1
|
Jury CP, Bahr KD, Cros A, Dobson KL, Freel EB, Graham AT, McLachlan RH, Nelson CE, Price JT, Rocha de Souza M, Shizuru L, Smith CM, Sparagon WJ, Squair CA, Timmers MA, Vicente J, Webb MK, Yamase NH, Grottoli AG, Toonen RJ. Experimental coral reef communities transform yet persist under mitigated future ocean warming and acidification. Proc Natl Acad Sci U S A 2024; 121:e2407112121. [PMID: 39471225 PMCID: PMC11551444 DOI: 10.1073/pnas.2407112121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/20/2024] [Indexed: 11/01/2024] Open
Abstract
Coral reefs are among the most sensitive ecosystems affected by ocean warming and acidification, and are predicted to collapse over the next few decades. Reefs are predicted to shift from net accreting calcifier-dominated systems with exceptionally high biodiversity to net eroding algal-dominated systems with dramatically reduced biodiversity. Here, we present a two-year experimental study examining the responses of entire mesocosm coral reef communities to warming (+2 °C), acidification (-0.2 pH units), and combined future ocean (+2 °C, -0.2 pH) treatments. Contrary to modeled projections, we show that under future ocean conditions, these communities shift structure and composition yet persist as novel calcifying ecosystems with high biodiversity. Our results suggest that if climate change is limited to Paris Climate Agreement targets, coral reefs could persist in an altered state rather than collapse.
Collapse
Affiliation(s)
- Christopher P. Jury
- Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96744
| | - Keisha D. Bahr
- Department of Life Sciences, Texas A&M University—Corpus Christi, Corpus Christi, TX78412
| | | | - Kerri L. Dobson
- Marine Biology and Ecology Research Group, School of Ocean and Earth Sciences, University of Southampton, SouthamptonSO14 3ZH, UK
- School of Earth Sciences, College of Arts and Sciences, The Ohio State University, Columbus, OH43210
| | - Evan B. Freel
- Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96744
| | - Andrew T. Graham
- Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96744
| | - Rowan H. McLachlan
- School of Earth Sciences, College of Arts and Sciences, The Ohio State University, Columbus, OH43210
- Department of Microbiology, Oregon State University, Corvallis, OR97331
| | - Craig E. Nelson
- Daniel K. Inouye Center for Microbial Oceanography, Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96822
| | - James T. Price
- School of Earth Sciences, College of Arts and Sciences, The Ohio State University, Columbus, OH43210
| | - Mariana Rocha de Souza
- Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96744
| | - Leah Shizuru
- Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96744
| | - Celia M. Smith
- Department of Biology, School of Life Sciences, College of Natural Sciences, University of Hawai’i at Mānoa, Honolulu, HI96822
- Department of Marine Biology, College of Natural Sciences and School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96822
| | - Wesley J. Sparagon
- Daniel K. Inouye Center for Microbial Oceanography, Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96822
| | - Cheryl A. Squair
- Department of Biology, School of Life Sciences, College of Natural Sciences, University of Hawai’i at Mānoa, Honolulu, HI96822
| | - Molly A. Timmers
- Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96744
- Pristine Seas, National Geographic Society, Washington, DC20036
| | - Jan Vicente
- Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96744
| | - Maryann K. Webb
- Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96744
| | - Nicole H. Yamase
- Department of Marine Biology, College of Natural Sciences and School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96822
| | - Andréa G. Grottoli
- Marine Biology and Ecology Research Group, School of Ocean and Earth Sciences, University of Southampton, SouthamptonSO14 3ZH, UK
| | - Robert J. Toonen
- Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96744
| |
Collapse
|
2
|
Jury CP, Toonen RJ. Widespread scope for coral adaptation under combined ocean warming and acidification. Proc Biol Sci 2024; 291:20241161. [PMID: 39317315 PMCID: PMC11421923 DOI: 10.1098/rspb.2024.1161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Reef-building coral populations are at serious risk of collapse due to the combined effects of ocean warming and acidification. Nonetheless, many corals show potential to adapt to the changing ocean conditions. Here we examine the broad sense heritability (H2) of coral calcification rates across an ecologically and phylogenetically diverse sampling of eight of the primary reef-building corals across the Indo-Pacific. We show that all eight species exhibit relatively high heritability of calcification rates under combined warming and acidification (0.23-0.56). Furthermore, tolerance to each factor is positively correlated and the two factors do not interact in most of the species, contrary to the idea of trade-offs between temperature and pH sensitivity, and all eight species can co-evolve tolerance to elevated temperature and reduced pH. Using these values together with historical data, we estimate potential increases in thermal tolerance of 1.0-1.7°C over the next 50 years, depending on species. None of these species are probably capable of keeping up with a high global change scenario and climate change mitigation is essential if reefs are to persist. Such estimates are critical for our understanding of how corals may respond to global change, accurately parametrizing modelled responses, and predicting rapid evolution.
Collapse
Affiliation(s)
- Christopher P Jury
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa , Honolulu, HI 96744, USA
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa , Honolulu, HI 96744, USA
| |
Collapse
|
3
|
Amit T, Beninger PG, Yahel G, Loya Y. Coral hosts provide more than shelter to boring bivalves. Ecology 2024; 105:e4376. [PMID: 38934351 DOI: 10.1002/ecy.4376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/04/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024]
Affiliation(s)
- Tal Amit
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret, Israel
- The Interuniversity Institute for Marine Sciences in Eilat (IUI), Eilat, Israel
| | - Peter G Beninger
- Institut des Substances et Organismes de la Mer, ISOMer, UMR 2160, Nantes Université, Nantes, France
| | - Gitai Yahel
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret, Israel
| | - Yossi Loya
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Alter K, Jacquemont J, Claudet J, Lattuca ME, Barrantes ME, Marras S, Manríquez PH, González CP, Fernández DA, Peck MA, Cattano C, Milazzo M, Mark FC, Domenici P. Hidden impacts of ocean warming and acidification on biological responses of marine animals revealed through meta-analysis. Nat Commun 2024; 15:2885. [PMID: 38570485 PMCID: PMC10991405 DOI: 10.1038/s41467-024-47064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
Conflicting results remain on the impacts of climate change on marine organisms, hindering our capacity to predict the future state of marine ecosystems. To account for species-specific responses and for the ambiguous relation of most metrics to fitness, we develop a meta-analytical approach based on the deviation of responses from reference values (absolute change) to complement meta-analyses of directional (relative) changes in responses. Using this approach, we evaluate responses of fish and invertebrates to warming and acidification. We find that climate drivers induce directional changes in calcification, survival, and metabolism, and significant deviations in twice as many biological responses, including physiology, reproduction, behavior, and development. Widespread deviations of responses are detected even under moderate intensity levels of warming and acidification, while directional changes are mostly limited to more severe intensity levels. Because such deviations may result in ecological shifts impacting ecosystem structures and processes, our results suggest that climate change will likely have stronger impacts than those previously predicted based on directional changes alone.
Collapse
Affiliation(s)
- Katharina Alter
- Royal Netherlands Institute for Sea Research, Department of Coastal Systems, P.O. Box 59, 1790, AB, Den Burg, The Netherlands.
| | - Juliette Jacquemont
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat St, 98195, Seattle, WA, USA
- National Center for Scientific Research, PSL Université Paris, CRIOBE, CNRS-EPHE-UPVD, Maison de l'Océan, 195 rue Saint-Jacques, 75005, Paris, France
| | - Joachim Claudet
- National Center for Scientific Research, PSL Université Paris, CRIOBE, CNRS-EPHE-UPVD, Maison de l'Océan, 195 rue Saint-Jacques, 75005, Paris, France
| | - María E Lattuca
- Centro Austral de Investigaciones Científicas (CADIC-CONICET), Bernardo Houssay 200, V9410CAB, Ushuaia, Argentina
| | - María E Barrantes
- Universidad Nacional de Tierra del Fuego, Antártida e Islas del Atlántico Sur; Instituto de Ciencias Polares, Ambiente y Recursos Naturales (UNTDF - ICPA), Fuegia Basket 251, V9410BXE, Ushuaia, Argentina
| | - Stefano Marras
- CNR-IAS, Consiglio Nazionale delle Ricerche, Instituto per lo studio degli Impatti Antropici e Sostenibilità in ambiente marino. Località Sa Mardini, 09170, Torregrande, Oristano, Italy
| | - Patricio H Manríquez
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
- Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - Claudio P González
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
- Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - Daniel A Fernández
- Centro Austral de Investigaciones Científicas (CADIC-CONICET), Bernardo Houssay 200, V9410CAB, Ushuaia, Argentina
- Universidad Nacional de Tierra del Fuego, Antártida e Islas del Atlántico Sur; Instituto de Ciencias Polares, Ambiente y Recursos Naturales (UNTDF - ICPA), Fuegia Basket 251, V9410BXE, Ushuaia, Argentina
| | - Myron A Peck
- Royal Netherlands Institute for Sea Research, Department of Coastal Systems, P.O. Box 59, 1790, AB, Den Burg, The Netherlands
- Wageningen University, Department of Animal Sciences, Marine Animal Ecology Group, De Elst 1, 6708, WD, Wageningen, The Netherlands
| | - Carlo Cattano
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn (SZN), Lungomare Cristoforo Colombo, I-90149, Palermo, Italy
| | - Marco Milazzo
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Dipartimento di Scienze della Terra e del Mare (DiSTeM), Università di Palermo, Via Archirafi 20, I-90123, Palermo, Italy
| | - Felix C Mark
- Section of Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, Bremerhaven, 27570, Germany
| | - Paolo Domenici
- CNR-IAS, Consiglio Nazionale delle Ricerche, Instituto per lo studio degli Impatti Antropici e Sostenibilità in ambiente marino. Località Sa Mardini, 09170, Torregrande, Oristano, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- CNR-IBF, Area di Ricerca San Cataldo, Via G. Moruzzi N°1, 56124, Pisa, Italy
| |
Collapse
|
5
|
Byrne M, Deaker DJ, Gibbs M, Selvakumaraswamy P, Clements M. Juvenile waiting stage crown-of-thorns sea stars are resilient in heatwave conditions that bleach and kill corals. GLOBAL CHANGE BIOLOGY 2023; 29:6493-6502. [PMID: 37849435 DOI: 10.1111/gcb.16946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/30/2023] [Accepted: 08/27/2023] [Indexed: 10/19/2023]
Abstract
The juveniles of predatory sea stars can remain in their recruitment-nursery habitat for some time before their ontogenetic shift to the adult habitat and diet. These small juveniles are vulnerable to a range of factors with their sensitivity amplified by climate change-driven ocean warming. We investigate the thermal tolerance of the waiting stage herbivorous juveniles of the keystone coral predator, the crown-of-thorns sea star (COTS, Acanthaster sp.), in context with the degree heating weeks (DHW) model that predicts coral bleaching and mass mortality. In temperature treatments ranging from +1 to 3°C in prolonged heatwave acclimation conditions, the juveniles exhibited ~100% survival in DHW scenarios that trigger coral bleaching (4 DHW), resulting in mass mortality of corals (8 DHW) and extreme conditions well beyond those that kill corals (12 DHW). This indicates that herbivorous juvenile COTS are far more resistant to heatwave conditions than the coral prey of the adults. The juveniles exhibited higher activity (righting) and metabolic rate after weeks in increased temperature. In separate acute temperature experiments, the upper thermal limit of the juveniles was 34-36°C. In a warming world, juvenile COTS residing in their coral rubble nursery habitat will benefit from an increase in the extent of this habitat due to coral mortality. The juveniles have potential for long-term persistence as herbivores as they wait for live coral to recover before becoming coral predators, thereby serving as a proximate source of COTS outbreaks on reefs already in a tenuous state due to climate change.
Collapse
Affiliation(s)
- Maria Byrne
- School of Life and Environmental Sciences and Marine Studies Institute, The University Sydney, Sydney, New South Wales, Australia
| | - Dione J Deaker
- School of Life and Environmental Sciences and Marine Studies Institute, The University Sydney, Sydney, New South Wales, Australia
| | - Mitchell Gibbs
- School of Life and Environmental Sciences and Marine Studies Institute, The University Sydney, Sydney, New South Wales, Australia
| | - Paulina Selvakumaraswamy
- School of Life and Environmental Sciences and Marine Studies Institute, The University Sydney, Sydney, New South Wales, Australia
| | - Matthew Clements
- School of Life and Environmental Sciences and Marine Studies Institute, The University Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Price JT, McLachlan RH, Jury CP, Toonen RJ, Wilkins MJ, Grottoli AG. Long-term coral microbial community acclimatization is associated with coral survival in a changing climate. PLoS One 2023; 18:e0291503. [PMID: 37738222 PMCID: PMC10516427 DOI: 10.1371/journal.pone.0291503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/30/2023] [Indexed: 09/24/2023] Open
Abstract
The plasticity of some coral-associated microbial communities under stressors like warming and ocean acidification suggests the microbiome has a role in the acclimatization of corals to future ocean conditions. Here, we evaluated the acclimatization potential of coral-associated microbial communities of four Hawaiian coral species (Porites compressa, Porites lobata, Montipora capitata, and Pocillopora acuta) over 22-month mesocosm experiment. The corals were exposed to one of four treatments: control, ocean acidification, ocean warming, or combined future ocean conditions. Over the 22-month study, 33-67% of corals died or experienced a loss of most live tissue coverage in the ocean warming and future ocean treatments while only 0-10% died in the ocean acidification and control. Among the survivors, coral-associated microbial communities responded to the chronic future ocean treatment in one of two ways: (1) microbial communities differed between the control and future ocean treatment, suggesting the potential capacity for acclimatization, or (2) microbial communities did not significantly differ between the control and future ocean treatment. The first strategy was observed in both Porites species and was associated with higher survivorship compared to M. capitata and P. acuta which exhibited the second strategy. Interestingly, the microbial community responses to chronic stressors were independent of coral physiology. These findings indicate acclimatization of microbial communities may confer resilience in some species of corals to chronic warming associated with climate change. However, M. capitata genets that survived the future ocean treatment hosted significantly different microbial communities from those that died, suggesting the microbial communities of the survivors conferred some resilience. Thus, even among coral species with inflexible microbial communities, some individuals may already be tolerant to future ocean conditions. These findings suggest that coral-associated microbial communities could play an important role in the persistence of some corals and underlie climate change-driven shifts in coral community composition.
Collapse
Affiliation(s)
- James T. Price
- School of Earth Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Rowan H. McLachlan
- School of Earth Sciences, The Ohio State University, Columbus, Ohio, United States of America
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Christopher P. Jury
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, United States of America
| | - Robert J. Toonen
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, United States of America
| | - Michael J. Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Andréa G. Grottoli
- School of Earth Sciences, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
7
|
Silveira MM, Donelson JM, McCormick MI, Araujo-Silva H, Luchiari AC. Impact of ocean warming on a coral reef fish learning and memory. PeerJ 2023; 11:e15729. [PMID: 37576501 PMCID: PMC10416774 DOI: 10.7717/peerj.15729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/18/2023] [Indexed: 08/15/2023] Open
Abstract
Tropical ectotherms are highly sensitive to environmental warming, especially coral reef fishes, which are negatively impacted by an increase of a few degrees in ocean temperature. However, much of our understanding on the thermal sensitivity of reef fish is focused on a few traits (e.g., metabolism, reproduction) and we currently lack knowledge on warming effects on cognition, which may endanger decision-making and survival. Here, we investigated the effects of warming on learning and memory in a damselfish species, Acanthochromis polyacanthus. Fish were held at 28-28.5 °C (control group), 30-30.5 °C (moderate warming group) or 31.5-32 °C (high warming group) for 2 weeks, and then trained to associate a blue tag (cue) to the presence of a conspecific (reward). Following 20 training trials (5 days), fish were tested for associative learning (on the following day) and memory storage (after a 5-days interval). The control group A. polyacanthus showed learning of the task and memory retention after five days, but increasing water temperature impaired learning and memory. A thorough understanding of the effects of heat stress, cognition, and fitness is urgently required because cognition may be a key factor determining animals' performance in the predicted scenario of climate changes. Knowing how different species respond to warming can lead to better predictions of future community dynamics, and because it is species specific, it could pinpoint vulnerable/resilience species.
Collapse
Affiliation(s)
- Mayara M. Silveira
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Jennifer M. Donelson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University of North Queensland, Townville, Australia
| | | | - Heloysa Araujo-Silva
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Ana C. Luchiari
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
8
|
Jia R, Li P, Chen C, Liu L, Li ZH. Shellfish-algal systems as important components of fisheries carbon sinks: Their contribution and response to climate change. ENVIRONMENTAL RESEARCH 2023; 224:115511. [PMID: 36801235 DOI: 10.1016/j.envres.2023.115511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
In the context of global climate change, ocean acidification and warming are becoming increasingly serious. Adding carbon sinks in the ocean is an important part of efforts to mitigate climate change. Many researchers have proposed the concept of a fisheries carbon sink. Shellfish-algal systems are among the most important components of fisheries carbon sinks, but there has been limited research on the impact of climate change on shellfish-algal carbon sequestration systems. This review assesses the impact of global climate change on shellfish-algal carbon sequestration systems and provides a rough estimate of the global shellfish-algal carbon sink capacity. This review evaluates the impact of global climate change on shellfish-algal carbon sequestration systems. We review relevant studies that have examined the effects of climate change on such systems from multiple levels, perspectives, and species. There is an urgent need for more realistic and comprehensive studies given expectations about the future climate. Such studies should provide a better understanding of the mechanisms by which the carbon cycle function of marine biological carbon pumps may be affected in realistic future environmental conditions and the patterns of interaction between climate change and ocean carbon sinks.
Collapse
Affiliation(s)
- Ruolan Jia
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Chengzhuang Chen
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
9
|
Wolfe K, Desbiens AA, Mumby PJ. Emigration patterns of motile cryptofauna and their implications for trophic functioning in coral reefs. Ecol Evol 2023; 13:e9960. [PMID: 37006892 PMCID: PMC10049886 DOI: 10.1002/ece3.9960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Patterns of movement of marine species can reflect strategies of reproduction and dispersal, species' interactions, trophodynamics, and susceptibility to change, and thus critically inform how we manage populations and ecosystems. On coral reefs, the density and diversity of metazoan taxa are greatest in dead coral and rubble, which are suggested to fuel food webs from the bottom up. Yet, biomass and secondary productivity in rubble is predominantly available in some of the smallest individuals, limiting how accessible this energy is to higher trophic levels. We address the bioavailability of motile coral reef cryptofauna based on small-scale patterns of emigration in rubble. We deployed modified RUbble Biodiversity Samplers (RUBS) and emergence traps in a shallow rubble patch at Heron Island, Great Barrier Reef, to detect community-level differences in the directional influx of motile cryptofauna under five habitat accessibility regimes. The mean density (0.13-4.5 ind cm-3) and biomass (0.14-5.2 mg cm-3) of cryptofauna were high and varied depending on microhabitat accessibility. Emergent zooplankton represented a distinct community (dominated by the Appendicularia and Calanoida) with the lowest density and biomass, indicating constraints on nocturnal resource availability. Mean cryptofauna density and biomass were greatest when interstitial access within rubble was blocked, driven by the rapid proliferation of small harpacticoid copepods from the rubble surface, leading to trophic simplification. Individuals with high biomass (e.g., decapods, gobies, and echinoderms) were greatest when interstitial access within rubble was unrestricted. Treatments with a closed rubble surface did not differ from those completely open, suggesting that top-down predation does not diminish rubble-derived resources. Our results show that conspecific cues and species' interactions (e.g., competition and predation) within rubble are most critical in shaping ecological outcomes within the cryptobiome. These findings have implications for prey accessibility through trophic and community size structuring in rubble, which may become increasingly relevant as benthic reef complexity shifts in the Anthropocene.
Collapse
Affiliation(s)
- Kennedy Wolfe
- Marine Spatial Ecology Lab, School of Biological Sciences and ARC Centre of Excellence for Coral Reef StudiesUniversity of QueenslandBrisbaneQueensland4072Australia
| | - Amelia A. Desbiens
- Marine Spatial Ecology Lab, School of Biological Sciences and ARC Centre of Excellence for Coral Reef StudiesUniversity of QueenslandBrisbaneQueensland4072Australia
| | - Peter J. Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences and ARC Centre of Excellence for Coral Reef StudiesUniversity of QueenslandBrisbaneQueensland4072Australia
| |
Collapse
|
10
|
Nagelkerken I, Connell SD. Ocean acidification drives global reshuffling of ecological communities. GLOBAL CHANGE BIOLOGY 2022; 28:7038-7048. [PMID: 36172974 PMCID: PMC9828364 DOI: 10.1111/gcb.16410] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
The paradigm that climate change will alter global marine biodiversity is one of the most widely accepted. Yet, its predictions remain difficult to test because laboratory systems are inadequate at incorporating ecological complexity, and common biodiversity metrics have varying sensitivity to detect change. Here, we test for the prevalence of global responses in biodiversity and community-level change to future climate (acidification and warming) from studies at volcanic CO2 vents across four major global coastal ecosystems and studies in laboratory mesocosms. We detected globally replicable patterns of species replacements and community reshuffling under ocean acidification in major natural ecosystems, yet species diversity and other common biodiversity metrics were often insensitive to detect such community change, even under significant habitat loss. Where there was a lack of consistent patterns of biodiversity change, these were a function of similar numbers of studies observing negative versus positive species responses to climate stress. Laboratory studies showed weaker sensitivity to detect species replacements and community reshuffling in general. We conclude that common biodiversity metrics can be insensitive in revealing the anticipated effects of climate stress on biodiversity-even under significant biogenic habitat loss-and can mask widespread reshuffling of ecological communities in a future ocean. Although the influence of ocean acidification on community restructuring can be less evident than species loss, such changes can drive the dynamics of ecosystem stability or their functional change. Importantly, species identity matters, representing a substantial influence of future oceans.
Collapse
Affiliation(s)
- Ivan Nagelkerken
- Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Sean D. Connell
- Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
11
|
Stella JS, Wolfe K, Roff G, Rogers A, Priest M, Golbuu Y, Mumby PJ. Functional and phylogenetic responses of motile cryptofauna to habitat degradation. J Anim Ecol 2022; 91:2203-2219. [PMID: 36054747 PMCID: PMC9826372 DOI: 10.1111/1365-2656.13809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/30/2022] [Indexed: 01/11/2023]
Abstract
Biodiversity of terrestrial and marine ecosystems, including coral reefs, is dominated by small, often cryptic, invertebrate taxa that play important roles in ecosystem structure and functioning. While cryptofauna community structure is determined by strong small-scale microhabitat associations, the extent to which ecological and environmental factors shape these communities are largely unknown, as is the relative importance of particular microhabitats in supporting reef trophodynamics from the bottom up. The goal of this study was to address these knowledge gaps, provided coral reefs are increasingly exposed to multiple disturbances and environmental gradients that influence habitat complexity, condition and ecosystem functioning. We compared the density, biomass, size range, phylogenetic diversity and functional roles of motile cryptofauna in Palau, Western Micronesia, among four coral-derived microhabitats representing various states of degradation (live coral [Acropora and Pocillopora], dead coral and coral rubble) from reefs along a gradient of effluent exposure. In total, 122 families across ten phyla were identified, dominated by the Arthropoda (Crustacea) and Mollusca. Cryptofauna biomass was greatest in live Pocillopora, while coral rubble contained the greatest density and diversity. Size ranges were broader in live corals than both dead coral and rubble. From a bottom-up perspective, effluent exposure had mixed effects on cryptic communities including a decline in total biomass in rubble. From a top-down perspective, cryptofauna were generally unaffected by predator biomass. Our data show that, as coral reef ecosystems continue to decline in response to more frequent and severe disturbances, habitats other than live coral may become increasingly important in supporting coral reef biodiversity and food webs.
Collapse
Affiliation(s)
- Jessica S. Stella
- The Great Barrier Reef Marine Park AuthorityTownsvilleQueenslandAustralia
| | - Kennedy Wolfe
- Marine Spatial Ecology Lab, School of Biological Sciences and ARC Centre of Excellence for Coral Reef StudiesUniversity of QueenslandSt LuciaQueenslandAustralia
| | - George Roff
- Marine Spatial Ecology Lab, School of Biological Sciences and ARC Centre of Excellence for Coral Reef StudiesUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Alice Rogers
- Victoria University of Wellington, School of Biological SciencesWellingtonNew Zealand
| | - Mark Priest
- Marine Spatial Ecology Lab, School of Biological Sciences and ARC Centre of Excellence for Coral Reef StudiesUniversity of QueenslandSt LuciaQueenslandAustralia
| | | | - Peter J. Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences and ARC Centre of Excellence for Coral Reef StudiesUniversity of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
12
|
Villalobos R, Aylagas E, Pearman JK, Curdia J, Lozano-Cortés D, Coker DJ, Jones B, Berumen ML, Carvalho S. Inter-annual variability patterns of reef cryptobiota in the central Red Sea across a shelf gradient. Sci Rep 2022; 12:16944. [PMID: 36210380 PMCID: PMC9548503 DOI: 10.1038/s41598-022-21304-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 09/26/2022] [Indexed: 12/29/2022] Open
Abstract
The combination of molecular tools, standard surveying techniques, and long-term monitoring programs are relevant to understanding environmental and ecological changes in coral reef communities. Here we studied temporal variability in cryptobenthic coral reef communities across the continental shelf in the central Red Sea spanning 6 years (three sampling periods: 2013-2019) and including the 2015 mass bleaching event. We used a combination of molecular tools (barcoding and metabarcoding) to assess communities on Autonomous Reef Monitoring Structures (ARMS) as a standardized sampling approach. Community composition associated with ARMS for both methodologies (barcoding and metabarcoding) was statistically different across reefs (shelf position) and time periods. The partition of beta diversity showed a higher turnover and lower nestedness between pre-bleaching and post-bleaching samples than between the two post-bleaching periods, revealing a community shift from the bleaching event. However, a slight return to the pre-bleaching community composition was observed in 2019 suggesting a recovery trajectory. Given the predictions of decreasing time between bleaching events, it is concerning that cryptobenthic communities may not fully recover and communities with new characteristics will emerge. We observed a high turnover among reefs for all time periods, implying a homogenization of the cryptobiome did not occur across the cross shelf following the 2015 bleaching event. It is possible that dispersal limitations and the distinct environmental and benthic structures present across the shelf maintained the heterogeneity in communities among reefs. This study has to the best of our knowledge presented for the first time a temporal aspect into the analysis of ARMS cryptobenthic coral reef communities and encompasses a bleaching event. We show that these structures can detect cryptic changes associated with reef degradation and provides support for these being used as long-term monitoring tools.
Collapse
Affiliation(s)
- R Villalobos
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia
| | - E Aylagas
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia
- The Red Sea Development Company, 5th Floor, MU04 Tower, ITCC Complex, AlRaidah Digital City, Al Nakhil District 3807, Riyadh, 12382-6726, Saudi Arabia
| | - J K Pearman
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - J Curdia
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia
| | - D Lozano-Cortés
- Environmental Protection, Saudi Aramco, Dhahran, Saudi Arabia
| | - D J Coker
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia
| | - B Jones
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia
| | - M L Berumen
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia
| | - S Carvalho
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
13
|
Vicente J, Timmers MA, Webb MK, Bahr KD, Jury CP, Toonen RJ. Ecological succession of the sponge cryptofauna in Hawaiian reefs add new insights to detritus production by pioneering species. Sci Rep 2022; 12:15093. [PMID: 36064734 PMCID: PMC9445044 DOI: 10.1038/s41598-022-18856-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/22/2022] [Indexed: 11/14/2022] Open
Abstract
Successional theory proposes that fast growing and well dispersed opportunistic species are the first to occupy available space. However, these pioneering species have relatively short life cycles and are eventually outcompeted by species that tend to be longer-lived and have lower dispersal capabilities. Using Autonomous Reef Monitoring Structures (ARMS) as standardized habitats, we examine the assembly and stages of ecological succession among sponge species with distinctive life history traits and physiologies found on cryptic coral reef habitats of Kāneʻohe Bay, Hawaiʻi. Sponge recruitment was monitored bimonthly over 2 years on ARMS deployed within a natural coral reef habitat resembling the surrounding climax community and on ARMS placed in unestablished mesocosms receiving unfiltered seawater directly from the natural reef deployment site. Fast growing haplosclerid and calcareous sponges initially recruited to and dominated the mesocosm ARMS. In contrast, only slow growing long-lived species initially recruited to the reef ARMS, suggesting that despite available space, the stage of ecological succession in the surrounding habitat influences sponge community development in uninhabited space. Sponge composition and diversity between early summer and winter months within mesocosm ARMS shifted significantly as the initially recruited short-lived calcareous and haplosclerid species initially recruit and then died off. The particulate organic carbon contribution of dead sponge tissue from this high degree of competition-free community turnover suggests a possible new component to the sponge loop hypothesis which remains to be tested among these pioneering species. This source of detritus could be significant in early community development of young coastal habitats but less so on established coral reefs where the community is dominated by long-lived colonial sponges.
Collapse
Affiliation(s)
- Jan Vicente
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA.
| | - Molly A Timmers
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA.,Pristine Seas, National Geographic Society, Washington, DC, 20036, USA
| | - Maryann K Webb
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Keisha D Bahr
- Texas A&M University-Corpus Christi, Corpus Christi, TX, 78412, USA
| | - Christopher P Jury
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| |
Collapse
|
14
|
Global change differentially modulates Caribbean coral physiology. PLoS One 2022; 17:e0273897. [PMID: 36054126 PMCID: PMC9439252 DOI: 10.1371/journal.pone.0273897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Global change driven by anthropogenic carbon emissions is altering ecosystems at unprecedented rates, especially coral reefs, whose symbiosis with algal symbionts is particularly vulnerable to increasing ocean temperatures and altered carbonate chemistry. Here, we assess the physiological responses of three Caribbean coral (animal host + algal symbiont) species from an inshore and offshore reef environment after exposure to simulated ocean warming (28, 31°C), acidification (300–3290 μatm), and the combination of stressors for 93 days. We used multidimensional analyses to assess how a variety of coral physiological parameters respond to ocean acidification and warming. Our results demonstrate reductions in coral health in Siderastrea siderea and Porites astreoides in response to projected ocean acidification, while future warming elicited severe declines in Pseudodiploria strigosa. Offshore S. siderea fragments exhibited higher physiological plasticity than inshore counterparts, suggesting that this offshore population was more susceptible to changing conditions. There were no plasticity differences in P. strigosa and P. astreoides between natal reef environments, however, temperature evoked stronger responses in both species. Interestingly, while each species exhibited unique physiological responses to ocean acidification and warming, when data from all three species are modelled together, convergent stress responses to these conditions are observed, highlighting the overall sensitivities of tropical corals to these stressors. Our results demonstrate that while ocean warming is a severe acute stressor that will have dire consequences for coral reefs globally, chronic exposure to acidification may also impact coral physiology to a greater extent in some species than previously assumed. Further, our study identifies S. siderea and P. astreoides as potential ‘winners’ on future Caribbean coral reefs due to their resilience under projected global change stressors, while P. strigosa will likely be a ‘loser’ due to their sensitivity to thermal stress events. Together, these species-specific responses to global change we observe will likely manifest in altered Caribbean reef assemblages in the future.
Collapse
|
15
|
Burgess BJ, Jackson MC, Murrell DJ. Are experiment sample sizes adequate to detect biologically important interactions between multiple stressors? Ecol Evol 2022. [PMID: 36177120 DOI: 10.1101/2021.07.21.453207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
As most ecosystems are being challenged by multiple, co-occurring stressors, an important challenge is to understand and predict how stressors interact to affect biological responses. A popular approach is to design factorial experiments that measure biological responses to pairs of stressors and compare the observed response to a null model expectation. Unfortunately, we believe experiment sample sizes are inadequate to detect most non-null stressor interaction responses, greatly hindering progress. Using both real and simulated data, we show sample sizes typical of many experiments (<6) can (i) only detect very large deviations from the additive null model, implying many important non-null stressor-pair interactions are being missed, and (ii) potentially lead to mostly statistical outliers being reported. Computer code that simulates data under either additive or multiplicative null models is provided to estimate statistical power for user-defined responses and sample sizes, and we recommend this is used to aid experimental design and interpretation of results. We suspect that most experiments may require 20 or more replicates per treatment to have adequate power to detect nonadditive. However, estimates of power need to be made while considering the smallest interaction of interest, i.e., the lower limit for a biologically important interaction, which is likely to be system-specific, meaning a general guide is unavailable. We discuss ways in which the smallest interaction of interest can be chosen, and how sample sizes can be increased. Our main analyses relate to the additive null model, but we show similar problems occur for the multiplicative null model, and we encourage similar investigations into the statistical power of other null models and inference methods. Without knowledge of the detection abilities of the statistical tools at hand or the definition of the smallest meaningful interaction, we will undoubtedly continue to miss important ecosystem stressor interactions.
Collapse
Affiliation(s)
- Benjamin J Burgess
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment University College London London UK
- RTI Health Solutions Didsbury, Manchester UK
| | | | - David J Murrell
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment University College London London UK
| |
Collapse
|
16
|
Burgess BJ, Jackson MC, Murrell DJ. Are experiment sample sizes adequate to detect biologically important interactions between multiple stressors? Ecol Evol 2022; 12:e9289. [PMID: 36177120 PMCID: PMC9475135 DOI: 10.1002/ece3.9289] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/05/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
As most ecosystems are being challenged by multiple, co-occurring stressors, an important challenge is to understand and predict how stressors interact to affect biological responses. A popular approach is to design factorial experiments that measure biological responses to pairs of stressors and compare the observed response to a null model expectation. Unfortunately, we believe experiment sample sizes are inadequate to detect most non-null stressor interaction responses, greatly hindering progress. Using both real and simulated data, we show sample sizes typical of many experiments (<6) can (i) only detect very large deviations from the additive null model, implying many important non-null stressor-pair interactions are being missed, and (ii) potentially lead to mostly statistical outliers being reported. Computer code that simulates data under either additive or multiplicative null models is provided to estimate statistical power for user-defined responses and sample sizes, and we recommend this is used to aid experimental design and interpretation of results. We suspect that most experiments may require 20 or more replicates per treatment to have adequate power to detect nonadditive. However, estimates of power need to be made while considering the smallest interaction of interest, i.e., the lower limit for a biologically important interaction, which is likely to be system-specific, meaning a general guide is unavailable. We discuss ways in which the smallest interaction of interest can be chosen, and how sample sizes can be increased. Our main analyses relate to the additive null model, but we show similar problems occur for the multiplicative null model, and we encourage similar investigations into the statistical power of other null models and inference methods. Without knowledge of the detection abilities of the statistical tools at hand or the definition of the smallest meaningful interaction, we will undoubtedly continue to miss important ecosystem stressor interactions.
Collapse
Affiliation(s)
- Benjamin J. Burgess
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
- RTI Health SolutionsDidsbury, ManchesterUK
| | | | - David J. Murrell
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| |
Collapse
|
17
|
Hoban ML, Whitney J, Collins AG, Meyer C, Murphy KR, Reft AJ, Bemis KE. Skimming for barcodes: rapid production of mitochondrial genome and nuclear ribosomal repeat reference markers through shallow shotgun sequencing. PeerJ 2022; 10:e13790. [PMID: 35959477 PMCID: PMC9359134 DOI: 10.7717/peerj.13790] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/05/2022] [Indexed: 01/17/2023] Open
Abstract
DNA barcoding is critical to conservation and biodiversity research, yet public reference databases are incomplete. Existing barcode databases are biased toward cytochrome oxidase subunit I (COI) and frequently lack associated voucher specimens or geospatial metadata, which can hinder reliable species assignments. The emergence of metabarcoding approaches such as environmental DNA (eDNA) has necessitated multiple marker techniques combined with barcode reference databases backed by voucher specimens. Reference barcodes have traditionally been generated by Sanger sequencing, however sequencing multiple markers is costly for large numbers of specimens, requires multiple separate PCR reactions, and limits resulting sequences to targeted regions. High-throughput sequencing techniques such as genome skimming enable assembly of complete mitogenomes, which contain the most commonly used barcoding loci (e.g., COI, 12S, 16S), as well as nuclear ribosomal repeat regions (e.g., ITS1&2, 18S). We evaluated the feasibility of genome skimming to generate barcode references databases for marine fishes by assembling complete mitogenomes and nuclear ribosomal repeats. We tested genome skimming across a taxonomically diverse selection of 12 marine fish species from the collections of the National Museum of Natural History, Smithsonian Institution. We generated two sequencing libraries per species to test the impact of shearing method (enzymatic or mechanical), extraction method (kit-based or automated), and input DNA concentration. We produced complete mitogenomes for all non-chondrichthyans (11/12 species) and assembled nuclear ribosomal repeats (18S-ITS1-5.8S-ITS2-28S) for all taxa. The quality and completeness of mitogenome assemblies was not impacted by shearing method, extraction method or input DNA concentration. Our results reaffirm that genome skimming is an efficient and (at scale) cost-effective method to generate all mitochondrial and common nuclear DNA barcoding loci for multiple species simultaneously, which has great potential to scale for future projects and facilitate completing barcode reference databases for marine fishes.
Collapse
Affiliation(s)
- Mykle L. Hoban
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, Hawai‘i, United States of America
| | - Jonathan Whitney
- Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration, Honolulu, Hawai‘i, United States of America
| | - Allen G. Collins
- NOAA National Systematics Laboratory, Natural Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America
| | - Christopher Meyer
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America
| | - Katherine R. Murphy
- Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America
| | - Abigail J. Reft
- NOAA National Systematics Laboratory, Natural Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America
| | - Katherine E. Bemis
- NOAA National Systematics Laboratory, Natural Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America
| |
Collapse
|
18
|
Lee J, Gambi MC, Kroeker KJ, Munari M, Peay K, Micheli F. Resilient consumers accelerate the plant decomposition in a naturally acidified seagrass ecosystem. GLOBAL CHANGE BIOLOGY 2022; 28:4558-4576. [PMID: 35583009 DOI: 10.1111/gcb.16265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic stressors are predicted to alter biodiversity and ecosystem functioning worldwide. However, scaling up from species to ecosystem responses poses a challenge, as species and functional groups can exhibit different capacities to adapt, acclimate, and compensate under changing environments. We used a naturally acidified seagrass ecosystem (the endemic Mediterranean Posidonia oceanica) as a model system to examine how ocean acidification (OA) modifies the community structure and functioning of plant detritivores, which play vital roles in the coastal nutrient cycling and food web dynamics. In seagrass beds associated with volcanic CO2 vents (Ischia, Italy), we quantified the effects of OA on seagrass decomposition by deploying litterbags in three distinct pH zones (i.e., ambient, low, extreme low pH), which differed in the mean and variability of seawater pH. We replicated the study in two discrete vents for 117 days (litterbags sampled on day 5, 10, 28, 55, and 117). Acidification reduced seagrass detritivore richness and diversity through the loss of less abundant, pH-sensitive species but increased the abundance of the dominant detritivore (amphipod Gammarella fucicola). Such compensatory shifts in species abundance caused more than a threefold increase in the total detritivore abundance in lower pH zones. These community changes were associated with increased consumption (52%-112%) and decay of seagrass detritus (up to 67% faster decomposition rate for the slow-decaying, refractory detrital pool) under acidification. Seagrass detritus deployed in acidified zones showed increased N content and decreased C:N ratio, indicating that altered microbial activities under OA may have affected the decay process. The findings suggest that OA could restructure consumer assemblages and modify plant decomposition in blue carbon ecosystems, which may have important implications for carbon sequestration, nutrient recycling, and trophic transfer. Our study highlights the importance of within-community response variability and compensatory processes in modulating ecosystem functions under extreme global change scenarios.
Collapse
Affiliation(s)
- Juhyung Lee
- Hopkins Marine Station of Stanford University, Pacific Grove, California, USA
- Department of Biology, Stanford University, Stanford, California, USA
| | | | - Kristy J Kroeker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, USA
| | - Marco Munari
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia, Naples, Italy
| | - Kabir Peay
- Department of Biology, Stanford University, Stanford, California, USA
| | - Fiorenza Micheli
- Hopkins Marine Station of Stanford University, Pacific Grove, California, USA
- Department of Biology, Stanford University, Stanford, California, USA
- Stanford Center for Ocean Solutions, Pacific Grove, California, USA
| |
Collapse
|
19
|
Henley EM, Bouwmeester J, Jury CP, Toonen RJ, Quinn M, Lager CV, Hagedorn M. Growth and survival among Hawaiian corals outplanted from tanks to an ocean nursery are driven by individual genotype and species differences rather than preconditioning to thermal stress. PeerJ 2022; 10:e13112. [PMID: 35345587 PMCID: PMC8957268 DOI: 10.7717/peerj.13112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/22/2022] [Indexed: 01/12/2023] Open
Abstract
The drastic decline in coral coverage has stimulated an interest in reef restoration, and various iterations of coral nurseries have been used to augment restoration strategies. Here we examine the growth of two species of Hawaiian Montipora that were maintained in mesocosms under either ambient or warmed annual bleaching conditions for two consecutive years prior to outplanting to determine whether preconditioning aided coral restoration efforts. Using coral trees to create a nearby ocean nursery, we examined whether: (1) previous ex situ mesocosm growth would mirror in situ coral tree nursery growth; and (2) thermal ex situ stress-hardening would predict future success during natural warming events in situ for corals moved from tanks to trees. For Montipora capitata, we found that variation in growth was explained primarily by genotype; growth rates in the mesocosms were similar to those in situ, irrespective of preconditioning. Variation in M. flabellata growth, however, was explained by both genotype and culture method such that an individual M. flabellata colony that grew well in the tanks did not necessarily perform as well on the coral trees. For both species, previous exposure to elevated temperatures in the mesocosms provided no benefit to either growth or survival during a warming event in the coral tree nursery compared to those grown in ambient temperatures. Overall, M. capitata performed better in the tree nursery with higher net growth, lower mortality, and was subject to less predation than M. flabellata. Our results show little benefit of the additional cost and time of stress-hardening these corals prior to outplanting because it is unlikely to aid resilience to future warming events. These results also suggest that selecting corals for restoration based on long-term genotype growth performance may be more effective for optimal outcomes but should be weighed against other factors, such as coral morphology, in situ nursery method, location, and other characteristics.
Collapse
Affiliation(s)
- E. Michael Henley
- Smithsonian Conservation Biology Institute, Smithsonian Institution, Front Royal, Virginia, United States,Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, Hawai‘i, United States
| | - Jessica Bouwmeester
- Smithsonian Conservation Biology Institute, Smithsonian Institution, Front Royal, Virginia, United States,Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, Hawai‘i, United States
| | - Christopher P. Jury
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, Hawai‘i, United States
| | - Robert J. Toonen
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, Hawai‘i, United States
| | - Mariko Quinn
- Smithsonian Conservation Biology Institute, Smithsonian Institution, Front Royal, Virginia, United States,Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, Hawai‘i, United States
| | - Claire V.A. Lager
- Smithsonian Conservation Biology Institute, Smithsonian Institution, Front Royal, Virginia, United States,Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, Hawai‘i, United States
| | - Mary Hagedorn
- Smithsonian Conservation Biology Institute, Smithsonian Institution, Front Royal, Virginia, United States,Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, Hawai‘i, United States
| |
Collapse
|
20
|
Impacts of ocean warming and acidification on calcifying coral reef taxa: mechanisms responsible and adaptive capacity. Emerg Top Life Sci 2022; 6:1-9. [PMID: 35157039 DOI: 10.1042/etls20210226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022]
Abstract
Ocean warming (OW) and acidification (OA) are two of the greatest global threats to the persistence of coral reefs. Calcifying reef taxa such as corals and coralline algae provide the essential substrate and habitat in tropical reefs but are at particular risk due to their susceptibility to both OW and OA. OW poses the greater threat to future reef growth and function, via its capacity to destabilise the productivity of both taxa, and to cause mass bleaching events and mortality of corals. Marine heatwaves are projected to increase in frequency, intensity, and duration over the coming decades, raising the question of whether coral reefs will be able to persist as functioning ecosystems and in what form. OA should not be overlooked, as its negative impacts on the calcification of reef-building corals and coralline algae will have consequences for global reef accretion. Given that OA can have negative impacts on the reproduction and early life stages of both coralline algae and corals, the interdependence of these taxa may result in negative feedbacks for reef replenishment. However, there is little evidence that OA causes coral bleaching or exacerbates the effects of OW on coral bleaching. Instead, there is some evidence that OA alters the photo-physiology of both taxa. Tropical coralline algal possess shorter generation times than corals, which could enable more rapid evolutionary responses. Future reefs will be dominated by taxa with shorter generation times and high plasticity, or those individuals inherently resistant and resilient to both marine heatwaves and OA.
Collapse
|