1
|
Karmakar S, Chatterjee M, Basu M, Ghosh MK. CK2: The master regulator in tumor immune-microenvironment - A crucial target in oncotherapy. Eur J Pharmacol 2025; 994:177376. [PMID: 39952582 DOI: 10.1016/j.ejphar.2025.177376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/22/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
A constitutively active serine/threonine kinase, casein kinase 2 (CK2) is involved in several physiological functions, such as DNA repair, apoptosis, and cell cycle control. New research emphasizes how critical CK2 is to the immune system's dysregulation in the tumor immune-microenvironment (TIME). The inhibition of immunological responses, including the downregulation of immune effector cells and the elevation of immunosuppressive proteins that aid in the development of tumor and immune evasion, has been linked to CK2 overexpression. CK2 maintains an immunosuppressive milieu that impedes anti-tumor immunity by encouraging the expressions and activities of immune checkpoint markers, regulating cytokines release, and boosting immune-suppressive cells such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) to maintain immune evasion. It is a promising target for cancer treatment due to its complex role in immune regulation and oncogenic pathways. In this study, we address the therapeutic perspectives of targeting CK2 in oncotherapy and investigate the mechanisms by which it controls immunological responses in the TME. This review, comprehending the function of CK2 in immune suppression can facilitate the creation of innovative treatment approaches aimed at augmenting anti-tumor immunity and enhancing immunotherapy effectiveness.
Collapse
Affiliation(s)
- Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata, 700032, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India; 4, Raja S.C, Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Mouli Chatterjee
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata, 700032, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India; 4, Raja S.C, Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, University of Calcutta, Dakshin Barasat, WB, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata, 700032, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India; 4, Raja S.C, Mullick Road, Jadavpur, Kolkata, 700032, India.
| |
Collapse
|
2
|
Vaaben TH, Lützhøft DO, Koulouktsis A, Dawoodi IM, Stavnsbjerg C, Kvich L, Gögenur I, Vazquez-Uribe R, Sommer MOA. Modulating tumor immunity using advanced microbiome therapeutics producing an indole metabolite. EMBO Rep 2025; 26:1688-1708. [PMID: 40055466 PMCID: PMC11977207 DOI: 10.1038/s44319-025-00386-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 04/09/2025] Open
Abstract
The gut microbiome has emerged as a key player in modulating immune responses against cancer, suggesting that microbial interventions can enhance treatment outcomes. Indole metabolites produced by probiotic bacteria activate the aryl hydrocarbon receptor (AhR), a transcription factor important for immune cell regulation. Cancer patients with high plasma concentrations of these metabolites have shown improved survival. Building on these findings, we have engineered Escherichia coli Nissle 1917 to produce the AhR agonist indole-3-acetic acid. Delivery of indole-3-acetic acid by tumor-colonizing bacteria changes the tumor microenvironment in a murine model, significantly increasing levels of CXCL9 and IFN-γ and elevating tumor-infiltrating T-cell abundance and activation. Treatment with our engineered strain inhibits tumor growth, improves survival in syngeneic tumor models, and leads to long-lasting immunity in a tumor rechallenge experiment. Further investigation indicates that this immune modulation is driven by the direct activation of AhR by indole-3-acetic acid, leading to differential cytokine expression and a shift in immune cell composition within the tumor. This study highlights the importance of microbial metabolites in immune modulation and supports exploring microbiome-based therapies in oncology.
Collapse
Affiliation(s)
- Troels Holger Vaaben
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, DK2800, Denmark
| | - Ditte Olsen Lützhøft
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, DK2800, Denmark
| | - Andreas Koulouktsis
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, DK2800, Denmark
| | - Ida Melisa Dawoodi
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Camilla Stavnsbjerg
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Lasse Kvich
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Region Zealand, 4690, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Region Zealand, 4690, Denmark
| | - Ruben Vazquez-Uribe
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, DK2800, Denmark
- Center for Microbiology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Morten Otto Alexander Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, DK2800, Denmark.
| |
Collapse
|
3
|
Ullah K, Ai L, Li Y, Liu L, Zhang Q, Pan K, Humayun Z, Piao L, Sitikov A, Zhao Q, Su Q, Sharp W, Fang Y, Wu D, Liao JK, Wu R. ARNT-dependent HIF-2α signaling protects cardiac microvascular barrier integrity and heart function post-myocardial infarction. Commun Biol 2025; 8:440. [PMID: 40089572 PMCID: PMC11910586 DOI: 10.1038/s42003-025-07753-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 02/15/2025] [Indexed: 03/17/2025] Open
Abstract
Myocardial infarction (MI) compromises the cardiac microvascular endothelial barrier, increasing leakage and inflammation. HIF2α, predominantly expressed in cardiac endothelial cells during ischemia, has an unclear role in barrier function during MI. Here, we show that inducible, adult endothelial-specific deletion of Hif2α in mice leads to increased mortality, cardiac leakage, inflammation, reduced heart function, and adverse remodeling after MI. In parallel, human cardiac microvascular endothelial cells (HCMVECs) lacking HIF2α display impaired barrier integrity, reduced tight-junction proteins, increased cell death, and elevated IL-6 levels, effects that are alleviated by overexpressing ARNT, a key partner of HIF2α under hypoxic conditions. Interestingly, ARNT, but not HIF2α, directly binds the IL-6 promoter to suppress its expression. These findings suggest the HIF2α/ARNT axis as a protective mechanism in heart failure post-MI and identify potential therapeutic targets to support cardiac function.
Collapse
Affiliation(s)
- Karim Ullah
- Section of Cardiology,, Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Lizhuo Ai
- Section of Cardiology,, Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, USA
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Yan Li
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Lifeng Liu
- Section of Cardiology,, Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Qin Zhang
- Section of Cardiology,, Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Kaichao Pan
- Section of Cardiology,, Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Zainab Humayun
- Section of Cardiology,, Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Lin Piao
- Emergency Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Albert Sitikov
- Section of Cardiology,, Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Qiong Zhao
- Division of Cardiology, Department of Medicine, Inova Heart and Vascular Institute, Falls Church, VA, USA
| | - Qiaozhu Su
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Willard Sharp
- Emergency Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Yun Fang
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - David Wu
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - James K Liao
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Rongxue Wu
- Section of Cardiology,, Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Koh YC, Pan MH. Food-Borne Polycyclic Aromatic Hydrocarbons and Circadian Disruption. ACS OMEGA 2024; 9:31298-31312. [PMID: 39072055 PMCID: PMC11270680 DOI: 10.1021/acsomega.4c04120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Circadian disruption has been found to increase the risk of metabolic diseases, brain disorders, and cancer. The aryl hydrocarbon receptor (AhR), responsible for xenobiotic metabolism, is known to be activated by certain environmental stimuli, including polycyclic aromatic hydrocarbons (PAHs). Exposure to these stimuli may lead to diseases related to circadian disruption, with AhR activation suggested as a leading cause. Both the aryl hydrocarbon receptor nuclear translocator (ARNT) and aryl hydrocarbon receptor nuclear translocator-like (BMAL1) are class II basic helix-loop-helix/Per-ARNT-SIM (bHLH-PAS) proteins. These proteins form heterodimers with stimulated class I bHLH-PAS proteins, including circadian locomotor output cycles kaput (CLOCK) and AhR. Due to their sequential similarity, the overactivation of AhR by toxicants, such as PAHs, may lead to the formation of heterodimers with BMAL1, potentially causing circadian disruption. Dysregulation of BMAL1 can affect a wide range of metabolic genes, emphasizing its crucial roles. However, this issue has not been adequately addressed. Previous studies have reported that the inhibitory effects of phytochemicals on AhR activation can ameliorate diseases induced by environmental toxicants. Additionally, some phytochemicals have shown preventive effects on circadian misalignment. Therefore, this Review aims to explore potential strategies to prevent circadian disruption induced by food-borne toxicants, such as benzo[a]pyrene; to generate new ideas for future studies; and to highlight the importance of investigating these preventive strategies.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 106017, Taiwan
| | - Min-Hsiung Pan
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 106017, Taiwan
- Department
of Medical Research, China Medical University Hospital, China Medical University, Taichung City 404327, Taiwan
- Department
of Health and Nutrition Biotechnology, Asia
University, Taichung City 413305, Taiwan
| |
Collapse
|
5
|
Mosa FES, AlRawashdeh S, El-Kadi AOS, Barakat K. Investigating the Aryl Hydrocarbon Receptor Agonist/Antagonist Conformational Switch Using Well-Tempered Metadynamics Simulations. J Chem Inf Model 2024; 64:2021-2034. [PMID: 38457778 DOI: 10.1021/acs.jcim.4c00169] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates biological signals to control various complicated cellular functions. It plays a crucial role in environmental sensing and xenobiotic metabolism. Dysregulation of AhR is associated with health concerns, including cancer and immune system disorders. Upon binding to AhR ligands, AhR, along with heat shock protein 90 and other partner proteins undergoes a transformation in the nucleus, heterodimerizes with the aryl hydrocarbon receptor nuclear translocator (ARNT), and mediates numerous biological functions by inducing the transcription of various AhR-responsive genes. In this manuscript, the 3-dimensional structure of the entire human AhR is obtained using an artificial intelligence tool, and molecular dynamics (MD) simulations are performed to study different structural conformations. These conformations provide insights into the protein's function and movement in response to ligand binding. Understanding the dynamic behavior of AhR will contribute to the development of targeted therapies for associated health conditions. Therefore, we employ well-tempered metadynamics (WTE-metaD) simulations to explore the conformational landscape of AhR and obtain a better understanding of its functional behavior. Our computational results are in excellent agreement with previous experimental findings, revealing the closed and open states of helix α1 in the basic helix-loop-helix (bHLH domain) in the cytoplasm at the atomic level. We also predict the inactive form of AhR and identify Arginine 42 as a key residue that regulates switching between closed and open conformations in existing AhR modulators.
Collapse
Affiliation(s)
- Farag E S Mosa
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Sara AlRawashdeh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
6
|
Huang Y, Ge MX, Li YH, Li JL, Yu Q, Xiao FH, Ao HS, Yang LQ, Li J, He Y, Kong QP. Longevity-Associated Transcription Factor ATF7 Promotes Healthspan by Suppressing Cellular Senescence and Systematic Inflammation. Aging Dis 2023:AD.2022.1217. [PMID: 37163432 PMCID: PMC10389835 DOI: 10.14336/ad.2022.1217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/17/2022] [Indexed: 05/12/2023] Open
Abstract
Aging is characterized by persistent low-grade systematic inflammation, which is largely responsible for the occurrence of various age-associated diseases. We and others have previously reported that long-lived people (such as centenarians) can delay the onset of or even escape certain major age-related diseases. Here, by screening blood transcriptome and inflammatory profiles, we found that long-lived individuals had a relatively lower inflammation level (IL6, TNFα), accompanied by up-regulation of activating transcription factor 7 (ATF7). Interestingly, ATF7 expression was gradually reduced during cellular senescence. Loss of ATF7 induced cellular senescence, while overexpression delayed senescence progress and senescence-associated secretory phenotype (SASP) secretion. We showed that the anti-senescence effects of ATF7 were achieved by inhibiting nuclear factor kappa B (NF-κB) signaling and increasing histone H3K9 dimethylation (H3K9me2). In Caenorhabditis elegans, ATF7 overexpression significantly suppressed aging biomarkers and extended lifespan. Our findings suggest that ATF7 is a longevity-promoting factor that lowers cellular senescence and inflammation in long-lived individuals.
Collapse
Affiliation(s)
- Yaqun Huang
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Department of Dermatology/National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Xia Ge
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Hong Li
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jing-Lin Li
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Department of Dermatology/National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Qin Yu
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Hong-Shun Ao
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Li-Qin Yang
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ji Li
- Department of Dermatology/National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Yonghan He
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
7
|
Piwarski SA, Salisbury TB. The effects of environmental aryl hydrocarbon receptor ligands on signaling and cell metabolism in cancer. Biochem Pharmacol 2023; 216:115771. [PMID: 37652105 DOI: 10.1016/j.bcp.2023.115771] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Dioxin and dioxin-like compounds are chlorinated organic pollutants formed during the manufacturing of other chemicals. Dioxins are ligands of the aryl hydrocarbon receptor (AHR), that induce AHR-mediated biochemical and toxic responses and are persistent in the environment. 2,3,7,8- tetrachlorodibenzo para dioxin (TCDD) is the prototypical AHR ligand and its effects represent dioxins. TCDD induces toxicity, immunosuppression and is a suspected tumor promoter. The role of TCDD in cancer however is debated and context-dependent. Environmental particulate matter, polycyclic aromatic hydrocarbons, perfluorooctane sulfonamide, endogenous AHR ligands, and cAMP signaling activate AHR through TCDD-independent pathways. The effect of activated AHR in cancer is context-dependent. The ability of FDA-approved drugs to modulate AHR activity has sparked interest in their repurposing for cancer therapy. TCDD by interfering with endogenous pathways, and overstimulating other endogenous pathways influences all stages of cancer. Herein we review signaling mechanisms that activate AHR and mechanisms by which activated AHR modulates signaling in cancer including affected metabolic pathways.
Collapse
Affiliation(s)
- Sean A Piwarski
- Duke Cancer Institute, Department of GU Oncology, Duke University Medical Center, 905 South Lasalle Street, Durham, NC 27710, USA.
| | - Travis B Salisbury
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| |
Collapse
|
8
|
Opitz CA, Holfelder P, Prentzell MT, Trump S. The complex biology of aryl hydrocarbon receptor activation in cancer and beyond. Biochem Pharmacol 2023; 216:115798. [PMID: 37696456 PMCID: PMC10570930 DOI: 10.1016/j.bcp.2023.115798] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
The aryl hydrocarbon receptor (AHR) signaling pathway is a complex regulatory network that plays a critical role in various biological processes, including cellular metabolism, development, and immune responses. The complexity of AHR signaling arises from multiple factors, including the diverse ligands that activate the receptor, the expression level of AHR itself, and its interaction with the AHR nuclear translocator (ARNT). Additionally, the AHR crosstalks with the AHR repressor (AHRR) or other transcription factors and signaling pathways and it can also mediate non-genomic effects. Finally, posttranslational modifications of the AHR and its interaction partners, epigenetic regulation of AHR and its target genes, as well as AHR-mediated induction of enzymes that degrade AHR-activating ligands may contribute to the context-specificity of AHR activation. Understanding the complexity of AHR signaling is crucial for deciphering its physiological and pathological roles and developing therapeutic strategies targeting this pathway. Ongoing research continues to unravel the intricacies of AHR signaling, shedding light on the regulatory mechanisms controlling its diverse functions.
Collapse
Affiliation(s)
- Christiane A Opitz
- German Cancer Research Center (DKFZ), Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, 69120 Heidelberg, Germany; Neurology Clinic and National Center for Tumor Diseases, 69120 Heidelberg, Germany.
| | - Pauline Holfelder
- German Cancer Research Center (DKFZ), Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, 69120 Heidelberg, Germany; Faculty of Bioscience, Heidelberg University, 69120 Heidelberg, Germany
| | - Mirja Tamara Prentzell
- German Cancer Research Center (DKFZ), Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, 69120 Heidelberg, Germany; Faculty of Bioscience, Heidelberg University, 69120 Heidelberg, Germany
| | - Saskia Trump
- Molecular Epidemiology Unit, Berlin Institute of Health at Charité and the German Cancer Consortium (DKTK), Partner Site Berlin, a partnership between DKFZ and Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
9
|
Elson DJ, Kolluri SK. Tumor-Suppressive Functions of the Aryl Hydrocarbon Receptor (AhR) and AhR as a Therapeutic Target in Cancer. BIOLOGY 2023; 12:526. [PMID: 37106727 PMCID: PMC10135996 DOI: 10.3390/biology12040526] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor involved in regulating a wide range of biological responses. A diverse array of xenobiotics and endogenous small molecules bind to the receptor and drive unique phenotypic responses. Due in part to its role in mediating toxic responses to environmental pollutants, AhR activation has not been traditionally viewed as a viable therapeutic approach. Nonetheless, the expression and activation of AhR can inhibit the proliferation, migration, and survival of cancer cells, and many clinically approved drugs transcriptionally activate AhR. Identification of novel select modulators of AhR-regulated transcription that promote tumor suppression is an active area of investigation. The development of AhR-targeted anticancer agents requires a thorough understanding of the molecular mechanisms driving tumor suppression. Here, we summarized the tumor-suppressive mechanisms regulated by AhR with an emphasis on the endogenous functions of the receptor in opposing carcinogenesis. In multiple different cancer models, the deletion of AhR promotes increased tumorigenesis, but a precise understanding of the molecular cues and the genetic targets of AhR involved in this process is lacking. The intent of this review was to synthesize the evidence supporting AhR-dependent tumor suppression and distill insights for development of AhR-targeted cancer therapeutics.
Collapse
Affiliation(s)
- Daniel J. Elson
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Siva K. Kolluri
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
10
|
Perdew GH, Esser C, Snyder M, Sherr DH, van den Bogaard EH, McGovern K, Fernández-Salguero PM, Coumoul X, Patterson AD. The Ah Receptor from Toxicity to Therapeutics: Report from the 5th AHR Meeting at Penn State University, USA, June 2022. Int J Mol Sci 2023; 24:5550. [PMID: 36982624 PMCID: PMC10058801 DOI: 10.3390/ijms24065550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a sensor of low-molecular-weight molecule signals that originate from environmental exposures, the microbiome, and host metabolism. Building upon initial studies examining anthropogenic chemical exposures, the list of AHR ligands of microbial, diet, and host metabolism origin continues to grow and has provided important clues as to the function of this enigmatic receptor. The AHR has now been shown to be directly involved in numerous biochemical pathways that influence host homeostasis, chronic disease development, and responses to toxic insults. As this field of study has continued to grow, it has become apparent that the AHR is an important novel target for cancer, metabolic diseases, skin conditions, and autoimmune disease. This meeting attempted to cover the scope of basic and applied research being performed to address possible applications of our basic knowledge of this receptor on therapeutic outcomes.
Collapse
Affiliation(s)
- Gary H. Perdew
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, Penn State University, University Park, PA 16802, USA
| | - Charlotte Esser
- IUF-Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Megan Snyder
- Department of Environmental Health, Boston University School of Public Health, 72 East Concord Street, Boston, MA 02118, USA
| | - David H. Sherr
- Department of Environmental Health, Boston University School of Public Health, 72 East Concord Street, Boston, MA 02118, USA
| | - Ellen H. van den Bogaard
- Department of Dermatology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Karen McGovern
- Ikena Oncology, Inc., 645 Summer Street Suite 101, Boston, MA 02210, USA
| | - Pedro M. Fernández-Salguero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071 Badajoz, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Avenida de la Investigación s/n, 06071 Badajoz, Spain
| | - Xavier Coumoul
- INSERM UMR-S1124, 45 rue des Saints-Peères, 75006 Paris, France
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
11
|
Edwards HE, Gorelick DA. The evolution and structure/function of bHLH-PAS transcription factor family. Biochem Soc Trans 2022; 50:1227-1243. [PMID: 35695677 PMCID: PMC10584024 DOI: 10.1042/bst20211225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023]
Abstract
Proteins that contain basic helix-loop-helix (bHLH) and Per-Arnt-Sim motifs (PAS) function as transcription factors. bHLH-PAS proteins exhibit essential and diverse functions throughout the body, from cell specification and differentiation in embryonic development to the proper function of organs like the brain and liver in adulthood. bHLH-PAS proteins are divided into two classes, which form heterodimers to regulate transcription. Class I bHLH-PAS proteins are typically activated in response to specific stimuli, while class II proteins are expressed more ubiquitously. Here, we discuss the general structure and functions of bHLH-PAS proteins throughout the animal kingdom, including family members that do not fit neatly into the class I-class II organization. We review heterodimerization between class I and class II bHLH-PAS proteins, binding partner selectivity and functional redundancy. Finally, we discuss the evolution of bHLH-PAS proteins, and why a class I protein essential for cardiovascular development in vertebrates like chicken and fish is absent from mammals.
Collapse
Affiliation(s)
- Hailey E Edwards
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, U.S.A
| | - Daniel A Gorelick
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, U.S.A
| |
Collapse
|
12
|
AhR promotes phosphorylation of ARNT isoform 1 in human T cell malignancies as a switch for optimal AhR activity. Proc Natl Acad Sci U S A 2022; 119:e2114336119. [PMID: 35290121 PMCID: PMC8944900 DOI: 10.1073/pnas.2114336119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aryl hydrocarbon receptor nuclear translocator (ARNT) is a transcription factor present in immune cells as a long and short isoform, referred to as isoforms 1 and 3, respectively. However, investigation into potential ARNT isoform–specific immune functions is lacking despite the well-established heterodimerization requirement of ARNT with, and for the activity of, the aryl hydrocarbon receptor (AhR), a critical mediator of immune homeostasis. Here, using global and targeted transcriptomics analyses, we show that the relative ARNT isoform 1:3 ratio in human T cell lymphoma cells dictates the amplitude and direction of AhR target gene regulation. Specifically, shifting the ARNT isoform 1:3 ratio lower by suppressing isoform 1 enhances, or higher by suppressing isoform 3 abrogates, AhR responsiveness to ligand activation through preprograming a cellular genetic background that directs explicit gene expression patterns. Moreover, the fluctuations in gene expression patterns that accompany a decrease or increase in the ARNT isoform 1:3 ratio are associated with inflammation or immunosuppression, respectively. Molecular studies identified the unique casein kinase 2 (CK2) phosphorylation site within isoform 1 as an essential parameter to the mechanism of ARNT isoform–specific regulation of AhR signaling. Notably, CK2-mediated phosphorylation of ARNT isoform 1 is dependent on ligand-induced AhR nuclear translocation and is required for optimal AhR target gene regulation. These observations reveal ARNT as a central modulator of AhR activity predicated on the status of the ARNT isoform ratio and suggest that ARNT-based therapies are a viable option for tuning the immune system to target immune disorders.
Collapse
|