1
|
Singer M, Kandeel F, Husseiny MI. Salmonella-Based Vaccine: A Promising Strategy for Type 1 Diabetes. Vaccines (Basel) 2025; 13:405. [PMID: 40333284 PMCID: PMC12031388 DOI: 10.3390/vaccines13040405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 05/09/2025] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the progressive destruction of insulin-producing β-cells in the pancreas. Currently, no therapy exists to halt or cure T1D. Vaccination with diabetic autoantigens may offer protection against T1D development. Genetically modified, attenuated Salmonella utilizing the Salmonella-Pathogenicity Island 2 (SPI2)-encoded Type Three Secretion System (T3SS) can elicit robust immune responses, making it an attractive vaccine platform. Using SPI2-T3SS to deliver an autoantigen alongside immunomodulators and anti-CD3 antibodies induces antigen-specific regulatory T-cells. Our preclinical studies demonstrated the efficacy of a Salmonella-based vaccine in both preventing and reversing autoimmune diabetes in non-obese diabetic (NOD) mice while also exploring its genetic modifications, underlying mechanisms, and delivery strategies. This review evaluates the advantages of an oral T1D vaccine employing live, attenuated Salmonella for autoantigen delivery. We also discuss future directions for advancing this strategy in the treatment of other autoimmune diseases.
Collapse
Affiliation(s)
- Mahmoud Singer
- Department of Radiological Sciences, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Fouad Kandeel
- Department of Translational Research and Cellular Therapeutics, Artur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mohamed I. Husseiny
- Department of Translational Research and Cellular Therapeutics, Artur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
2
|
Song Y, Li J, Wu Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct Target Ther 2024; 9:263. [PMID: 39362875 PMCID: PMC11452214 DOI: 10.1038/s41392-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
Autoimmune disorders are characterized by aberrant T cell and B cell reactivity to the body's own components, resulting in tissue destruction and organ dysfunction. Autoimmune diseases affect a wide range of people in many parts of the world and have become one of the major concerns in public health. In recent years, there have been substantial progress in our understanding of the epidemiology, risk factors, pathogenesis and mechanisms of autoimmune diseases. Current approved therapeutic interventions for autoimmune diseases are mainly non-specific immunomodulators and may cause broad immunosuppression that leads to serious adverse effects. To overcome the limitations of immunosuppressive drugs in treating autoimmune diseases, precise and target-specific strategies are urgently needed. To date, significant advances have been made in our understanding of the mechanisms of immune tolerance, offering a new avenue for developing antigen-specific immunotherapies for autoimmune diseases. These antigen-specific approaches have shown great potential in various preclinical animal models and recently been evaluated in clinical trials. This review describes the common epidemiology, clinical manifestation and mechanisms of autoimmune diseases, with a focus on typical autoimmune diseases including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and sjögren's syndrome. We discuss the current therapeutics developed in this field, highlight the recent advances in the use of nanomaterials and mRNA vaccine techniques to induce antigen-specific immune tolerance.
Collapse
Affiliation(s)
- Yi Song
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Li
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
3
|
Firdessa Fite R, Bechi Genzano C, Mallone R, Creusot RJ. Epitope-based precision immunotherapy of Type 1 diabetes. Hum Vaccin Immunother 2023; 19:2154098. [PMID: 36656048 PMCID: PMC9980607 DOI: 10.1080/21645515.2022.2154098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Antigen-specific immunotherapies (ASITs) address important clinical needs in treating autoimmune diseases. However, Type 1 diabetes is a heterogeneous disease wherein patient characteristics influence responsiveness to ASITs. Targeting not only disease-relevant T cell populations, but also specific groups of patients using precision medicine is a new goal toward achieving effective treatment. HLA-restricted peptides provide advantages over protein as antigens, however, methods for profiling antigen-specific T cells need to improve in sensitivity, depth, and throughput to facilitate epitope selection. Delivery approaches are highly diverse, illustrating the many ways relevant antigen-presenting cell populations and anatomical locations can be targeted for tolerance induction. The role of persistence of antigen presentation in promoting durable antigen-specific tolerance requires further investigation. Based on the outcome of ASIT trials, the field is moving toward using patient-specific variations to improve efficacy, but challenges still lie on the path to delivering more effective and safer treatment to the T1D patient population.
Collapse
Affiliation(s)
- Rebuma Firdessa Fite
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Camillo Bechi Genzano
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Roberto Mallone
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France.,Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Hôpitaux Universitaires de Paris Centre-Université de Paris, Paris, France
| | - Remi J Creusot
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
4
|
Nageeta F, Waqar F, Allahi I, Murtaza F, Nasir M, Danesh F, Irshad B, Kumar R, Tayyab A, Khan MSM, Kumar S, Varrassi G, Khatri M, Muzammil MA, Mohamad T. Precision Medicine Approaches to Diabetic Kidney Disease: Personalized Interventions on the Horizon. Cureus 2023; 15:e45575. [PMID: 37868402 PMCID: PMC10587911 DOI: 10.7759/cureus.45575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Diabetic kidney disease (DKD) is a significant complication of diabetes that requires innovative interventions to address its increasing impact. Precision medicine is a rapidly emerging paradigm that shows excellent promise in tailoring therapeutic strategies to the unique profiles of individual patients. This abstract examines the potential of precision medicine in managing DKD. It explores the genetic and molecular foundations, identifies biomarkers for risk assessment, provides insights into pharmacogenomics, and discusses targeted therapies. Integrating omics data and data analytics provides a comprehensive landscape for making informed decisions. The abstract highlights the difficulties encountered during the clinical implementation process, the ethical factors to be considered, and the importance of involving patients. In addition, it showcases case studies that demonstrate the effectiveness of precision-based interventions. As the field progresses, the abstract anticipates a future characterized by the integration of artificial intelligence in diagnostics and treatment. It highlights the significant impact that precision medicine can have in revolutionizing the provision of care for DKD.
Collapse
Affiliation(s)
- Fnu Nageeta
- Medicine, Ghulam Muhammad Mahar Medical College, Sukkur, PAK
| | - Fahad Waqar
- Medicine, Allama Iqbal Medical College, Lahore, PAK
| | - Ibtesam Allahi
- General Surgery, Allama Iqbal Medical College, Lahore, PAK
| | | | | | - Fnu Danesh
- Internal Medicine, Liaquat University of Medical and Health Sciences, Thatta, PAK
| | - Beena Irshad
- Medicine, Sharif Medical and Dental College, Lahore, PAK
| | - Rajesh Kumar
- Spine Surgery, Sunnybrook Hospital, University of Toronto, Toronto, CAN
| | - Arslan Tayyab
- Internal Medicine, Quaid-e-Azam Medical College, Bahawalpur, PAK
| | | | - Satesh Kumar
- Medicine and Surgery, Shaheed Mohtarma Benazir Bhutto Medical College, Karachi, PAK
| | | | - Mahima Khatri
- Medicine and Surgery, Dow University of Health Sciences, Karachi, PAK
| | | | - Tamam Mohamad
- Cardiovascular Medicine, Wayne State University, Detroit, USA
| |
Collapse
|
5
|
Affiliation(s)
- Stephan Kissler
- Section for Immunobiology, Joslin Diabetes Center, Boston, MA 02215
- Department of Medicine, Harvard Medical School, Boston, MA 02215
| |
Collapse
|