1
|
Bandaru M, Sultana OF, Islam MA, Rainier A, Reddy PH. Rlip76 in ageing and Alzheimer's disease: Focus on oxidative stress and mitochondrial mechanisms. Ageing Res Rev 2025; 103:102600. [PMID: 39617058 DOI: 10.1016/j.arr.2024.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
RLIP76 (Rlip), a stress-responsive protein, plays a multifaceted role in cellular function. This protein acts primarily as a glutathione-electrophile conjugate (GS-E) transporter, crucial for detoxifying hazardous compounds and converting them into mercapturic acids. RLIP76 also modulates cytoskeletal motility and membrane plasticity through its role in the Ral-signaling pathway, interacting with RalA and RalB, key small GTPases involved in growth and metastasis. Beyond its ATP-dependent transport functions in various tissues, RLIP76 also demonstrates GTPase Activating Protein (GAP) activity towards Rac1 and Cdc42, with a preference for Ral-GTP over Ral-GDP. Its functions span critical physiological processes including membrane dynamics, oxidative stress response, and mitochondrial dynamics. The protein's widespread expression and evolutionary conservation underscore its significance. Our lab discovered that Rlip interacts with Alzheimer's disease (AD) proteins, amyloid beta and phosphorylated and induce oxidative stress, mitochondrial dysfnction and synaptic damage in AD. Our in vitro studies revealed that overexpression of Rlip reduces mitochondrial abnormalities. Further, our in vivo studies (Rlip+/- mice) revealed that a partial reduction of Rlip in mice (Rlip+/-), leads to mitochondrial abnormalities, elevated oxidative stress, and cognitive deficits resembling late-onset AD, emphasizing the protein's crucial role in neuronal health and disease. Finally, we discuss the experimental cross-breedings of overexpression of mice Rlip TG/TG or Rlip + /- mice with Alzheimer's disease models - earlyonset 5XFAD, late-onset APPKI and Tau transgenic mice, providing new insights into RLIP76's role in AD progression and development. This review summarizes RLIP76's structure, function, and cellular pathways, highlighting its implications in AD and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Madhuri Bandaru
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Alvir Rainier
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
2
|
Scollo F, Tempra C, Evci H, Riopedre-Fernandez M, Olżyńska A, Javanainen M, Uday A, Cebecauer M, Cwiklik L, Martinez-Seara H, Jungwirth P, Jurkiewicz P, Hof M. Can calmodulin bind to lipids of the cytosolic leaflet of plasma membranes? Open Biol 2024; 14:240067. [PMID: 39288811 PMCID: PMC11500697 DOI: 10.1098/rsob.240067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
Calmodulin (CaM) is a ubiquitous calcium-sensitive messenger in eukaryotic cells. It was previously shown that CaM possesses an affinity for diverse lipid moieties, including those found on CaM-binding proteins. These facts, together with our observation that CaM accumulates in membrane-rich protrusions of HeLa cells upon increased cytosolic calcium, motivated us to perform a systematic search for unmediated CaM interactions with model lipid membranes mimicking the cytosolic leaflet of plasma membranes. A range of experimental techniques and molecular dynamics simulations prove unambiguously that CaM interacts with lipid bilayers in the presence of calcium ions. The lipids phosphatidylserine (PS) and phosphatidylethanolamine (PE) hold the key to CaM-membrane interactions. Calcium induces an essential conformational rearrangement of CaM, but calcium binding to the headgroup of PS also neutralizes the membrane negative surface charge. More intriguingly, PE plays a dual role-it not only forms hydrogen bonds with CaM, but also destabilizes the lipid bilayer increasing the exposure of hydrophobic acyl chains to the interacting proteins. Our findings suggest that upon increased intracellular calcium concentration, CaM and the cytosolic leaflet of cellular membranes can be functionally connected.
Collapse
Affiliation(s)
- Federica Scollo
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Carmelo Tempra
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Hüseyin Evci
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, 370 05 České Budějovice, Czech Republic
| | - Miguel Riopedre-Fernandez
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Agnieszka Olżyńska
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Matti Javanainen
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Arunima Uday
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Marek Cebecauer
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| |
Collapse
|
3
|
Chen Y, Xiao D, Li X. The role of mitochondrial transfer via tunneling nanotubes in the central nervous system: A review. Medicine (Baltimore) 2024; 103:e37352. [PMID: 38428884 PMCID: PMC10906627 DOI: 10.1097/md.0000000000037352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/02/2024] [Indexed: 03/03/2024] Open
Abstract
Tumour necrosis factor alpha-induced protein 2 (TNFAIP2) is a gene induced by tumor necrosis factor in endothelial cells. TNFAIP2 has important functions in physiological and pathological processes, including cell proliferation, adhesion, migration, angiogenesis, inflammation, tunneling nanotube (TNT) formation and tumorigenesis. Moreover, TNFAIP2 is the key factor in the formation of TNTs. TNTs are related to signal transduction between different cell types and are considered a novel means of cell-to-cell communication. Mesenchymal stem cells (MSCs) are pluripotent cells that exhibit self-renewal, multidirectional differentiation, paracrine function and immune-regulating ability. MSCs can transfer mitochondria through TNTs to improve the functions of target cells. This review revealed that TNFAIP2 promotes the formation of TNTs and that MSCs rely on TNTs for mitochondrial transfer to ameliorate cell dysfunction.
Collapse
Affiliation(s)
- Ye Chen
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Dongqiong Xiao
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xihong Li
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
4
|
Bian Z, Cao C, Ding J, Ding L, Yu S, Zhang C, Liu Q, Zhu L, Li J, Zhang Y, Liu Y. Neuroprotective effects of PRG on Aβ 25-35-induced cytotoxicity through activation of the ERK1/2 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116550. [PMID: 37120057 DOI: 10.1016/j.jep.2023.116550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phylloporia ribis (Schumach:Fr.)Ryvarden is a genus of needle Phellinus medicinal fungi, parasitic on the living rhizomes of hawthorn and pear trees. As a traditional Chinese medicine, Phylloporia ribis was used in folklore for long-term illness, weakness and memory loss in old age. Previous studies have shown that polysaccharides from Phylloporia ribis (PRG) significantly promoted synaptic growth in PC12 cells in a dose-dependent manner, exhibiting "NGF"-like neurotrophic activity. Aβ25-35 damage to PC12 cells produced neurotoxicity and decreased cell survival, and PRG reduced the apoptosis rate, suggesting that PRG has neuroprotective effects. The studies confirmed that PRG had the potential to be a neuroprotective agent, but its neuroprotective mechanism remained unclear. AIM OF THE STUDY We aimed to elucidate the neuroprotective effects of PRG in an Aβ25-35-induced Alzheimer's disease (AD) model. MATERIALS AND METHODS Highly-differentiated PC12 cells were treated with Aβ25-35 (AD model) and PRG, and were assessed for cellular apoptosis, inflammatory factors, oxidative stress, and kinase phosphorylation. RESULTS The results showed that the PRG groups effectively inhibited the neurotoxicity, mainly manifested by inhibiting mitochondrial oxidative stress, attenuating neuroinflammatory responses, and improving mitochondrial energy metabolism, eventually resulting in higher cell survival. The expression of p-ERK, p-CREB and BDNF proteins was increased in the PRG groups compared to the model group, which confirmed that PRG reversed the inhibition of the ERK pathway. CONCLUSION We provide evidence for neuroprotection conferred by PRG and its mechanism by inhibiting ERK1/2 hyper-phosphorylation, prevention of mitochondrial stress, and subsequent prevention of apoptosis. The study highlights PRG as a promising candidate with neuroprotective effects, the potential of which can be harnessed for identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Zhiying Bian
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chenzhen Cao
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Health Surveillance Section, Junan County Center for Disease Control and Prevention, Linyi, 276600, China
| | - Jie Ding
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Liang Ding
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Shuai Yu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chuanxiang Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Qian Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lihao Zhu
- Sishui Siheyuan Culture and Tourism Development Company, Ltd, Sishui, 273200, China
| | - Jing Li
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Yongqing Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Yuhong Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
5
|
Chamberlain SG, Owen D, Mott HR. Membrane extraction by calmodulin underpins the disparate signalling of RalA and RalB. Bioessays 2022; 44:e2200011. [PMID: 35318680 DOI: 10.1002/bies.202200011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/11/2022]
Abstract
Both RalA and RalB interact with the ubiquitous calcium sensor, calmodulin (CaM). New structural and biophysical characterisation of these interactions strongly suggests that, in the native membrane-associated state, only RalA can be extracted from the membrane by CaM and this non-canonical interaction could underpin the divergent signalling roles of these closely related GTPases. The isoform specificity for RalA exhibited by CaM is hypothesised to contribute to the disparate signalling roles of RalA and RalB in mitochondrial dynamics. This would lead to CaM shuttling RalA to the mitochondrial membrane but leaving RalB localisation unperturbed, and in doing so triggering mitochondrial fission pathways rather than mitophagy.
Collapse
Affiliation(s)
| | - Darerca Owen
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Helen R Mott
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|