1
|
Choi HY, Park JH, Chen BH, Shin BN, Lee YL, Kim IH, Cho JH, Lee TK, Lee JC, Won MH, Ahn JH, Tae HJ, Yan BC, Hwang IK, Cho JH, Kim YM, Kim SK. Increases of Catalase and Glutathione Peroxidase Expressions by Lacosamide Pretreatment Contributes to Neuroprotection Against Experimentally Induced Transient Cerebral Ischemia. Neurochem Res 2016; 41:2380-90. [DOI: 10.1007/s11064-016-1951-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/02/2016] [Accepted: 05/07/2016] [Indexed: 12/29/2022]
|
2
|
Meyer DM, Eastwood JA, Compton MP, Gylys K, Zivin JA. rLOAD: does sex mediate the effect of acute antiplatelet loading on stroke outcome. Biol Sex Differ 2014; 5:9. [PMID: 25061508 PMCID: PMC4109774 DOI: 10.1186/2042-6410-5-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 06/19/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biologic sex can influence response to pharmacologic therapy. The purpose of this proof-of-concept study was to evaluate the medicating effects of estrogen in the efficacy of acute antiplatelet loading therapy on stroke outcome in the rabbit small clot embolic model. METHODS Female and male (20/group) New Zealand White rabbits were embolized to produce embolic stroke by injecting small blood clots into the middle cerebral artery via an internal carotid artery catheter. Two hours after embolization, rabbits were treated with standard dose antiplatelet loading (aspirin 10 mg/kg plus clopidogrel 10 mg/kg). Primary outcome measures were platelet inhibition, behavioral outcome P 50 (the weight of microclots (mg) that produces neurologic dysfunction in 50% of a group of animals), and effect of endogenous estrogen on outcome. RESULTS For the first time in a non-rodent model of stroke, it was found that higher endogenous estrogen levels resulted in significantly better behavioral outcome in female subjects (r s -0.70, p < 0.011). Platelet inhibition in response to collagen, arachidonic acid, and adenosine diphosphate (ADP) was not significantly different in females with higher vs. lower estrogen levels. CONCLUSIONS Behavioral outcomes are improved with females with higher endogenous estrogen levels treated with standard dose antiplatelet loading. This is the first non-rodent study to demonstrate that higher endogenous estrogen levels in female rabbits appear to be neuroprotective in ischemic stroke. This research supports the further study of the effect of endogenous estrogen levels on outcome with standard dose antiplatelet loading in stroke patients not eligible for revascularization therapies.
Collapse
Affiliation(s)
- Dawn M Meyer
- UC San Diego School of Medicine, 200 W Arbor Drive, MON, Suite 3, San Diego, CA 92103-8466, USA
| | - Jo-Ann Eastwood
- UCLA School of Nursing, 700 Tiverton Ave, Los Angeles, CA, 90095, USA
| | - M Peggy Compton
- Georgetown University School of Nursing and Health Studies, Washington, DC 20007, USA
| | - Karen Gylys
- UCLA School of Nursing, 700 Tiverton Ave, Los Angeles, CA, 90095, USA
| | - Justin A Zivin
- UC San Diego School of Medicine, 200 W Arbor Drive, MON, Suite 3, San Diego, CA 92103-8466, USA
| |
Collapse
|
3
|
Orally administrated ascorbic acid suppresses neuronal damage and modifies expression of SVCT2 and GLUT1 in the brain of diabetic rats with cerebral ischemia-reperfusion. Nutrients 2014; 6:1554-77. [PMID: 24739976 PMCID: PMC4011051 DOI: 10.3390/nu6041554] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 12/22/2022] Open
Abstract
Diabetes mellitus is known to exacerbate cerebral ischemic injury. In the present study, we investigated antiapoptotic and anti-inflammatory effects of oral supplementation of ascorbic acid (AA) on cerebral injury caused by middle cerebral artery occlusion and reperfusion (MCAO/Re) in rats with streptozotocin-induced diabetes. We also evaluated the effects of AA on expression of sodium-dependent vitamin C transporter 2 (SVCT2) and glucose transporter 1 (GLUT1) after MCAO/Re in the brain. The diabetic state markedly aggravated MCAO/Re-induced cerebral damage, as assessed by infarct volume and edema. Pretreatment with AA (100 mg/kg, p.o.) for two weeks significantly suppressed the exacerbation of damage in the brain of diabetic rats. AA also suppressed the production of superoxide radical, activation of caspase-3, and expression of proinflammatory cytokines (tumor necrosis factor-α and interleukin-1β) in the ischemic penumbra. Immunohistochemical staining revealed that expression of SVCT2 was upregulated primarily in neurons and capillary endothelial cells after MCAO/Re in the nondiabetic cortex, accompanied by an increase in total AA (AA + dehydroascorbic acid) in the tissue, and that these responses were suppressed in the diabetic rats. AA supplementation to the diabetic rats restored these responses to the levels of the nondiabetic rats. Furthermore, AA markedly upregulated the basal expression of GLUT1 in endothelial cells of nondiabetic and diabetic cortex, which did not affect total AA levels in the cortex. These results suggest that daily intake of AA attenuates the exacerbation of cerebral ischemic injury in a diabetic state, which may be attributed to anti-apoptotic and anti-inflammatory effects via the improvement of augmented oxidative stress in the brain. AA supplementation may protect endothelial function against the exacerbated ischemic oxidative injury in the diabetic state and improve AA transport through SVCT2 in the cortex.
Collapse
|
4
|
Pluta R, Furmaga-Jabłońska W, Maciejewski R, Ułamek-Kozioł M, Jabłoński M. Brain ischemia activates β- and γ-secretase cleavage of amyloid precursor protein: significance in sporadic Alzheimer's disease. Mol Neurobiol 2012; 47:425-34. [PMID: 23080191 PMCID: PMC3538125 DOI: 10.1007/s12035-012-8360-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 09/27/2012] [Indexed: 12/21/2022]
Abstract
Amyloid precursor protein cleavage through β- and γ-secretases produces β-amyloid peptide, which is believed to be responsible for death of neurons and dementia in Alzheimer’s disease. Levels of β- and γ-secretase are increased in sensitive areas of the Alzheimer’s disease brain, but the mechanism of this process is unknown. In this review, we prove that brain ischemia generates expression and activity of both β- and γ-secretases. These secretases are induced in association with oxidative stress following brain ischemia. Data suggest that ischemia promotes overproduction and aggregation of β-amyloid peptide in brain, which is toxic for ischemic neuronal cells. In our review, we demonstrated the role of brain ischemia as a molecular link between the β- and the γ-secretase activities and provided a molecular explanation of the possible neuropathogenesis of sporadic Alzheimer’s disease.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106, Warsaw, Pawińskiego 5 Str., Poland.
| | | | | | | | | |
Collapse
|
5
|
Abstract
Understanding the role of oxidative injury will allow for therapy with agents that scavenge ROS (reactive oxygen species) and antioxidants in the management of several diseases related to free radical damage. The majority of free radicals are generated by mitochondria as a consequence of the mitochondrial cycle, whereas free radical accumulation is limited by the action of a variety of antioxidant processes that reside in every cell. In the present review, we provide an overview of the mitochondrial generation of ROS and discuss the role of ROS in the regulation of endothelial and adipocyte function. Moreover, we also discuss recent findings on the role of ROS in sepsis, cerebral ataxia and stroke. These results provide avenues for the therapeutic potential of antioxidants in a variety of diseases.
Collapse
|
6
|
|
7
|
Kennedy DN, Haselgrove C, Makris N, Goldin DM, Lev MH, Caplan D, Caviness VS. WebParc: a tool for analysis of the topography and volume of stroke from MRI. Med Biol Eng Comput 2011; 48:215-28. [PMID: 20077026 DOI: 10.1007/s11517-009-0571-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 12/07/2009] [Indexed: 10/20/2022]
Abstract
The quantitative assessment of the anatomic consequences of cerebral infarction is critical in the study of the etiology and therapeutic response in patients with stroke. We present here an overview of the operation of "WebParc," a computational system that provides measures of stroke lesion volume and location with respect to canonical forebrain neural systems nomenclature. Using a web-based interface, clinical imaging data can be registered to a template brain that contains a comprehensive set of anatomic structures. Upon delineation of the lesion, we can express the size and localization of the lesion in terms of the regions that are intersected within the template. We demonstrate the application of the system using MRI-based diffusion-weighted imaging and document measures of the validity and reliability of its uses. Intra- and inter-rater reliability is demonstrated, and characterized relative to the various classes of anatomic regions that can be assessed. The WebParc system has been developed to meet criteria of both efficiency and intuitive operator use in the real time analysis of stroke anatomy, so as to be useful in support of clinical care and clinical research studies. This article is an overview of its base-line operation with quantitative anatomic characterization of lesion size and location in terms of stroke distribution within the separate gray and white matter compartments of the brain.
Collapse
Affiliation(s)
- David N Kennedy
- Center for Morphometric Analysis, Massachusetts General Hospital, 149 13th Street, Charlestown, Boston, MA, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Edvinsson LIH, Povlsen GK. Vascular plasticity in cerebrovascular disorders. J Cereb Blood Flow Metab 2011; 31:1554-71. [PMID: 21559027 PMCID: PMC3137480 DOI: 10.1038/jcbfm.2011.70] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/06/2011] [Accepted: 04/06/2011] [Indexed: 12/31/2022]
Abstract
Cerebral ischemia remains a major cause of morbidity and mortality with little advancement in subacute treatment options. This review aims to cover and discuss novel insight obtained during the last decade into plastic changes in the vasoconstrictor receptor profiles of cerebral arteries and microvessels that takes place after different types of stroke. Receptors like the endothelin type B, angiotensin type 1, and 5-hydroxytryptamine type 1B/1D receptors are upregulated in the smooth muscle layer of cerebral arteries after different types of ischemic stroke as well as after subarachnoid hemorrhage, yielding rather dramatic changes in the contractility of the vessels. Some of the signal transduction processes mediating this receptor upregulation have been elucidated. In particular the extracellular regulated kinase 1/2 pathway, which is activated early in the process, has proven to be a promising therapeutic target for prevention of vasoconstrictor receptor upregulation after stroke. Together, those findings provide new perspectives on the pathophysiology of ischemic stroke and point toward a novel way of reducing vasoconstriction, neuronal cell death, and thus neurologic deficits after stroke.
Collapse
Affiliation(s)
- Lars I H Edvinsson
- Department of Clinical Experimental Research, Copenhagen University, Glostrup Hospital Research Park, Copenhagen, Denmark.
| | | |
Collapse
|
9
|
Dreixler JC, Shaikh AR, Alexander M, Savoie B, Roth S. Post-ischemic conditioning in the rat retina is dependent upon ischemia duration and is not additive with ischemic pre-conditioning. Exp Eye Res 2010; 91:844-52. [PMID: 20599964 DOI: 10.1016/j.exer.2010.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 06/10/2010] [Accepted: 06/16/2010] [Indexed: 01/26/2023]
Abstract
Ischemic pre-conditioning (IPC) provides neuroprotection in the rat retina from the damaging effects of severe ischemia. Recently, neuroprotection by retinal ischemic post-conditioning (Post-C), i.e., transient ischemia after more lengthy, damaging ischemia, was described, but its mechanisms are not yet known. One possible explanation of the effectiveness of Post-C is that it augments intrinsic neuroprotective mechanisms initiated during ischemia. Increasing duration of the damaging ischemic insult may therefore impact the effectiveness of Post-C. IPC, in contrast, sets in motion a series of neuroprotective events prior to the onset of ischemia. Thus, IPC and Post-C may operate by differing mechanisms. Accordingly, we examined the effect of retinal ischemic duration on post-ischemic outcome in vivo in rats after adding Post-C, and the impact of combining pre- and post-conditioning. Recovery after ischemia performed 24 h after IPC, or after Post-C performed 5 min after ischemia ended, was assessed functionally (electroretinography) and histologically at 7 days after ischemia. Durations of ischemia of 45 and 55 min were studied. Since recovery with IPC or Post-C alone, with 55 min of ischemia, did not achieve the same degree of effect (i.e., not complete recovery) exhibited in our previous studies of IPC using a different ischemia model, we also combined IPC and Post-C to test the hypothesis of the possible additive effects of the IPC and Post-C. We found that the recovery after Post-C was enhanced to a greater degree when ischemia was of longer duration. Post-C led to greater post-ischemic recovery compared to IPC. Both IPC and Post-C also attenuated structural damage to the retina. Contrary to our hypothesis, IPC and Post-C did not combine to enhance recovery after ischemia. In earlier studies, IPC attenuated post-ischemic apoptosis. To begin to examine the mechanism of Post-C, we studied its impact on apoptosis following ischemia. We examined apoptosis by determining the percentage of TUNEL-positive cells at 24 h after ischemia. Post-C attenuated apoptosis, but when combined with IPC, TUNEL was similar in the combined group to that of ischemia alone. We also examined the role of the recruitment of an inflammatory response in ischemia and Post-C. We found that inflammatory markers increased by ischemia were not altered by Post-C. We conclude that Post-C effectiveness depends upon the duration of ischemia; Post-C is not additive with IPC, and Post-C functions, in part, by preventing apoptotic damage to the inner retina. Post-C has considerable promise for clinical translation to eye diseases that cause blindness by ischemia.
Collapse
Affiliation(s)
- John C Dreixler
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
10
|
Protective effects of the complex between manganese porphyrins and catalase-poly(ethylene glycol) conjugates against hepatic ischemia/reperfusion injury in vivo. J Control Release 2008; 135:60-4. [PMID: 19162102 DOI: 10.1016/j.jconrel.2008.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 11/26/2008] [Accepted: 12/17/2008] [Indexed: 11/21/2022]
Abstract
The complex between manganese (Mn) porphyrins and catalase-poly(ethylene glycol) (PEG) conjugates has been designed for the protective effect against hepatic ischemia/reperfusion injury in vivo. The resulting Mn-porphyrin/catalase-PEG complex with dual enzymatic activity of superoxide dismutase (SOD) and catalase enhanced the blood circulation. The spin reduction rate in the rats treated with the Mn-porphyrin/catalase-PEG complex was significantly higher than that in the untreated rats and almost equal to that in the sham group rats. Furthermore, the Mn-porphyrin/catalase-PEG complex significantly decreased the serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. These results suggest that the Mn-porphyrin/catalase-PEG complex exhibited the antioxidative activity to protect hepatic ischemia/reperfusion injury in vivo.
Collapse
|
11
|
Ho Y, Samarasinghe R, Knoch ME, Lewis M, Aizenman E, DeFranco DB. Selective inhibition of mitogen-activated protein kinase phosphatases by zinc accounts for extracellular signal-regulated kinase 1/2-dependent oxidative neuronal cell death. Mol Pharmacol 2008; 74:1141-51. [PMID: 18635668 PMCID: PMC2575064 DOI: 10.1124/mol.108.049064] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Oxidative stress induced by glutathione depletion in the mouse HT22 neuroblastoma cell line and embryonic rat immature cortical neurons causes a delayed, sustained activation of extracellular signal-regulated kinase (ERK) 1/2, which is required for cell death. This sustained activation of ERK1/2 is mediated primarily by a selective inhibition of distinct ERK1/2-directed phosphatases either by enhanced degradation (i.e., for mitogen-activated protein kinase phosphatase-1) or as shown here by reductions in enzymatic activity (i.e., for protein phosphatase type 2A). The inhibition of ERK1/2 phosphatases in HT22 cells and immature neurons subjected to glutathione depletion results from oxidative stress because phosphatase activity is restored in cells treated with the antioxidant butylated hydroxyanisole. This leads to reduced ERK1/2 activation and neuroprotection. Furthermore, an increase in free intracellular zinc that accompanies glutathione-induced oxidative stress in HT22 cells and immature neurons contributes to selective inhibition of ERK1/2 phosphatase activity and cell death. Finally, ERK1/2 also functions to maintain elevated levels of zinc. Thus, the elevation of intracellular zinc within neurons subjected to oxidative stress can trigger a robust positive feedback loop operating through activated ERK1/2 that rapidly sets into motion a zinc-dependent pathway of cell death.
Collapse
Affiliation(s)
- Yeung Ho
- Department of Neuroscience, University of Pittsburgh School of Medicine, 7041 BST 3, 3501 Fifth Ave., Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
12
|
Nakka VP, Gusain A, Mehta SL, Raghubir R. Molecular mechanisms of apoptosis in cerebral ischemia: multiple neuroprotective opportunities. Mol Neurobiol 2008. [PMID: 18066503 DOI: 10.1007/s12035-007-80139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Cerebral ischemia/reperfusion (I/R) injury triggers multiple and distinct but overlapping cell signaling pathways, which may lead to cell survival or cell damage. There is overwhelming evidence to suggest that besides necrosis, apoptosis do contributes significantly to the cell death subsequent to I/R injury. Both extrinsic and intrinsic apoptotic pathways play a vital role, and upon initiation, these pathways recruit downstream apoptotic molecules to execute cell death. Caspases and Bcl-2 family members appear to be crucial in regulating multiple apoptotic cell death pathways initiated during I/R. Similarly, inhibitor of apoptosis family of proteins (IAPs), mitogen-activated protein kinases, and newly identified apoptogenic molecules, like second mitochondrial-activated factor/direct IAP-binding protein with low pI (Smac/Diablo), omi/high-temperature requirement serine protease A2 (Omi/HtrA2), X-linked mammalian inhibitor of apoptosis protein-associated factor 1, and apoptosis-inducing factor, have emerged as potent regulators of cellular apoptotic/antiapoptotic machinery. All instances of cell survival/death mechanisms triggered during I/R are multifaceted and interlinked, which ultimately decide the fate of brain cells. Moreover, apoptotic cross-talk between major subcellular organelles suggests that therapeutic strategies should be optimally directed at multiple targets/mechanisms for better therapeutic outcome. Based on the current knowledge, this review briefly focuses I/R injury-induced multiple mechanisms of apoptosis, involving key apoptotic regulators and their emerging roles in orchestrating cell death programme. In addition, we have also highlighted the role of autophagy in modulating cell survival/death during cerebral ischemia. Furthermore, an attempt has been made to provide an encouraging outlook on emerging therapeutic approaches for cerebral ischemia.
Collapse
Affiliation(s)
- Venkata Prasuja Nakka
- Division of Pharmacology, Central Drug Research Institute, Chatter Manzil Palace, POB-173, Lucknow, 226001, India
| | | | | | | |
Collapse
|
13
|
Nakka VP, Gusain A, Mehta SL, Raghubir R. Molecular mechanisms of apoptosis in cerebral ischemia: multiple neuroprotective opportunities. Mol Neurobiol 2008; 37:7-38. [PMID: 18066503 DOI: 10.1007/s12035-007-8013-9] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 11/05/2007] [Indexed: 12/18/2022]
Abstract
Cerebral ischemia/reperfusion (I/R) injury triggers multiple and distinct but overlapping cell signaling pathways, which may lead to cell survival or cell damage. There is overwhelming evidence to suggest that besides necrosis, apoptosis do contributes significantly to the cell death subsequent to I/R injury. Both extrinsic and intrinsic apoptotic pathways play a vital role, and upon initiation, these pathways recruit downstream apoptotic molecules to execute cell death. Caspases and Bcl-2 family members appear to be crucial in regulating multiple apoptotic cell death pathways initiated during I/R. Similarly, inhibitor of apoptosis family of proteins (IAPs), mitogen-activated protein kinases, and newly identified apoptogenic molecules, like second mitochondrial-activated factor/direct IAP-binding protein with low pI (Smac/Diablo), omi/high-temperature requirement serine protease A2 (Omi/HtrA2), X-linked mammalian inhibitor of apoptosis protein-associated factor 1, and apoptosis-inducing factor, have emerged as potent regulators of cellular apoptotic/antiapoptotic machinery. All instances of cell survival/death mechanisms triggered during I/R are multifaceted and interlinked, which ultimately decide the fate of brain cells. Moreover, apoptotic cross-talk between major subcellular organelles suggests that therapeutic strategies should be optimally directed at multiple targets/mechanisms for better therapeutic outcome. Based on the current knowledge, this review briefly focuses I/R injury-induced multiple mechanisms of apoptosis, involving key apoptotic regulators and their emerging roles in orchestrating cell death programme. In addition, we have also highlighted the role of autophagy in modulating cell survival/death during cerebral ischemia. Furthermore, an attempt has been made to provide an encouraging outlook on emerging therapeutic approaches for cerebral ischemia.
Collapse
Affiliation(s)
- Venkata Prasuja Nakka
- Division of Pharmacology, Central Drug Research Institute, Chatter Manzil Palace, POB-173, Lucknow, 226001, India
| | | | | | | |
Collapse
|
14
|
Broderick PA. Studies of oxidative stress mechanisms using a morphine / ascorbate animal model and novel N-stearoyl cerebroside and laurate sensors. J Neural Transm (Vienna) 2007; 115:7-17. [PMID: 17896074 DOI: 10.1007/s00702-007-0809-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 08/22/2007] [Indexed: 11/25/2022]
Abstract
The field of oxidative stress, free radicals, cellular defense and antioxidants is a burgeoning field of research. An important biomarker of oxidative stress is ascorbate and alterations in ascorbate have been shown to be a reliable measure of oxidative stress mechanisms. The purpose of this pharmacological study was to assess changes in ascorbate in a morphine/ascorbate animal model using novel sensors which selectively detect electrochemical signals for ascorbate, dopamine (DA) and serotonin (5-HT). Studies were also performed to show reversal of morphine-induced effects by the opioid antagonist, naloxone. In vivo studies were modeled after (Enrico et al. 1997, 1998) in which the oxidative biomarker, ascorbate, was reported to compensate for free radicals produced by morphine-induced increases in DA and 5-HT. In vivo studies consisted of inserting the Laurate sensor in ventrolateral nucleus accumbens (vlNAcc), in anesthetized male, Sprague-Dawley rats. In separate studies, laboratory rats were injected with (1) ascorbate, (5-35 mg/kg, ip) or (2) dehydroascorbate (DHA) (20-100 mg/kg, ip). In another study, (3) morphine sulfate (10-20 mg/kg, sc) was injected followed by a single injection of naloxone (5 mg/kg, ip) in the same animal. Results showed that in vlNAcc, (1) neither ascorbate nor DHA injections produced ascorbate release, (2) morphine significantly increased DA and 5-HT release, but did not alter ascorbate release, and (3) naloxone significantly reversed the increased DA and 5-HT release produced by morphine. Moreover, the sensors, N-stearoyl cerebroside and laurate were studied in vitro, in separate studies, in order to assess selective and separate electrochemical detection of ascorbate, DA and 5-HT, neuromolecules involved in oxidative stress mechanisms. In vitro studies consisted of pretreatment of each sensor with a solution of phosphotidylethanolamine (PEA) and bovine serum albumin (BSA) which simulates the lipid/protein composition of brain. Each new sensor was tested for stability, sensitivity and selectivity by pipetting graduated increases in concentration of ascorbate, DA and 5-HT into an electrochemical cell containing saline/phosphate buffer. Multiple and repetitive images of electrochemical signals from ascorbate, DA and 5-HT were recorded. Results showed that both sensors produced three well-defined cathodic, selective and separate electrochemical signals for ascorbate, DA and 5-HT at characteristic oxidation potentials. Dopamine and 5-HT were detected at nM concentrations while ascorbate was detected at microM concentrations. In summary, the data show that very low concentrations of ascorbate occurred in vlNAcc since novel sensors detected ascorbate at high concentrations in vitro. The data indicate that little or no change in oxidative stress mechanisms occurred in vlNAcc after morphine or naloxone administration since the oxidative biomarker, ascorbate, was not signifi cantly altered. Thus, oxidative stress mechanisms and novel N-stearoyl cerebroside and laurate sensors, which selectively detect and separate neuromolecules involved in these mechanisms, may be potentially clinically relevant.
Collapse
Affiliation(s)
- P A Broderick
- Department of Physiology and Pharmacology, The City University of New York Medical School, New York, NY 10031, USA.
| |
Collapse
|
15
|
Darlington LG, Mackay GM, Forrest CM, Stoy N, George C, Stone TW. Altered kynurenine metabolism correlates with infarct volume in stroke. Eur J Neurosci 2007; 26:2211-21. [PMID: 17892481 DOI: 10.1111/j.1460-9568.2007.05838.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Inflammation and oxidative stress are involved in brain damage following stroke, and tryptophan oxidation along the kynurenine pathway contributes to the modulation of oxidative stress partly via the glutamate receptor agonist quinolinic acid and antagonist kynurenic acid, and via redox-active compounds such as 3-hydroxyanthranilic acid. We have confirmed that following a stroke, patients show early elevations of plasma neopterin, S100B and peroxidation markers, the latter two correlating with infarct volume assessed from computed tomography (CT) scans, and being consistent with a rapid inflammatory response. We now report that the kynurenine pathway of tryptophan metabolism was also activated, with an increased kynurenine : tryptophan ratio, but with a highly significant decrease in the ratio of 3-hydroxyanthranilic acid : anthranilic acid, which was strongly correlated with infarct volume. Levels of kynurenic acid were significantly raised in patients who died within 21 days compared with those who survived. The results suggest that increased tryptophan catabolism is initiated before or immediately after a stroke, and is related to the inflammatory response and oxidative stress, with a major change in 3-hydroxyanthranilic acid levels. Together with previous evidence that inhibiting the kynurenine pathway reduces brain damage in animal models of stroke and cerebral inflammation, and that increased kynurenine metabolism directly promotes oxidative stress, it is proposed that oxidative tryptophan metabolism may contribute to the oxidative stress and brain damage following stroke. Some form of anti-inflammatory intervention between the rise of S100B and the activation of microglia, including inhibition of the kynurenine pathway, may be valuable in modifying patient morbidity and mortality.
Collapse
|
16
|
Asayama S, Hanawa T, Nagaoka S, Kawakami H. Design of the Complex between Manganese Porphyrins and Catalase−Poly(ethylene glycol) Conjugates for a New Antioxidant. Mol Pharm 2007; 4:484-6. [PMID: 17385889 DOI: 10.1021/mp060093c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new design of antioxidant, the complex between manganese (Mn) porphyrins and catalase-poly(ethylene glycol) (PEG) conjugates, is reported. Gel filtration chromatography and a Langmuir-type adsorption isotherm proved that the catalase-PEG conjugate formed the complex with the Mn-porphyrin. The resulting complex exhibited significant superoxide dismutase (SOD) and catalase activity. These results suggest that the Mn-porphyrin/catalase-PEG complex with dual enzymatic activity, i.e., SOD and catalase, is promising for a new class of antioxidants.
Collapse
Affiliation(s)
- Shoichiro Asayama
- Department of Applied Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | | | | | | |
Collapse
|
17
|
Khan M, Jatana M, Elango C, Paintlia AS, Singh AK, Singh I. Cerebrovascular protection by various nitric oxide donors in rats after experimental stroke. Nitric Oxide 2006; 15:114-24. [PMID: 16524750 DOI: 10.1016/j.niox.2006.01.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 12/14/2005] [Accepted: 01/25/2006] [Indexed: 10/24/2022]
Abstract
The efficacy of nitric oxide (NO) treatment in ischemic stroke, though well recognized, is yet to be tested in clinic. NO donors used to treat ischemic injury are structurally diverse compounds. We have shown that treatment of S-nitrosoglutathione (GSNO) protects the brain against injury and inflammation in rats after experimental stroke [M. Khan, B. Sekhon, S. Giri, M. Jatana, A. G. Gilg, K. Ayasolla, C. Elango, A. K. Singh, I. Singh, S-Nitrosoglutathione reduces inflammation and protects brain against focal cerebral ischemia in a rat model of experimental stroke, J. Cereb. Blood Flow Metab. 25 (2005) 177-192.]. In this study, we tested structurally different NO donors including GSNO, S-nitroso-N-acetyl-penicillamine (SNAP), sodium nitroprusside (SNP), methylamine hexamethylene methylamine NONOate (MAHMA), propylamine propylamine NONOate (PAPA), 3-morpholinosydnonimine (SIN-1) and compared their neuroprotective efficacy and antioxidant property in rats after ischemia/reperfusion (I/R). GSNO, in addition to neuroprotection, decreased nitrotyrosine formation and lipid peroxidation in blood and increased the ratio of reduced versus oxidized glutathione (GSH/GSSG) in brain as compared to untreated animals. GSNO also prevented the I/R-induced increase in mRNA expression of ICAM-1 and E-Selectin. SNAP and SNP extended limited neuroprotection, reduced nitrotyrosine formation in blood and blocked increase in mRNA expression of ICAM-1 and E-Selectin in brain tissue. PAPA, MAHMA, and SIN-1 neither protected the brain nor reduced oxidative stress. We conclude that neuroprotective action of NO donors in experimental stroke depends on their ability to reduce oxidative stress both in brain and blood.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Stroke is the third leading cause of death and the leading cause of disability in developed countries, yet remains a poorly treated condition. Treatments for stroke can be aimed at acutely improving blood flow or protecting brain tissue against ischaemia, enhancing stroke recovery or reducing the risk of stroke recurrence. This paper reviews each of these approaches, particularly focusing on mechanisms for which there are agents in clinical trials. There are a number of appealing neuroprotective agents in Phase II and III clinical trials. However, the majority of acute treatments are likely to suffer from a narrow therapeutic time window and hence limited patient access. Combinations of acute approaches are likely to offer the greatest benefit, but present challenges in development. Promotion of recovery following stroke offers enormous potential for successful therapeutic intervention. Excitingly, new developments in preclinical research have identified possible ways in which this may be achieved.
Collapse
Affiliation(s)
- Isabel J Beresford
- Neurology & GI Centre of Excellence for Drug Discovery, GlaxoSmithKline Research & Development Ltd, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, UK.
| | | | | |
Collapse
|
19
|
Polidori MC, Praticó D, Ingegni T, Mariani E, Spazzafumo L, Del Sindaco P, Cecchetti R, Yao Y, Ricci S, Cherubini A, Stahl W, Sies H, Senin U, Mecocci P. Effects of vitamin C and aspirin in ischemic stroke-related lipid peroxidation: results of the AVASAS (Aspirin Versus Ascorbic acid plus Aspirin in Stroke) Study. Biofactors 2005; 24:265-74. [PMID: 16403987 DOI: 10.1002/biof.5520240131] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A condition of oxidative stress is known to occur in ischemic stroke, the current therapeutic intervention of which is largely limited to thrombolysis. To assess the effect of vitamin C - in conjunction to aspirin - in ischemic stroke-related lipid peroxidation, we measured plasma levels of ascorbate, of 8,12-isoprostanes F2alpha-VI (8,12-iPF2alpha-VI) and activities and levels of a broad spectrum of antioxidant enzymes and micronutrients in stroke patients randomized to receive, from stroke onset and up to three months, either vitamin C (200 mg/day) plus aspirin (300 mg/day) or only aspirin (300 mg/day). By the end of the first week, patients treated with vitamin C plus aspirin had higher vitamin C levels (p = 0.02) and lower 8,12-iPF2alpha-VI levels (p = 0.01) than patients treated with aspirin alone. The significance was maintained for the increase of vitamin C after three months of therapy (p < 0.01). The clinical functional outcome for both groups of patients similarly ameliorated after three months of treatment. We conclude that vitamin C, at the dose of 200 mg/day and in conjunction with aspirin, significantly decreases ischemic stroke-related lipid peroxidation in humans. Further studies are warranted to clarify whether the use of vitamin C may add clinical long-term beneficial effects in patients with stroke.
Collapse
Affiliation(s)
- M Cristina Polidori
- Institute of Biochemistry and Molecular Biology I, Heinrich-Heine University, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Konwinski RR, Haddad R, Chun JA, Klenow S, Larson SC, Haab BB, Furge LL. Oltipraz, 3H-1,2-dithiole-3-thione, and sulforaphane induce overlapping and protective antioxidant responses in murine microglial cells. Toxicol Lett 2004; 153:343-55. [PMID: 15454310 DOI: 10.1016/j.toxlet.2004.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 06/12/2004] [Accepted: 06/14/2004] [Indexed: 11/24/2022]
Abstract
Oltipraz (OPZ) is a known inducer of glutathione S-transferases and a mechanism-based inhibitor of cytochrome P450 1A2. Given the detoxification characteristics of this compound, the transcriptional effects of OPZ, along with the related naturally occurring compounds 3H-1,2-dithiole-3-thione (D3T) and sulforaphane (SF), were examined by gene expression profiling in murine BV-2 microglial cells, a neuronal macrophage cell type that mediates inflammatory responses in the brain. We show that the three compounds generate largely overlapping transcriptional changes in genes that are associated with detoxification and antioxidant responses. In addition, induction of an antioxidant/detoxification response in the microglial cells by OPZ, D3T, or SF was also able to protect cells from H2O2 -induced toxicity and to attenuate the production of reactive oxygen species in response to lipopolysaccharide treatment of cells. These results show that OPZ, D3T, and SF activate overlapping changes in gene expression and that they can regulate detoxification/antioxidant responses in multiple cells types, including cell types known to have a role in the production of oxidative stress.
Collapse
Affiliation(s)
- Ryan R Konwinski
- Department of Chemistry, Kalamazoo College, 1200 Academy Street, Kalamazoo, MI 49006, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Pei Z, Pang SF, Cheung RTF. Administration of melatonin after onset of ischemia reduces the volume of cerebral infarction in a rat middle cerebral artery occlusion stroke model. Stroke 2003; 34:770-5. [PMID: 12624306 DOI: 10.1161/01.str.0000057460.14810.3e] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE In both permanent and transient 3-hour middle cerebral artery occlusion rat stroke models, a single intraperitoneal injection of melatonin at 5 or 15 mg/kg given before ischemia was shown to reduce infarct volume at 72 hours. The present study was conducted to examine the treatment time window when melatonin was commenced after onset of ischemia. METHODS Adult male Sprague-Dawley rats were anesthetized to undergo right-sided middle cerebral artery occlusion for 3 hours. A single intraperitoneal injection of vehicle or melatonin at 5 mg/kg was given at 0, 1, or 3 hours after onset of ischemia. Other groups received multiple injections of vehicle or melatonin at 5 mg/kg with the first injection given at 1, 2, or 3 hours after onset of ischemia and the second and third injections at 24 and 48 hours, respectively. Multiple injections of melatonin at 15 mg/kg with the first injection given at 3 hours were also made. The infarct volume was determined at 72 hours. RESULTS A single dose of melatonin at 5 mg/kg given at 0 or 1 but not 3 hours after onset of ischemia reduced the infarct volume. Multiple doses of melatonin at 5 mg/kg also reduced the infarct volume when the first dose was given at 1 or 2 but not 3 hours after onset. Significant hemodynamic effects were not observed. CONCLUSIONS Our results indicate that melatonin at 5 mg/kg given as a single injection or multiple injections protects against focal cerebral ischemia when commenced within 2 hours of onset.
Collapse
MESH Headings
- Animals
- Brain Edema/pathology
- Cerebral Infarction/etiology
- Cerebral Infarction/pathology
- Cerebral Infarction/prevention & control
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Infarction, Middle Cerebral Artery/complications
- Infarction, Middle Cerebral Artery/drug therapy
- Infarction, Middle Cerebral Artery/pathology
- Injections, Intraperitoneal
- Ischemic Attack, Transient/complications
- Ischemic Attack, Transient/drug therapy
- Ischemic Attack, Transient/pathology
- Male
- Melatonin/pharmacology
- Neuroprotective Agents/pharmacology
- Rats
- Rats, Sprague-Dawley
- Reperfusion
- Time Factors
Collapse
Affiliation(s)
- Zhong Pei
- Division of Neurology, University Department of Medicine, Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | | | | |
Collapse
|
22
|
Asayama S, Mori T, Nagaoka S, Kawakami H. Chemical modification of manganese porphyrins with biomolecules for new functional antioxidants. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2003; 14:1169-79. [PMID: 14768906 DOI: 10.1163/156856203322553419] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Superoxide dismutase (SOD), which catalyzes the reduction of O2*- to H2O2, is the key enzyme for the protection of oxidative stress. Here we have chemically modified manganese (Mn) porphyrins with biomolecules for new functional antioxidants. The Mn-porphyrins were conjugated with the following biochemical functional molecules: (1) catalase, to catalyze reduction of H2O2 to H2O. The resulting conjugate showed dual functions of SOD and catalase; (2) a carbohydrate, to facilitate receptor binding and, hence, active targeting. The resulting conjugate showed both SOD activity and carbohydrate recognition. These results suggest that the antioxidants promise the application to biomedical fields.
Collapse
Affiliation(s)
- S Asayama
- Department of Applied Chemistry, Tokyo Metropolitan University. Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | | | | | | |
Collapse
|
23
|
Crack PJ, Taylor JM, de Haan JB, Kola I, Hertzog P, Iannello RC. Glutathione peroxidase-1 contributes to the neuroprotection seen in the superoxide dismutase-1 transgenic mouse in response to ischemia/reperfusion injury. J Cereb Blood Flow Metab 2003; 23:19-22. [PMID: 12500087 DOI: 10.1097/01.wcb.0000035181.38851.71] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The authors hypothesized that glutathione peroxidase-1 (Gpx-1) contributes to the neuroprotection seen in the superoxide dismutase-1 transgenic (Sod-1 tg) mouse. To investigate this hypothesis, they crossed the Gpx-1 -/- mouse with the Sod-1 tg and subjected the cross to a mouse model of ischemia/reperfusion. Two hours of focal cerebral ischemia followed by 24 hours of reperfusion was induced via intraluminal suture. The Sod-1 tg/Gpx-1 -/- cross exhibited no neuroprotection when infarct volume was measured; indeed, infarct volume increased in the Sod-1 tg/Gpx-1 -/- cross compared with the wild-type mouse. Our results suggest that Gpx-1 plays an important regulatory role in the protection of neural cells in response to ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Peter J Crack
- Center for Functional Genomics and Human Disease, Monash Institute of Reproduction and Development, Monash University, Melbourne, Australia.
| | | | | | | | | | | |
Collapse
|
24
|
Behl C, Moosmann B. Oxidative nerve cell death in Alzheimer's disease and stroke: antioxidants as neuroprotective compounds. Biol Chem 2002; 383:521-36. [PMID: 12033440 DOI: 10.1515/bc.2002.053] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many neurodegenerative disorders and syndromes are associated with an excessive generation of reactive oxygen species (ROS) and oxidative stress. The pathways to nerve cell death induced by diverse potential neurotoxins such as peptides, excitatory amino acids, cytokines or synthetic drugs commonly share oxidative downstream processes, which can cause either an acute oxidative destruction or activate secondary events leading to apoptosis. The pathophysiological role of ROS has been intensively studied in in vitro and in vivo models of chronic neurodegenerative diseases such as Alzheimer's disease (AD) and of syndromes associated with rapid nerve cell loss as occuring in stroke. In AD, oxidative neuronal cell dysfunction and cell death caused by protofibrils and aggregates of the AD-associated amyloid beta protein (Abeta) may causally contribute to pathogenesis and progression. ROS and reactive nitrogen species also take part in the complex cascade of events and the detrimental effects occuring during ischemia and reperfusion in stroke. Direct antioxidants such as chain-breaking free radical scavengers can prevent oxidative nerve cell death. Although there is ample experimental evidence demonstrating neuroprotective activities of direct antioxidants in vitro, the clinical evidence for antioxidant compounds to act as protective drugs is relatively scarce. Here, the neuroprotective potential of antioxidant phenolic structures including alpha-tocopherol (vitamin E) and 17beta-estradiol (estrogen) in vitro is summarized. In addition, the antioxidant and cytoprotective activities of lipophilic tyrosine- and tryptophan-containing structures are discussed. Finally, an outlook is given on the neuroprotective potential of aromatic amines and imines, which may comprise novel lead structures for antioxidant drug design.
Collapse
|