1
|
Zhou B, Chiang TM, Varnavski O, Giri SK, Rani C, Schatz GC, Goodson T. Enhanced Photochemical Reaction Rates with Entangled Photons. J Phys Chem Lett 2025; 16:4372-4381. [PMID: 40273097 DOI: 10.1021/acs.jpclett.5c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Photochemistry is a powerful tool for synthesizing important molecules that are challenging to create without light. We report compelling results that indicate that photochemical reaction rate (oxygenation) can be notably enhanced by utilizing a very small number of entangled photons. Measurements with the same small number of classical photons show that the rate of product formation is considerably lower. This suggests that the reaction rate with entangled photons is enhanced by many orders of magnitude. Theoretical calculations show that classical and entangled photons excite the photocatalyst to different final excited states. This chemical synthesis approach with entangled photons could have a large impact on our understanding of chemical reactivity and provide new insights into photochemical processes.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Chemistry, University of Michigan; Ann Arbor, Michigan 48109, United States
| | - Tse-Min Chiang
- Department of Chemistry, Northwestern University; Evanston, Illinois 60208-3113, United States
| | - Oleg Varnavski
- Department of Chemistry, University of Michigan; Ann Arbor, Michigan 48109, United States
- Department of Applied Physics, University of Michigan; Ann Arbor, Michigan 48109, United States
| | - Sajal Kumar Giri
- Department of Chemistry, Northwestern University; Evanston, Illinois 60208-3113, United States
| | - Chanchal Rani
- Department of Chemistry, University of Michigan; Ann Arbor, Michigan 48109, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University; Evanston, Illinois 60208-3113, United States
| | - Theodore Goodson
- Department of Chemistry, University of Michigan; Ann Arbor, Michigan 48109, United States
- Department of Applied Physics, University of Michigan; Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Xie Y, Gu B. Exploiting Quantum Light-Matter Interaction for Probing and Controlling Molecules. J Phys Chem Lett 2025; 16:2608-2613. [PMID: 40032611 DOI: 10.1021/acs.jpclett.4c03152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Quantum mechanical properties of light, such as time-energy entanglement, quadrature squeezing, and non-Poisson statistics, can be exploited to develop novel spectroscopic signals that enhance the signal strength and spectrotemporal resolution. Moreover, quantum light also provides nonclassical control knobs for controlling the outcome of a chemical reaction. Here, we provide a perspective on how quantum light-matter interaction can be exploited to probe and control molecular events.
Collapse
Affiliation(s)
- Yujuan Xie
- Department of Chemistry and Department of Physics, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Bing Gu
- Department of Chemistry and Department of Physics, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
3
|
Aslopovsky VR, Scherbinin AV, Bochenkova AV. Enhancing Two-Photon Absorption of Green Fluorescent Protein by Quantum Entanglement. J Phys Chem B 2025; 129:2168-2174. [PMID: 39668340 DOI: 10.1021/acs.jpcb.4c07869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Exploring the electronic states of molecules through excitation with entangled and classical photon pairs offers new insights into the nature of light-matter interactions and stimulates the development of quantum spectroscopy. Here, we address the importance of temporal entanglement of light in two-photon absorption (TPA) upon the S0 → S1 transition by the green fluorescent protein (GFP)─a key molecular unit in the bioimaging of living cells. By invoking a two-level model applicable when permanent dipole pathways dominate the two-photon transition, we derive a convenient closed-form analytical expression for the entangled TPA strength. For the first time, we disclose specific molecular properties that cause classical and entangled two-photon absorptions to be qualitatively different when exciting the same state. We reveal a new nonclassical contribution to the TPA strength, which is defined by the magnitude and directional alignment of permanent dipole moments in the initial and final states. Using high-level electronic structure theory, we show that the nonclassical contribution is intrinsically larger than the classical counterpart in GFP, leading to an enhancement of the TPA strength due to quantum entanglement by several orders of magnitude. We also present evidence that the classical and quantum TPA strengths can be modulated differently by the protein environment and demonstrate how to control the outcome by alterations in the local electric field of the protein caused by a single amino acid replacement. Our findings establish physical grounds for enhancing TPA in photoactive proteins by quantum entanglement, facilitating the rational design of high-efficiency biomarkers for future applications that utilize quantum light.
Collapse
Affiliation(s)
| | - Andrei V Scherbinin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | |
Collapse
|
4
|
Gu B. Generalized Optical Sum Rules for Light-Dressed Matter. J Phys Chem Lett 2024; 15:5580-5585. [PMID: 38754080 DOI: 10.1021/acs.jpclett.4c00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Light-driven matter can exhibit qualitatively distinct electronic and optical properties from those observed at equilibrium. We introduce generalized sum rules for the optical properties of light-driven molecules. Both classical and quantum light are considered. For classical light, the Floquet sum rules show that the sum of all Fourier components, indexed by n = -∞ to ∞, of the time-dependent dipole matrix elements between Floquet modes weighted by the corresponding quasienergy difference in the first Floquet Brillouin zone plus n driving frequency is a constant. Surprisingly, it is impossible to alter the energy exchange rate between matter and a perturbative external probe laser by a strong driving, even though the spectra can differ significantly from the bare ones. These developments provide guidance for the control of effective optical properties of matter by light fields.
Collapse
Affiliation(s)
- Bing Gu
- Department of Chemistry & Department of Physics, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
5
|
Chen Z, Luo JW, Wang LW. Light-induced ultrafast spin transport in multilayer metallic films originates from sp- d spin exchange coupling. SCIENCE ADVANCES 2023; 9:eadi1618. [PMID: 38100591 PMCID: PMC10848703 DOI: 10.1126/sciadv.adi1618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Ultrafast interaction between the femtosecond laser pulse and the magnetic metal provides an efficient way to manipulate the magnetic states of matter. Numerous experimental advancements have been made on multilayer metallic films in the last two decades. However, the underlying physics remains unclear. Here, relying on an efficient ab initio spin dynamics simulation algorithm, we revealed the physics that can unify the progress in different experiments. We found that light-induced ultrafast spin transport in multilayer metallic films originates from the sp-d spin-exchange interaction, which can induce an ultrafast, large, and pure spin current from ferromagnetic metal to nonmagnetic metal without charge carrier transport. The resulting trends of spin demagnetization and spin flow are consistent with most experiments. It can explain a variety of ultrafast light-spin manipulation experiments with different systems and different pump-probe technologies, covering a wide range of work in this field.
Collapse
Affiliation(s)
- Zhanghui Chen
- Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China
- Materials Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Mail Stop 50F, Berkeley, CA 94720, USA
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Jun-Wei Luo
- Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Lin-Wang Wang
- Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China
- Materials Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Mail Stop 50F, Berkeley, CA 94720, USA
| |
Collapse
|
6
|
Gu B, Gu Y, Chernyak VY, Mukamel S. Cavity Control of Molecular Spectroscopy and Photophysics. Acc Chem Res 2023; 56:2753-2762. [PMID: 37782841 DOI: 10.1021/acs.accounts.3c00280] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
ConspectusOptical cavities have been established as a powerful platform for manipulating the spectroscopy and photophysics of molecules. Molecules placed inside an optical cavity will interact with the cavity field, even if the cavity is in the vacuum state with no photons. When the coupling strength between matter excitations, either electronic or vibrational, and a cavity photon mode surpasses all decay rates in the system, hybrid light-matter excitations known as cavity polaritons emerge. Originally studied in atomic systems, there has been growing interest in studying polaritons in molecules. Numerous studies, both experimental and theoretical, have demonstrated that the formation of molecular polaritons can significantly alter the optical, electronic, and chemical properties of molecules in a noninvasive manner.This Account focuses on novel studies that reveal how optical cavities can be employed to control electronic excitations, both valence and core, in molecules and the spectroscopic signatures of molecular polaritons. We first discuss the capacity of optical cavities to manipulate and control the intrinsic conical intersection dynamics in polyatomic molecules. Since conical intersections are responsible for a wide range of photochemical and photophysical processes such as internal conversion, photoisomerization, and singlet fission, this provides a practical strategy to control molecular photodynamics. Two examples are given for the internal conversion in pyrazine and singlet fission in a pentacene dimer. We further show how X-ray cavities can be exploited to control the core-level excitations of molecules. Core polaritons can be created from inequivalent core orbitals by exchanging X-ray cavity photons. The core polaritons can also alter the selection rules in nonlinear spectroscopy.Polaritonic states and dynamics can be monitored by nonlinear spectroscopy. Quantum light spectroscopy is a frontier in nonlinear spectroscopy that exploits the quantum-mechanical properties of light, such as entanglement and squeezing, to extract matter information inaccessible by classical light. We discuss how quantum spectroscopic techniques can be employed for probing polaritonic systems. In multimolecule polaritonic systems, there exist two-polariton states that are dark in the two-photon absorption spectrum due to destructive interference between transition pathways. We show that a time-frequency entangled photon pair can manipulate the interference between transition pathways in the two-photon absorption signal and thus capture classically dark two-polariton states. Finally, we discuss cooperative effects among molecules in spectroscopy and possibly in chemistry. When many molecules are involved in forming the polaritons, while the cooperative effects clearly manifest in the dependence of the Rabi splitting on the number of molecules, whether they can show up in chemical reactivity, which is intrinsically local, is an open question. We explore the cooperative nature of the charge migration process in a cavity and show that, unlike spectroscopy, polaritonic charge dynamics is intrinsically local and does not show collective many-molecule effects.
Collapse
Affiliation(s)
- Bing Gu
- Department of Chemistry and Department of Physics, School of Science, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yonghao Gu
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Vladimir Y Chernyak
- Department of Chemistry and Department of Mathematics, Wayne State University, Detroit, Michigan 48202, United States
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| |
Collapse
|
7
|
Gu B, Sun S, Chen F, Mukamel S. Photoelectron spectroscopy with entangled photons; enhanced spectrotemporal resolution. Proc Natl Acad Sci U S A 2023; 120:e2300541120. [PMID: 37186860 PMCID: PMC10214152 DOI: 10.1073/pnas.2300541120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
In this theoretical study, we show how photoelectron signals generated by time-energy entangled photon pairs can monitor ultrafast excited state dynamics of molecules with high joint spectral and temporal resolutions, not limited by the Fourier uncertainty of classical light. This technique scales linearly, rather than quadratically, with the pump intensity, allowing the study of fragile biological samples with low photon fluxes. Since the spectral resolution is achieved by electron detection and the temporal resolution by a variable phase delay, this technique does not require scanning the pump frequency and the entanglement times, which significantly simplifies the experimental setup, making it feasible with current instrumentation. Application is made to the photodissociation dynamics of pyrrole calculated by exact nonadiabatic wave packet simulations in a reduced two nuclear coordinate space. This study demonstrates the unique advantages of ultrafast quantum light spectroscopy.
Collapse
Affiliation(s)
- Bing Gu
- Department of Chemistry, School of Science, Westlake University, Hangzhou, Zhejiang310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang310024, China
| | - Shichao Sun
- Department of Chemistry, University of California, Irvine, CA92697
- Department of Physics and Astronomy, University of California, Irvine, CA92697
| | - Feng Chen
- Department of Chemistry, University of California, Irvine, CA92697
- Department of Physics and Astronomy, University of California, Irvine, CA92697
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, CA92697
- Department of Physics and Astronomy, University of California, Irvine, CA92697
| |
Collapse
|
8
|
Keefer D, Cavaletto SM, Rouxel JR, Garavelli M, Yong H, Mukamel S. Ultrafast X-Ray Probes of Elementary Molecular Events. Annu Rev Phys Chem 2023; 74:73-97. [PMID: 37093660 DOI: 10.1146/annurev-physchem-062322-051532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Elementary events that determine photochemical outcomes and molecular functionalities happen on the femtosecond and subfemtosecond timescales. Among the most ubiquitous events are the nonadiabatic dynamics taking place at conical intersections. These facilitate ultrafast, nonradiative transitions between electronic states in molecules that can outcompete slower relaxation mechanisms such as fluorescence. The rise of ultrafast X-ray sources, which provide intense light pulses with ever-shorter durations and larger observation bandwidths, has fundamentally revolutionized our spectroscopic capabilities to detect conical intersections. Recent theoretical studies have demonstrated an entirely new signature emerging once a molecule traverses a conical intersection, giving detailed insights into the coupled nuclear and electronic motions that underlie, facilitate, and ultimately determine the ultrafast molecular dynamics. Following a summary of current sources and experiments, we survey these techniques and provide a unified overview of their capabilities. We discuss their potential to dramatically increase our understanding of ultrafast photochemistry.
Collapse
Affiliation(s)
- Daniel Keefer
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California, USA; ,
| | - Stefano M Cavaletto
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California, USA; ,
- Current affiliation: Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Jérémy R Rouxel
- Université de Lyon, UJM-Saint-Etienne, IOGS, Laboratoire Hubert Curien, UMR CNRS 5516, Saint-Etienne, France
| | - Marco Garavelli
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Bologna, Italy
| | - Haiwang Yong
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California, USA; ,
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California, USA; ,
| |
Collapse
|
9
|
Nam Y, Song H, Freixas VM, Keefer D, Fernandez-Alberti S, Lee JY, Garavelli M, Tretiak S, Mukamel S. Monitoring vibronic coherences and molecular aromaticity in photoexcited cyclooctatetraene with an X-ray probe: a simulation study. Chem Sci 2023; 14:2971-2982. [PMID: 36937575 PMCID: PMC10016608 DOI: 10.1039/d2sc04335a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Understanding conical intersection (CI) dynamics and subsequent conformational changes is key for exploring and controlling photo-reactions in aromatic molecules. Monitoring of their time-resolved dynamics remains a formidable experimental challenge. In this study, we simulate the photoinduced S3 to S1 non-adiabatic dynamics of cyclooctatetraene (COT), involving multiple CIs with relaxation times in good agreement with experiment. We further investigate the possibility to directly probe the CI passages in COT by off-resonant X-ray Raman spectroscopy (TRUECARS) and time-resolved X-ray diffraction (TRXD). We find that these signals sensitively monitor key chemical features during the ultrafast dynamics. First, we distinguish two CIs by using TRUECARS signals with their appearances at different Raman shifts. Second, we demonstrate that TRXD, where X-ray photons scatter off electron densities, can resolve ultrafast changes in the aromaticity of COT. It can further distinguish between planar and non-planar geometries explored during the dynamics, as e.g. two different tetraradical-type CIs. The knowledge gained from these measurements can give unique insight into fundamental chemical properties that dynamically change during non-adiabatic passages.
Collapse
Affiliation(s)
- Yeonsig Nam
- Department of Chemistry, University of California Irvine California 92697-2025 USA
| | - Huajing Song
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Victor M Freixas
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET B1876BXD Bernal Argentina
| | - Daniel Keefer
- Department of Chemistry, University of California Irvine California 92697-2025 USA
| | | | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University Suwon 16419 Korea
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari,", Universita' degli Studi di Bologna I-40136 Bologna Italy
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Shaul Mukamel
- Department of Chemistry, University of California Irvine California 92697-2025 USA
| |
Collapse
|