Aditya Dutta
- Departments of Animal and Food Sciences, Biological Sciences, Medical and Molecular Sciences, and Microbiology Graduate Program, University of Delaware, Newark, DE, USA.
| |
Collapse
|
7
|
Bo T, Fujii J. Primary Roles of Branched Chain Amino Acids (BCAAs) and Their Metabolism in Physiology and Metabolic Disorders. Molecules 2024; 30:56. [PMID: 39795113 PMCID: PMC11721030 DOI: 10.3390/molecules30010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Leucine, isoleucine, and valine are collectively known as branched chain amino acids (BCAAs) and are often discussed in the same physiological and pathological situations. The two consecutive initial reactions of BCAA catabolism are catalyzed by the common enzymes referred to as branched chain aminotransferase (BCAT) and branched chain α-keto acid dehydrogenase (BCKDH). BCAT transfers the amino group of BCAAs to 2-ketoglutarate, which results in corresponding branched chain 2-keto acids (BCKAs) and glutamate. BCKDH performs an oxidative decarboxylation of BCKAs, which produces their coenzyme A-conjugates and NADH. BCAT2 in skeletal muscle dominantly catalyzes the transamination of BCAAs. Low BCAT activity in the liver reduces the metabolization of BCAAs, but the abundant presence of BCKDH promotes the metabolism of muscle-derived BCKAs, which leads to the production of glucose and ketone bodies. While mutations in the genes responsible for BCAA catabolism are involved in rare inherited disorders, an aberrant regulation of their enzymatic activities is associated with major metabolic disorders such as diabetes, cardiovascular disease, and cancer. Therefore, an understanding of the regulatory process of metabolic enzymes, as well as the functions of the BCAAs and their metabolites, make a significant contribution to our health.
Collapse
Affiliation(s)
- Tomoki Bo
- Laboratory Animal Center, Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| |
Collapse
|
8
|
Chen Y, Liang R, Li Y, Jiang L, Ma D, Luo Q, Song G. Chromatin accessibility: biological functions, molecular mechanisms and therapeutic application. Signal Transduct Target Ther 2024; 9:340. [PMID: 39627201 PMCID: PMC11615378 DOI: 10.1038/s41392-024-02030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/04/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024] Open
Abstract
The dynamic regulation of chromatin accessibility is one of the prominent characteristics of eukaryotic genome. The inaccessible regions are mainly located in heterochromatin, which is multilevel compressed and access restricted. The remaining accessible loci are generally located in the euchromatin, which have less nucleosome occupancy and higher regulatory activity. The opening of chromatin is the most important prerequisite for DNA transcription, replication, and damage repair, which is regulated by genetic, epigenetic, environmental, and other factors, playing a vital role in multiple biological progresses. Currently, based on the susceptibility difference of occupied or free DNA to enzymatic cleavage, solubility, methylation, and transposition, there are many methods to detect chromatin accessibility both in bulk and single-cell level. Through combining with high-throughput sequencing, the genome-wide chromatin accessibility landscape of many tissues and cells types also have been constructed. The chromatin accessibility feature is distinct in different tissues and biological states. Research on the regulation network of chromatin accessibility is crucial for uncovering the secret of various biological processes. In this review, we comprehensively introduced the major functions and mechanisms of chromatin accessibility variation in different physiological and pathological processes, meanwhile, the targeted therapies based on chromatin dynamics regulation are also summarized.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Rui Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Yong Li
- Hepatobiliary Pancreatic Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Lingli Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Di Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China.
| |
Collapse
|
9
|
Huang C, Zhong Q, Lian W, Kang T, Hu J, Lei M. Ankrd1 inhibits the FAK/Rho-GTPase/F-actin pathway by downregulating ITGA6 transcriptional to regulate myoblast functions. J Cell Physiol 2024; 239:e31359. [PMID: 38988048 DOI: 10.1002/jcp.31359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
Skeletal muscle constitutes the largest percentage of tissue in the animal body and plays a pivotal role in the development of normal life activities in the organism. However, the regulation mechanism of skeletal muscle growth and development remains largely unclear. This study investigated the effects of Ankrd1 on the proliferation and differentiation of C2C12 myoblasts. Here, we identified Ankrd1 as a potential regulator of muscle cell development, and found that Ankrd1 knockdown resulted in the proliferation ability decrease but the differentiation level increase of C2C12 cells. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyzes as well as RNA-seq results showed that Ankrd1 knockdown activated focal adhesion kinase (FAK)/F-actin signal pathway with most genes significantly enriched in this pathway upregulated. The integrin subunit Itga6 promoter activity is increased when Ankrd1 knockdown, as demonstrated by a dual-luciferase reporter assay. This study revealed the molecular mechanism by which Ankrd1 knockdown enhanced FAK phosphorylation activity through the alteration of integrin subunit levels, thus activating FAK/Rho-GTPase/F-actin signal pathway, eventually promoting myoblast differentiation. Our data suggested that Ankrd1 might serve as a potential regulator of muscle cell development. Our findings provide new insights into skeletal muscle growth and development and valuable references for further study of human muscle-related diseases.
Collapse
Affiliation(s)
- Cheng Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qiqi Zhong
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weisi Lian
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tingting Kang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinling Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Minggang Lei
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- National Engineering Research Center for Livestock, Huazhong Agricultural University, Wuhan, Hubei, China
- Department of Pig Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| |
Collapse
|
10
|
Liang W, Xu F, Li L, Peng C, Sun H, Qiu J, Sun J. Epigenetic control of skeletal muscle atrophy. Cell Mol Biol Lett 2024; 29:99. [PMID: 38978023 PMCID: PMC11229277 DOI: 10.1186/s11658-024-00618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
Skeletal muscular atrophy is a complex disease involving a large number of gene expression regulatory networks and various biological processes. Despite extensive research on this topic, its underlying mechanisms remain elusive, and effective therapeutic approaches are yet to be established. Recent studies have shown that epigenetics play an important role in regulating skeletal muscle atrophy, influencing the expression of numerous genes associated with this condition through the addition or removal of certain chemical modifications at the molecular level. This review article comprehensively summarizes the different types of modifications to DNA, histones, RNA, and their known regulators. We also discuss how epigenetic modifications change during the process of skeletal muscle atrophy, the molecular mechanisms by which epigenetic regulatory proteins control skeletal muscle atrophy, and assess their translational potential. The role of epigenetics on muscle stem cells is also highlighted. In addition, we propose that alternative splicing interacts with epigenetic mechanisms to regulate skeletal muscle mass, offering a novel perspective that enhances our understanding of epigenetic inheritance's role and the regulatory network governing skeletal muscle atrophy. Collectively, advancements in the understanding of epigenetic mechanisms provide invaluable insights into the study of skeletal muscle atrophy. Moreover, this knowledge paves the way for identifying new avenues for the development of more effective therapeutic strategies and pharmaceutical interventions.
Collapse
Affiliation(s)
- Wenpeng Liang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226001, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, China
| | - Li Li
- Nantong Center for Disease Control and Prevention, Medical School of Nantong University, Nantong, 226001, China
| | - Chunlei Peng
- Department of Medical Oncology, Tumor Hospital Affiliated to Nantong University, Nantong, 226000, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China
| | - Jiaying Qiu
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226001, China.
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China.
| |
Collapse
|
11
|
Zhong J, Yuan H, Yang J, Du Y, Li Z, Liu X, Yang H, Wang Z, Wang Z, Jiang L, Ren Z, Li H, Li Z, Liu Y. Bioinformatics and system biology approach to identify potential common pathogenesis for COVID-19 infection and sarcopenia. Front Med (Lausanne) 2024; 11:1378846. [PMID: 38978778 PMCID: PMC11228343 DOI: 10.3389/fmed.2024.1378846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
Sarcopenia is a condition characterized by age-related loss of muscle mass and strength. Increasing evidence suggests that patients with sarcopenia have higher rates of coronavirus 2019 (COVID-19) infection and poorer post-infection outcomes. However, the exact mechanism and connections between the two is unknown. In this study, we used high-throughput data from the GEO database for sarcopenia (GSE111016) and COVID-19 (GSE171110) to identify common differentially expressed genes (DEGs). We conducted GO and KEGG pathway analyses, as well as PPI network analysis on these DEGs. Using seven algorithms from the Cytoscape plug-in cytoHubba, we identified 15 common hub genes. Further analyses included enrichment, PPI interaction, TF-gene and miRNA-gene regulatory networks, gene-disease associations, and drug prediction. Additionally, we evaluated immune cell infiltration with CIBERSORT and assessed the diagnostic accuracy of hub genes for sarcopenia and COVID-19 using ROC curves. In total, we identified 66 DEGs (34 up-regulated and 32 down-regulated) and 15 hub genes associated with sarcopenia and COVID-19. GO and KEGG analyses revealed functions and pathways between the two diseases. TF-genes and TF-miRNA regulatory network suggest that FOXOC1 and hsa-mir-155-5p may be identified as key regulators, while gene-disease analysis showed strong correlations with hub genes in schizophrenia and bipolar disorder. Immune infiltration showed a correlation between the degree of immune infiltration and the level of infiltration of different immune cell subpopulations of hub genes in different datasets. The ROC curves for ALDH1L2 and KLF5 genes demonstrated their potential as diagnostic markers for both sarcopenia and COVID-19. This study suggests that sarcopenia and COVID-19 may share pathogenic pathways, and these pathways and hub genes offer new targets and strategies for early diagnosis, effective treatment, and tailored therapies for sarcopenia patients with COVID-19.
Collapse
Affiliation(s)
- Jun Zhong
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Hui Yuan
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jinghong Yang
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Yimin Du
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Zheng Li
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xu Liu
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Haibo Yang
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhaojun Wang
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Zi Wang
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Lujun Jiang
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhiqiang Ren
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Hongliang Li
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhong Li
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yanshi Liu
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
12
|
Liu H, Yuan S, Liu G, Li J, Zheng K, Zhang Z, Zheng S, Yin L, Li Y. Satellite Cell-Derived Exosomes: A Novel Approach to Alleviate Skeletal Muscle Atrophy and Fibrosis. Adv Biol (Weinh) 2024; 8:e2300558. [PMID: 38329214 DOI: 10.1002/adbi.202300558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Skeletal muscle atrophy coincides with extensive fibrous tissue hyperplasia in muscle-atrophied patients, and fibrous tissue plays a vital role in skeletal muscle function and hinders muscle fiber regeneration. However, effective drugs to manage skeletal muscle atrophy and fibrosis remain elusive. This study isolated and characterized exosomes derived from skeletal muscle satellite cells (MuSC-Exo). The study investigated their effects on denervated skeletal muscle atrophy and fibrosis in Sprague Dawley (SD) rats via intramuscular injection. MuSC-Exo demonstrated the potential to alleviate skeletal muscle atrophy and fibrosis. The underlying mechanism using single-cell RNA sequencing data and functional analysis are analyzed. Mechanistic studies reveal close associations between fibroblasts and myoblasts, with the transforming growth factor β1 (TGF-β1)-Smad3-Pax7 axis governing fibroblast activation in atrophic skeletal muscle. MuSC-Exo intervention inhibited the TGF-β1/Smad3 pathway and improved muscle atrophy and fibrosis. In conclusion, MuSC-Exo-based therapy may represent a novel strategy to alleviate skeletal muscle atrophy and reduce excessive fibrotic tissue by targeting Pax7 through the TGF-β1/Smad3 pathway.
Collapse
Affiliation(s)
- Hongwen Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Department of Discipline Construction Office, Panzhihua Central Hospital, Panzhihua, Sichuan, 617067, China
| | - Shiguo Yuan
- Department of Orthopaedic, Hainan Traditional Chinese Medicine Hospital, Haikou, Hainan, 570203, China
- School of Chinese Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Gaofeng Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Junhua Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Kai Zheng
- Department of Orthopaedic, Hainan Traditional Chinese Medicine Hospital, Haikou, Hainan, 570203, China
- School of Chinese Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Zhiwei Zhang
- Department of Orthopaedic, Hainan Traditional Chinese Medicine Hospital, Haikou, Hainan, 570203, China
- School of Chinese Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Sheng Zheng
- Department of Traditional Chinese Orthopedics and Traumatology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510630, China
| | - Li Yin
- Department of Discipline Construction Office, Panzhihua Central Hospital, Panzhihua, Sichuan, 617067, China
| | - Yikai Li
- Department of Traditional Chinese Orthopedics and Traumatology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510630, China
| |
Collapse
|
13
|
Chen Y, Zhang Y, Zhang S, Ren H. Molecular insights into sarcopenia: ferroptosis-related genes as diagnostic and therapeutic targets. J Biomol Struct Dyn 2024:1-19. [PMID: 38229237 DOI: 10.1080/07391102.2023.2298390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/26/2023] [Indexed: 01/18/2024]
Abstract
Ferroptosis, characterized by iron accumulation and lipid peroxidation, leads to cell death. Growing evidence suggests the involvement of ferroptosis in sarcopenia. However, the fundamental ferroptosis-related genes (FRGs) for sarcopenia diagnosis, prognosis, and therapy remain elusive. This study aimed to identify molecular biomarkers of ferroptosis in sarcopenia patients. Gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between normal and sarcopenia samples were identified using the 'limma' package in R software. FRGs were extracted from GeneCards and FerrDB databases. Functional enrichment analysis determined the roles of DEGs using the 'clusterProfiler' package. A protein-protein network was constructed using Cytoscape software. Immune infiltration analysis and receiver operating characteristic (ROC) analysis were performed. mRNA-miRNA, mRNA-TF, and mRNA-drug interactions were predicted using ENCORI, hTFtarget, and CHIPBase databases. The network was visualized using Cytoscape. We identified 46 FRGs in sarcopenia. Functional enrichment analysis revealed their involvement in critical biological processes, including responses to steroid hormones and glucocorticoids. KEGG enrichment analysis implicated pathways such as carbon metabolism, ferroptosis, and glyoxylate in sarcopenia. Totally, 11 hub genes were identified, and ROC analysis demonstrated their potential as sensitive and specific markers for sarcopenia in both datasets. Additionally, differences in immune cell infiltration were observed between normal and sarcopenia samples. The hub genes identified in this study are closely associated with ferroptosis in sarcopenia and can effectively differentiate sarcopenia from controls. CDKN1A, CS, DLD, FOXO1, HSPB1, LDHA, MDH2, and YWHAZ show high sensitivity and specificity for sarcopenia diagnosis.
Collapse
Affiliation(s)
- Yanzhong Chen
- School of Sport Science, Beijing Sport University, Beijing, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Yaonan Zhang
- School of Sport Science, Beijing Sport University, Beijing, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
- Department of orthopedics, Beijing Hospital, Beijing, China
| | - Sihan Zhang
- School of Sport Science, Beijing Sport University, Beijing, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Hong Ren
- School of Sport Science, Beijing Sport University, Beijing, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| |
Collapse
|
14
|
Oishi Y, Koike H, Kumagami N, Nakagawa Y, Araki M, Taketomi Y, Miki Y, Matsuda S, Kim H, Matsuzaka T, Ozawa H, Shimano H, Murakami M, Manabe I. Macrophage SREBP1 regulates skeletal muscle regeneration. Front Immunol 2024; 14:1251784. [PMID: 38259495 PMCID: PMC10800357 DOI: 10.3389/fimmu.2023.1251784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Macrophages are essential for the proper inflammatory and reparative processes that lead to regeneration of skeletal muscle after injury. Recent studies have demonstrated close links between the function of activated macrophages and their cellular metabolism. Sterol regulatory element-binding protein 1 (SREBP1) is a key regulator of lipid metabolism and has been shown to affect the activated states of macrophages. However, its role in tissue repair and regeneration is poorly understood. Here we show that systemic deletion of Srebf1, encoding SREBP1, or macrophage-specific deletion of Srebf1a, encoding SREBP1a, delays resolution of inflammation and impairs skeletal muscle regeneration after injury. Srebf1 deficiency impairs mitochondrial function in macrophages and suppresses the accumulation of macrophages at sites of muscle injury. Lipidomic analyses showed the reduction of major phospholipid species in Srebf1 -/- muscle myeloid cells. Moreover, diet supplementation with eicosapentaenoic acid restored the accumulation of macrophages and their mitochondrial gene expression and improved muscle regeneration. Collectively, our results demonstrate that SREBP1 in macrophages is essential for repair and regeneration of skeletal muscle after injury and suggest that SREBP1-mediated fatty acid metabolism and phospholipid remodeling are critical for proper macrophage function in tissue repair.
Collapse
Affiliation(s)
- Yumiko Oishi
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Biochemistry & Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Hiroyuki Koike
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Biochemistry & Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Naoki Kumagami
- Department of Biochemistry & Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Yoshimi Nakagawa
- Division of Complex Bioscience Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Masaya Araki
- Division of Complex Bioscience Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shigeru Matsuda
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan
| | - Hyeree Kim
- Department of Systems Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ichiro Manabe
- Department of Systems Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
15
|
Zhang CX, Lin YL, Lu FF, Yu LN, Liu Y, Zhou JD, Kong N, Li D, Yan GJ, Sun HX, Cao GY. Krüppel-like factor 12 regulates aging ovarian granulosa cell apoptosis by repressing SPHK1 transcription and sphingosine-1-phosphate (S1P) production. J Biol Chem 2023; 299:105126. [PMID: 37543362 PMCID: PMC10463260 DOI: 10.1016/j.jbc.2023.105126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023] Open
Abstract
Oxidative stress triggered by aging, radiation, or inflammation impairs ovarian function by inducing granulosa cell (GC) apoptosis. However, the mechanism inducing GC apoptosis has not been characterized. Here, we found that ovarian GCs from aging patients showed increased oxidative stress, enhanced reactive oxygen species activity, and significantly decreased expression of the known antiapoptotic factor sphingosine-1-phosphate/sphingosine kinase 1 (SPHK1) in GCs. Interestingly, the expression of Krüppel-like factor 12 (KLF12) was significantly increased in the ovarian GCs of aging patients. Furthermore, we determined that KLF12 was significantly upregulated in hydrogen peroxide-treated GCs and a 3-nitropropionic acid-induced in vivo model of ovarian oxidative stress. This phenotype was further confirmed to result from inhibition of SPHK1 by KLF12. Interestingly, when endogenous KLF12 was knocked down, it rescued oxidative stress-induced apoptosis. Meanwhile, supplementation with SPHK1 partially reversed oxidative stress-induced apoptosis. However, this function was lost in SPHK1 with deletion of the binding region to the KLF12 promoter. SPHK1 reversed apoptosis caused by hydrogen peroxide-KLF12 overexpression, a result further confirmed in an in vitro ovarian culture model and an in vivo 3-nitropropionic acid-induced ovarian oxidative stress model. Overall, our study reveals that KLF12 is involved in regulating apoptosis induced by oxidative stress in aging ovarian GCs and that sphingosine-1-phosphate/SPHK1 can rescue GC apoptosis by interacting with KLF12 in negative feedback.
Collapse
Affiliation(s)
- Chun-Xue Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yu-Ling Lin
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Fei-Fei Lu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Li-Na Yu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yang Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Ji-Dong Zhou
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Na Kong
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Dong Li
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Gui-Jun Yan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| | - Hai-Xiang Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.
| | - Guang-Yi Cao
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
16
|
Dos Santos M, Shah AM, Zhang Y, Bezprozvannaya S, Chen K, Xu L, Lin W, McAnally JR, Bassel-Duby R, Liu N, Olson EN. Opposing gene regulatory programs governing myofiber development and maturation revealed at single nucleus resolution. Nat Commun 2023; 14:4333. [PMID: 37468485 DOI: 10.1038/s41467-023-40073-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
Skeletal muscle fibers express distinct gene programs during development and maturation, but the underlying gene regulatory networks that confer stage-specific myofiber properties remain unknown. To decipher these distinctive gene programs and how they respond to neural activity, we generated a combined multi-omic single-nucleus RNA-seq and ATAC-seq atlas of mouse skeletal muscle development at multiple stages of embryonic, fetal, and postnatal life. We found that Myogenin, Klf5, and Tead4 form a transcriptional complex that synergistically activates the expression of muscle genes in developing myofibers. During myofiber maturation, the transcription factor Maf acts as a transcriptional switch to activate the mature fast muscle gene program. In skeletal muscles of mutant mice lacking voltage-gated L-type Ca2+ channels (Cav1.1), Maf expression and myofiber maturation are impaired. These findings provide a transcriptional atlas of muscle development and reveal genetic links between myofiber formation, maturation, and contraction.
Collapse
Affiliation(s)
- Matthieu Dos Santos
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Akansha M Shah
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Yichi Zhang
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Svetlana Bezprozvannaya
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, 5323 Harry Hines Boulevard, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, 5323 Harry Hines Boulevard, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Weichun Lin
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - John R McAnally
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Ning Liu
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| |
Collapse
|
17
|
Schiano C, Balbi C, de Nigris F, Napoli C. Basic Pathogenic Mechanisms and Epigenetic Players Promoted by Extracellular Vesicles in Vascular Damage. Int J Mol Sci 2023; 24:ijms24087509. [PMID: 37108672 PMCID: PMC10138986 DOI: 10.3390/ijms24087509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Both progression from the early pathogenic events to clinically manifest cardiovascular diseases (CVD) and cancer impact the integrity of the vascular system. Pathological vascular modifications are affected by interplay between endothelial cells and their microenvironment. Soluble factors, extracellular matrix molecules and extracellular vesicles (EVs) are emerging determinants of this network that trigger specific signals in target cells. EVs have gained attention as package of molecules with epigenetic reversible activity causing functional vascular changes, but their mechanisms are not well understood. Valuable insights have been provided by recent clinical studies, including the investigation of EVs as potential biomarkers of these diseases. In this paper, we review the role and the mechanism of exosomal epigenetic molecules during the vascular remodeling in coronary heart disease as well as in cancer-associated neoangiogenesis.
Collapse
Affiliation(s)
- Concetta Schiano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Institute, 6807 Taverne-Torricella, Switzerland
| | - Carolina Balbi
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Institute, 6807 Taverne-Torricella, Switzerland
| | - Filomena de Nigris
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Clinical Department of Internal Medicine and Specialistic Units, Division of Clinical Immunology and Immunohematology, Transfusion Medicine and Transplant Immunology (SIMT), Azienda Universitaria Policlinico (AOU), 80138 Naples, Italy
| |
Collapse
|
18
|
AlSabagh AT, Rao MS, Renno WM. The impact of heat therapy on neuromuscular function and muscle atrophy in diabetic rats. Front Physiol 2023; 13:1039588. [PMID: 36685197 PMCID: PMC9849254 DOI: 10.3389/fphys.2022.1039588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction: Diabetes Mellitus (DM) is the most common metabolic disease worldwide and is associated with many systemic complications. Muscle atrophy is one of the significant complications in DM patients, making routine tasks laborious as atrophy continues. It is known that heat stress stimulates heat shock proteins and other proteins that maintain muscle mass; however, it is not thoroughly studied in diabetic conditions. This study addressed whether heat therapy can attenuate muscle atrophy in STZ-induced diabetic rats and explored its mechanism of action on specific muscle proteins. Methods: Male Sprague Dawley rats were randomly divided into short-term (3 weeks) and long-term (6 weeks) experiments. In each experiment rats were divided into control, heat therapy, diabetic and diabetic + heat therapy groups. Rats in heat therapy groups were exposed to heat therapy for 30 min daily for three or six weeks in a temperature-controlled (42°C) chamber. Results: The attenuation of neuromuscular functions assessed by Rotarod, Kondziella's inverted screen, and extensor postural thrust tests showed that diabetic rats exposed to heat therapy performed significantly better than diabetic controls. Muscle cross sectional area data established that heat therapy reduced muscle atrophy by 34.3% within 3 weeks and 44.1% within 6 weeks in the diabetic groups. Further, heat therapy significantly decreased muscle atrophy markers (CD68, KLF, and MAFbx) and significantly elevated muscle hypertrophy markers (AKT, mTOR, and HSP70). Conclusions: This study shows the relevance and clinical significance of utilizing heat therapy as a viable treatment to attenuate muscle atrophy in diabetic patients.
Collapse
|
19
|
Dong W, Chen W, Zou H, Shen Z, Yu D, Chen W, Jiang H, Yan X, Yu Z. Ginsenoside Rb1 Prevents Oxidative Stress-Induced Apoptosis and Mitochondrial Dysfunction in Muscle Stem Cells via NF- κB Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9159101. [PMID: 36466088 PMCID: PMC9715322 DOI: 10.1155/2022/9159101] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 07/22/2023]
Abstract
Sarcopenia, featured by the progressive loss of skeletal muscle function and mass, is associated with the impaired function of muscle stem cells (MuSCs) caused by increasing oxidative stress in senescent skeletal muscle tissue during aging. Intact function of MuSCs maintains the regenerative potential as well as the homeostasis of skeletal muscle tissues during aging. Ginsenoside Rb1, a natural compound from ginseng, exhibited the effects of antioxidation and against apoptosis. However, its effects of restoring MuSC function during aging and improving age-related sarcopenia remained unknown. In this study, we investigated the role of Rb1 in improving MuSC function and inhibiting apoptosis by reducing oxidative stress levels. We found that Rb1 inhibited the accumulation of reactive oxygen species (ROS) and protected the cells from oxidative stress to attenuate the H2O2-induced cytotoxicity. Rb1 also blocked oxidative stress-induced apoptosis by inhibiting the activation of caspase-3/9, which antagonized the decrease in mitochondrial content and the increase in mitochondrial abnormalities caused by oxidative stress via promoting the protein expression of genes involved in mitochondrial biogenesis. Mechanistically, it was proven that Rb1 exerted its antioxidant effects and avoided the apoptosis of myoblasts by targeting the core regulator of the nuclear factor-kappa B (NF-κB) signal pathway. Therefore, these findings suggest that Rb1 may have a beneficial role in the prevention and treatment of MuSC exhaustion-related diseases like sarcopenia.
Collapse
Affiliation(s)
- Wenxi Dong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenhao Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongbo Zou
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Gastrointestinal Surgery, People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Zile Shen
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dingye Yu
- Department of General Surgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Weizhe Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haojie Jiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xialin Yan
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Colorectal Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhen Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
20
|
Adel M, Elsayed HRH, El-Nablaway M, Hamed S, Eladl A, Fouad S, El Nashar EM, Al-Otaibi ML, Rabei MR. Targeting Hydrogen Sulfide Modulates Dexamethasone-Induced Muscle Atrophy and Microvascular Rarefaction, through Inhibition of NOX4 and Induction of MGF, M2 Macrophages and Endothelial Progenitors. Cells 2022; 11:cells11162500. [PMID: 36010575 PMCID: PMC9406793 DOI: 10.3390/cells11162500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Long-term use of Glucocorticoids produces skeletal muscle atrophy and microvascular rarefaction. Hydrogen sulfide (H2S) has a potential role in skeletal muscle regeneration. However, the mechanisms still need to be elucidated. This is the first study to explore the effect of Sodium hydrosulfide (NaHS) H2S donor, against Dexamethasone (Dex)-induced soleus muscle atrophy and microvascular rarefaction and on muscle endothelial progenitors and M2 macrophages. Rats received either; saline, Dex (0.6 mg/Kg/day), Dex + NaHS (5 mg/Kg/day), or Dex + Aminooxyacetic acid (AOAA), a blocker of H2S (10 mg/Kg/day) for two weeks. The soleus muscle was examined for contractile properties. mRNA expression for Myostatin, Mechano-growth factor (MGF) and NADPH oxidase (NOX4), HE staining, and immunohistochemical staining for caspase-3, CD34 (Endothelial progenitor marker), vascular endothelial growth factor (VEGF), CD31 (endothelial marker), and CD163 (M2 macrophage marker) was performed. NaHS could improve the contractile properties and decrease oxidative stress, muscle atrophy, and the expression of NOX4, caspase-3, Myostatin, VEGF, and CD31 and could increase the capillary density and expression of MGF with a significant increase in expression of CD34 and CD163 as compared to Dex group. However, AOAA worsened the studied parameters. Therefore, H2S can be a promising target to attenuate muscle atrophy and microvascular rarefaction.
Collapse
Affiliation(s)
- Mohamed Adel
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Hassan Reda Hassan Elsayed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Anatomy, Faculty of Physical therapy, Horus University, New Damietta 34517, Egypt
- Correspondence: ; Tel.: +20-122-9310-701
| | - Mohammad El-Nablaway
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Medical Biochemistry, College of Medicine, Almaarefa University, Riyad 71666, Saudi Arabia
| | - Shereen Hamed
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Amira Eladl
- Department of Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Samah Fouad
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Eman Mohamad El Nashar
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha 13511, Egypt
| | - Mohammed Lafi Al-Otaibi
- Department of Orthopedics, College Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohammed R. Rabei
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Physiology, Faculty of Medicine, King Salman International University, El Tor 46511, Egypt
| |
Collapse
|
21
|
Yang X, Li M, Ji Y, Lin Y, Xu L, Gu X, Sun H, Wang W, Shen Y, Liu H, Zhu J. Changes of Gene Expression Patterns of Muscle Pathophysiology-Related Transcription Factors During Denervated Muscle Atrophy. Front Physiol 2022; 13:923190. [PMID: 35812340 PMCID: PMC9263185 DOI: 10.3389/fphys.2022.923190] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
Peripheral nerve injury is common, and can lead to skeletal muscle atrophy and dysfunction. However, the underlying molecular mechanisms are not fully understood. The transcription factors have been proved to play a key role in denervated muscle atrophy. In order to systematically analyze transcription factors and obtain more comprehensive information of the molecular regulatory mechanisms in denervated muscle atrophy, a new transcriptome survey focused on transcription factors are warranted. In the current study, we used microarray to identify and analyze differentially expressed genes encoding transcription factors in denervated muscle atrophy in a rat model of sciatic nerve dissection. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were used to explore the biological functions of differentially expressed transcription factors and their target genes related to skeletal muscle pathophysiology. We found that the differentially expressed transcription factors were mainly involved in the immune response. Based on correlation analysis and the expression trends of transcription factors, 18 differentially expressed transcription factors were identified. Stat3, Myod1, Runx1, Atf3, Junb, Runx2, Myf6, Stat5a, Tead4, Klf5, Myog, Mef2a, and Hes6 were upregulated. Ppargc1a, Nr4a1, Lhx2, Ppara, and Rxrg were downregulated. Functional network mapping revealed that these transcription factors are mainly involved in inflammation, development, aging, proteolysis, differentiation, regeneration, autophagy, oxidative stress, atrophy, and ubiquitination. These findings may help understand the regulatory mechanisms of denervated muscle atrophy and provide potential targets for future therapeutic interventions for muscle atrophy following peripheral nerve injury.
Collapse
Affiliation(s)
- Xiaoming Yang
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Ming Li
- Department of Laboratory Medicine, Binhai County People’s Hospital affiliated to Kangda College of Nanjing Medical University, Yancheng, China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yinghao Lin
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Lai Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Wei Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- *Correspondence: Yuntian Shen, ; Hua Liu, ; Jianwei Zhu,
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, China
- *Correspondence: Yuntian Shen, ; Hua Liu, ; Jianwei Zhu,
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Yuntian Shen, ; Hua Liu, ; Jianwei Zhu,
| |
Collapse
|
22
|
Yuzawa R, Koike H, Manabe I, Oishi Y. VDR regulates simulated microgravity-induced atrophy in C2C12 myotubes. Sci Rep 2022; 12:1377. [PMID: 35082348 PMCID: PMC8791983 DOI: 10.1038/s41598-022-05354-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
Muscle wasting is a major problem leading to reduced quality of life and higher risks of mortality and various diseases. Muscle atrophy is caused by multiple conditions in which protein degradation exceeds its synthesis, including disuse, malnutrition, and microgravity. While Vitamin D receptor (VDR) is well known to regulate calcium and phosphate metabolism to maintain bone, recent studies have shown that VDR also plays roles in skeletal muscle development and homeostasis. Moreover, its expression is upregulated in muscle undergoing atrophy as well as after muscle injury. Here we show that VDR regulates simulated microgravity-induced atrophy in C2C12 myotubes in vitro. After 8 h of microgravity simulated using 3D-clinorotation, the VDR-binding motif was associated with chromatin regions closed by the simulated microgravity and enhancer regions inactivated by it, which suggests VDR mediates repression of enhancers. In addition, VDR was induced and translocated into the nuclei in response to simulated microgravity. VDR-deficient C2C12 myotubes showed resistance to simulated microgravity-induced atrophy and reduced induction of FBXO32, an atrophy-associated ubiquitin ligase. These results demonstrate that VDR contributes to the regulation of simulated microgravity-induced atrophy at least in part by controlling expression of atrophy-related genes.
Collapse
|