1
|
Georgieva M, Stojceski F, Wüthrich F, Sosthène C, Blanco Pérez L, Grasso G, Jacquier N. Mutations in the essential outer membrane protein BamA contribute to Escherichia coli resistance to the antimicrobial peptide TAT-RasGAP 317-326. J Biol Chem 2025; 301:108018. [PMID: 39608713 PMCID: PMC11842939 DOI: 10.1016/j.jbc.2024.108018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024] Open
Abstract
Antimicrobial peptides (AMPs) are promising alternatives to classical antibiotics against antibiotic-resistant pathogens. TAT-RasGAP317-326 is an AMP with broad range antibacterial activity, but its mechanism of action is unknown. In this study, we analyzed a strain of Escherichia coli with extensive resistance to TAT-RasGAP317-326 but not to other AMPs that we obtained after twenty passages during an in vitro resistance selection experiment. This strain accumulated four mutations. One of these is a point mutation in bamA, which encodes an essential protein involved in the folding and proper insertion of outer membrane proteins. The mutation resulted in a change of charge in a surface-exposed negatively charged loop of the BamA protein. Using CRISPR-Cas9-based targeted mutagenesis, we showed that mutations lowering the negative charge of this loop decreased sensitivity of E. coli to TAT-RasGAP317-326. In silico simulations unveiled the molecular driving forces responsible for the interaction between TAT-RasGAP317-326 and BamA. These results indicated that electrostatic interactions, particularly hydrogen bonds, are involved in the stability of the molecular complex, representing a predictive fingerprint of the TAT-RasGAP317-326 - BamA interaction strength. Interestingly, BamA activity was only partially affected by TAT-RasGAP317-326, indicating that BamA may function as a specific receptor for this AMP. Our results indicate that binding and entry of TAT-RasGAP317-326 may involve different mechanisms compared to other AMPs, which is in line with limited cross-resistance observed between different AMPs. This limited cross-resistance is important for the clinical application of AMPs towards drug-resistant pathogens.
Collapse
Affiliation(s)
- Maria Georgieva
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Filip Stojceski
- Dalle Molle Institute for Artificial Intelligence, IDSIA USI-SUPSI, Lugano, Switzerland
| | - Fabian Wüthrich
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Carole Sosthène
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Laura Blanco Pérez
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gianvito Grasso
- Dalle Molle Institute for Artificial Intelligence, IDSIA USI-SUPSI, Lugano, Switzerland
| | - Nicolas Jacquier
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Benn G, Borrelli C, Prakaash D, Johnson ANT, Fideli VA, Starr T, Fitzmaurice D, Combs AN, Wühr M, Rojas ER, Khalid S, Hoogenboom BW, Silhavy TJ. OmpA controls order in the outer membrane and shares the mechanical load. Proc Natl Acad Sci U S A 2024; 121:e2416426121. [PMID: 39630873 DOI: 10.1073/pnas.2416426121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
OmpA, a predominant outer membrane (OM) protein in Escherichia coli, affects virulence, adhesion, and bacterial OM integrity. However, despite more than 50 y of research, the molecular basis for the role of OmpA has remained elusive. In this study, we demonstrate that OmpA organizes the OM protein lattice and mechanically connects it to the cell wall (CW). Using gene fusions, atomic force microscopy, simulations, and microfluidics, we show that the β-barrel domain of OmpA is critical for maintaining the permeability barrier, but both the β-barrel and CW-binding domains are necessary to enhance the cell envelope's strength. OmpA integrates the compressive properties of the OM protein lattice with the tensile strength of the CW, forming a mechanically robust composite that increases overall integrity. This coupling likely underpins the ability of the entire envelope to function as a cohesive, resilient structure, critical for the survival of bacteria.
Collapse
Affiliation(s)
- Georgina Benn
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Carolina Borrelli
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
- Department of Physics & Astronomy, University College London, London WC1E 6BT, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Dheeraj Prakaash
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Alex N T Johnson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540
| | - Vincent A Fideli
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Tahj Starr
- Department of Biology, New York University, New York, NY 10003
| | | | - Ashton N Combs
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Martin Wühr
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540
| | - Enrique R Rojas
- Department of Biology, New York University, New York, NY 10003
| | - Syma Khalid
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
- Department of Physics & Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| |
Collapse
|
3
|
Zarzecka U, Skorko-Glonek J. Intricate Structure-Function Relationships: The Case of the HtrA Family Proteins from Gram-Negative Bacteria. Int J Mol Sci 2024; 25:13182. [PMID: 39684892 DOI: 10.3390/ijms252313182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Proteolytic enzymes play key roles in living organisms. Because of their potentially destructive action of degrading other proteins, their activity must be very tightly controlled. The evolutionarily conserved proteins of the HtrA family are an excellent example illustrating strategies for regulating enzymatic activity, enabling protease activation in response to an appropriate signal, and protecting against uncontrolled proteolysis. Because HtrA homologs play key roles in the virulence of many Gram-negative bacterial pathogens, they are subject to intense investigation as potential therapeutic targets. Model HtrA proteins from bacterium Escherichia coli are allosteric proteins with reasonably well-studied properties. Binding of appropriate ligands induces very large structural changes in these enzymes, including changes in the organization of the oligomer, which leads to the acquisition of the active conformation. Properly coordinated events occurring during the process of HtrA activation ensure proper functioning of HtrA and, consequently, ensure fitness of bacteria. The aim of this review is to present the current state of knowledge on the structure and function of the exemplary HtrA family proteins from Gram-negative bacteria, including human pathogens. Special emphasis is paid to strategies for regulating the activity of these enzymes.
Collapse
Affiliation(s)
- Urszula Zarzecka
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Joanna Skorko-Glonek
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
4
|
Combs AN, Silhavy TJ. Periplasmic Chaperones: Outer Membrane Biogenesis and Envelope Stress. Annu Rev Microbiol 2024; 78:191-211. [PMID: 39008906 DOI: 10.1146/annurev-micro-041522-102901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Envelope biogenesis and homeostasis in gram-negative bacteria are exceptionally intricate processes that require a multitude of periplasmic chaperones to ensure cellular survival. Remarkably, these chaperones perform diverse yet specialized functions entirely in the absence of external energy such as ATP, and as such have evolved sophisticated mechanisms by which their activities are regulated. In this article, we provide an overview of the predominant periplasmic chaperones that enable efficient outer membrane biogenesis and envelope homeostasis in Escherichia coli. We also discuss stress responses that act to combat unfolded protein stress within the cell envelope, highlighting the periplasmic chaperones involved and the mechanisms by which envelope homeostasis is restored.
Collapse
Affiliation(s)
- Ashton N Combs
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA;
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA;
| |
Collapse
|
5
|
dos Santos TMA, Thomson BD, Marquez MD, Pan L, Monfared TH, Kahne DE. Native β-barrel substrates pass through two shared intermediates during folding on the BAM complex. Proc Natl Acad Sci U S A 2024; 121:e2409672121. [PMID: 39378083 PMCID: PMC11494362 DOI: 10.1073/pnas.2409672121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024] Open
Abstract
The assembly of β-barrel proteins into membranes is mediated by the evolutionarily conserved β-barrel assembly machine (BAM) complex. In Escherichia coli, BAM folds numerous substrates which vary considerably in size and shape. How BAM is able to efficiently fold such a diverse array of β-barrel substrates is not clear. Here, we develop a disulfide crosslinking method to trap native substrates in vivo as they fold on BAM. By placing a cysteine within the luminal wall of the BamA barrel as well as in the substrate β-strands, we can compare the residence time of each substrate strand within the BamA lumen. We validated this method using two defective, slow-folding substrates. We used this method to characterize stable intermediates which occur during folding of two structurally different native substrates. Strikingly, these intermediates occur during identical stages of folding for both substrates: soon after folding has begun and just before folding is completed. We suggest that these intermediates arise due to barriers to folding that are common between β-barrel substrates, and that the BAM catalyst is able to fold so many different substrates because it addresses these common challenges.
Collapse
Affiliation(s)
| | - Benjamin D. Thomson
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Melissa D. Marquez
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Lydia Pan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Tabasom H. Monfared
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Daniel E. Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| |
Collapse
|
6
|
Wang X, Nyenhuis SB, Bernstein HD. The translocation assembly module (TAM) catalyzes the assembly of bacterial outer membrane proteins in vitro. Nat Commun 2024; 15:7246. [PMID: 39174534 PMCID: PMC11341756 DOI: 10.1038/s41467-024-51628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
The translocation and assembly module (TAM) has been proposed to play a crucial role in the assembly of a small subset of outer membrane proteins (OMPs) in Proteobacteria based on experiments conducted in vivo using tamA and tamB mutant strains and in vitro using biophysical methods. TAM consists of an OMP (TamA) and a periplasmic protein that is anchored to the inner membrane by a single α helix (TamB). Here we examine the function of the purified E. coli complex in vitro after reconstituting it into proteoliposomes. We find that TAM catalyzes the assembly of four model OMPs nearly as well as the β-barrel assembly machine (BAM), a universal heterooligomer that contains a TamA homolog (BamA) and that catalyzes the assembly of almost all E. coli OMPs. Consistent with previous results, both TamA and TamB are required for significant TAM activity. Our study provides direct evidence that TAM can function as an independent OMP insertase and describes a new method to gain insights into TAM function.
Collapse
Affiliation(s)
- Xu Wang
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sarah B Nyenhuis
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Devlin T, Fleming KG. A team of chaperones play to win in the bacterial periplasm. Trends Biochem Sci 2024; 49:667-680. [PMID: 38677921 DOI: 10.1016/j.tibs.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/29/2024]
Abstract
The survival and virulence of Gram-negative bacteria require proper biogenesis and maintenance of the outer membrane (OM), which is densely packed with β-barrel OM proteins (OMPs). Before reaching the OM, precursor unfolded OMPs (uOMPs) must cross the whole cell envelope. A network of periplasmic chaperones and proteases maintains unfolded but folding-competent conformations of these membrane proteins in the aqueous periplasm while simultaneously preventing off-pathway aggregation. These periplasmic proteins utilize different strategies, including conformational heterogeneity, oligomerization, multivalency, and kinetic partitioning, to perform and regulate their functions. Redundant and unique characteristics of the individual periplasmic players synergize to create a protein quality control team capable responding to changing environmental stresses.
Collapse
Affiliation(s)
- Taylor Devlin
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Karen G Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
8
|
Wang X, Nyenhuis SB, Bernstein HD. The translocation assembly module (TAM) catalyzes the assembly of bacterial outer membrane proteins in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599893. [PMID: 39372782 PMCID: PMC11451606 DOI: 10.1101/2024.06.20.599893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The bacterial translocation assembly module (TAM) contains an outer membrane protein (OMP) (TamA) and an elongated periplasmic protein that is anchored to the inner membrane by a single α helix (TamB). TAM has been proposed to play a critical role in the assembly of a small subset of OMPs produced by Proteobacteria based on experiments conducted in vivo using tamA and/or tamB deletion or mutant strains and in vitro using biophysical methods. Recent genetic experiments, however, have strongly suggested that TAM promotes phospholipid homeostasis. To test the idea that TAM catalyzes OMP assembly directly, we examined the function of the purified E. coli complex in vitro after reconstituting it into proteoliposomes. Remarkably, we find that TAM catalyzes the assembly of four model OMPs nearly as well as the β-barrel assembly machinery (BAM), a universal heterooligomer that contains a TamA homolog (BamA) and that catalyzes the assembly of almost all E. coli OMPs. Consistent with previous results, both TamA and TamB are required for significant TAM activity. Our results provide strong evidence that although their peripheral subunits are unrelated, both BAM and TAM function as independent OMP insertases. Furthermore, our study describes a new method to gain insights into TAM function.
Collapse
Affiliation(s)
- Xu Wang
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Sarah B. Nyenhuis
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Harris D. Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
9
|
Lauber F, Deme JC, Liu X, Kjær A, Miller HL, Alcock F, Lea SM, Berks BC. Structural insights into the mechanism of protein transport by the Type 9 Secretion System translocon. Nat Microbiol 2024; 9:1089-1102. [PMID: 38538833 PMCID: PMC10994853 DOI: 10.1038/s41564-024-01644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/19/2024] [Indexed: 04/06/2024]
Abstract
Secretion systems are protein export machines that enable bacteria to exploit their environment through the release of protein effectors. The Type 9 Secretion System (T9SS) is responsible for protein export across the outer membrane (OM) of bacteria of the phylum Bacteroidota. Here we trap the T9SS of Flavobacterium johnsoniae in the process of substrate transport by disrupting the T9SS motor complex. Cryo-EM analysis of purified substrate-bound T9SS translocons reveals an extended translocon structure in which the previously described translocon core is augmented by a periplasmic structure incorporating the proteins SprE, PorD and a homologue of the canonical periplasmic chaperone Skp. Substrate proteins bind to the extracellular loops of a carrier protein within the translocon pore. As transport intermediates accumulate on the translocon when energetic input is removed, we deduce that release of the substrate-carrier protein complex from the translocon is the energy-requiring step in T9SS transport.
Collapse
Affiliation(s)
- Frédéric Lauber
- Department of Biochemistry, University of Oxford, Oxford, UK
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Justin C Deme
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- The Central Oxford Structural Molecular Imaging Centre (COSMIC), University of Oxford, Oxford, UK
| | - Xiaolong Liu
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Andreas Kjær
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Helen L Miller
- Biological Physics Research Group, Department of Physics, University of Oxford, Oxford, UK
| | - Felicity Alcock
- Department of Biochemistry, University of Oxford, Oxford, UK
- Newcastle University Biosciences Institute, Newcastle University, Newcastle, UK
| | - Susan M Lea
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
- The Central Oxford Structural Molecular Imaging Centre (COSMIC), University of Oxford, Oxford, UK.
| | - Ben C Berks
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
George A, Patil AG, Mahalakshmi R. ATP-independent assembly machinery of bacterial outer membranes: BAM complex structure and function set the stage for next-generation therapeutics. Protein Sci 2024; 33:e4896. [PMID: 38284489 PMCID: PMC10804688 DOI: 10.1002/pro.4896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/30/2024]
Abstract
Diderm bacteria employ β-barrel outer membrane proteins (OMPs) as their first line of communication with their environment. These OMPs are assembled efficiently in the asymmetric outer membrane by the β-Barrel Assembly Machinery (BAM). The multi-subunit BAM complex comprises the transmembrane OMP BamA as its functional subunit, with associated lipoproteins (e.g., BamB/C/D/E/F, RmpM) varying across phyla and performing different regulatory roles. The ability of BAM complex to recognize and fold OM β-barrels of diverse sizes, and reproducibly execute their membrane insertion, is independent of electrochemical energy. Recent atomic structures, which captured BAM-substrate complexes, show the assembly function of BamA can be tailored, with different substrate types exhibiting different folding mechanisms. Here, we highlight common and unique features of its interactome. We discuss how this conserved protein complex has evolved the ability to effectively achieve the directed assembly of diverse OMPs of wide-ranging sizes (8-36 β-stranded monomers). Additionally, we discuss how darobactin-the first natural membrane protein inhibitor of Gram-negative bacteria identified in over five decades-selectively targets and specifically inhibits BamA. We conclude by deliberating how a detailed deduction of BAM complex-associated regulation of OMP biogenesis and OM remodeling will open avenues for the identification and development of effective next-generation therapeutics against Gram-negative pathogens.
Collapse
Affiliation(s)
- Anjana George
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| | - Akanksha Gajanan Patil
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| |
Collapse
|
11
|
Devlin T, Marx DC, Roskopf MA, Bubb QR, Plummer AM, Fleming KG. FkpA enhances membrane protein folding using an extensive interaction surface. Protein Sci 2023; 32:e4592. [PMID: 36775935 PMCID: PMC10031210 DOI: 10.1002/pro.4592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/17/2023] [Accepted: 02/07/2023] [Indexed: 02/14/2023]
Abstract
Outer membrane protein (OMP) biogenesis in gram-negative bacteria is managed by a network of periplasmic chaperones that includes SurA, Skp, and FkpA. These chaperones bind unfolded OMPs (uOMPs) in dynamic conformational ensembles to suppress aggregation, facilitate diffusion across the periplasm, and enhance folding. FkpA primarily responds to heat-shock stress, but its mechanism is comparatively understudied. To determine FkpA chaperone function in the context of OMP folding, we monitored the folding of three OMPs and found that FkpA, unlike other periplasmic chaperones, increases the folded yield but decreases the folding rate of OMPs. The results indicate that FkpA behaves as a chaperone and not as a folding catalyst to influence the OMP folding trajectory. Consistent with the folding assay results, FkpA binds all three uOMPs as determined by sedimentation velocity (SV) and photo-crosslinking experiments. We determine the binding affinity between FkpA and uOmpA171 by globally fitting SV titrations and find it to be intermediate between the known affinities of Skp and SurA for uOMP clients. Notably, complex formation steeply depends on the urea concentration, suggesting an extensive binding interface. Initial characterizations of the complex using photo-crosslinking indicate that the binding interface spans the entire FkpA molecule. In contrast to prior findings, folding and binding experiments performed using subdomain constructs of FkpA demonstrate that the full-length chaperone is required for full activity. Together these results support that FkpA has a distinct and direct effect on OMP folding that it achieves by utilizing an extensive chaperone-client interface to tightly bind clients.
Collapse
Affiliation(s)
- Taylor Devlin
- T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Dagan C. Marx
- T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Michaela A. Roskopf
- T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Quenton R. Bubb
- T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Ashlee M. Plummer
- T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Karen G. Fleming
- T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
12
|
SurA-like and Skp-like Proteins as Important Virulence Determinants of the Gram Negative Bacterial Pathogens. Int J Mol Sci 2022; 24:ijms24010295. [PMID: 36613738 PMCID: PMC9820271 DOI: 10.3390/ijms24010295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
In the Gram-negative bacteria, many important virulence factors reach their destination via two-step export systems, and they must traverse the periplasmic space before reaching the outer membrane. Since these proteins must be maintained in a structure competent for transport into or across the membrane, they frequently require the assistance of chaperones. Based on the results obtained for the model bacterium Escherichia coli and related species, it is assumed that in the biogenesis of the outer membrane proteins and the periplasmic transit of secretory proteins, the SurA peptidyl-prolyl isomerase/chaperone plays a leading role, while the Skp chaperone is rather of secondary importance. However, detailed studies carried out on several other Gram-negative pathogens indicate that the importance of individual chaperones in the folding and transport processes depends on the properties of client proteins and is species-specific. Taking into account the importance of SurA functions in bacterial virulence and severity of phenotypes due to surA mutations, this folding factor is considered as a putative therapeutic target to combat microbial infections. In this review, we present recent findings regarding SurA and Skp proteins: their mechanisms of action, involvement in processes related to virulence, and perspectives to use them as therapeutic targets.
Collapse
|
13
|
Papadopoulos A, Busch M, Reiners J, Hachani E, Baeumers M, Berger J, Schmitt L, Jaeger KE, Kovacic F, Smits SHJ, Kedrov A. The periplasmic chaperone Skp prevents misfolding of the secretory lipase A from Pseudomonas aeruginosa. Front Mol Biosci 2022; 9:1026724. [DOI: 10.3389/fmolb.2022.1026724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a wide-spread opportunistic human pathogen and a high-risk factor for immunodeficient people and patients with cystic fibrosis. The extracellular lipase A belongs to the virulence factors of P. aeruginosa. Prior to the secretion, the lipase undergoes folding and activation by the periplasmic foldase LipH. At this stage, the enzyme is highly prone to aggregation in mild and high salt concentrations typical for the sputum of cystic fibrosis patients. Here, we demonstrate that the periplasmic chaperone Skp of P. aeruginosa efficiently prevents misfolding of the lipase A in vitro. In vivo experiments in P. aeruginosa show that the lipase secretion is nearly abolished in absence of the endogenous Skp. Small-angle X-ray scattering elucidates the trimeric architecture of P. aeruginosa Skp and identifies two primary conformations of the chaperone, a compact and a widely open. We describe two binding modes of Skp to the lipase, with affinities of 20 nM and 2 μM, which correspond to 1:1 and 1:2 stoichiometry of the lipase:Skp complex. Two Skp trimers are required to stabilize the lipase via the apolar interactions, which are not affected by elevated salt concentrations. We propose that Skp is a crucial chaperone along the lipase maturation and secretion pathway that ensures stabilization and carry-over of the client to LipH.
Collapse
|
14
|
Wang X, Bernstein HD. The Escherichia coli outer membrane protein OmpA acquires secondary structure prior to its integration into the membrane. J Biol Chem 2022; 298:101802. [PMID: 35257747 PMCID: PMC8987393 DOI: 10.1016/j.jbc.2022.101802] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
Almost all proteins that reside in the outer membrane (OM) of Gram-negative bacteria contain a membrane-spanning segment that folds into a unique β barrel structure and inserts into the membrane by an unknown mechanism. To obtain further insight into outer membrane protein (OMP) biogenesis, we revisited the surprising observation reported over 20 years ago that the Escherichia coli OmpA β barrel can be assembled into a native structure in vivo when it is expressed as two noncovalently linked fragments. Here, we show that disulfide bonds between β strand 4 in the N-terminal fragment and β strand 5 in the C-terminal fragment can form in the periplasmic space and greatly increase the efficiency of assembly of "split" OmpA, but only if the cysteine residues are engineered in perfect register (i.e., they are aligned in the fully folded β barrel). In contrast, we observed only weak disulfide bonding between β strand 1 in the N-terminal fragment and β strand 8 in the C-terminal fragment that would form a closed or circularly permutated β barrel. Our results not only demonstrate that β barrels begin to fold into a β-sheet-like structure before they are integrated into the OM but also help to discriminate among the different models of OMP biogenesis that have been proposed.
Collapse
Affiliation(s)
- Xu Wang
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|