1
|
Tian Y, Feng T, Zhang J, Meng Q, Zhan W, Tang M, Liu C, Li M, Tao W, Shu Y, Zhang Y, Chen F, Takeda S, Zhu Q, Lu X, Zhu WG. Histone H1 deamidation facilitates chromatin relaxation for DNA repair. Nature 2025; 641:779-787. [PMID: 40240600 PMCID: PMC12074999 DOI: 10.1038/s41586-025-08835-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/24/2025] [Indexed: 04/18/2025]
Abstract
The formation of accessible chromatin around DNA double-strand breaks is essential for their efficient repair1. Although the linker histone H1 is known to facilitate higher-order chromatin compaction2,3, the mechanisms by which H1 modifications regulate chromatin relaxation in response to DNA damage are unclear. Here we show that CTP synthase 1 (CTPS1)-catalysed deamidation of H1 asparagine residues 76 and 77 triggers the sequential acetylation of lysine 75 following DNA damage, and this dual modification of H1 is associated with chromatin opening. Mechanistically, the histone acetyltransferase p300 showed a preference for deamidated H1 as a substrate, establishing H1 deamidation as a prerequisite for subsequent acetylation. Moreover, high expression of CTPS1 was associated with resistance to cancer radiotherapy, in both mouse xenograft models and clinical cohorts. These findings provide new insights into how linker histones regulate dynamic chromatin alterations in the DNA damage response.
Collapse
Affiliation(s)
- Yuan Tian
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Tingting Feng
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Jun Zhang
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Qingren Meng
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Wenxin Zhan
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Ming Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chaohua Liu
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mengyan Li
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Wenhui Tao
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Yuxin Shu
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, China
| | - Yu Zhang
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
- Department of Medical Genetics, Peking University Health Science Centre, Beijing, China
| | - Feng Chen
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Shunichi Takeda
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Qian Zhu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Xiaopeng Lu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Wei-Guo Zhu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China.
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, China.
| |
Collapse
|
2
|
Guo CJ, Zhang Z, Lu JL, Zhong J, Wu YF, Guo SY, Liu JL. Structural Basis of Bifunctional CTP/dCTP Synthase. J Mol Biol 2024; 436:168750. [PMID: 39173734 DOI: 10.1016/j.jmb.2024.168750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
The final step in the de novo synthesis of cytidine 5'-triphosphate (CTP) is catalyzed by CTP synthase (CTPS), which can form cytoophidia in all three domains of life. Recently, we have discovered that CTPS binds to ribonucleotides (NTPs) to form filaments, and have successfully resolved the structures of Drosophila melanogaster CTPS bound with NTPs. Previous biochemical studies have shown that CTPS can bind to deoxyribonucleotides (dNTPs) to produce 2'-deoxycytidine-5'-triphosphate (dCTP). However, the structural basis of CTPS binding to dNTPs is still unclear. In this study, we find that Drosophila CTPS can also form filaments with dNTPs. Using cryo-electron microscopy, we are able to resolve the structure of Drosophila melanogaster CTPS bound to dNTPs with a resolution of up to 2.7 Å. By combining these structural findings with biochemical analysis, we compare the binding and reaction characteristics of NTPs and dNTPs with CTPS. Our results indicate that the same enzyme can act bifunctionally as CTP/dCTP synthase in vitro, and provide a structural basis for these activities.
Collapse
Affiliation(s)
- Chen-Jun Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zherong Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Jia-Li Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiale Zhong
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yu-Fen Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shu-Ying Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom.
| |
Collapse
|
3
|
Valcárcel LV, San José-Enériz E, Ordoñez R, Apaolaza I, Olaverri-Mendizabal D, Barrena N, Valcárcel A, Garate L, San Miguel J, Pineda-Lucena A, Agirre X, Prósper F, Planes FJ. An automated network-based tool to search for metabolic vulnerabilities in cancer. Nat Commun 2024; 15:8685. [PMID: 39394196 PMCID: PMC11470099 DOI: 10.1038/s41467-024-52725-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/18/2024] [Indexed: 10/13/2024] Open
Abstract
The development of computational tools for the systematic prediction of metabolic vulnerabilities of cancer cells constitutes a central question in systems biology. Here, we present gmctool, a freely accessible online tool that allows us to accomplish this task in a simple, efficient and intuitive environment. gmctool exploits the concept of genetic Minimal Cut Sets (gMCSs), a theoretical approach to synthetic lethality based on genome-scale metabolic networks, including a unique database of synthetic lethals computed from Human1, the most recent metabolic reconstruction of human cells. gmctool introduces qualitative and quantitative improvements over our previously developed algorithms to predict, visualize and analyze metabolic vulnerabilities in cancer, demonstrating a superior performance than competing algorithms. A detailed illustration of gmctool is presented for multiple myeloma (MM), an incurable hematological malignancy. We provide in vitro experimental evidence for the essentiality of CTPS1 (CTPS synthase) and UAP1 (UDP-N-Acetylglucosamine Pyrophosphorylase 1) in specific MM patient subgroups.
Collapse
Affiliation(s)
- Luis V Valcárcel
- University of Navarra, Tecnun School of Engineering, Manuel de Lardizábal 13, 20018, San Sebastián, Spain
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, IDISNA, CCUN, Avenida Pío XII 55, 31008, Pamplona, Spain
| | - Edurne San José-Enériz
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, IDISNA, CCUN, Avenida Pío XII 55, 31008, Pamplona, Spain
- CIBERONC Centro de Investigación Biomédica en Red de Cáncer, 28029, Madrid, Spain
| | - Raquel Ordoñez
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, IDISNA, CCUN, Avenida Pío XII 55, 31008, Pamplona, Spain
- CIBERONC Centro de Investigación Biomédica en Red de Cáncer, 28029, Madrid, Spain
| | - Iñigo Apaolaza
- University of Navarra, Tecnun School of Engineering, Manuel de Lardizábal 13, 20018, San Sebastián, Spain
| | - Danel Olaverri-Mendizabal
- University of Navarra, Tecnun School of Engineering, Manuel de Lardizábal 13, 20018, San Sebastián, Spain
| | - Naroa Barrena
- University of Navarra, Tecnun School of Engineering, Manuel de Lardizábal 13, 20018, San Sebastián, Spain
| | - Ana Valcárcel
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, IDISNA, CCUN, Avenida Pío XII 55, 31008, Pamplona, Spain
| | - Leire Garate
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, IDISNA, CCUN, Avenida Pío XII 55, 31008, Pamplona, Spain
- CIBERONC Centro de Investigación Biomédica en Red de Cáncer, 28029, Madrid, Spain
| | - Jesús San Miguel
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, IDISNA, CCUN, Avenida Pío XII 55, 31008, Pamplona, Spain
- CIBERONC Centro de Investigación Biomédica en Red de Cáncer, 28029, Madrid, Spain
- Departmento de Hematología, Clínica Universidad de Navarra and CCUN, Universidad de Navarra, Avenida Pío XII 36, 31008, Pamplona, Spain
| | - Antonio Pineda-Lucena
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, IDISNA, CCUN, Avenida Pío XII 55, 31008, Pamplona, Spain
- CIBERONC Centro de Investigación Biomédica en Red de Cáncer, 28029, Madrid, Spain
| | - Xabier Agirre
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, IDISNA, CCUN, Avenida Pío XII 55, 31008, Pamplona, Spain
- CIBERONC Centro de Investigación Biomédica en Red de Cáncer, 28029, Madrid, Spain
| | - Felipe Prósper
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, IDISNA, CCUN, Avenida Pío XII 55, 31008, Pamplona, Spain.
- CIBERONC Centro de Investigación Biomédica en Red de Cáncer, 28029, Madrid, Spain.
- Departmento de Hematología, Clínica Universidad de Navarra and CCUN, Universidad de Navarra, Avenida Pío XII 36, 31008, Pamplona, Spain.
| | - Francisco J Planes
- University of Navarra, Tecnun School of Engineering, Manuel de Lardizábal 13, 20018, San Sebastián, Spain.
- Biomedical Engineering Center, University of Navarra, 31008, Pamplona, Navarra, Spain.
- University of Navarra, Instituto de Ciencia de los Datos e Inteligencia Artificial (DATAI), Campus Universitario, 31008, Pamplona, Spain.
| |
Collapse
|
4
|
Fu Y, Guo CJ, Liu ZJ, Liu JL. Architecture of CTPS filament networks revealed by cryo-electron tomography. Exp Cell Res 2024; 442:114262. [PMID: 39303837 DOI: 10.1016/j.yexcr.2024.114262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The cytoophidium is a novel type of membraneless organelle, first observed in the ovaries of Drosophila using fluorescence microscopy. In vitro, purified Drosophila melanogaster CTPS (dmCTPS) can form metabolic filaments under the presence of either substrates or products, and their structures that have been analyzed using cryo-electron microscopy (cryo-EM). These dmCTPS filaments are considered the fundamental units of cytoophidia. However, due to the resolution gap between light and electron microscopy, the precise assembly pattern of cytoophidia remains unclear. In this study, we find that dmCTPS filaments can spontaneously assemble in vitro, forming network structures that reach micron-scale dimensions. Using cryo-electron tomography (cryo-ET), we reconstruct the network structures formed by dmCTPS filaments under substrate or product binding conditions and elucidate their assembly process. The dmCTPS filaments initially form structural bundles, which then further assemble into larger networks. By identifying, tracking, and statistically analyzing the filaments, we observed distinct characteristics of the structural bundles formed under different conditions. This study provides the first systematic analysis of dmCTPS filament networks, offering new insights into the relationship between cytoophidia and metabolic filaments.
Collapse
Affiliation(s)
- You Fu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Chen-Jun Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhi-Jie Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
| |
Collapse
|
5
|
Deng R, Li YL, Liu JL. Differential Cytoophidium Assembly between Saccharomyces cerevisiae and Schizosaccharomyces pombe. Int J Mol Sci 2024; 25:10092. [PMID: 39337578 PMCID: PMC11432714 DOI: 10.3390/ijms251810092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The de novo synthesis of cytidine 5'-triphosphate (CTP) is catalyzed by the enzyme CTP synthase (CTPS), which is known to form cytoophidia across all three domains of life. In this study, we use the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe as model organisms to compare cytoophidium assembly under external environmental and intracellular CTPS alterations. We observe that under low and high temperature conditions, cytoophidia in fission yeast gradually disassemble, while cytoophidia in budding yeast remain unaffected. The effect of pH changes on cytoophidia maintenance in the two yeast species is different. When cultured in the yeast-saturated cultured medium, cytoophidia in fission yeast disassemble, while cytoophidia in budding yeast gradually form. Overexpression of CTPS results in the presence and maintenance of cytoophidia in both yeast species from the log phase to the stationary phase. In summary, our results demonstrate differential cytoophidium assembly between Saccharomyces cerevisiae and Schizosaccharomyces pombe, the two most studied yeast species.
Collapse
Affiliation(s)
- Ruolan Deng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Lan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
6
|
Zhang Y, Liu JL. The Impact of Developmental and Metabolic Cues on Cytoophidium Formation. Int J Mol Sci 2024; 25:10058. [PMID: 39337544 PMCID: PMC11432437 DOI: 10.3390/ijms251810058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The cytoophidium, composed mainly of CTP synthase (CTPS), is a newly discovered dynamic filamentous structure in various organisms such as archaea, bacteria, and humans. These filamentous structures represent a fascinating example of intracellular compartmentation and dynamic regulation of metabolic enzymes. Currently, cytoophidia have been proven to be tightly regulated and highly dynamic, responding rapidly to developmental and metabolic cues and playing a critical role in maintaining cellular homeostasis. In this review, we would like to discuss in detail the characteristics, mechanisms, functions, and potential applications of this conservative but promising organelle.
Collapse
Affiliation(s)
- Yuanbing Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Experimental Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
7
|
Shan Z, Rivero-Gamez A, Lyumkis D, Horton NC. Two-metal ion mechanism of DNA cleavage by activated, filamentous SgrAI. J Biol Chem 2024; 300:107576. [PMID: 39009341 PMCID: PMC11367474 DOI: 10.1016/j.jbc.2024.107576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
Enzymes that form filamentous assemblies with modulated enzymatic activities have gained increasing attention in recent years. SgrAI is a sequence specific type II restriction endonuclease that forms polymeric filaments with accelerated DNA cleavage activity and expanded DNA sequence specificity. Prior studies have suggested a mechanistic model linking the structural changes accompanying SgrAI filamentation to its accelerated DNA cleavage activity. In this model, the conformational changes that are specific to filamentous SgrAI maximize contacts between different copies of the enzyme within the filament and create a second divalent cation binding site in each subunit, which in turn facilitates the DNA cleavage reaction. However, our understanding of the atomic mechanism of catalysis is incomplete. Herein, we present two new structures of filamentous SgrAI solved using cryo-EM. The first structure, resolved to 3.3 Å, is of filamentous SgrAI containing an active site mutation that is designed to stall the DNA cleavage reaction, which reveals the enzymatic configuration prior to DNA cleavage. The second structure, resolved to 3.1 Å, is of WT filamentous SgrAI containing cleaved substrate DNA, which reveals the enzymatic configuration at the end of the enzymatic cleavage reaction. Both structures contain the phosphate moiety at the cleavage site and the biologically relevant divalent cation cofactor Mg2+ and define how the Mg2+ cation reconfigures during enzymatic catalysis. The data support a model for the activation mechanism that involves binding of a second Mg2+ in the SgrAI active site as a direct result of filamentation induced conformational changes.
Collapse
Affiliation(s)
- Zelin Shan
- The Salk Institute of Biological Sciences, La Jolla, California, USA
| | - Andres Rivero-Gamez
- The Salk Institute of Biological Sciences, La Jolla, California, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego La Jolla, California, USA
| | - Dmitry Lyumkis
- The Salk Institute of Biological Sciences, La Jolla, California, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego La Jolla, California, USA.
| | - Nancy C Horton
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
8
|
Lynch EM, Lu Y, Park JH, Shao L, Kollman J, Rego EH. Evolutionarily divergent Mycobacterium tuberculosis CTP synthase filaments are under selective pressure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605180. [PMID: 39091829 PMCID: PMC11291164 DOI: 10.1101/2024.07.25.605180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The final and rate-limiting enzyme in pyrimidine biosynthesis, CTP synthase (CTPS) , is essential for the viability of Mycobacterium tuberculosis and other mycobacteria. Its product, CTP, is critical for RNA, DNA, lipid and cell wall synthesis, and is involved in chromosome segregation. In various organisms across the tree of life, CTPS assembles into higher-order filaments, leading us to hypothesize that M. tuberculosis CTPS (mtCTPS) also forms higher-order structures. Here, we show that mtCTPS does assemble into filaments but with an unusual architecture not seen in other organisms. Through a combination of structural, biochemical, and cellular techniques, we show that polymerization stabilizes the active conformation of the enzyme and resists product inhibition, potentially allowing for the highly localized production of CTP within the cell. Indeed, CTPS filaments localize near the CTP-dependent complex needed for chromosome segregation, and cells expressing mutant enzymes unable to polymerize are altered in their ability to robustly form this complex. Intriguingly, mutants that alter filament formation are under positive selection in clinical isolates of M. tuberculosis, pointing to a critical role needed to withstand pressures imposed by the host and/or antibiotics. Taken together, our data reveal an unexpected mechanism for the spatially organized production of a critical nucleotide in M. tuberculosis, which may represent a vulnerability of the pathogen that can be exploited with chemotherapy.
Collapse
Affiliation(s)
- Eric M. Lynch
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Yao Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - Jin Ho Park
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - Lin Shao
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - Justin Kollman
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - E. Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| |
Collapse
|
9
|
Huang H, Chen Y, Li Y, Zheng X, Shu L, Tian L, Lin H, Liang Y. Cytidine triphosphate synthase 1-mediated metabolic reprogramming promotes proliferation and drug resistance in multiple myeloma. Heliyon 2024; 10:e33001. [PMID: 39050461 PMCID: PMC11268195 DOI: 10.1016/j.heliyon.2024.e33001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024] Open
Abstract
Upregulation of metabolism-related gene cytidine triphosphate synthase 1 (CTPS1) is associated with poor prognosis in multiple myeloma (MM). However, its role in MM remains unclear. In this study, bioinformatics analysis revealed significant differences in CTPS1 expression levels among various plasma cell malignancies. The patients with high CTPS1 expression had poor overall survival, progression-free survival, and event-free survival. CTPS1 was significantly correlated with sex, albumin, β2 microglobulin, lactate dehydrogenase, and advanced disease. In vitro experiments demonstrated that CTPS1-overexpressing (CTPS1-OE) cells proliferated faster than CTPS1-short hairpin RNA (CTPS1-sh) cells. NRG-SGM3 mice showed significantly accelerated tumor growth in the CTPS1-OE group. CTPS1-OE decreased sensitivity to bortezomib, whereas CTPS1-sh increased sensitivity to bortezomib in MM cell lines. Mechanistically, CTPS1 was primarily involved in metabolism processes. Additionally, CTPS1 was closely related to several co-expressed genes such as MYC and the bone marrow immune microenvironment. In conclusion, CTPS1 is a significant prognostic biomarker for patients with MM, suggesting a potential therapeutic target.
Collapse
Affiliation(s)
- Hanying Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Yanzhou Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Yang Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Xinnan Zheng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Lingling Shu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Lin Tian
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Huanxin Lin
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Yang Liang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| |
Collapse
|
10
|
Guo C, Wang Z, Liu J. Filamentation and inhibition of prokaryotic CTP synthase with ligands. MLIFE 2024; 3:240-250. [PMID: 38948148 PMCID: PMC11211670 DOI: 10.1002/mlf2.12119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 07/02/2024]
Abstract
Cytidine triphosphate synthase (CTPS) plays a pivotal role in the de novo synthesis of cytidine triphosphate (CTP), a fundamental building block for RNA and DNA that is essential for life. CTPS is capable of directly binding to all four nucleotide triphosphates: adenine triphosphate, uridine triphosphate, CTP, and guanidine triphosphate. Furthermore, CTPS can form cytoophidia in vivo and metabolic filaments in vitro, undergoing regulation at multiple levels. CTPS is considered a potential therapeutic target for combating invasions or infections by viral or prokaryotic pathogens. Utilizing cryo-electron microscopy, we determined the structure of Escherichia coli CTPS (ecCTPS) filament in complex with CTP, nicotinamide adenine dinucleotide (NADH), and the covalent inhibitor 6-diazo-5-oxo- l-norleucine (DON), achieving a resolution of 2.9 Å. We constructed a phylogenetic tree based on differences in filament-forming interfaces and designed a variant to validate our hypothesis, providing an evolutionary perspective on CTPS filament formation. Our computational analysis revealed a solvent-accessible ammonia tunnel upon DON binding. Through comparative structural analysis, we discern a distinct mode of CTP binding of ecCTPS that differs from eukaryotic counterparts. Combining biochemical assays and structural analysis, we determined and validated the synergistic inhibitory effects of CTP with NADH or adenine on CTPS. Our results expand our comprehension of the diverse regulatory aspects of CTPS and lay a foundation for the design of specific inhibitors targeting prokaryotic CTPS.
Collapse
Affiliation(s)
- Chenjun Guo
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Zixuan Wang
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Ji‐Long Liu
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
- Shanghai Clinical Research and Trial CenterShanghaiChina
| |
Collapse
|
11
|
Xie T, Qin C, Savas AC, Yeh WW, Feng P. The emerging roles of glutamine amidotransferases in metabolism and immune defense. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:783-797. [PMID: 38743960 PMCID: PMC11561158 DOI: 10.1080/15257770.2024.2351135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
Glutamine amidotransferases (GATs) catalyze the synthesis of nucleotides, amino acids, glycoproteins and an enzyme cofactor, thus serving as key metabolic enzymes for cell proliferation. Carbamoyl-phosphate synthetase, Aspartate transcarbamoylase, and Dihydroorotase (CAD) is a multifunctional enzyme of the GAT family and catalyzes the first three steps of the de novo pyrimidine synthesis. Following our findings that cellular GATs are involved in immune evasion during herpesvirus infection, we discovered that CAD reprograms cellular metabolism to fuel aerobic glycolysis and nucleotide synthesis via deamidating RelA. Deamidated RelA activates the expression of key glycolytic enzymes, rather than that of the inflammatory NF-κB-responsive genes. As such, cancer cells prime RelA for deamidation via up-regulating CAD activity or accumulating RelA mutations. Interestingly, the recently emerged SARS-CoV-2 also activates CAD to couple evasion of inflammatory response to activated nucleotide synthesis. A small molecule inhibitor of CAD depletes nucleotide supply and boosts antiviral inflammatory response, thus greatly reducing SARS-CoV-2 replication. Additionally, we also found that CTP synthase 1 (CTPS1) deamidates interferon (IFN) regulatory factor 3 (IRF3) to mute IFN induction. Our previous studies have implicated phosphoribosyl formylglycinamidine synthase (PFAS) and phosphoribosyl pyrophosphate amidotransferase (PPAT) in deamidating retinoic acid-inducible gene I (RIG-I) and evading dsRNA-induced innate immune defense in herpesvirus infection. Overall, these studies have uncovered an unconventional enzymatic activity of cellular GATs in metabolism and immune defense, offering a molecular link intimately coupling these fundamental biological processes.
Collapse
Affiliation(s)
- Taolin Xie
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Chao Qin
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Ali Can Savas
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Wayne Wei Yeh
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
12
|
Chang J, Yuan W, Gao C, Zhang B, Liu JL, Chen G, Tan YW. Single-Molecule Fluorescence Imaging Reveals Coassembly of CTPS and P5CS. J Phys Chem B 2024; 128:949-959. [PMID: 38236746 DOI: 10.1021/acs.jpcb.3c06498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The cellular compartmentation induced by self-assembly of natural proteins has recently attracted widespread attention due to its structural-functional significance. Among them, as a highly conserved metabolic enzyme and one of the potential targets for cancers and parasitic diseases in drug development, CTP synthase (CTPS) has also been reported to self-assemble into filamentous structures termed cytoophidia. To elucidate the dynamical mechanism of cytoophidium filamentation, we utilize single-molecule fluorescence imaging to observe the real-time self-assembly dynamics of CTPS and the coordinated assembly between CTPS and its interaction partner, Δ1-pyrroline-5-carboxylate synthase (P5CS). Significant differences exist in the direction of growth and extension when the two proteins self-assemble. The oligomer state distribution analysis of the CTPS minimum structural subunit under different conditions and the stoichiometry statistics of binding CTPS and P5CS by single-molecule fluorescence photobleach counting further confirm that the CTPS cytoophidia are mainly stacked with tetramers. CTPS can act as the nucleation core to induce the subsequent growth of the P5CS filaments. Our work not only provide evidence from the molecular level for the self-assembly and coordinated assembly (coassembly) of CTPS with its interaction partner P5CS in vitro but also offer new experimental perspectives for the dynamics research of coordinated regulation between other protein polymers.
Collapse
Affiliation(s)
- Jian Chang
- State Key Laboratory of Surface Physics, Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Department of Physics, Fudan University, Shanghai 200433, China
| | - Weijie Yuan
- State Key Laboratory of Surface Physics, Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Department of Physics, Fudan University, Shanghai 200433, China
| | - Chendi Gao
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Bo Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yan-Wen Tan
- State Key Laboratory of Surface Physics, Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Department of Physics, Fudan University, Shanghai 200433, China
| |
Collapse
|
13
|
Pfeiffer C, Grandits AM, Asnagli H, Schneller A, Huber J, Zojer N, Schreder M, Parker AE, Bolomsky A, Beer PA, Ludwig H. CTPS1 is a novel therapeutic target in multiple myeloma which synergizes with inhibition of CHEK1, ATR or WEE1. Leukemia 2024; 38:181-192. [PMID: 37898670 DOI: 10.1038/s41375-023-02071-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/30/2023]
Abstract
Targeting nucleotide biosynthesis is a proven strategy for the treatment of cancer but is limited by toxicity, reflecting the fundamental nucleotide requirement of dividing cells. The rate limiting step in de novo pyrimidine synthesis is of interest, being catalyzed by two homologous enzymes, CTP synthase 1 (CTPS1) and CTPS2, that could be differentially targeted. Herein, analyses of publicly available datasets identified an essential role for CTPS1 in multiple myeloma (MM), linking high expression of CTPS1 (but not CTPS2) with advanced disease and poor outcomes. In cellular experiments, CTPS1 knockout induced apoptosis of MM cell lines. Exposure of MM cells to STP-B, a novel and highly selective pharmacological inhibitor of CTPS1, inhibited proliferation, induced S phase arrest and led to cell death by apoptosis. Mechanistically, CTPS1 inhibition by STP-B activated DNA damage response (DDR) pathways and induced double-strand DNA breaks which accumulated in early S phase. Combination of STP-B with pharmacological inhibitors of key components of the DDR pathway (ATR, CHEK1 or WEE1) resulted in synergistic growth inhibition and early apoptosis. Taken together, these findings identify CTPS1 as a promising new target in MM, either alone or in combination with DDR pathway inhibition.
Collapse
Affiliation(s)
- Christina Pfeiffer
- Department of Medicine I, Klinik Ottakring, Wilhelminen Cancer Research Institute, Vienna, Austria
| | - Alexander M Grandits
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | | | - Anja Schneller
- Department of Medicine I, Klinik Ottakring, Wilhelminen Cancer Research Institute, Vienna, Austria
| | - Julia Huber
- Department of Medicine I, Klinik Ottakring, Wilhelminen Cancer Research Institute, Vienna, Austria
| | - Niklas Zojer
- Department of Medicine I, Klinik Ottakring, Wilhelminen Cancer Research Institute, Vienna, Austria
- Department of Medicine I, Center for Oncology and Hematology, Klinik Ottakring, Vienna, Austria
| | - Martin Schreder
- Department of Medicine I, Center for Oncology and Hematology, Klinik Ottakring, Vienna, Austria
| | | | - Arnold Bolomsky
- Department of Medicine I, Klinik Ottakring, Wilhelminen Cancer Research Institute, Vienna, Austria
| | | | - Heinz Ludwig
- Department of Medicine I, Klinik Ottakring, Wilhelminen Cancer Research Institute, Vienna, Austria.
| |
Collapse
|
14
|
McGary LC, Regan GL, Bearne SL. Reactive architecture profiling with a methyl acyl phosphate electrophile. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140945. [PMID: 37536394 DOI: 10.1016/j.bbapap.2023.140945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Activity-based protein profiling has facilitated the study of the activity of enzymes in proteomes, inhibitor development, and identification of enzymes that share mechanistic and active-site architectural features. Since methyl acyl phosphate monoesters act as electrostatically selective anionic electrophiles for the covalent modification of nucleophiles that reside adjacent to cationic sites in proteins, we synthesized methyl hex-5-ynoyl phosphate (MHP) to broadly target such protein architectures. After treating the soluble proteome of Paucimonas lemoignei with MHP, biotinylating the resulting acylated proteins using click chemistry, enriching the protein adducts using streptavidin, and analyzing the proteins by LC-MS/MS, a set of 240 enzymes and 132 non-enzyme proteins were identified for a wide spectrum of biological processes and from all 7 enzyme classes. Among those enzymes identified, β-hydroxybutyrate dehydrogenase (PlHBDH) and CTP synthase (E. coli orthologue, EcCTPS) were purified as recombinant enzymes and their rates of inactivation and sites of modification by MHP and methyl acetyl phosphate (MAP) were characterized. MHP reacted more slowly with these proteins than MAP but exhibited greater specificity, despite its lack of multiple binding determinants. Generally, MAP modified more surface residues than MHP. MHP specifically modified Ser 146, Lys 156, and Lys 163 at the active site of PlHBDH. MHP and MAP modified numerous residues of EcCTPS with CTP furnishing the greatest level of protection against MHP- and MAP-dependent modification and inactivation, respectively, followed by ATP and glutamine. Overall, MHP served as an effective probe to identify proteins that are potentially amenable to inhibition by methyl acyl phosphates.
Collapse
Affiliation(s)
- Laura C McGary
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Gemma L Regan
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
15
|
Minet N, Boschat AC, Lane R, Laughton D, Beer P, Asnagli H, Soudais C, Bourne T, Fischer A, Martin E, Latour S. Differential roles of CTP synthetases CTPS1 and CTPS2 in cell proliferation. Life Sci Alliance 2023; 6:e202302066. [PMID: 37348953 PMCID: PMC10288033 DOI: 10.26508/lsa.202302066] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
The CTP nucleotide is a key precursor of nucleic acids metabolism essential for DNA replication. De novo CTP production relies on CTP synthetases 1 and 2 (CTPS1 and CTPS2) that catalyze the conversion of UTP into CTP. CTP synthetase activity is high in proliferating cells including cancer cells; however, the respective roles of CTPS1 and CTPS2 in cell proliferation are not known. By inactivation of CTPS1 and/or CTPS2 and complementation experiments, we showed that both CTPS1 and CTPS2 are differentially required for cell proliferation. CTPS1 was more efficient in promoting proliferation than CTPS2, in association with a higher intrinsic enzymatic activity that was more resistant to inhibition by 3-deaza-uridine, an UTP analog. The contribution of CTPS2 to cell proliferation was modest when CTPS1 was expressed but essential in absence of CTPS1. Public databases analysis of more than 1,000 inactivated cancer cell lines for CTPS1 or CTPS2 confirmed that cell growth is highly dependent of CTPS1 but less or not of CTPS2. Therefore, our results demonstrate that CTPS1 is the main contributor to cell proliferation.
Collapse
Affiliation(s)
- Norbert Minet
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm UMR 1163, Imagine Institute, Paris, France
- Université de Paris, Paris, France
| | - Anne-Claire Boschat
- Université de Paris, Paris, France
- Plateforme Spectrométrie de masse, Institut Imagine, Paris, France
- Laboratoire de Biochimie Métabolomique et Protéomique, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | | | | | | | | | - Claire Soudais
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm UMR 1163, Imagine Institute, Paris, France
- Université de Paris, Paris, France
| | - Tim Bourne
- Step-Pharma, Saint-Genis-Pouilly, France
| | - Alain Fischer
- Collège de France, Paris, France
- Imagine Institute, Paris, France
| | - Emmanuel Martin
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm UMR 1163, Imagine Institute, Paris, France
- Université de Paris, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm UMR 1163, Imagine Institute, Paris, France
- Université de Paris, Paris, France
| |
Collapse
|
16
|
Hvorecny KL, Kollman JM. Greater than the sum of parts: Mechanisms of metabolic regulation by enzyme filaments. Curr Opin Struct Biol 2023; 79:102530. [PMID: 36709625 PMCID: PMC10023394 DOI: 10.1016/j.sbi.2023.102530] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 01/28/2023]
Abstract
Recent work in structural biology is shedding light on how many of the enzymes of intermediary metabolism are self- and co-assembling into large, filamentous polymers or agglomerates to organize and regulate the complex and essential biochemical pathways in cells. Filament assembly provides an additional layer of regulation by modulating the intrinsic allostery of the enzyme protomers which tunes activity in response to a variety of environmental cues. Enzyme filaments dynamically assemble and disassemble in response to changes in metabolite levels and environmental cues, shifting metabolic flux on a more rapid timescale than transcriptional or translational reprogramming. Here we present recent examples of high-resolution structures of filaments from proteins in intermediary metabolism and we discuss how filament assembly modulates the activities of these and other proteins.
Collapse
Affiliation(s)
- Kelli L Hvorecny
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
17
|
Asnagli H, Minet N, Pfeiffer C, Hoeben E, Lane R, Laughton D, Birch L, Jones G, Novak A, Parker AE, Ludwig H, Fischer A, Latour S, Beer PA. CTP Synthase 1 Is a Novel Therapeutic Target in Lymphoma. Hemasphere 2023; 7:e864. [PMID: 37008165 PMCID: PMC10060080 DOI: 10.1097/hs9.0000000000000864] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/08/2023] [Indexed: 03/29/2023] Open
Abstract
Lymphoma is the most common hematological malignancy and is among the 10 most prevalent cancers worldwide. Although survival has been improved by modern immunochemotherapeutic regimens, there remains a significant need for novel targeted agents to treat both B-cell and T-cell malignancies. Cytidine triphosphate synthase 1 (CTPS1), which catalyzes the rate-limiting step in pyrimidine synthesis, plays an essential and nonredundant role in B-cell and T-cell proliferation but is complemented by the homologous CTPS2 isoform outside the hemopoietic system. This report describes the identification and characterization of CTPS1 as a novel target in B- and T-cell cancers. A series of small molecules have been developed which show potent and highly selective inhibition of CTPS1. Site-directed mutagenesis studies identified the adenosine triphosphate pocket of CTPS1 as the binding site for this small molecule series. In preclinical studies, a potent and highly selective small molecule inhibitor of CTPS1 blocked the in vitro proliferation of human neoplastic cells, showing the highest potency against lymphoid neoplasms. Importantly, pharmacological CTPS1 inhibition induced cell death by apoptosis in the majority of lymphoid cell lines tested, thus demonstrating a cytotoxic mechanism of action. Selective CTPS1 inhibition also inhibited the growth of neoplastic human B- and T- cells in vivo. These findings identify CTPS1 as a novel therapeutic target in lymphoid malignancy. A compound from this series is in phase 1/2 clinical studies for the treatment of relapsed/refractory B- and T-cell lymphoma (NCT05463263).
Collapse
|
18
|
Novak A, Laughton D, Lane R, Blackham E, Thomas J, Chatzopoulou E, Wrigglesworth J, Quddus A, Ahmed S, Cousin D, Duffy L, Dubois N, Unitt J, Orban K, Browne E, Ward M, Mycock D, Ieva M, Bland N, George P, Bourne T, Asnagli H, Birch L, Jones G. Discovery and Optimization of Potent and Orally Available CTP Synthetase Inhibitors for Use in Treatment of Diseases Driven by Aberrant Immune Cell Proliferation. J Med Chem 2022; 65:16640-16650. [PMID: 36449304 DOI: 10.1021/acs.jmedchem.2c01446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Herein, we report the discovery of a first-in-class chemotype 2-(alkylsulfonamido)thiazol-4-yl)acetamides that act as pan-selective inhibitors of cytidine 5'-triphosphate synthetase (CTPS1/2), critical enzymes in the de novo pyrimidine synthesis pathway. Weak inhibitors identified from a high-throughput screening of 240K compounds have been optimized to a potent, orally active agent, compound 27, which has shown significant pharmacological responses at 10 mg/kg dose BID in a well-established animal model of inflammation.
Collapse
Affiliation(s)
- Andrew Novak
- Sygnature Discovery, BioCity, Pennyfoot Street, NottinghamNG1 1GF, U.K
| | - David Laughton
- Sygnature Discovery, BioCity, Pennyfoot Street, NottinghamNG1 1GF, U.K
| | - Rebecca Lane
- Sygnature Discovery, BioCity, Pennyfoot Street, NottinghamNG1 1GF, U.K
| | - Emma Blackham
- Sygnature Discovery, BioCity, Pennyfoot Street, NottinghamNG1 1GF, U.K
| | - Jennifer Thomas
- Sygnature Discovery, BioCity, Pennyfoot Street, NottinghamNG1 1GF, U.K
| | - Elli Chatzopoulou
- Sygnature Discovery, BioCity, Pennyfoot Street, NottinghamNG1 1GF, U.K
| | | | - Abdul Quddus
- Sygnature Discovery, BioCity, Pennyfoot Street, NottinghamNG1 1GF, U.K
| | - Saleh Ahmed
- Sygnature Discovery, BioCity, Pennyfoot Street, NottinghamNG1 1GF, U.K
| | - David Cousin
- Sygnature Discovery, BioCity, Pennyfoot Street, NottinghamNG1 1GF, U.K
| | - Lorna Duffy
- Sygnature Discovery, BioCity, Pennyfoot Street, NottinghamNG1 1GF, U.K
| | - Nathalie Dubois
- Sygnature Discovery, BioCity, Pennyfoot Street, NottinghamNG1 1GF, U.K
| | - John Unitt
- Sygnature Discovery, BioCity, Pennyfoot Street, NottinghamNG1 1GF, U.K
| | - Katalin Orban
- Sygnature Discovery, BioCity, Pennyfoot Street, NottinghamNG1 1GF, U.K
| | - Edward Browne
- Sygnature Discovery, BioCity, Pennyfoot Street, NottinghamNG1 1GF, U.K
| | - Michelle Ward
- Sygnature Discovery, BioCity, Pennyfoot Street, NottinghamNG1 1GF, U.K
| | - David Mycock
- Sygnature Discovery, BioCity, Pennyfoot Street, NottinghamNG1 1GF, U.K
| | - Maria Ieva
- Sygnature Discovery, BioCity, Pennyfoot Street, NottinghamNG1 1GF, U.K
| | - Nicholas Bland
- Sygnature Discovery, BioCity, Pennyfoot Street, NottinghamNG1 1GF, U.K
| | - Pascal George
- Step Pharma, 15 Rue Louis et Auguste Lumière, Saint Genis-Pouilly01 630, France
| | - Timothy Bourne
- Step Pharma, 15 Rue Louis et Auguste Lumière, Saint Genis-Pouilly01 630, France
| | - Hélène Asnagli
- Step Pharma, 15 Rue Louis et Auguste Lumière, Saint Genis-Pouilly01 630, France
| | - Louise Birch
- Sygnature Discovery, BioCity, Pennyfoot Street, NottinghamNG1 1GF, U.K
| | - Geraint Jones
- Sygnature Discovery, BioCity, Pennyfoot Street, NottinghamNG1 1GF, U.K
| |
Collapse
|
19
|
The role of filamentation in activation and DNA sequence specificity of the sequence-specific endonuclease SgrAI. Biochem Soc Trans 2022; 50:1703-1714. [PMID: 36398769 PMCID: PMC9788392 DOI: 10.1042/bst20220547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022]
Abstract
Filament formation by metabolic, biosynthetic, and other enzymes has recently come into focus as a mechanism to fine-tune enzyme activity in the cell. Filamentation is key to the function of SgrAI, a sequence-specific DNA endonuclease that has served as a model system to provide some of the deepest insights into the biophysical characteristics of filamentation and its functional consequences. Structure-function analyses reveal that, in the filamentous state, SgrAI stabilizes an activated enzyme conformation that leads to accelerated DNA cleavage activity and expanded DNA sequence specificity. The latter is thought to be mediated by sequence-specific DNA structure, protein-DNA interactions, and a disorder-to-order transition in the protein, which collectively affect the relative stabilities of the inactive, non-filamentous conformation and the active, filamentous conformation of SgrAI bound to DNA. Full global kinetic modeling of the DNA cleavage pathway reveals a slow, rate-limiting, second-order association rate constant for filament assembly, and simulations of in vivo activity predict that filamentation is superior to non-filamenting mechanisms in ensuring rapid activation and sequestration of SgrAI's DNA cleavage activity on phage DNA and away from the host chromosome. In vivo studies demonstrate the critical requirement for accelerated DNA cleavage by SgrAI in its biological role to safeguard the bacterial host. Collectively, these data have advanced our understanding of how filamentation can regulate enzyme structure and function, while the experimental strategies used for SgrAI can be applied to other enzymatic systems to identify novel functional roles for filamentation.
Collapse
|
20
|
Bennett JA, Steward LR, Rudolph J, Voss AP, Aydin H. The structure of the human LACTB filament reveals the mechanisms of assembly and membrane binding. PLoS Biol 2022; 20:e3001899. [PMID: 36534696 PMCID: PMC9815587 DOI: 10.1371/journal.pbio.3001899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 01/05/2023] [Accepted: 10/31/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are complex organelles that play a central role in metabolism. Dynamic membrane-associated processes regulate mitochondrial morphology and bioenergetics in response to cellular demand. In tumor cells, metabolic reprogramming requires active mitochondrial metabolism for providing key metabolites and building blocks for tumor growth and rapid proliferation. To counter this, the mitochondrial serine beta-lactamase-like protein (LACTB) alters mitochondrial lipid metabolism and potently inhibits the proliferation of a variety of tumor cells. Mammalian LACTB is localized in the mitochondrial intermembrane space (IMS), where it assembles into filaments to regulate the efficiency of essential metabolic processes. However, the structural basis of LACTB polymerization and regulation remains incompletely understood. Here, we describe how human LACTB self-assembles into micron-scale filaments that increase their catalytic activity. The electron cryo-microscopy (cryoEM) structure defines the mechanism of assembly and reveals how highly ordered filament bundles stabilize the active state of the enzyme. We identify and characterize residues that are located at the filament-forming interface and further show that mutations that disrupt filamentation reduce enzyme activity. Furthermore, our results provide evidence that LACTB filaments can bind lipid membranes. These data reveal the detailed molecular organization and polymerization-based regulation of human LACTB and provide new insights into the mechanism of mitochondrial membrane organization that modulates lipid metabolism.
Collapse
Affiliation(s)
- Jeremy A. Bennett
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Lottie R. Steward
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Johannes Rudolph
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Adam P. Voss
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Halil Aydin
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
21
|
Darekar S, Laín S. Asymmetric inheritance of cytoophidia could contribute to determine cell fate and plasticity: The onset of alternative differentiation patterns in daughter cells may rely on the acquisition of either CTPS or IMPDH cytoophidia: The onset of alternative differentiation patterns in daughter cells may rely on the acquisition of either CTPS or IMPDH cytoophidia. Bioessays 2022; 44:e2200128. [PMID: 36209393 DOI: 10.1002/bies.202200128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/26/2022] [Accepted: 09/21/2022] [Indexed: 12/20/2022]
Abstract
Two enzymes involved in the synthesis of pyrimidine and purine nucleotides, CTP synthase (CTPS) and IMP dehydrogenase (IMPDH), can assemble into a single or very few large filaments called rods and rings (RR) or cytoophidia. Most recently, asymmetric cytoplasmic distribution of organelles during cell division has been described as a decisive event in hematopoietic stem cell fate. We propose that cytoophidia, which could be considered as membrane-less organelles, may also be distributed asymmetrically during mammalian cell division as previously described for Schizosaccharomyces pombe. Furthermore, because each type of nucleotide intervenes in distinct processes (e.g., membrane synthesis, glycosylation, and G protein-signaling), alterations in the rate of synthesis of specific nucleotide types could influence cell differentiation in multiple ways. Therefore, we hypothesize that whether a daughter cell inherits or not CTPS or IMPDH filaments determines its fate and that this asymmetric inheritance, together with the dynamic nature of these structures enables plasticity in a cell population.
Collapse
Affiliation(s)
- Suhas Darekar
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Sonia Laín
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Gillis TD, Bearne SL. Effects of the 5'-Triphosphate Metabolites of Ribavirin, Sofosbuvir, Vidarabine, and Molnupiravir on CTP Synthase Catalysis and Filament Formation: Implications for Repurposing Antiviral Agents against SARS-CoV-2. ChemMedChem 2022; 17:e202200399. [PMID: 36184568 PMCID: PMC9538051 DOI: 10.1002/cmdc.202200399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/22/2022] [Indexed: 01/14/2023]
Abstract
Repurposing of antiviral drugs affords a rapid and effective strategy to develop therapies to counter pandemics such as COVID-19. SARS-CoV-2 replication is closely linked to the metabolism of cytosine-containing nucleotides, especially cytidine-5'-triphosphate (CTP), such that the integrity of the viral genome is highly sensitive to intracellular CTP levels. CTP synthase (CTPS) catalyzes the rate-limiting step for the de novo biosynthesis of CTP. Hence, it is of interest to know the effects of the 5'-triphosphate (TP) metabolites of repurposed antiviral agents on CTPS activity. Using E. coli CTPS as a model enzyme, we show that ribavirin-5'-TP is a weak allosteric activator of CTPS, while sofosbuvir-5'-TP and adenine-arabinofuranoside-5'-TP are both substrates. β-d-N4 -Hydroxycytidine-5'-TP is a weak competitive inhibitor relative to CTP, but induces filament formation by CTPS. Alternatively, sofosbuvir-5'-TP prevented CTP-induced filament formation. These results reveal the underlying potential for repurposed antivirals to affect the activity of a critical pyrimidine nucleotide biosynthetic enzyme.
Collapse
Affiliation(s)
- Thomas D. Gillis
- Dalhousie UniversityDepartment of Biochemistry & Molecular Biology5850 College St.Tupper Medical Building, 9JB3H 4R2HalifaxCANADA
| | - Stephen L. Bearne
- Dalhousie UniversityBiochemistry & Molecular Biology5850 College StreetTupper Medical BuildingB3H 4R2HalifaxCANADA
| |
Collapse
|
23
|
Mucke HA. Patent Highlights April - May 2022. Pharm Pat Anal 2022; 11:139-145. [PMID: 36052651 DOI: 10.4155/ppa-2022-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
24
|
GTP-Dependent Regulation of CTP Synthase: Evolving Insights into Allosteric Activation and NH3 Translocation. Biomolecules 2022; 12:biom12050647. [PMID: 35625575 PMCID: PMC9138612 DOI: 10.3390/biom12050647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022] Open
Abstract
Cytidine-5′-triphosphate (CTP) synthase (CTPS) is the class I glutamine-dependent amidotransferase (GAT) that catalyzes the last step in the de novo biosynthesis of CTP. Glutamine hydrolysis is catalyzed in the GAT domain and the liberated ammonia is transferred via an intramolecular tunnel to the synthase domain where the ATP-dependent amination of UTP occurs to form CTP. CTPS is unique among the glutamine-dependent amidotransferases, requiring an allosteric effector (GTP) to activate the GAT domain for efficient glutamine hydrolysis. Recently, the first cryo-electron microscopy structure of Drosophila CTPS was solved with bound ATP, UTP, and, notably, GTP, as well as the covalent adduct with 6-diazo-5-oxo-l-norleucine. This structural information, along with the numerous site-directed mutagenesis, kinetics, and structural studies conducted over the past 50 years, provide more detailed insights into the elaborate conformational changes that accompany GTP binding at the GAT domain and their contribution to catalysis. Interactions between GTP and the L2 loop, the L4 loop from an adjacent protomer, the L11 lid, and the L13 loop (or unique flexible “wing” region), induce conformational changes that promote the hydrolysis of glutamine at the GAT domain; however, direct experimental evidence on the specific mechanism by which these conformational changes facilitate catalysis at the GAT domain is still lacking. Significantly, the conformational changes induced by GTP binding also affect the assembly and maintenance of the NH3 tunnel. Hence, in addition to promoting glutamine hydrolysis, the allosteric effector plays an important role in coordinating the reactions catalyzed by the GAT and synthase domains of CTPS.
Collapse
|
25
|
Chabanon RM, Postel-Vinay S. A Novel Synthetic Lethal Approach to Target MYC-Driven Cancers. Cancer Res 2022; 82:969-971. [PMID: 35288735 DOI: 10.1158/0008-5472.can-22-0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022]
Abstract
The MYC proto-oncogene family encompasses three related transcription factors (MYC, MYCL, and MYCN), which are master regulators of cellular programs orchestrating multiple hallmarks of cancer, including proliferation, metabolism, invasiveness, and immune surveillance. MYC activation is one of the most frequent alterations in cancer, induced by genetic, epigenetic, or posttranslational alterations of MYC itself, or of MYC-related proteins or pathways. Sun and colleagues found a unique function of the rate-limiting nucleotide synthesis enzyme CTP synthase 1 (CTPS1) in the survival of MYC-driven cancer cells. They further identified a novel synthetic lethal strategy to combat MYC-driven cancers by combining CTPS1 inhibitors with ataxia telangiectasia and Rad3-related protein inhibitors, which exploits the inherent vulnerability of MYC-driven tumors to nucleotide shortage and DNA replication stress. These findings open novel therapeutic avenues for targeting the traditionally "undruggable" MYC-driven cancers, which represent one of the highest unmet clinical needs in cancer. See related article by Sun et al. p. 1013.
Collapse
Affiliation(s)
- Roman M Chabanon
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Sophie Postel-Vinay
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Drug Development Department, DITEP, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médicine, Université Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
| |
Collapse
|
26
|
Krämer M, Dörfer E, Hickl D, Bellin L, Scherer V, Möhlmann T. Cytidine Triphosphate Synthase Four From Arabidopsis thaliana Attenuates Drought Stress Effects. FRONTIERS IN PLANT SCIENCE 2022; 13:842156. [PMID: 35360303 PMCID: PMC8960734 DOI: 10.3389/fpls.2022.842156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Cytidine triphosphate synthase (CTPS) catalyzes the final step in pyrimidine de novo synthesis. In Arabidopsis, this protein family consists of five members (CTPS1-5), and all of them localize to the cytosol. Specifically, CTPS4 showed a massive upregulation of transcript levels during abiotic stress, in line with increased staining of CTPS4 promoter:GUS lines in hypocotyl, root and to lesser extend leaf tissues. In a setup to study progressive drought stress, CTPS4 knockout mutants accumulated less fresh and dry weight at days 5-7 and showed impaired ability to recover from this stress after 3 days of rewatering. Surprisingly, a thorough physiological characterization of corresponding plants only revealed alterations in assimilation and accumulation of soluble sugars including those related to drought stress in the mutant. Bimolecular fluorescence complementation (BiFC) studies indicated the interaction of CTPS4 with other isoforms, possibly affecting cytoophidia (filaments formed by CTPS formation. Although the function of these structures has not been thoroughly investigated in plants, altered enzyme activity and effects on cell structure are reported in other organisms. CTPS activity is required for cell cycle progression and growth. Furthermore, drought can lead to the accumulation of reactive oxygen species (ROS) and by this, to DNA damage. We hypothesize that effects on the cell cycle or DNA repair might be relevant for the observed impaired reduced drought stress tolerance of CTPS4 mutants.
Collapse
|
27
|
Walter M, Herr P. Re-Discovery of Pyrimidine Salvage as Target in Cancer Therapy. Cells 2022; 11:cells11040739. [PMID: 35203388 PMCID: PMC8870348 DOI: 10.3390/cells11040739] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Nucleotides are synthesized through two distinct pathways: de novo synthesis and nucleoside salvage. Whereas the de novo pathway synthesizes nucleotides from amino acids and glucose, the salvage pathway recovers nucleosides or bases formed during DNA or RNA degradation. In contrast to high proliferating non-malignant cells, which are highly dependent on the de novo synthesis, cancer cells can switch to the nucleoside salvage pathways to maintain efficient DNA replication. Pyrimidine de novo synthesis remains the target of interest in cancer therapy and several inhibitors showed promising results in cancer cells and in vivo models. In the 1980s and 1990s, poor responses were however observed in clinical trials with several of the currently existing pyrimidine synthesis inhibitors. To overcome the observed limitations in clinical trials, targeting pyrimidine salvage alone or in combination with pyrimidine de novo inhibitors was suggested. Even though this approach showed initially promising results, it received fresh attention only recently. Here we discuss the re-discovery of targeting pyrimidine salvage pathways for DNA replication alone or in combination with inhibitors of pyrimidine de novo synthesis to overcome limitations of commonly used antimetabolites in various preclinical cancer models and clinical trials. We also highlight newly emerged targets in pyrimidine synthesis as well as pyrimidine salvage as a promising target in immunotherapy.
Collapse
|
28
|
Hansen JM, Horowitz A, Lynch EM, Farrell DP, Quispe J, DiMaio F, Kollman JM. Cryo-EM structures of CTP synthase filaments reveal mechanism of pH-sensitive assembly during budding yeast starvation. eLife 2021; 10:73368. [PMID: 34734801 PMCID: PMC8641951 DOI: 10.7554/elife.73368] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/03/2021] [Indexed: 12/27/2022] Open
Abstract
Many metabolic enzymes self-assemble into micron-scale filaments to organize and regulate metabolism. The appearance of these assemblies often coincides with large metabolic changes as in development, cancer, and stress. Yeast undergo cytoplasmic acidification upon starvation, triggering the assembly of many metabolic enzymes into filaments. However, it is unclear how these filaments assemble at the molecular level and what their role is in the yeast starvation response. CTP Synthase (CTPS) assembles into metabolic filaments across many species. Here, we characterize in vitro polymerization and investigate in vivo consequences of CTPS assembly in yeast. Cryo-EM structures reveal a pH-sensitive assembly mechanism and highly ordered filament bundles that stabilize an inactive state of the enzyme, features unique to yeast CTPS. Disruption of filaments in cells with non-assembly or pH-insensitive mutations decreases growth rate, reflecting the importance of regulated CTPS filament assembly in homeotstasis.
Collapse
Affiliation(s)
- Jesse M Hansen
- Department of Biochemistry, University of Washington, Seattle, United States.,Graduate Program in Biological Physics, Structure, and Design, University of Washington, Seattle, United States
| | - Avital Horowitz
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Eric M Lynch
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Daniel P Farrell
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Joel Quispe
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, United States
| |
Collapse
|